
On d-Folds whose Canonical Bundle is Not Numerically Effective, 
According to Mori and Kawamata (*). 

MAUI~O BELTI%AMETTI 

S u n t o .  - I n  questo lavoro si  s tudiano le varieth non  singolari di d imensione d iI cui  divisore 
canonico non ~ ~umericamente  el]ettivo e si estendono alcuni  dei r isul tat i  ottenuti  da Mor i  
nel caso d = 3. Cid viene ottvn~eto media~te u n  uso sistematico della teovia di Mor i  dei ~'aggi 
estremali e di u n  /o~'te teorema di Kawamata-Sho~urov .  Quest'~eltimo ris~dtato ]ornisce una  
varlet& normale Y e q~n mor/ ismo q~: X --+ Y che contrae ~tn raggio est~'emale I~ e che dh la 
struttura di X .  Se 1~ ~ numericamente  e]/ettivo, dim Z <  d i m X  e ~ ~ u na  (generica) ]ibra- 
zione i n  Varieth di t~ano. Se R ~ non numericamente  e]]ettivo, q~ ~ u n  mor]ismo birazionale 
e in  questo caso lavoriamo nell ' ipotesi  ehe it  luogo E dove q~ non  ~ isomorf ismo sia qtn divi-  
sore in  X .  Se d = 4 diamo una  descrizione abbastanza dettagliata di ~ .  

I n t r o d u c t i o n .  

The aim of this pape r  is to give au a t t e m p t  of classification of the  complex non- 
singular variet ies of any  dimension d, whose canonical bundle is not  numerical ly  
effective. The me thod  we use here is to extend some of the  theory  of the  ex t remal  

rays  s ta ted  b y  MOl~I in the  case d ---- 3. As the  t i t le says, the  ideas in this paper  are 
mos t ly  plagiarized f rom MoRI []~1], [M2] and  KAWA~ATA [K1]. Indeed  the  ex- 
tension to any  dimension comes out  f rom Mori 's theory  b y  using a recent  result  

due to KAWA~ATA and S~oK~mov (see 1.1). Through the  pape r  we give for com- 

pleteness a lmost  all the  proofs in detail, even those t ha t  differ f rom the  proofs in 
the  three-dimensional  case main ly  in technical  mat te rs .  

Roughly  speaking the  K a w a m a t a - S h o k u r o v ' s  result  gives a normal  project ive  
va r i e ty  Y and  a morph i sm ~ ---- contR: X -+ Y, contract ing an ex t remal  r ay  R, which 

gives the  s t ructure  of X.  We divide our analysis according to whether  the  ex t remal  
r ay  we consider is numerical ly  effective or not.  In  the  second case we work  under  the 

assumpt ion  t h a t  the  dimension of the locus of X where ~ is not  an isomorphism is 
grea ter  t h a n  or equal  to d - -  1. This condition is always satisfied if d = 3 bu t  it  is 
no longer t rue  as the  dimension increases (see [R1], 3.9). 

I n  section 2 we consider the  case when R is not  numer ica l ly  effective. Then Y 
is a Q-factorial  va r i e ty  with only te rminal  singularities, ~ is a bira t ional  morph i sm 

(*) Entrata in Red~zione il 26 novembre 1985; versione riveduta il 31 gennaio 1986. 
Indirizzo dell'A. : Universit~ di Genova, Istituto di Matematica, Via L.B.  Alberti 4, 

16132 Genova. 
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and there  exists a unique irreducible except ional  divisor E which can be a Fano  

va r i e ty  of index ~ 2 or a (general) Fano  fibering on ~0(E). Unlike the  case d ---- 3, 
E m a y  be not  a P~-bundle when d im ~ ( E ) - - - - d -  2. 

I n  section 3 the ex t remgl  ray  R is assumed to be numerical ly  effective. Then Y 

is aga in  Q-factorial ,  0 g dim Y < dim X,  and  ~ is a (general) Fano  fibering. I n  

fact ,  unlike the  case d ~ 3, the  morph i sm ~ m a y  be not  flat:  indeed special fibres 
of big dimension can occur. In  some cases we find 

Clearly i t  turns  out  t h a t  in view of the  lack of 

of any  dimension the  results gbove become less and 

birat ional  models of X.  

a classification of Fano  variet ies 
less sa t is factory as the  dimension 

i11creases. The mos t  explicit  results are contained in section 4 which is devoted  to 
the  case d = 4. Especial ly  when the  ex t remal  r a y  is not  numerical ly  effective and  E 

contracts  to  a point  v ia  the  morph i sm % a r a the r  detailed descript ion can be done. 

In  such a case we find for E a three-dimensional  Fano  va r i e ty  of index ~ 2 with 

Gorenstein  singularities and  we work  under  the  assumpt ion  t h a t  the  degree of E 

is less t han  or equal  to 72. To this purpose,  some classical examples  of singular Fano  

variet ies whose degree ac tual ly  re~ches the  upper  bound  72, just i fy  the  assumpt ion  
above  which, in fact ,  can be reasonably  considered as a conjecture.  Indeed,  d -  4 

is a special case and  when d > 4, up to a classification of (possibly singular) Fano  

variet ies  of any  dimension,  i t  seems we have  not  to expect  much  more  precise resul ts  
t h a n  those s ta ted  in sections 2, 3. 

Definitions and  some prel iminaries  are given in sections 0, 1. 

Some of the  results contained here have  been communica ted  s t  the  Bra t i s lava  
Conference <~ S um m er  School on Commuta t i ve  Algebra and Algebraic Geome t ry  ~> 

on J u n e  1984. 
We would like to th~nk  P. ~FRANCIA for m a n y  s t imulat ing discussions on the  sub- 

ject. We  are also indepted  to M. REID for point ing out  a fa ta l  error in a previous 

proof. 
After  the  pape r  was wr i t ten  down we knew tha t  ve ry  similar results have  been 

also obta ined  b y  T. ANDO [A]. 

O. - Notat ion,  convent ions  and terminology .  

Throughout  the  paper  we work oll the  complex number  field C. By  a variety 
(reap. d-fold) we shall mean  an irreducible reduced project ive  scheme of dimension d 

(resp. nonsingular).  For  a va r i e ty  V, we define 

NI(V) = ({1-cycles}/,-~) Q R 

where <( ~ ~) means numerical  equivalence and  a 1-cycle is an e lement  of the free 
abel ian group genera ted  by  all the  irreducible reduced subvariet ies  of dimension 1; 

N E ( V )  : the  convex cone in NI(V) genera ted  b y  effective 1-cycles; 

N E ( V )  = the  closure of N E ( V )  in N~(V) with  respect  to the  real topology.  
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We shall express the  intersection of cycles b y  the  symbol  (( �9 ~> and the  linear equi- 

valence of divisors b y  <~ ~ ~>. The real  vector  spaces N~(V) and Na_~(V) = ((Cartier 
divisors}/~) G R are dual to ,each other via <( �9 ~>. They  are of finite dimension ~(V), 

which is called the  Picard number of V. 
We shall use the  following Kle iman ' s  criterion for ampleness [K]: 

(0.1) A Cartier divisor D on V is ample  if and  only if (D. Z) > 0 for all 

z e l e E ( v )  c~ { z  e 2v~(v),  Ilzll = 1 } .  

