On d-Folds whose Canomical Bundle is Not Numerically Effective,
According to Mori and Kawamata (*).

MAURO BELTRAMETTI

Sunto. — In questo lavoro si studiano le varieted non singolari di dimensione d il cui divisore
canonico non & numericamente effetlivo e si estendono alcuni dei risultati ottenuti da Mori
nel caso d = 3. Cio viene ottenuto mediante un uso sistematico della teoria di Mori det raggi
estremali e di un forte teorema di Kawamata-Shokurov. Quest'ultimo risultato fornisce una
varietd normale ¥ e un morfismo ¢: X — ¥ che conirae un raggio estremale R e che da la
struttura di X. Se R & numericamente effettivo, dim ¥ < dim X ¢ ¢ ¢é una (generica) fibra-
zione in varieta, di Fano. Se B & non numericamente effettivo, ¢ é un morfismo birazionale
e in questo caso lavoriamo nell'ipotesi che il luogo E dove ¢ non é isomorfismo sia un divi-
sore in X. Se d = 4 diamo una descrizione abbastanza detlagliata di E.

Introduction.

The aim of this paper is to give an attempt of classification of the complex non-
singular varieties of any dimension d, whose canonical bundle is not numerically
effective. The method we use here is to extend some of the theory of the extremal
rays stated by MogrI in the case d = 3. As the title says, the ideas in this paper are
mostly plagiarized from Morr [M1], [M2] and KawamAta [K1]. Indeed the ex-
tension fo any dimension comes out from Mori’s theory by using a recent result
due to KAwaMATA and SHOKUROV (see 1.1). Through the paper we give for com-
pleteness almost all the proofs in detail, even those that differ from the proofs in
the three-dimensional case mainly in technical matters.

Roughly speaking the Kawamata-Shokurov’s result gives a normal projective
variety Y and a morphism ¢ = contz: X — ¥, contracting an extremal ray R, which
gives the structure of X. We divide our analysis according to whether the extremal
ray we consider is numerieally effective or not. In the second case we work under the
assumption that the dimension of the locus of X where ¢ is not an isomorphism is
greater than or equal to d — 1. This condition is always satisfied if d = 3 but it is
no longer true 2s the dimension increases (see [R1], 3.9).

In section 2 we consider the case when R is not numerically effective. Then ¥
is a Q-factorial variety with only terminal singularities, ¢ is a birational morphism

(*) Entrata in Redazione il 26 novembre 1985; versione riveduta il 31 gennaio 1986.
Indirizzo dell’A.: Universitd di Genova, Istituto di Matematica, Via L.B. Alberti 4,
16132 Genova.
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and there exists a unique irreducible exceptional divisor B which can be a Fano
variety of index = 2 or a (general) Fano fibering on @(F). Unlike the case d = 3,
E may be not a Pl-bundle when dim ¢(F) = d — 2.

In section 3 the extremal ray E is assumed to be numerically effective. Then Y
is again Q-factorial, 0 < dim ¥ < dim X, and ¢ is a (general) Fano fibering. In
fact, unlike the case d = 3, the morphism ¢ may be not flat: indeed special fibres
of big dimension can occur. In some cases we find birational models of X.

Clearly it turns out that in view of the lack of a classification of Fano varieties
of any dimension the results above become less and less satisfactory as the dimension
increases. The most explicit results are contained in seection 4 which is devoted to
the case d = 4. Especially when the extremal ray is not numerieally effective and ¥
contracts to a point via the morphism ¢, & rather detailed description can be done.
In such a case we find for F a three-dimensional Fano variety of index = 2 with
Gorenstein singularities and we work under the assumption that the degree of B
is less than or equal to 72. To this purpose, some classical examples of singular Fano
varieties whose degree actually reaches the upper bound 72, justify the assumption
above which, in fact, can be reasonably considered as a conjecture. Indeed, d = 4
iy a special case and when 4> 4, up to a classification of (possibly singular) Fano
varieties of any dimension, it seems we have not to expect much more precise results
than those stated in sections 2, 3.

Definitions and some preliminaries are given in sections 0, 1.

Some of the results contained here have been communicated at the Bratislava
Conference « Summer School on Commutative Algebra and Algebraic Geometry »
on June 1984.

We would like to thank P. FrancrA for many stimulating discussions on the sub-
ject. We are also indepted to M. REIDp for pointing out a fatal error in a previous
proof.

After the paper was written down we knew that very similar results have been
also obtained by T. ANDo [A]

0. — Notation, conventions and terminology.

Throughout the paper we work on the complex number field C. By a variety
(resp. d-fold) we shall mean an irreducible reduced projective scheme of dimension 4
(resp. nonsingular). For a variety V, we define

Ny(V) = ({1-cycles}/~) @ R

where «~ » means numerical equivalence and a 1-cycle is an element of the free
abelian group generated by all the irreducible reduced subvarieties of dimension 1;

NE(V) = the convex cone in N,(V) generated by effective 1-cycles;
NE(V) = the closure of NE(V) in N,(V) with respect to the real topology.
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We shall express the intersection of cycles by the symbol « - » and the linear equi-
valence of divisors by « = ». The real vector spaces N,(V) and N, (V) = ({Cartier
divisors}/~)® R are dual to each other via « - ». They are of finite dimension o(V'),
which is called the Picard number of V.

We shall use the following Kleiman's criterion for ampleness [K]:

(0.1) A Cartier divisor D on V is ample if and only if (D-Z) > 0 for all

ZeNE(V)N{ZeNV), |Z] =1}.

The dualizing sheaf of V will be denoted by wy. If V is norma,l the canonical divisor

Ky is defined to be a Weil divisor on V such that Og.p(K /\ Qpery. Wesay
that V has only terminal (resp. canonical) singularities if the followmg conditions are

satisfied:
1) mK, is a Cartier divisor for some integer m;

2) for a resolution of singularities f: V' — V we can write

mKy = f*mKy)+ > r.B;,, r.€Z

Moreover, V is called Q-factorial if for every Weil divisor D on V, there ex1sts
an integer m such that mD is a Cartier divisor,
Let D be a divisor on V. We shall use the symbols

such that r,> 0 (resp. r, = 0), where H, are all the prime exceptional divisors of V',

|D| = the complete linear system associated to D;
(D) = dimcH{(V, 0,(D)), i=0,..,d;
d
A(D) = (= 1)i 3 WD
. i=0

Ii D is numerically effective, the numerical Kodaira dimension is defined to be

%pu(D) = max {s: D* » 0}.

aum

Then
max {0, #(D)} <

= num(

Dy<d
where %(D) is the Iitakae D-dimension.

A part of the Mori’s theory of extremal rays is to be used throughout the paper.
As far as generalities about numerically effective cycles (nef cycles from now on),
extremal rays, extremal rational curves, etc. are concerned, we shall refer to Mori’s
papers [M1}, [M2]. Let us recall that R =R + [Z] in NE(V),V nonsingular, is an
extremal ray if

1) (By-Z)<0;
2) Zy, Z,e NE(V) satisfy Z,, Z,e R when %, -+ Z, € R.
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1. ~ Some preliminary results,

The main step to go on is the following eontraction theorem due to KAWAMATA [K2]
and SHOXUROV [S], and also proved in [K1], [R] in the case d = 3.

THEOREM 1.1 (Kawamata-Shokurov). — Let V be a d-dimensional variety with
canonical singularities. Let D e Pic (V) be nef. Suppose that aD — K, is nef and
(@D — Ky)* > 0 for some integer a = 1. Then »(D)= 0 and |mD| is base point free
for m>0. m

Let o: V — Z be the morphism associated to {m.D|. Then the Stein factorization
of ¢ gives a normal projective variety ¥ and a morphism ¢: V — Y with connected
fibres, the contraction of DN NE(V), which satisfies the following conditions
(here « L » means the orthogonal)

(111) @uOp = Uy;

(1.1.2)  for every curve ( in V, dim ¢(0) = 0 if and ounly if D-0 = 0;

{1.1.3) the pair (Y, ¢) is unique up to isomorphism;

(1.1.4) Degp*Pic(Y).

Ag far as (1.1.4) is concerned, note that to prove Theorem 1.1 it is shown that [p*D/,
lg°D| are base point free for two primes p > 1, ¢ > 1 and some positive integers ¢, s

(cfr. [K2], 2.6 and also [K1], Thm. 2). Then p*D, ¢°D € ¢* Pic (Y) so we get the
result,. =

From now on, let X be a d-fold and suppose the canonical bundle Ky to be not nef.
Then in view of Mori’s theorem on cone ([M1], 1.4.2) the assumption on Ky is equi-
valent to saying that there exists an extremal ray R on X. We define:

R' = {DeN,,(X), D-R=0}c N, (X)*,
R¥={De N, (X), D-Z =0 for every Z e NE(X) and D-C =0 iff [C]€ R},
where «[ ]» denotes the class of a 1-cycle in NE(X).

The following Lemmas are proved by Mori in the case d = 3 (see [M2], 3.1, 3.2,
3.3, 3.4); up to obvious changes the same proof works in any dimension.

LEMMA 1.2. — The set B* is a non-emply open convex cone of E*+. Furthermore
if H, D are divisors on X such that H € R*, (D-R) > 0 then nH -+ D is ample for n>>0.

Lemma 1.3, — For every divisor H on X such that H € B* one has BinH) = 0,
121, n>»0.
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LEMMA 1.4. — Let H be a divisor on X such that H € R*. Then R is not nef if and
only if (H* > 0.

LEMMA 1.5. — Let H be o divisor on X such that H € R* and let B be an irreducible
subvariety of X such that H-R~ 0 on X. Then for every irreducible curve C in B,
[CleR. =m

‘We fix now an extremal ray R and a divisor H € R*. Since (Kx-R) < 0 the divisor
nH — Ky is ample for n>>0 in view of Lemma 1.2. Then Theorem 1.1 applies to
give a normal projective variety ¥ and a morphism ¢ = contz: X — Y contract-
ing R and with connected fibres which satisfies conditions (1.1.1), ..., (1.1.4). Indeed
by construction ¢ contracts H- N NE(X) and H* N NE(X) = R since H € R*.

Let 4 = {we X; ¢ is not an isomorphism at #}. We say that R is of type (a, b)
if @ = dim 4 and b = dim ¢(4), where « dim » means the maximum of the dimen-
sions of irreducible components. Of course d =a>b=0. In the case of 3-folds
we know from Mori’s theory that it has to be a = d — 1 = 2. This is no longer frue
in general when the dimension increases: an example of a 4-fold having an extremal
ray of type (a, b) with @ << d — 1 == 3 can be found in [R1] (example 3.9). Throughout
the paper we work under the assumption that R is of type (e, b) witha=d— 1;
such a restriction is relevant only if B is not nef, because when R is nef it has to be
a = d. If a < d the contraction ¢: X — Y is a birational morphism. In casea < d— 1
one only knows that ¥ has rational not Q-Gorenstein singularities (see [K2], 5, (B)).

2. — The case when E is not nef.

Throughout this section the extremal ray R is assumed to be not nef. The fol-
lowing structure theorem is a consequence of Thm. 1.1 and it is essentially due to
Kawamata (see [K1] for a proof in the three-dimensional singular case and [K2],
section b, (B) for the statement in any dimension).