The dualizing shea] of V will be denoted by  Oav. If V is normal,  the canonical divisor 
d 

Kv is defined to be a Well  divisor on V such tha t  (3~(v)(Kv) -~ A/2ne:(v)" We  say 
t ha t  V has only ~erminal (resp. canonical) singularities if the  following conditions are 
satisfied: 

1) mKv is a Cartier divisor for some integer m; 

2) for a resolution of singularities f: W -+ V we can write 

inKy, = ]*(mKv) + ~ r~Ei, ri ~ Z 

such t h a t  r, > 0 (resp. r, ~ 0), where E ,  are all the  pr ime exceptional  divisors of V'. 
Moreover,  V is called Q-]actorial if for every  Well  divisor D on V, there  exists 

an integer  m such t h a t  mD is a Cartier divisor. 

Le t  D be a divisor on V. We shall use the  symbols 

[D I --= the  complete  linear sys tem associated to D ;  

h~(D) ~- dimcH~(V,  (gv(D)), i = 0, ..., d;  
d 

z(D) --= (--  1 ) ~  h~(D). 
/ = 0  

I f  D is numerical ly  effective, the  numerical Kodaira dimension is defined to be  

Then 

~.u~(D) = max {s: D~ * 0}. 

max {0, z(D)} g zn~m(D) _< d 

where z(D) is the  Iitaka D-dimension. 
A pa r t  of the  Mori 's theory  of ex t remal  rays is to be used th roughout  the  paper .  

As far  as generalities abou t  numerical ly  effective cycles (ne] cycles f rom now on), 
ex t remal  rays,  ex t remal  ra t ional  curves, etc. are concerned, we shall refer to Mori 's  

papers  [~1],  [M2]. Le t  us recall t ha t  R = R+ [Z] in NE(V) ,V nonsingular~ is an 
extremal ray if 

1) (Kv'Z) < 0; 

2) Z1, Z~eNE(V)  satisfy ZI, Z ~ e R  when Z~ + Z~eR.  
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1. - Some  p r e l i m i n a r y  results .  

The main  step to go on is the  ~ollowing contract ion theorem due to KAWA)~AmA [K2] 

and  S ~ o ~ u ~ o v  [S], and  also p roved  in [K1], [R] in the  case d ~ 3. 

THE0~E~I 1.1 (Kawamata -Shokurov) .  - .Let V be a d-dimensional variety with 
canonical singularities. Let D e P i c  (V) be ne]. Suppose that a D - -  Kv is ne] and 

(aD --  Kv) ~ > 0 ]or some integer a ~ 1. Then ~(D) ~ 0 and [mD[ is base point ]ree 
]or m>>0.  [] 

Le t  a: V -+ Z be the  morph i sm associated to imD]. Then the  Stein fac tor iza t ion 
of ~ gives a normal  project ive  va r i e ty  Y and  a morph i sm ~: V -+ Y with connected 

fibres, the  contract ion of D-L~ N E ( V ) ,  which satisfies the  following conditions 

(here <( • ~) means  the  orthogonal)  

(1.1.1) 

(1.:[.2) 

(1.1.3) 

(1.1.4) 

for every  curve  C in V, dim ~o(C) = 0 if and  only if D .  C = 0;  

the  p~ir (Y~ ~) is unique up  to i somorph i sm;  

D ~ ~* Pic (Y) .  

As far  as (1.1.4) is concerned, note  t h a t  to prove  Theorem 1.1 it is shown t h a t  [p~D[, 
Iq~DI are base  point  free for two pr imes  p > 1, q > 1 and  some posi t ive integers t, s 

(d r .  [K2], 2.6 and  ~lso [K1], Thm. 2). Then p~D, q~D E ~* Pic (I7) so we get the  

result.  [] 

F r o m  now on, let  X be a d-fold ~nd suppose the  canonical bundle  K z  to be not ne]. 
Then in view of Mori 's  t heorem on cone ([M1], 1.4.2) ~he assumpt ion  on Kx is equi- 

va len t  to saying t h a t  there  exists an  ex t r ema l  r ay  R on X.  We  define: 

R • = {D e ;V~_~(X), 9 . R  = o} c g ~ ( X ) * ,  

R* - -  {D ~ N~_~(X), D . Z  ~ 0 for every Z e N E ( X )  und D .  C ~ 0 iff [C] e R} ,  

where <( [ ] ~> denotes the  class of a 1-cycle in N E ( X ) .  
The following L e m m a s  are p roved  b y  ]~ori in the  case d = 3 (see [M2], 3.1, 3.2~ 

3.3, 3.4) ; up to obvious changes the  same proof  works in any  dimension. 

LE~IMA 1.2. - The set R* is a non-empty open convex cone o/ R'-. Furthermore 

if  H, D are divisors on X such that H ~ R*, (D .R) > 0 then n H  ~- D is ample ]or n >>0. 

LEYt-~[~_ 1.3. - ~or every divisor H on X such that H ~ R* one has h~(nH) ~ 0, 

i ~ l ~  n>>O. 
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LE)I~A 1A. - Let H be a divisor on X such that H ~ R*. Then R is not ne] i / a n d  

only i] (H ~) > O. 

L E n A  1.5. - _~et H be a divisor on X such that H ~ R* and let B be an irreducible 

subvariety o/ X such that H . R ~  0 on X .  Then ]or every irreducible curve C in B,  

[C] e R. [] 

We fix now an extremal ray  R and ~ divisor H e R*. Since (Kx 'R )  < 0 the divisor 

n i l - -  Kx  is ample for n >> 0 in view of Lemma 1.2. Then Theorem 1.1 applies to 

give a normal  projective var ie ty  /z ~nd a morphism ~ :  contR: X - +  17 contract-  

ing R and with connected fibres which satisfies conditions (1.1.1), ..., (1.1.4). Indeed 

by  construct ion ~ contracts H J-n  N E ( X )  an4 H-Ln N E ( X )  ~- R since H e R*. 
Let  A -~ {x e X ;  ~ is not  an isomorphism at x}. We say tha t  R is of type  (a, b) 

if a : dim A and b -~ dim ~(A), where (~ dim ~) means the max imum of the dimen- 

sions of irreducible components.  O~ course d ~ a > b ~ 0. I n  the case of 3-folds 

we know from Mori's theory  tha t  it has to be a ~ d --  i ~ 2. This is no longer t rue 

in general when the dimension increases : an example of a 4-fold having an extremal 

r~y of type  (a, b) with a < d ~ i : 3 can be found in [1~1] (example 3.9). Throughout  

the paper  we work under the assumption tha t  R is of type  (a, b) with a ~ d --  1; 

such a restriction is relevant only if R is not  nef, because when R is nef i~ has to be 

a ---- d. I f  a ~ d the contract ion ~: X --~ Y is ~ birational morphism. In  case a < d --  1 

one only knows tha t  I z has rational not  Q-Gorenstein singularities (see [K2], 5, (B)). 

2.  - T h e  c a s e  w h e n  R i s  n o t  n e f .  

Throughout  this section the extremal ray  R is assumed to be not  nef. The ~ol- 

lowing structure theorem is a consequence of Thin. 1.1 and it is essentially due to 

K a w a m a t a  (see [K1] for ~ proof in the three-dimensional singular case and [K2], 

section 5, (B) for the s ta tement  in any  dimension). 

Tm~o~E~ 2.1. - .Let X be a d-]old and let R be an extremal ray el type (a, b) with 
a ~ d - - 1 .  Suppose R to be not ne]. Then there exist a normal projective variety Y 

and a birational morphism q~ -~ cont~: X --~ Y such that 

(2.1.1) /or every integral curve C in X ,  dim of(C) ----- 0 ill [ C ] ~ R ;  

(2.1.2 the sequence 

0 ~ Pie (17) ~* (.R), ) Pic (X) ~ Z 

is exact and o(X) ~ Q(~) ~ 1; 

(2.1.3 - - K x  is q)-ample; 

(2.1.4 there exists a unique irreducible reduced divisor E on X such that (E .R)  < 0, 

q~ induces an isomorphism on X \ E  and dim q~(E) ~ d --  2. 

(2.1.5 Y is locally Q-]actorial and has only terminal singularities. 
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PROOF. - Let  ? = cont , :  X -+ Y be the contract ion of R given by  Theorem 1.1 
and satisfying conditions (1.1.1), ..., (1.1.4). Lemmas  1.3, 1.4 say tha t  z(nH) = hO(nH) 
goes to the infinity as n d, t ha t  is z ( H ) = d .  Then a =  d - - 1  and ~ is a birat ional  
morphism. Iqow (2.1.1) is clear while the ampleness of n H -  Kx,  n >>0, gives (2.1.3). 
To prove (2.1.2) consider the sequence 

O - + P i c ( Y ) ~ P i c ( X )  ( ~ ) ~ Z  

where R = R+[t~]. The condit ion ~.($x = (~r implies ~ .~*  = i d ,  so ~0" is injective. 
To see the  exactness in Pic (X) let  L be an element  of Pic (X) such tha t  (L. t  ~) = 0. 
Then for ~ >> 0 the  divisor L + ~H satisfies the  conditions 

1) L - l - ~ H  is nef;  

2) L + ~ H - -  Kx is ample;  

3) ( L ~ - a H ) . C = 0  iff H . C : 0 ,  C curve in X. 

Then in view of (1.1.2), (1.1.3), (1.1.4), Theorem ! .1  applies to L Jr ~H to give 
L ~ o:H = ?*M, M ~ Pic (Y). Whence  L e ?* Pic (Y), therefore  

ker (. ,  [) c ~v* Pie (Y).  

The converse is clear since 

9 ~ * N ' [ =  N . ~ , t ~ =  0 

for every N e Pic (Y). Thus the  sequence is exact,  ~ ( X ) =  ~ ( Y ) +  1 and (2.1.2) 
is proved.  

Now, since R is not  nef, there  exists an irreducible reduced divisor E such tha t  

(E.2~) < O. 

This means t ha t  E .  C < 0 for every  curve C such t h a t  [C] e R, hence E contains every  
such a curve. Then  it  follows t h a t  E is unique since a = d -  1. The fact  t ha t  
is isomorphism on X ~ E  is clear since n i l - -  E, n >> 0, is ample by  Lem m a  1.2. More- 
over the condit ion ~o(X) = o(Y) + 1 implies dim ~(E) g d -- 2 and (2.1.4) is proved.  

To prove  (2.1.5) let  D be an a rb i t ra ry  prime divisor on Y and let  D'  be the  strict  
t rans form of D under  ~. Wri te  

- ~ = ( E . ~ ) ,  ~=(D'.R). 

Then (aD'~- f lE) .R = 0 so tha t  (2.1.2) yields 
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Hence,  for some ra t ional  funct ion ] on X~ 

~D' + f ie  = q~*A + (1). 

Since ~o is birat ional ,  we can also write ~D---- A ~- (/), so ~D is a Cart ier  divisor. 
Finally,  let m be a posi t ive integer such t h a t m K r  is a Cartier divisor. Since 

is i somorphism outside of E we can write 

m K x  -~ ~o* m K r  + aE 

for some a e Z. The relat ions ( K x ' R ) <  O, ( E . R ) < 0 ,  ( 9 * K r . R ) ~ - 0  imply  a to 
be posi t ive and (2.1.5) is proved,  q.e.d. 

I~E~IA~K (2.1)'. -- AS it  is clear f rom the  proof, we need the  assumpt ion  (~ a 
d -  1 ~> only to get  (2.1.4), (2.1.5). 

QuEs~Io~ 2.2. - I f  d = 3, the  contract ion 9 is the  blowing-up of Y along 9(E). 
Does the  same in general hold true? (1). �9 

Now a p rob lem arising here is to describe the except ional  divisor E of the  con- 

t r ac t i on  ~: X --~ Y. We can go on b y  considering several  eases according to numorical  
proper t ies  of the  cycle H . E .  We need a pre l iminary  result.  

L E n A  2.3. - Let E be the exceptional divisor as in 2.1 and let a be a 19ositive integer. 
Then 

H'(Oo~(nH + K~))  = (0) ,  i > 0, n >>0 .  

Further, let ~ be a divisor on X such that (J5 -- K x  -- 2E).  R > 0 / o  r every integer ~ ~ O. 
Then 

R'(r i>0,  n>>0. 

PRoof .  - Consider the  s tandard  exact  sequence, a ~ 1, 

0 --> (~x(nH ~- Kx  -- aE) --> (Px(nH + Kx)  --~. Oa~(nH -J- Kx)  "-> O. 

For  n >> 0, n H -  aE is ample  by  L e m m a  1.2 hence 

H~(Oz(nH -~ K x  -- aE)) = (0), i > O, n >> O. 

(1) This is certainly true if ~ ( - -  E) is very ample on E and also in case when dim ~(E) 
---- dim E -  1 ---- d -  2 and ~o1~ is equidimensional (see [A], 2.3). 
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By the  Kawamuta-Viehweg vanishing one has Hi((;x(nH + Kz) )  ~ (0), i > O, since H 
is nef and H ~ > 0 in view of Lemm~ 1.4. Then the  first pa r t  of the  s ta tement  follows. 

The ~ssumption on Z implies t h a t  n H +  Z -- K x  -- ).E is ample, n >> O, A ~ 0, 
~g~in by  Lemma  1.2. Therefore  the  Koduiru vanishing reads 

g ' ( ( ; x ( n H  + L -- ~E)) ---- (0), i ~ 1, .~ ~ o, n >>0. 

Thus the  exact  sequence 

0 ---> Ox(mH + L -  aE) -~ Ox(mH + L) --> OaE(mH + L) ---> 0 

gives the  result, q.e.d. 

I First ,  we consider the  case when H . E  ~ 0. To this purpose let us give the  fol- 

lowing 

D~FI~ITIO~. - Le t  V be an irreducible, reduced var ie ty  with invert ible duMizing 
sheaf Wv. We say t ha t  V is ~ Fano variety o] index r if r is the  m~ximal integer such 

tha t  m ~  rL, L ample sheaf on V. 

P~oPosI~IO~ 2A.  - Let ~: X---> Y be as in Theorem 2.1 and assume H . E ~  O. 

Then 9(E) is a 1)oint and E is a Fano variety o] dimension d -- 1, index r > 1 and 

h*((~) = 0, i > 0. l~urthermore 

Z((P~(Kx)) = Z((~(E)) = 0 .  