THEOREM 2.1. — Let X be a d-fold and let B be an extremal ray of type (a, b) with
az=d— 1. Suppose R to be not nef. Then there exist a normal projective variety Y
and a birational morphism @ = contz: X — Y such that
(2.1.1)  for every integral curve C in X, dim ¢(C) = 0 iff [C]1€ R;

(2.1.2) the sequence |
0 — Pie (¥) -2 Pic (X) _“® 7
is exact and p(X) = o(Y) + 1;
(2.1.3) — Ky is g-ample;
(2.1.4)  there ewists a unique irreducible reduced divisor B on X such that (E-R) < 0,
@ induces an isomorphism on X\E and dim ¢p(E) < d— 2.

(2.1.5) Y is locally Q-factorial and has only terminal singularities.
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PROOF. ~ Let p = cont,: X — Y be the contraction of R given by Theorem 1.1
and satisfying conditions (1.1.1), ..., (1.1.4). Lemmas 1.3, 1.4 say that y(nH) = h°(nH)
goes to the infinity as n that is »(H) = d. Then ¢ = d— 1 and ¢ is a birational
morphism. Now (2.1.1) is clear while the ampleness of nH — K, n >0, gives (2.1.3).
To prove (2.1.2) consider the sequence

0 — Pic (¥) 2 Pic (X) L2, 7

where B = R,[/]. The condition ¢, 0y = 0p implies ¢,¢* =id, so ¢* is injective.
To see the exactness in Pic (X) let L be an element of Pie (X) such that (L-¢) = 0.
Then for o >0 the divisor L 4+ oH satisfies the conditions

1) L+ oH is nef;
2} L4 aH — Ky is ample;
3) (L+aH)C=0 iff H-0 =10, C curve in X.

Then in view of (1.1.2), (1.1.3), (1.1.4), Theorem 1.1 applies to L + oH to give
L+ oH=0¢*M, MecPic(Y). Whence L e ¢* Pic (Y), therefore

ker (-, ) C p* Pic (¥).

The converge is clear since

P*N L =N, /=0

for every N ePie(Y). Thus the sequence is exaect, o(X) = o(¥) -+ 1 and (2.1.2)

i3 proved.
Now, since R ig not nef, there exisis an irreducible reduced divisor ¥ such that

(I-R)<0.

This means that E-J < 0 for every curve ¢ such that {C] € R, hence ¥ contains every
such a curve. Then it follows that ¥ is unique since & = d— 1. The fact that ¢
is isomorphism on X\ # is clear since nH — K, » >0, is ample by Lemma 1.2. More-
over the condition o(X) = p(¥) -~ 1 implies dim p(F) = d — 2 and (2.1.4) is proved.

To prove {2.1.5) let D be an arbitrary prime divisor on Y and let D' be the striet
transform of D under ¢. Write

—a= (E-R), pB=(D"R).
Then («D'-- SE)-R = 0 so that (2.1.2) yields

oD+ BE =9p*4, AePic(Y).
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Hence, for some rational function f on X,

oD+ BE = ¢*4 + (f).

Since ¢ is birational, we can also write aD) = A - (f}, so aD is a Cartier divisor.
Finally, let m be a positive integer such that mKy is a Cartier divisor. Since ¢
is isomorphism outside of F we can write

mKy = ¢*mKy + aF

for some aeZ. The relations (Kz-R)<0, (E-R)<0, (p*Ky-R)= 0 imply a to
be positive and (2.1.5) is proved. q.e.d. :

REMARK ('2.1)’. ~ As it is clear from the proof, we need the assumption «a =
= d— 1» only to get (2.1.4), (2.1.5).

QUESTION 2.2. — If d = 3, the contraction ¢ is the blowing-up of ¥ along ¢(E).
Does the same in general hold true? (*). =

Now a problem arising here is fo describe the exceptional divisor F of the con-
traction. ¢: X — ¥. We can go on by considering several cases according to numerical
properties of the ecycle H-EH. We need a preliminary result.

LEMMA 2.3. — Let B be the exceptional divisor as in 2.1 and let o be o positive integer.
Then

H'(Oup(nH + Ky)) = (0), i>0, n>>0.

Further, let L be a divisor on X such that (L — Ky — AE)-R > 0 for every integer A = 0.
Then

H(Og(mH 4+ L)) = (0), >0, n>>0.
Proor. — Consider the standard exact sequence, a > 1,
0 = Ox(nH + Ky — aB) - Ox(nH + Kz) ~ Op(nH + Ky) — 0.
For >0, nH — aF is ample by Lemma 1.2 hence

H'(Ox(nH + Kz — aB)) = (0), i>0, n>>0.

{*) This is certainly true if 0,(— E) is very ample on F and also in case when dim ¢(B) =
=dimF—-1=d— 2 and ¢ is equidimensional (see [A], 2.3)
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By the Kawamata-Viehweg vanishing one has H*(Ox(nH -+ Ky)) = (0), ¢ > 0, since H
is nef and H®> 0 in view of Lemma 1.4. Then the first part of the statement follows.

The assumption on L implies that nH -+ L— Ky — AE is ample, n >0, 1= 0,
again by Lemma 1.2, Therefore the Kodaira vanishing reads

H(Ox(nH + L— AB))=(0), i=1,1=0, n>0.
Thus the exact sequence
0 — OymH + L — aB) - Oy(mH + L) > Oz(mH + L) — 0

gives the result. q.e.d.

i Tirst, we consider the case when H-H ~ 0. To this purpose let us give the fol-
lowing

DrrFINITION. — Let V be an irreducible, reduced variety with invertible dualizing
sheaf w,. We say that V is a Fano variety of index r if r is the maximal integer such
that w,*~ rL, L ample sheaf on V.