1)~ooF. - The assumption H . E ~ . .  0 says t h a t  for every  curve C in E,  [C] ~/~. 

This implies tha t  the  restr ict ion m~p 

N~(X)* -+ :u 

has image of dimension 1 (see I~emma 1.5). Then there  exist an ample divisor J5 

on E and intergers a, b such t h a t  

- -  aL . . .  O ~ ( K x )  , - -  b Z , - ~  r . 

Since . K x ' ~  < O, E . R  < O~ then  a, b are positive, so 

oo; ~ ~_ - -  ( K  s + E ) I ~  (a  -{- b)L 

is ample and E is a Fano var ie ty  of index r ~ a + b ~ 2. To prove t h a t  hi((:E) ---- 0, 
note  tha t  OE(mH)~(9~ because H . E : . .  0 and h~ 0, m >>0, since ]mHl, 

m >>0, is base point  free by  Theorem 1.1. Then  Lemma 2.3 with L ~ 0 gives the  

result.  
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!~ow consider the  polynomia l  

~(n)-- Z(r 

By using L e m m a  2.3 we find, for n >> 0, 

P ( - -  a) -~ Z((PE(Kx)) = Z((PE(mH -~ Kx))  ~- h~ ~- Kx) )  . 

Hence  P ( - -  a) ---- 0 since (--  m H - -  Kx)IE ---- - -  Kxl ~ ~ aL  is ample  on E.  The Serre 
dual i ty  says, for every  integer  n, t h a t  

P(n)  = ( -  1)~-~_P(- a -  b - -  n ) .  

Then, if a r b, P ( - -  a) = 0 implies P ( - -  b) = O, so Z(~P~(E)) = O. q.e.d. 

I~E~AgK 2.5. - Le t  E , / ~  be  as in Proposi t ion 2.4 and  let  us consider the  par t icular  

ease when E is normal  with isolated singularities. Then a general izat ion of ~ result  

of Kobayashi -OehiM (see IF-S], (0.6.1)) shows t h a t  Pic (E)_~H~(E,  Z) is tors ion 
free and  the  index of E is r = d. I f  r -~ d,(E,  r ~ (pd-~, 0~_~(1)) while if 
r ~ d -  1, then  E is isomorphic to a hyperquadr ie  in P~ and L is l inearly equivalent  

to a hyperp lane  section. 
I n  the  general  case, looking over  the  proof of 2.4 and  using L e m m a  2.3 one sees 

t h a t  the  polynomial ,  of degree d -  1, Z((9~(nL)) vanishes for n ~- - -  1, ..., - -  a, so 

t ha t  i t  has to b e a = d - - 1 .  [] 

l~ow, assume H . E . ,  0 and let  s e{1,  ..., d - - 2 }  be the  max ima l  integer such 

t h a t  H ~ . E  ~- 0. I f  d ---- 3 we know t h a t  ~: X -* Y is the  blowing-up along ~(E) 

and  ~IE: E -> ~(E) is ~ P~-bundle. The s i tuat ion becomes more  and  more compl ica ted 

as the  dimension increases and  one has to analyse several  cases according to the  

value of s. The following example  shows t h a t  ~IE: E -* ~(E) can be not  ~ P~-bnndlo 

when s - - - - d - - 2 .  

EXAMPLE [2.6. -- Le t  Y be the  ordinary double point  of a 4-fold (given in a 

5-dimensional  space b y  x y - - z t - ~  w ~ =  0). Le t  ~: X - *  Y be the  blow-up of the  
plane x ---- z = w ---- 0; an easy calculation in coordinates shows tha t  X is nonsingular,  

t h a t  the  except ional  locus of ~ is a Pl-bundle  outside the  origin, bu t  the  fibre 9-~(0) 

is 2-dimensionM. [] 

A rough descript ion of E is given by  the  following 

P~OPOSlTIO~ 2.7. - Let ~: X --, • be as in  Theorem 2.1. Assume  H . E  ~ 0 and 
let s e (1, ..., d - - 2 }  be the max imal  integer such that H ' . E . ,  O. Then  dim ~ ( E ) ~  s 

and every irredueible~ reduced/ibre el q~jE is a Fano  variety el index r > 1. 
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P~ooF.  - The restr ic t ion ~l~ is the  morph i sm associated to the  complete  l inear 

sy s t em  ImHi~I, m >>0, in view of L e m m a  2.3. Since ]mHl~ [ is base  point  free for 

m>>0,  ~=.m(HIE)= ~r so t h a t  d i m q ( E ) =  s. 
Now the proof  runs as in Proposi t ion 2.4. Le t  17 be an  irreducible, reduced fibre 

of ~t~" Then H.27 ~. 0, so for every  irreducible curve C in /7, [C] ~ R and  the  image 

of the  restr ic t ion m a p  

N~(X)* ~ N~(F)* 

has dimension 1 (see L e m m a  1.5). Therefore  there  exist an ample  divisor L on /7 

and integers a~ b such that 

where a~ b are posi t ive because K x ' t ~  < 0, E . R  < 0. Hence  

- ~ -  - ~  - -  - -  ( K  x §  ~ (a § b ) L  

is ample  o n / 7  a n d / 7  is a Fano  va r i e ty  of index r > a + b > 2. q.e.d. 

3. - The case when  R is neL 

Throughout  this section the  ex t remal  ray  R is assumed to be  nef. The s t ruc ture  

Theorem 3.2 is again  a direct consequence of Theorem 1.1 (see also [K2], section 5, (B)). 

We  need the  following 

LEPTA 3.1. - Under the assumptions as above, let H ~ R*. Then 

(3.1.1) n(H) = d - -  1 i] H ~ - 1 . -  K x  > 0 ; 

(3.1.2) H ~-1 ---- 0 in NI (X)  i] H ~ - 1 . -  K~ < O . 

PROOF. - I n  view of L e m m a s  1.3, 1.4~ the  ]~iemann-l~och theorem gives for n >> 0, 

A posi t ive  integer  

h~ = ~(H d - 1 . -  K x ) n  ~-~ -~ (terms of degree < d -  2) ,  

which proves  (3.1.1). Since H is nef one has Hd-X~ N E ( X )  and  n H -  K x  is ample ,  
n >> 0, b y  L e m m a  1.2. Then (H d-~. n H -  Kx)  = 0 because H a = 0 and  the  Kle iman ' s  

ampleness  cri terion implies t h a t  H ~ - ~  0. q.e.d. 

THEOlCE~ 3.2. -- Let X be a d-/old and let R be an extremal ray. Suppose R to be 

ne]. Then there exist a normal projective variety Y and a morphism q~ ~ cont , :  X --> Y 
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such that q). ~z -~  (9i. and ]or an arbitrary irreducible curve C in X ,  [C] ~ R if  and 
only if  d im ~(C) = O. Moreover -- Kx  is q>ample, ~(X) = o~(Y) -~ 1, Y is Q-/actorial 
and we have 

(3.2.1) 

(3.2.2) 

(3.2.3) 

dim Y : d - -  1, ]or every general fibre T ,  P ~ ~ ,  (F ' Kx )  = -- 2, [~] e B;  

dim Y = d - -  s, s = 2, ..., d - -  1, q~: X -+ Y is a ~ano ]ibering, that is every 
general ]ibre is a Fano variety, t~urthermore when s = d -  1, then Y is a 

nonsingular curve and every fibre is irreducible, reduced of dimension d - -  1. 

dim Y -~ 0 and X is a l~ano d-]old. 