ProrositioN 2.4, ~ Let 9: X — Y be as in Theorem 2.1 and assume H-H~ 0.
Then @(E) is a point and B is a Fano variety of dimension d— 1, index r > 1 and
W (0z) = 0, 1> 0. Furthermore

2(O0(Kz)) = 2(0x(E)) = 0.

Proor. — The assumption H-E ~ 0 says that for every curve ¢ in F, [C]e R.
This implies that the restriction map

N(X)* - Ny(B)*

has image of dimension 1 (see Lemma 1.5). Then there exist an ample divisor L
on B and infergers a, b such that

— alLi~ 0g(Ky), — bL~ Ux{E).
Since Ky-R < 0, B-R < 0, then a, b are positive, so
wyt=— (Ky+ B)z~(a+b) L
is ample and ¥ is a Fano variety of index # = a 4 b = 2. To prove that W(0z) = 0,
note that O,(mH) = 0y because H-H~ 0 and h(0x(mH)) >0, m >0, since |mH|,

m >0, is base point free by Theorem 1.1. Then Lemma 2.3 with L =0 gives the
result.
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Now consider the polynomial
P(n) = 3(Gx(nL)) .
By using Lemma 2.3 we find, for » >0,
P(— a) = y(0s(Kz)) = g(Os(mH + Kx)) = B*(Ox(mH + Ky)) .

Hence P(— a) = 0 since (— mH — K,),,=— K;;~ aL is amplé on E. The Serre
duality says, for every integer n, that

P(n) = (— 1)¢-1P(— a— b—n).
Then, if @ # b, P(— a) = 0 implies P(— b) = 0, so y(0s(H)) = 0. q.e.d.

REMARK 2.5. — Let E, L be as in Proposition 2.4 and let us consider the particular
case when F is normal with isolated singularities. Then a generalization of a result
of Kobayashi-Ochiai (see [F-S], (0.6.1)) shows that Pic (H) ~H?*(H, Z) is torsion
free and the index of B is r<d. If r = d,(E, Os(L)) = (P, Up.s(1)) while if
r = d — 1, then F is isomorphie to a hyperquadric in P¢ and L is linearly equivalent
to a hyperplane section.

In the general case, looking over the proof of 2.4 and using Lemma 2.3 one sees
that the polynomial, of degree d— 1, y(0z(nL)) vanishes for n = — 1, ..., — a, 80
that it has to be a = d— 1.

Now, assume H-E+ 0 and let se{l,..,d— 2} be the maximal integer such
that Hs*B~ 0. It d =3 we know that p: X — Y is the blowing-up along ¢(F)
and ¢,: H — ¢(B) is a P'-bundle. The situation becomes more and more complicated
ag the dimension increases and one has to analyse several cases according to the
value of s. The following example shows that ¢;,: £ — @(£) can be not a P’-bundle
when §=d— 2.

ExavrLE '26 -~ Let Y be the ordinary double point of a 4-fold (given in a
5-dimensional space by oy — 2t 4 w?=0). Let ¢: X — Y be the blow-up of the
plane # = z = w = 0; an easy calculation in coordinates shows that X is nonsingular,
that the exceptional locus of ¢ is a P-bundle outside the origin, but the fibre ¢—*(0)
is 2-dimensional. MH

A rough description of ¥ is given by the following
ProrosiTioN 2.7. — Let ¢: X — Y be as in Theorem 2.1. Assume H-E ~ 0 and

let s€{1, ..., d— 2} be the maximal integer such that H*-E ~ 0. Then dim o(H) = s
and every irreducible, reduced fibre of |, is a Fano variety of index v > 1.
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ProoF. — The restriction ¢, is the morphism associated to the complete linear
system |mH,, m >0, in view of Lemma 2.3. Since |mH,,| is base point free for
m >0, %y, (Hg) = #(H)g), so that dim (#) = s.

Now the proof runs as in Proposition 2.4. Let F be an irreducible, reduced fibre
of ¢,. Then H-F ~ 0, so for every irreducible curve C in F, [C] € E and the image
of the restriction map

has dimension 1 {see Lemma 1.5). Therefore there exist an ample divisor L on F
and integers a, b such that

— oL~ 0x(Kz), — bL~ Ox(E)
where a, b are positive because Ky K < 0, -R < 0. Hence

is ample on ¥ and F is a Fano variety of indexr=a +5=2. q.ed.

3. — The case when [ is mef.,

Throughout this section the extremal ray R is assumed o be nef. The structure
Theorem 3.2 is again a direct consequence of Theorem 1.1 (see also [K2], section 5, (B)).
We need the following

Lemya 3.1. — Under the assumptions as above, let H € B*. Then

(3.1.1) wH)=d—1 if H1— Ky>0;
(3.1.2) He1=0 in Ny(X) if H1— Ky<0.

ProoF. - In view of Lemmas 1.3, 1.4, the Riemann-Roch theorem gives for » >0,
A positive integer

h(nH) = A(H*"1 — Ky)n** -+ (terms of degree=<d— 2),

which proves (3.1.1). Since H is nef one has He e NE(X) and nH — Ky is ample,
n >0, by Lemma 1.2. Then (H2*-nH — Kx) = 0 because H? = 0 and the Kleiman’s
ampleness criterion implies that H*1~ 0. q.e.d.

THEOREM 3.2. — Let X be a d-fold and let B be an extremal ray. Suppose R to be
nef. Then there exist a normal projective variety Y and a morphism ¢ = eonty: X — ¥
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such that @0z = Oy and for an arbitrary irreducible curve C in X, [Cle R if and
only if dim @(C) = 0. Moreover — Ky is g-ample, o(X) = o(Y) 4 1, Y is Q-factorial
and we have

(32.1) dim Y = d - 1, for every general fibre F, F ~ P, (F-K;) = — 2, [F] e R;

3.22) dmY=d—s,8=2,...,d—1, 9: X — Y is a Fano fibering, that is every
general fibre is a Fano variety. Furthermore when s =d— 1, then Y is a
nonsingular curve and every fibre is irreducible, reduced of dimension d— 1.

(3.2.3) dim Y =0 and X is a Fano d-fold.

PrOOF. — The first part of the proof runs as in Theorem 2.1, and the fact that ¥
is Q-factorial is proved in [K2], 5.2. The morphism ¢: X — Y is the Stein factorization
of the morphism associated to |mH|, m >0, and H = ¢*D, D € Pic (Y). Let F be a
general fibre of ¢.

Assume Ho1-— K, > 0. Then #(H)=d—1 by Lemma 3.1, so that dim ¥ =
= d— 1. Hence w, = K, and [F]e R, therefore

deg WOy — Kx‘_F = Kx'R < 0.

Hence F' ~ P, degwr = (F*Ky) = — 2 and (3.2.1) is proved.

Suppose now Hé1-— Ky < 0. Then H*1~ 0 by Lemma 3.1, 80 #(H) < s,,,,(H) <
=d~—2, that is dim ¥ < d— 2. Since H € ¢* Pic (¥), the restriction H, is nu-
merically trivial. Then the ampleness of »H — Ky, >0, implies the ampleness of

Wy = — Kx[zﬂ’" (nH — 'KX)]F .

When dim ¥ = 1, the condition ¢, 0y = O implies that ¥ is a nonsingular curve,
80 ¢ is a flat morphism (see [H], ITI, 9.7) and all fibres F are of dimension 4 — 1.
Let & be an irreducible component of any fibre ¥ of ¢. Since ¢ contracts R and R
is nef one sees that (¢-R) =0 and (G-0) = 0 for every irreducible curve Cc F.
This means that G = F,,. Otherwise, write ¥ = ¢, + G, - 4, @,, G,, 4 eftective
divisors, G,, G, irreducible. The fibre F is connected so there exists a point p € G, N G,
if G+ G,. Let L be a very ample divisor, L3p, Lp G NG, (if dim G, N G, = 1)
and look at the 1-cycle y = L{;* on G,. Thus [y]€ R and (Gy-y) = 0, contradiction;
so F is irreducible.

To prove that ¥ is also reduced write F = a@, G = F,,, a positive integer. Since
B2~ 0 then 0u,(G)~ 0g, s0 '

208) = 1(Ons) = 5(0) + 7(0a(— @) + ... + 2(Oo(— @ +1)G) = ay(0,) .
The flatness of ¢ implies that y(0r) = 1, therefore a = 1 and (3.2.2) is proved.

Finally, when dim ¥ = 0, we find ¢(X) =1, then the condition (KzR)<<0
shows that — K, is ample. q.e.d.
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Let X be as in cases (3.2.1) or (3.2.2) with s == 2 of Theorem 3.2. Then X can be
described as follows, up to birationality, by using a result by Sarkisov together with
the HEnriques-Iskovskih classification of the minimal rational surfaces.

SUPPLEMENT 3.3. Let ¢: X — Y be as in cases (3.2.1) or (3.2.2) with s = 2 of
Theorem 3.2. Then X is birationally equivalent to one of the following types of d-folds X :

a) X= Y x Pz

b) X -7 is a conic bundle, ¥ birationally equivalent either to Y or to a conic
bundle on Y;

¢) there exists a morphism §: X — Y such that the generic fibre (on K = C(X)) is
a) a quadric @ = Py xXP;c P} with Pic (@) = Z generated by 0,(1);

¢) @ Del Pezzo surface S with Pic (8) == Z generated by the anticanonical
sheaf wi* and w’=1,..., 6.

ProOOF. ~ Let X be ag in (3.2.1). Then X belongs to class b) of the statement
in view of [Sa], 1.13. Therefore we can assume X o be as in (3.2.2) with s = 2. Let
K = C(Y) and denote by F, = X ®y Spec K the generic fibre of ¢: X — ¥. Since
the general fibre of ¢ is a rational surface over C, one has »(F,) < 0, ¢(Fy) = 0 (cf. [I],
§ 10.3, [H], II1, 9.9) so that Fy is a rational surface over K. Let S be a minimal model
of F,. Hence § belongs to one of the following families of surfaces ([Is], Thm. 1):

) 8="Pg

ii) § =P, xP; is a quadric in P, having Pic (8) =x Z generated by a hyper-
plane section;

iii) & is a Del Pezzo surface with Pic (8) ~ Z generated by the anticanonical
sheaf wy';

iv) there exists a morphism § — B such that the generic fibre and the base
curve B are nonsingular of genus 0.

It is not difficult to prove that there exist a d-fold X and a birational map X-->x
such that the composition X — ¥ is a morphism whose generic fibre is isomorphic
to the minimal model § of #,. Moreover the funetion field K(8) of § is isomorphie
to the function field C(X) of X (see [EGA], I, 3.4.6). Then case i) yields C(X) =~
o~ K(P2) =~ C(Y xP?), hence X is birationally equivalent to ¥ xP? and we get a),
while ii) gives ¢,) of the statement. Suppose now case iii) holds. Therefore we get ¢,),
after proving that 1< @2 < 6. This follows by [M1], 3.5.2 where it is proved that
the case wl = 7 does not occur, while if w} = 8, 9 the Picard group Pic (8) is not
generated by the anticanonical sheaf. Finally in case iv) one has an embedding of the
funetion fields K(B) — C(X) corresponding to the surjective morphism § — B. On
the other hand K(B) is nothing but the function field of a conic bundle V- W, W
birationally equivalent to Y, whose generic fibre is isomorphic to B. Then the in-
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clusion K(B) = C(X) gives a rational map X — -> V whose generic fibre is isomorphic
to a conic. Therefore, by using again [Sa], 1.13, X belongs to class b) of the
statement. q.e.d.