P~oo~.  - The first pa r t  of the  proof  runs as in Theorem 2.1, and  the  fact  t ha t  Y 

is Q-factorial  is p roved  in [K2], 5.2. The morph i sm ~: X -~ Y is the  Stein factor izat ion 

of the  morph i sm associated to ImH[, m >>0, and  H =- ~*D, D e Pic (Y). Le t  F be a 
general  fibre of ~. 

Assume H ~-~ . -  Kx  > O. Then ~(H) = d - -  1 by  L e m m a  3.1, so t h a t  d im Y = 

= d - -  1. H e n c e  ~% = Kxl r and [~] ~ R, therefore  

deg ~o~ = Kx' -~  = Kx" R < 0.  

Hence  _F ~ P~, dog c oF ~ ( F ' K x ) . = -  2 and (3.2.1) is proved.  

Suppose now H ~-~ . -  Kx  <= O. Then H d-1 ~ 0 by  L e m m a  3.1, so x(H) ~ n , .~(H)  

d - -  2, Chat is dim Y g d - -  2. Since H ~ ~* Pic (Y), the  restr ict ion Hi t  is nu- 
merical ly  trivial .  Then the  ampleness of n i l - - K x ,  n >>O, implies the  ampleness of 

~ ; " ~  - K~I ~, - -  ( n ~ 7 -  K~)I~. 

When  dim Y---- 1, the  condition F ,  0x = (Or implies t h a t  Y is a nonsingular  curve, 

so ~ is a flat morph i sm (see [H], I I I ,  9.7) and  all fibres ~ are of dimension d - -  1. 

Le t  G be an irreducible componen t  of any  fibre F of ~. Since ~ contracts  R and R 
is nef one sees t h a t  ( G . R ) =  0 and ( G . C ) =  0 for every  irreducible curve C c iv. 

This means t h a t  G = Fro d. Otherwise, write t ~ ~ G1 ~- G~ 4- A, G1, G~, A effective 
divisors, GI, G2 irreducible. The fibre F is connected so there  exists a poin~ p e G~ n G~ 
if G~ r G~. Le t  L be a ve ry  ample  divisor, J5 ~ p, L ~ G1 n G~ (if dim G~ (~ G~ ~ 1) 

.L d-2 and  look a t  the  1-cycle y = Io, on G 2 . Thus [y] ~ R and (G~.~,) ~- 0, contradic t ion;  
so F is irreducible. 

To prove  t h a t  ~ is also reduced write F ---- aG, G = F~ea, a posi t ive integer.  Since 
/~--~ 0 then  (ga(G)~ 0a, so 

X(e~,) = Z(Oo~) = Z(e~) + Z(eo(-- G)) + ... + Z(eo(-- a + l)G) = az(e~). 

The flatness of ~ implies t h a t  X(~0~) ~ 1, therefore a = 1 and  (3.2.2) is proved.  

Final ly,  when dim .Iv-= 0~ we find ~ ( X ) =  1, then  the  condition ( K x ' R ) <  0 
shows t h a t  --  Kx is ample,  q.e.d. 
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Let  X be as in cases (3.2.1) or (3.2.2) with s = 2 of Theorem 3.2. Then X can be 
described as follows~ up to  birat ionali ty,  by  using a result  by  Sarkisov together  with 
the  E~riques-Iskovskih classification of the minimal ra t ional  surfaces. 

SUPFLE~E~m 3.3. Let 7:: X - >  Y be as in cases (3.2.1) or (3.2.2) with s = 2 of 
Theorem 3.2. Then X is birationally equivalent to one o] the/ollowing types o] d-]olds X :  

a) X: = IZxe~; 

b) X - >  Y is a conic bundle, Y birationally equivalent either to ~ or to a conic 
bundle on !z ; 

c) there exists a morphism ~: X --~ Y such that the generic ]ibre (on K = C(Y))  is 

cx) a quadrie Q = P~ • P~ c P~ with Pic (Q) ~ 7. ge~,erated by 6Q(1) ; 

cf) a Del Pezzo sur]aee 8 with Pic ( 8 ) ~  7. generated by the anticanonical 
shea] w;  1 and w~ = 1, ..., 6. 

P~0OF. -- Le t  X be as in (3.2.1). Then X belongs to class b) of the s ta tement  
in view of [Sa]~ 1.13. Therefore  we can assume X to be as in (3.2.2) with s = 2. Le t  

K = C(I;) and denote  by  T ,  = X @ y S p e c K  the  generic fibre of 9: X ~ ]~. Since 
the  general fibre of 9 is a rat ional  surface over C, one has ~(F,) < 0, q(E,) = 0 (cf. [I], 
w 10.3~ [H], I I I ,  9.9) so tha t  7 ,  is a rat ional  surface over K.  Let  8 be a minimal model  
of X, .  l=Ience 8 belongs to one of the  following families of surfaces ([Is], Thin. 1): 

i) 8 = G ;  

if) S = P~•  is a quadric in P~, having Pic (8) _~Z generated by  a hyper-  
plane section; 

iii) S is a Del Pezzo surface with Pie (S) ~- 7. generated by the anticanonical 
sheaf ~; 

iv) there  exists a molWhism 8 --> B such tha t  the generic fibre and the  base 
curve B are nonsingular of genus O. 

I t  is not  difficult to prove tha t  there exist a d-fold X and a birat ional  map 2~ --  -> X 
such tha t  the  composition X -> Y is a morphism whose generic fibre is isomorphic 
to the  minimal model  S of Fv.  Moreover the  funct ion field K(8)  of 8 is isomorphic 
to  the funct ion field C(X) of X (see [EGA], I, 3.4.6). Then  case i) yields C(X) 
_.~_ K ( P ~ ) m  C(Y• hence X is birat ionally equivalent  to Y x P  2 and we get a), 
while if) gives cl) of the s ta tement .  Suppose now case iii) holds. Therefore we get c=), 
af ter  proving tha t  1 G m~ G 6. This follows by  [l~I1], 3.5.2 where it  is proved t h a t  

8, 9 the  Picard  group Pie (S) is not  the case ~ ~ = 7 does not  occur, while if ~ = 
generated by  the  anticanonical  sheaf. Final ly  in case iv) one has an embedding of the 
funct ion fields K(B)  ~ C(X) corresponding to the  surjective morphism 8 -* B. On 
the  other  hand  K(B)  is nothing bu t  the funct ion field of a conic bundle  V --> W, W 
birat ionally equivalent  to lz, whose generic fibre is isomorphic to B. Then the  in- 
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clusion K(B) ~-, C(X) gives ~ rat ional  map X -- --~ V whose generic fibre is isomorphic 
to a conic. Therefore,  by  using again [Sa], 1.13, X belongs to class b) of the 

s ta tement ,  q.e.d. 

Following an idea due to P. IONESCU, we get a slight improvement  of (3.2.2) 

(compare with example 3.6 below). 

SUPPLEMENT 3 . 4 .  - -  Let ~: X --> Y be as in (3.2.2) and suppose dim Y -~ 2. Then 
every fibre of q~ has dimension d -  2. 

P~ooF. - Le t  y e Y be a closed point  and denote by  17 the  fibre over y. Then 
~o~ ~ ~ DI~ , where D : nH- -  Kx is ample for n >>0 (see the  proof of (3.2.2)). Consider 
the  embedding of X given by  the complete linear system ImD[, m >>0. Let  Y be the  

nonsingular surface obtained by  intersecting d - - 2  general members  of ImD[ and 
denote by  ~ the  restrict ion of ~ to :~. Assume dim F : d - -  1. Then  we see tha t  

contracts  the curve Y ~ l~ (~ F to a point  ~nd Fir  ~ 0 since (F .R)  = 0. Therefore 
we find 

0 > (y~)~ -~ m~-~(D a-~ .F2)x --  m~-~(D~ -~ "/~l~)r = 0 ,  

contradiction.  Then dim ~v _--d--2 ~nd we are done. q.e.4. 

I~E~A~K 3.5. -- Le t  X be a F~no d-fold as in (3.2.3). Then Pic (X) ~ H~(X, Z) 
is torsion free (see l~emark 2.5), so K x - ~ -  rL for some (unique) ample divisor L 
on X, where r - ~ l ,  .... , d ~ l  is the index of X. I f  r : d - ~ l ,  d, then  (X ,L)  is 
isomorphic to (P~, (~(1) ) ,  (Q, 0Q(I)), Q hyperquadr ie  in pd+l, respectively. I f  
r : d -  1, the  pairs (X, L) are ~lso called Del t)ezzo manifolds: it  has to be L ~ 

1, ..., 8 and they  are completely classified by  Fuj i ta  in several papers (see [F1], 
w 2, IF2], w167 5, 6, [F3]). [] 

In  the three-dimensional ease the contract ion W in Theorem 3.2 is a flat morphism 
and X is a conic bundle in case (3.2.1) as proved by  Mori. This is no longer t rue  
when d ~ 4, as the following example shows. 

EXA~IPLE 3.6. -- Let  L1, L2, L3 be general hyperplanes in P~, n ~ 3, and let p2 
be the  base of the net  of hyperplanes ~ ~L~.  Now let X c P~ • P~ be the incidence 
correspondence {(p, L);  p e L } ;  then the projection X - *  Y = P- is a contraction,  
is a Pl-bundle outside the axis, bu t  has fibre P-~ over every point  of the axis. 

4, - The case of  4-folds. 

F rom now on we shall suppose d : 4. This section is essentially devoted to s tudy 
the part icular  case when the  extremal  ray  R is not  nef and H . E  ~ 0 as in Propo- 
sition 2.4. Then q~: X --7 Y is a birational morphism contract ing E to a point,  E is 
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a F a n o  va r i e t y  of d imens ion  3 a n d  index  r > 1, the re  exist  pos i t ive  integers  a, b 

and  an  ample  divisor  L = s162 on E, ~ E Pie  (X)~ such t h a t  

- a z , . .  e ~ ( K x ) ,  - -  b L  ~ r 

To say  more  on E we have  to  s t u d y  t he  po lynomia l ,  of degree 3, 

P ( n )  = z (  e~(n~) )  . 

Let  us s ta te  some prel iminaries .  F r o m  Propos i t i on  2.4 we k n o w  t h a t  

(4.1.1) P(0)  = 1 ,  P ( - -  a) = 0 .  

F u r t h e r ,  t he  divisor  ~ verifies t he  condi t ion  ( n ~ - - K x - - ~ t E ) . / ~  > 0, ~. >_ 0, for  

eve ry  n > - -  a. Then ,  since H i s - -  0 (see the  p roof  of 2.4), we ge t  M(nL) =- O, for  a n y  

n > - -  a, i > 0, in v iew of L e m m a  2.3. I t  follows : 

(4.1.2) P(1)  = h~ ; 

(4.1.2)' P(n) = O for  eve ry  n = - -  1, ..., - -  a, hence  in pa r t i cu la r  a g 3 ; 

(4.1.2)" P(n) --- 0 for  eve ry  n = 1 --  a -  b, ..., - -  b b y  the  Serre d u a l i t y .  

Fo l lowing  Fu i j t a ,  we call d-genus t h e  in teger  

J (L)  = 3 + L ~ -  h~ 

The  base  locus BslL [ of ILl satisfies t he  inequa l i ty  ([FI]~ ! .9)  

(4.1.3) dim Bs]L[ < A(L) .  

Le t  ~ = al~l : ~ - -  -> E '  c p.v be  t he  r a t iona l  m a p  associa ted  to  the  ample  divisor  L.  

W h e n  4eg ~ r  one has  

(4.1.4) L3/deg a => deg E ~ => codimp~ E ' +  1 

and  all t he  cases when  the  equa l i ty  holds  are  classically classified (see f.e. [Mu], 2.7). 

F ina l ly  le t  us a s sume the  fol lowing ex t r a  condi t ion  

(4.1.5) 1 ~ (w;~) ~ ~ 72 .  

The  t h e o r y  of F a n o  3-folds says t h a t  (4.1.5) holds t rue  wheneve r  E is nons ingu la r  

(illdeed in this  case t he  u p p e r  b o u n d  is k n o w n  to  be 64). 
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PROPOSITION 4.1. -- Let ~: X -> Y be as in Theorem 2.1, let E be the exceptional 
divisor and assume H.E,- . ,  O. With the notation as above~ the 3-ple (E, ~oE, (~r(E)) 
can be described as in  the table below (where o~E, (gE(E) are given up to linear equivalence 

modulo torsion). 

L d (L)  h~ 

v e r y  ample  0 4 

1 3 

v e r y  ample  0 5 

1 4 

very  ample  

1 5 

ve ry  ample  

1 

very  ample  

1 

1 

L ~ 

! L s + 2  5 < L s < 9  

S t ruc ture  of a : E  I_~LIp,v 

~:E~P S 

o: E -> P~, Bs]L[ a s imple 
po in t  

o: E---~ V~ a normal  qua-  
dric in p4 

Bs]T~[ = 0 and o : E  ~ ps 
a 2-sheeted cover ing of p 3  
or deg o = c~ and E sin- 
gular  at  Bs]L] 

a : E ~  V~ a cubic in P~ 

deg o = c~, E singular at  

a: E ~ V~ a comple te  in- 
tersect ion of 2 quadrics  
in p5 

deg o = c~, E singular at  

Bsl~I 

a : E _ ~  ~ V~ c~V+l,N= L ~ 

deg o = c~, E singular at  
Bs[~[ 

--  b J5 - -  41~ 
b = 1 , 2 , 3  

- - 1 5  

- -  bL --  3J5 
b = l , 2  

- - / ~  - -  215 

--15 - -  215 

J 
- - L  

- - h  - -  215 

- 2 L  

PROOF. -- F i r s t ,  l e t  us  a s s u m e  a ~= b. T h e  S e r r e  d u a l i t y  g ives ,  fo r  e v e r y  n e Z,  

P ( n )  - -  - P ( -  a -  b - -  n ) .  