Following an idea due to P. IoNEScU, we get a slight improvement of (3.2.2)
(compare with example 3.6 below).

SUPPLEMENT 3.4. — Let 9: X — Y be as in (3.2.2) and suppose dim ¥ = 2. Then
every fibre of ¢ has dimension d— 2.

Proor. — Let y € ¥ be a closed point and denote by F the fibre over . Then
@, ~ Dy, where D = nH — Ky is ample for » >0 (see the proof of (3.2.2)). Consider
the embeddmg of X given by the complete linear system |mD|, m >0. Let ¥ be the
nonsingular surface obtained by intersecting d — 2 general members of |mD| and
denote by ¢ the restriction of p to ¥. Assume dim F = d— 1. Then we see that ¢
contracts the curve y = YNFtoa point and Fj,~ 0 since (F-R)= 0. Therefore
we find

0> (72); = m* (D B, = (Dd—2 F[F)F =0,
contradiction. Then dim ¥ = d— 2 and we are done. q.e.d.

RemARK 3.5. — Let X be a Fano d-fold as in (3.2.3). Then Pic (X) ~ H*(X, Z)
is torsion free (see Remark 2.5), so Ky=— #L for some (unique) ample divisor L
on X, where r =1, ..., d -1 is the index of X. If »r =d + 1, d, then (X, L) is
isomorphic to (P4 Op(1)), (@, O,(1)), @ hyperquadric in P respectively. If
v = d— 1, the pairs (X, L) are also called D¢l Pezzo manifolds: it has to be L¢ =
=1, ..., 8 and they are completely classified by Fupta in several papers (see [F1],
§2, [F2], §§ 5, 6, [(F3). m

In the three-dimensional case the contraction ¢ in Theorem 3.2 is a flat morphism
and X is a conic bundle in case (3.2.1) as proved by Mori. This is no longer true
when d = 4, as the following example shows.

EXAMPLE 3.6. — Let L, L,, L, be general hyperplanes in P, n = 3, and let P2
be the base of the net of hyperplanes 2 AiL;. Now let X c P2x P~ be the incidence
correspondence {(p, L); p € L}; then the projection X — ¥ = P~ is a contraction,
is a P1-bundle outside the axis, but has fibre P? over every point of the axis.

4. — The case of 4-folds.

From now on we shall suppose d = 4. This section is essentially devoted to study
the particular ease when the extremal ray R is not nef and H-H~ 0 as in Propo-
sition 2.4, Then ¢: X — Y is a birational morphism contracting E to a point, B is
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a Fano variety of dimension 3 and index # > 1, there exist positive integers a, b
and an ample divisor L = %, on E, £ € Pic (X), such that

— aLli~ Og(Kyg)y, —bL~ 0xE).
To say more on ¥ we have to study the polynomial, of degree 3,
P(n) = y(0:(nL)) .
Let us state some preliminaries. From Proposition 2.4 we know that
(4.1.1) PO)=1, P(—a)=0.
Further, the divisor Z verifies the condition (n¥ — Hy— AE)-R>0, A= 0, for
every n > — a. Then, since H;,= 0 (see the proof of 2.4), we get hi(nL) = 0, for any

#>—a, 1 >0, in view of Lemma 2.3. It follows:

(4.1.2)  P(1)==nrL);
(41.2) Pm)=0 for every n=—1,.., — a, hence in particular ¢ < 3;

(41.2)" P@n)=0 for every n=1—a—b,...,— b by the Serre duality.
Following Fuijta, we call A-genus the integer
ME) = 3 + L' — hO(L) .
The base locus Bs{L| of |L| satisfies the inequality ([F1], 1.9)
(4.1.3) dim Bs|L| < A(L) .

Let 0 = o), H— —~H'cC P¥ be the rational map associated to the ample divisor L.
When deg ¢4 oo one has

(4.1.4) L3ldeg o = deg B’ = codimpy B'-- 1

and all the cases when the equality holds are classically classified (see f.e. [Mul, 2.7).
Finally let ns assume the following extra condition

(4.1.5) 1< (@)P <72,

The theory of Fano 3-folds says that (4.1.5) holds true whenever K is nonsingular
(indeed in this case the upper bound is known to be 64).
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B2 PrOPOSITION 4.1. - Let ¢: X — ¥ be as in Theorem 2.1, let B be the exceptional
divisor and assume H-E~ 0. With the notation as above, the 3-ple (H, wg, Ox(E))
camn be described as in the table below (where wg, Ox(E) are given up to linear equivalence
modulo torsion).

L A w(I) I3 Structure of o:F ‘A P¥ | 04(E) g
very ample | 0 4 a: B~ P _ — bL — 45
b=1,2,3
1 - :
1 3 ' o: B — P2, Bs|L| a simple —L — 2L
- E point ’
very ample | 0 5 o: B~ Vi a normal qua- — bL — 3L
dric in P4 b=1,2
2 Bs|L| = 0 and o: B — P?
1 4 a 2-sheeted covering of P3, —I — o

or deg ¢ = oo and FE sin-
gular at Bs|L|

very ample 6:E ~ V2 a cubicin P4
1 5 3 deg ¢ = oo, F singular at — L — 2L
Bs|L|
very ample | o: B~ V?* acomplete in-
tersection of 2 quadrics
1 6 4 in P2 . — oL
deg ¢ = oo, I singular at
Bs|L|
very ample ' o: B2 VicP¥ N=13

3 s
L 1P+ 2] 5<Li<9 deg ¢ = oo, E singular at

Bs|L|

PRroOF. — First, let us assume a = b. The Serre duality gives, for every neZ,

Pn)=—P(—a—b—n).