H e n c e  P ( - -  a) = 0 i m p l i e s  P ( - -  b) = 0. L e t  x b e  t h e  t h i r d  r o o t  o f / ) ( n ) .  T h e n  c l e a r l y  

e i t h e r  x = - -  a,  x ---- - -  b o r  x - -  (-- a--  b)/2. S i n c e  P ( 0 )  ---- 1 w e  f ind  fo r  P ( n )  t h e  fol -  

l o w i n g  f o r m s  

P(n) = (1/a2b)(n + a)~(n + b) ,  P ( n )  = (1/ab2)(n + a)(n + b) ~ , 

P(n) = (2/a2b + ab2)(n + a)(n + b) n + 
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The  l e a d i n g  coeff ic ient  of P(n )  is k n o w n  to  b e  L3/6, so we h a v e  r e s p e c t i v e l y  

LS(a ~ b) = 6 ,  LZ(ab ~) = 6 ,  La(a ~ b -t- ab 2) = 12 .  

t~eca l l ing  t h a t  h ~  P(1)  (see (4.1.2)) we f ind,  case  b y  case,  t h e  fo l lowing  pos-  

sibilities~ 

L 3 = 1 ,  a = 1 ,  b = 6 or  a = 6 ,  b = 1 ,  h~ ~ Z, c o n t r a d i c t i o n  ; 

L a = 2 ,  a = ! ,  b = 3 or  a = 3 ,  b = 1 ,  h~ r Z ,  c o n t r a d i c t i o n  ; 

L 3 = 3 ~  a = l ~  b = 2  or  a = 2 ,  b - - - - - l ,  h ~  

L a = l ,  a = l ,  b = 3  or  a = 3 ,  b = l ~  h ~  

L a = 2 ,  a = l ,  b = 2  or  a = 2 ,  b = l ,  h ~  

I n  t h e  lus t  t h r e e  cases  one  has  A(L)  = 3 q- L 3 -  h"(I)  = 0, t h e n  E is n o r m a l  a n d / 5  

is v e r y  a m p l e  as  p r o v e d  in  IF1] ,  4.8. N o t e  t h a t  case  Z 3 = 3 a b o v e  does  n o t  occu r :  

i n d e e d  in  th i s  case  w E - - ~ -  3 L  w h i c h  c o n t r a d i c t s  t h e  s ec t i ona l  genus  f o r m u l a  (4.1.7) 

be low.  

Now,  a s s u m e  a = b a n d  l e t  x : / : -  a be  a r o o t  of P(n) .  T h e n  t h e  Se r r e  d u a l i t y  

says  P(x)  = - -  P ( - -  2 a - -  x) = O a n d  - -  2 a - -  x:/= x, - -  2 a - -  x : / : - -  a. There fo r% 

s ince  P (0 )  = 1, we ge t  

P(n)  = (--  1/2a2x q- ax2)(n q- a ) ( n -  x ) (n  q- 2a q- x) 

and 

(4,!.6) LZ(2a~x -q- ax 2) = --  6 

b e c a u s e  t h e  l e a d i n g  coeff ic ient  is La/6.  I n  v i ew  of (4.1.2) ' ,  (4.1.2)", ease  a = b = 3 

is e x c l u d e d  whi le  a = b = 2 g ives  x = - -  3, - -  1~ h e n c e  

p(n)  1,  = ~ ~n + 2)(n + 3)(n § ! )  

a n d  h~ = P(1 )  = 4. A g a i n  A (L) = 0, so E is n o r m a l  a n d  L is v e r y  amp le .  T h u s  

t h e  cases  in  t h e  t a b l e  w h e n  A (L) = 0 a r e  p r o v e d .  I n  t h e  r e m a i n i n g  case  a = b = 1 

w e  f ind  f r o m  (4.1.2)i (4.1.6) t h a t  

h~ = P(1)  = L 3 q- 2 .  

H e n c e  

A (L) = 1 .  
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If  Z 3 = 1  then h~ a : E - -  ~ ,  BsIZ ] is a simple point  on E. To go on~ 

consider the sectional genus g(T~) defined by the equality ([F2], w 1) 

(~.L7) 2g(L) --  2 = (~oz -4- 2L) .Z  ~ . 

Now toe ,-~ --  2L, so g(L) ----- A(L) = 1. When E is nonsingular at  each point  of BslL ] 
then Theorem 3.6 in [F2] applies to say tha t  Bs]I~ l = 0 if L 3 = 2, so deg a----- 2 in 

this case by  (~.1.4), and Z is very ample when L a >  3. In  part icular  E is a cubic 

in P~ or a complete intersection Of two quadrics in 1 )5 when L ~ = 3 or 4 respectively, 

as p roved  again in [F2], 5.4, 5.6. While if E is singular a t  some base point, t h e n  it 

has to be  deg a =  oo by  combining [F2], 3.3, 3.6. Assumption (4.1.5) gives L 8 < 9 

and this completes the proof, q.e.d. 

SUPPLE~ENT ( 4 . 1 y .  --  Consider t h e  case iV = L ~ ~ 5 ,  deg ~ < c~ in 4.1. Then 

g~zl: E - ~  V~ c Px+~ and let us assume in addition tha t  the restriction mapping 

is bijective. Therefore, since A(L) ~ 1 and L is very ample, from the results stated 

in IF3] we can deduce for E the possibilities listed in the table below. Note in par- 

t icular tha t  if Z 8 ~ 7, 8 and E is singular then E is necessarily not  normal, while 

if L 8 = 9~ E has to be singular and not normal. When E is nonsingular we find the 

Fano 3-folds of index two and degree 2Y ~ 5, ..., 8. Further ,  every connected com- 

ponent  of the singular locus of E is a linear space (of dimension < 2) and when E 

is not  normal  then its singular locus is connected. Here y:  E --> E denotes the nor- 

realization of E. We say tha t  (E, y ' Z )  is a rational scroll if (~, 7*Z) : (P(#), (~(1)) 
for some ample vector bundle @ on P1. 

L 8 Structure of E @: ~ - +  E the normalization of E) 

--  E nonsingular, a linear section of the Grassmann variety parametrizing 
lines in pd, embedded in p9 by the Pliicker coordinates; 

5 
--  E not normal, (~, 7*L) a rational scroll; 

- -  E singular with normal, rational singularities. 

- -  E nonsingular, a hyperplane section of a Segre variety P2X P2c ps, or a 
Segre variety p1 x p1 x P1 c p7; 

6 --  E not normal, (~, y 'L )  a rational scroll; 

- -  E singular with normal, rational singularities. 

- -  E nonsingular, a blowing-up of p8 at a point; 

E not normal, (~, 7*L) a rational scroll. 

- -  E nonsingular, the Veronese image of ps; 

E not normal, (~, 7*L) a rational scroll. 

E not normal, (~, y*JS) a rational scroll. 

Note that in the present case it has to be (~o~) s < 64 whenever E is normal. II 
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As far  as the  case R nef is concerned, we have the  following 

Pl~0e0SI~0~ 4.2. - Let ~: X --~ Y be as in (3.2.1) and let ] be a 1-dimensional fibre 
el q~. Write C = ]~a. Then every irreducible component A of C is isomorphic to P~; 
moreover if C~, C, are distinct irreducible components el C such that CI (h C~ ~ 0, then C~ 
and C~ intersect at only one point and transversaUy. Furthermore 

( K z  . A )  = - -  2 - -  p ~  - -  p z  - -  p ~  

where r -~ O~(px)O ~)~(P,)O ()~(Ps) and (p~,p~,po)  -=- (0, O, 0), (0, 0, --  1), (1, 0, 
- -  1 ) ,  ( 1 ,  0 ,  - -  ~) or ( 1 ,  - -  1 ,  - -  1 )  (3 ) .  