Hence P(— a) = 0 implies P(— b) = 0. Let & be the third root of P(n). Then clearly
either # = — @, # = — b or © == (— a— b)/2. Since P(0) =1 we find for P(n) the fol-
lowing forms

P(n) = (1/a*b)(n + a)*(n + b), P(n) = (1/ab®)(n L a)(n + b)2,

Pn) = (2] + ab*)(n + a)(n + b) (n + 5 ;— b). |
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The leading coefficient of P(n) is known to be L3/6, so we have respectively
L3a®b) =6, L3ab®) =06, L*a%b-ab®)=12.
Recalling that A°(L) = P(1) (see (4.1.2)) we find, case by case, the following pos-
sibilities,
I?=1, =1, b=6 or a=6, b=1, K(L)¢Z contradiction;
=2, a=1, b=3 or =3, b=1, h'(L)¢Z, contradiction ;
I3=3, a=1, b=2 or a=2, b=1, WL)==6
I?=1, a=1, b=3 or a=3, b=1, WIL)=4;
I3=2, a=1, b=2 or a=2, b=1, KL)=35
In the last three cases one has A(L) = 3 -+ L3 — h*(L) = 0, then FE is normal and L
ig very ample ag proved in [F1], 4.8. Note that case L® = 3 above does not occur:
indeed in this case wy~ — 3L which contradicts the sectional genus formula (4.1.7)
below.

Now, agsume @ = b and let = — a be a root of P(n). Then the Serre duality
says P@)=—P(—2¢—x)=0 and — 20— ov~2, — 2a— ©+*— a. Therefore,
since P(0) = 1, we get

Pn) = (— 1/20%2 -+ az®)(n + a){(n — x)(n + 2a + x)

and

(4.1.6) L320%% 4 ax?) = — 6

because the leading coefficient is L3/6. In view of (4.1.2), (4.1.2)", case a = b =3
is excluded while ¢ = b = 2 gives # = — 3, — 1, hence

P(n) =& (n+ 2)(n + 3)(n + 1)

and A(L) = P(1) = 4. Again A(L) = 0, so E is normal and L is very ample. Thus
the cases in the table when A(L) = 0 are proved. In the remaining cagse ¢ = b =1
we find from (4.1.2), (4.1.6) that

WL)y=PA)=L13+2.
Hence

AL)y=1.
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If 12 =1 then W(L) = 3, 0: E— — P2, Bs|L| is a simple point on . To go on,
consider the sectional genus g(L) defined by the equality ([F2], §1)

(4.1.7) 29(L) — 2 = (wg + 2L)-L2.

Now wg ~ — 2L, so g(L) = A(L) = 1. When E is nonsingular at each point of Bs|L|
then Theorem 3.6 in [F2] applies to say that Bs|L] =0 if I? = 2, so deg o = 2 in
this case by (4.1.4), and L is very ample when L? = 3. In particular F is a cubic
in Pt or a complete intersection of two quadries in P5 when L® = 3 or 4 respectively,
a8 Aproved again in [F2], 5.4, 5.6. While if F is singular at some base point, then it
has to be deg o = oo by combining [F2], 3.3, 3.6. Assumption (4.1.5) gives I*< 9
and this completes the proof. q.e.d.

SUPPLEMENT (4.1)'. — Consider the case N = L*=5, deg ¢ < co in 4.1. Then
0t B V7 cP" and let us assume in addition that the restriction mapping

H(P™, (1)) — H(E, L)

is bijective. Therefore, since A(L) = 1 and L is very ample, from the results stated
in [F3] we can deduce for F the possibilities listed in the table below. Note in par-
ticular that if L® = 7, 8 and E is singular then F is necessarily not normal, while
if I* =9, F has to be singular and not normal. When F is nonsingular we find the
Fano 3-folds of index two and degree N == 5, ..., 8. Further, every connected com-
ponent of the singular locus of ¥ is & linear space (of dimension < 2) and when ¥
is not normal then its singular locus is connected. Here y: £ — E denotes the nor-
malization of E. We say that (B, y* L) is a rational seroll it (B, y*IL) = (P(&), O(1))
for some ample vector bundle & on P

I? | Structure of E (y: £ — E the normalization of E)

— F nonsingular, a linear section of the Grassmann variety parametrizing
lines in P4, embedded in P? by the Pliicker coordinates;

— E not normal, (¥, y*L) a_rafional scroll;
— F singular with normal, rational singularities.

— B nonsingular, a hyperplane section of a Segre variety P2xP2c P8, or a
Segre variety P'x PixPlc P7;

— F not normal, (#, y*L) a rational scroll;

— F singular with normal, rational singularities.

— ¥ nonsingular, a blowing-up of P? at a point;
E not normal, (#, y*L) a rational seroll.

— F nonsingular, the Veronese image of P3;

8 — I not normal, (&, y*1) a rational scroll.

9 — F not normal, (£, y*L) a rational scroll.

Note. that in the present case it has to be (wz')® < 64 whenever F is normal. W
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Ag far a3 the case R nef is concerned, we have the following

ProprosITION 4.2, — Let 91 X — Y be as in (3.2.1) and let f be a 1-dimensional fibre
of . Write C = f . Then every irreducible component A of C is isomorphic fo P*;
moreover if Oy, Oy are distinct irreducible components of O such that C,.N O, == 0, then O
and O, intersect at only one point and transversally. Furthermore

By A)y=—2—p,— p;— D5

where N 4z = O4(p1)® Oa(P2)D Ou(ps) and (py, pe,y ps) = (0,0, 0), (0,0, —1), (1,0,
—-1), 1,0,—2) or (1,—-1,—1) (3.

PRroOF. — Let (' be an arbitrary closed subscheme of X such that O, c 0. Then
we claim that

(4.2.1) 2(06)>0.

Choose D,, D,, D, irreducible divisors on Y which intersect properly at y = ¢(f)
and let E,, E,, E, be irreducible divisors on X such that

Supp B, =¢~YD,;), ¢=1,2,3.

Clearly one has

B,#EB;y, i1%j,4%4i=1,23; (B;R)=0; CcENENE,.
Indeed, by construction, H,, B,, B, are irreducible divisors containing C, dim £; N
NE,NEB,=1and (B;,"f) = (B, R) = 0 since [f]e B. For every positive integer a,
the divisor

mH — e, B, — &0, —~ e, B, — Ky, &=0,0a
is ample for m >0 because (— & F, — & By — & B; — Ky)* B < 0. Hence
Hi(Ogx(mH — e, By — &,y — &.8s)) = (0), i>0, m>0, e,=0, a.

Then in view of Lemma 1.3, the exact sequence

0"""@‘1’(— a(l; + B, + Ea)) = Ox(— al) D Ox(— alp)® Ox(— aly) —

- @X - @aE'lnaEmaEa -0

(3) In {A] p. 351 is proved that 2p; + py+ p;= 0 so case (I,0,—1) can be excluded.
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gives

HY(O,5, 005,00z, (mH)) = (0), m>0.
Since H, N B,N B,> 0> (), one has, for some positive integer a,
abBiNall,Nal;>C.
Then there exists a surjection
Oup,00m,n 0, (MH) — Op(mH) — 0,

which gives

HY0u(mH)) = (0), m>0.

Now, dim ¢(C,,y) = 0 so that H-C,y = H-C'= 0. Therefore O (mH)~ 0, and

2(00) = 3(0(mH)) = 1O (mH)) .

Indeed in view of Theorem 1.1, mH is effective and [mH| is base point free for m > 0.
Then y(0¢) = b*(0c.(mH)) > 0, m >0 and (4.2.1) is proved. Up to obvious changes,
the proof of the second part of the statement runs as in [M2], 5.6 and we omit it.
Thus, let A ~ P! be an irreducible component of . If N yx = Ox(p1) ® Ou(py) @

@ 0O4(ps) the adjunction formula reads
—2=degw,= Kz 4) -+ p, 4+ p;, + ps
whence
(4.2.2) Pitpatpz=—1.
We can assume
(4.2.3) : PLE=Ps=Ps -
50 (4.2.2) implies that

(4.2.4) 4 - P20,

Now, let I be the sheaf of ideals defining 4 in X and write

I)I* = 0,40) @ 0.(0) D 0,(c)
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where a Zb=¢, ¢ = — 3, b = — P, ¢ = — p,. Since 4 is locally complete inter-
section in X of codimension 3, we can agsume I to be generated by a regular sequence
{@, b, ¢) in a neighbourhood of an arbitrary point. Let J be the ideal defined by

IPecdcl, J/IP=0,a)® 0,0).
Then
J = (a, b) mod. I* = (a, b, ¢?).
Look at the exact sequences
0 >IN J2It > B3It > 131N J? =0,
0 —>IPJI > I3 - 13I8 |- J? — 0.

One can sees that

(4.2.5) 3N J2 = 0,(3¢) ,
(4.2.6) DIs - J2 = 0,20)® Ou(a+ )@ Oub -+ o),
(4.2.7) 2O = 3(O1) + gIIT?) + y(II5 + T + (DT> A I)

Then (4.2.2), (4.2.6), (4.2.7) give

1(0)J?) =8 + 6¢ + 2(a + b -+ ¢) < 10 +- 6¢,
so in view of (4.2.1) we find ¢ = — 1 that is

4.2.8) p<1.

Relations (4.2.3), {4.2.4), (4.2.8) imply that the only 3-ples (p,, p,, p;) can oceur are
those listed in the table below

P Dy Ps3

0
0
1
1
i
1
1

O D O] e b e b e | DD
|
N

P b e
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A direet computation shows that

Il

2Oy = x(Oa) + x(I/1*) + 2(8*I/I*)) =10 + 5(a + b+ ¢),
2O[L) = 2(00) + 7[I*) + 3(8*(I/T?)) + (8UI/I?)) = 20 + 15(a + b+ ¢)

x(O1%) = 3(0.4) + y(I/I2) + 2(SAI[I?)) 4 y(T*/T3 N I*) +-
+ (133 + I%) = 19 -+ 10a - 10b L 25¢.

Y4
X

By (4.2.1), the first two equalities exclude the 3-ples (p,, py, ps) = (1,1,1), (1,1, 0)
respectively, while the third implies that (p,, s, p;) = (1, 1, — 1), (1, 0, 0) cannot
oceur.

Now let J’ be the ideal defined by

Icd'cI, J'|/I2=0,a).
Then
J'= (a) mod. I = (a, b2, ¢?, be)

and we find
2O = 7(O2) + g(I[I) + g(I3J"* ++ I%) + y(I*}T"* (\ I9) = 18 + 3a + 110 + 1le.

Again (4.2.1) shows that the cases (p,, p;, ps) = (1, 1,—2), (1,1, — 3) do not occur.
This completes the proof. q.e.d.

Added in proof. — In the paper of the same author: Contractions of non numerically effective
extremal rays in dimension 4, Proceedings of Algebraic Geometry Conference, Humboldt Uni-
versity, Berlin (1985), Teubner-Texte zur Math., Band 92 (1986), some improvements of the
results contained in §4 are given. In particular conjectured condition (4.1.5) is proved.
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