PROOF. -- Le~ C' be an a rb i t ra ry  closed subscheme of X such tha t  C:~ d c C. Then 
we claim tha t  

(4:.2.1) Z(O~,) > o .  

Choose D~, D~, D3 irreducible divisors on Y which intersect  proper ly  at  y = ~(/) 
and let  E~, E~, E8 be irreducible divisors on X such tha t  

Clearly one has 

E~ ~ B j ,  

S u p p  ]~i ~ ( P - I ( D i )  ~ i ~ 1,  2 ,  3 . 

i # j ,  i, j = l ,  2, 3 ;  ( E l ' R ) =  0;  r  Ea.  

Indeed,  by  construction,  El,  E~, E3 are irreducible divisors containing C, dinl E1 n 
n E2 n Ea = 1 and (E~']) = (E~.R) = 0 since []] e R. For  every  posit ive integer a, 

the  divisor 

mH - -  e l E ~  - -  ~ E 2  - -  e s E 3  - -  K z  , e ,  = O, a 

is ample for m >>0 because ( - - e ~ E ~ -  e~E~ -- esEa -- Kz)"R  < 0. Hence 

Then  in View of Lemma  1.3, the  exact  sequence 

--->" (~X -'-> (~aE~nctEanctE3 --> 0 

(~) In [A]p.  351 is proved tha~ 2px-}-1~ ~-2a ~ 0 so case (1, 0 , -  1) e~a be excluded. 
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gives 

.~*((ga.~,na.~naEa(mH)) --~ (0), m >>0. 

Since E,  n E~ n Ea 2 C 2 C:~d one has, for some positive integer a, 

aE, (3 aE2 (3 aEa D C' . 

Then there  exists a surjection 

which gives 

(~ ~ , ~ a ~ . ( m H )  --> Ov,(mH) --> 0 ,  

~ ( o o , ( m H ) )  = (o) ,  ~ >>o. 

Now, dim ~(C~d) = 0 so that H .  r H .  O. Therefore Oo,(mH) ~ Oc, and 

z(e~,)  = z(Vo,(mH)) = ho(0o,(mH)) .  

Indeed in view of Theorem 1.1, m H  is effective and imttl is base point  free for m >> 0. 

Then Z((~c,) = h~ > O, m >>0 and (4.2.1) is proved.  Up to obvious changes, 
the  proof of the second par t  of the s ta tement  runs as in [M2], 5.6 and we omit it. 
Thus, let  A _~ P* be an irreducible component  of C. If  JV'~/x = $~(p,)G (~(P2)@ 
@ ~(Pa) the  adjunct ion formula reads 

whence 

(4.2.2) 

We can assume 

(4.2.3) 

so (4.2.2) implies tha t  

(~.2.4) 

-- 2 = deg wa = ( K x ' A )  + Pt -]- P2 + P8 

P* + P ~ + P ~  > -  1 .  

p , > 0 .  

Iqow~ let I be the sheaf of ideals defining A in X and write 

! / I  2 ---- (94(a) O (9,(b) O 0,(c) 
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where  a _> b >- c~ a = - -  Ps, b ---- --  P2, c ~ - -  p~. Since A is local ly  comple te  in ter-  
sect ion in X of cod imens ion  3, we cml assume I to  be gene ra t ed  b y  a regula r  sequence  

(a, b, c) in ~ n e i g h b o u r h o o d  of an  a r b i t r a r y  poin t .  L e t  J be *he ideal  defined b y  

Then  

I ~ c J c ! ,  J / I  2 = ~).~(a) 0 (~(b) .  

J = (a, b) mod.  12 = (a, b, e3). 

L o o k  a t  t he  exac t  sequences  

0 --> 18 (~ J2/I4 --> 18/14 -~ 18/I 8 n J~ -+ 0 ,  

0 -+ 18 + J 2 / D  --. I2/18 -> I~ /D + J~ ~ O. 

One can  sees t h a t  

(4 .2 .5 )  v i i  8 n j 2  = r 

(4.2.6) 12/18 + j 2  _~ 0~(2c) (~ dOa(a + e) �9 0a(b + c),  

(4.2.7) Z(o/JD = Z(OA + Z(I/D) + Z(D/D + j2) + Z(D/j2 n 18). 

Then  (4.2.2), (4.2.6), (4.2.7) give 

Z(O/J ~) = 8 + 6c + 2(a + b + c) ~ 10 + 6c ,  

so in v iew of (4.2.1) we find e => - -  1 t h a t  is 

(4.2.8) P l g  1 . 

Re la t ions  (4-.2.3), (4-.2.4), (4-.2.8) i m p l y  t h a t  the  on ly  3-ples (Pl ,P2,  Ps) can occur  are  
those  l is ted in t he  r  be low 

~1 ~2 ~3 

o o o 

0 0 --I 

1 1 1 
1 1 0 
t 1 - 1  
1 1 - 2  
1 1 - 3  

1 0 0 
1 0 - 1  
1 0 - 2  

1 - 1  ~ 1  
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A direct computa t ion  shows t h a t  

Z((9/I~) ---- Z(OA) + Z ( I / P )  + z(S2(I/I~))  -= 10 + 5(a + b + e),  

g((91I') ---- )~(eA) + Z ( I I I  ~) -+- X(S~(III2)) + )~(Ss(IlIP)) = 20 + 15(a + b + e), 

z((~/J~) = z(m~) + z ( I / I  ~) + z(S~(1/I9) + z(I~/J ~ n I~) + 

-+- g( IS lJ  a -~- I ' )  = 19 + 10a + 10b - / 2 5 e .  

By  (4.2.1), the first two equalities exclude the 3-ples (Pl, P.., Ps) -= (1, 1, 1), (17 1, 0) 
respectively, while the third implies tha t  (1ol, p~, P3) = (1, 1, -- 1), (1, 0, 0) cannot  
occur. 

Now let J '  be the i4eal defined by  

12 c J '  c I ,  J ' / I  2 = O~(a). 

Then 

J ' =  (a) mod. 12 = (a, b 2, e2~ be) 

~nd we find 

Z(OI J'2) ---- Z(~)~) + Z ( I / I  ~) + g( I2 /J  '2 + 13) + %(I~/J '~ n 18) -= 13 -{- 3a + l l b  + l l e .  

Again (4.2.1) shows tha t  the cases (Pl,P~, P3) = (1, 1 , -  2), (1, t , -  3) do not  occur. 
This completes the proof, q.e.d. 

Added in proof. - In the paper of the same author: Contractions of non numerically effective 
extremal rays in dimension 4, Proceedings of Algebraic Geometry Conference, Humboldt Uni- 
versity, Berlin (1985), Tcubner-Texte zur Math., Band 92 (1986), some improvements of the 
results contained in w 4 are given. In particular conjectured condition (4.1.5) is proved. 
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