Submanifolds of Kaehlerian Manifold with a Metric Compound Structure of Rank 2 (\%).

Seitchi Yamaguchi - Hiroaki Nemoto - Jae-Bok Jun

Abstract

Summary. - The metric compound structure of rank r is an abstructed structure of an induced structure on a real submanifold in an almost Hermitian manifold. In this paper we deal with a submanifold with metric compound structure of rank 2 in a Kaehlerian manifold and we classify it under some suitable conditions. Namely it is a standard sphere or neither Einstein nor conformally flat.

0. - Introduction.

In [3] and [8], Y. Tashiro and I. -B. Kim have introduced the notion of metric compound structure of rank r which is naturally induced on the submanifold of an almost Hermitian manifold.

In [8], they have investigated the case of rank 1. Also the case of rank 2 has been studied by I. -B. KIM [3]. Although I. -B. Ktm [3] has applied his energies to the study of such submanifolds, there is plenty of room for improvement. For instance, since the dominator of (6.8) in [3] may take a value zero, we must be careful how we treat it. Also, Theorem 6.4, 6.9 and their corollaries in [3] will be improved.

The purpose of this paper is to sharpen the Kim's results of Paragraph 6 in [3], that is, we will prove the following Theorem.

Theorem. - Let M be an n-dimensional complete and connected submanifold with an induced metric compound structure of rank 2 in a Kaehlerian manifold \tilde{M}. Suppose that λ does not vanish identically, α and β are umbitical sections on M and the sum of squared mean curvature v^{2} does not vanish on M and

$$
M^{\prime}=\left\{p \in M: 1-\lambda^{2} \neq 0 \text { at } p\right\} \quad \text { is connected } .
$$

Then we have the following:
(1) $\quad M$ is isometric with a sphere,

[^0]or
(2) each λ-hypersurface is AS-homoihetic to a Sasakian manifold \bar{M} and neither M is Einstein nor conformally flat.

Although the majority of Kim's results in the Paragraph 6 are only to find the conditions that M is to be a space of constant curvature, by according to our above Theorem, we can determine the submanifold M as follows: M is isometric with a sphere or neither M is Einstein nor conformally flat and each λ-hypersurface is AS-homothetic to a Sasakian manifold \bar{M}.

We devote the first two sections for the preparation to a description of our Theorem. In § 1, we will recall the fundamental properties of submanifolds. In § 2, we will give a brief summary of the notion of the metric compound structure of rank 2 which is mainly developed by I. -B. Ktm and Y. Tashiro [3], [8]. The last two sections will be devoted to the proof of our Theorem.

Throughout this paper, we assume that manifolds and quantities are differentiable of class C^{∞}. Unless otherwise is stated, indices run over the following ranges

$$
\begin{aligned}
& x, \lambda, \mu, v, \ldots=1,2,3, \cdots \cdots \cdots \cdots \cdots \cdots, m \\
& h, i, j, \hbar, \ldots=1,2,3, \ldots, n \\
& p, q, r, s, \ldots= \\
& a, b, c, d, \ldots=\quad 2,3, \ldots, n
\end{aligned}
$$

respectively.

1.- Submanifolds.

Let \tilde{M} be a Riemannian manifold of dimension m with Riemannian metric $\tilde{g}=\left(\tilde{g}_{\mu \lambda}\right)$ and M be a submanifold of dimension $n(>2)$ of \widetilde{M} represented locally by the equation

$$
y^{x}=y^{x}\left(x^{h}\right),
$$

where $\left\{x^{h}\right\}$ are local coordinates of M and $\left\{y^{\alpha}\right\}$ local coordinates of \tilde{M}.
If we put

$$
B_{i}^{\mu}=\partial_{i} y^{\alpha}, \quad \partial_{i}=\partial / \partial x^{i}
$$

then $B_{j}=\left(B_{j}{ }^{\alpha}\right)(j=1,2, \ldots, n)$ are linearly independent local vector fields tangent to M. The Riemannian metric tensor $g=\left(g_{j i}\right)$ of M is given by

$$
\begin{equation*}
g_{j i}=\tilde{g}_{\mu \lambda} B_{j}^{\mu} B_{i}^{\lambda} \tag{1.1}
\end{equation*}
$$

We can locally choose $m-n$ mutually orthogonal unit normal vector fields $C_{p}=\left(C_{p}^{x}\right)$ to M. Then the vectors B_{i} and C_{p} span the tangent space $T_{x}(\tilde{M})$ of \tilde{M} at every point $x \in M$ and the matrix $\left(B_{i}{ }^{x}, C_{p}{ }^{x}\right)$ is regular. We have

$$
\begin{equation*}
\tilde{g}_{\mu \lambda} B_{i}^{u} C_{p}^{2}=0, \quad \tilde{g}_{\mu \lambda} C_{p}^{\mu} C_{q}^{\lambda}=\delta_{p q} \tag{1.2}
\end{equation*}
$$

On a submanifold M of a Riemannian manifold \tilde{M}, the van der Waerden-Bortolotti covariant differentiation ∇_{i} is defined by

$$
\nabla_{j} B_{i}^{x}=\partial_{j} B_{i}^{\mu}-B_{h^{x}}\left\{\begin{array}{c}
h \tag{1.3}\\
j i
\end{array}\right\}+\Gamma_{\mu \lambda^{x}} B_{j}^{\mu} B_{i}^{x}
$$

where $\left\{\begin{array}{c}h \\ j \\ i\end{array}\right\}$ and $\Gamma_{\mu \lambda}{ }^{\kappa}$ are the Christoffel's symbols of M and \tilde{M} respectively. Since $\nabla_{j} B_{i}^{*}$ is normal to M for fixed i and j, we have the equation of Gauss

$$
\begin{equation*}
\nabla_{j} B_{i}{ }^{\kappa}=h_{i i p} O_{p^{\alpha}} \tag{1.4}
\end{equation*}
$$

Where $h_{j i p}$ is the second fundamental tensor.
Throughout this paper, the summation convention is applied to the repeated indices on their own ranges. The equation of Weingarten is given by

$$
\begin{equation*}
\nabla_{j} O_{q}{ }^{\kappa}=-h_{j}{ }^{i} B_{i}{ }^{\kappa}+l_{j q p} C_{p}{ }^{\star} \tag{1.5}
\end{equation*}
$$

where we have put

$$
\begin{equation*}
\nabla_{j} C_{q}{ }^{x}=\partial_{j} \theta_{q}{ }^{x}+\Gamma_{\mu \lambda^{x}} B_{j}^{\mu} C_{q^{\lambda}}, \quad h_{j}{ }^{i}{ }_{q}=g^{i \hbar} h_{j h q} \tag{1.6}
\end{equation*}
$$

and $l_{\text {fqp }}$ is the so-called third fundamental tensor.
A normal vector field $N=\left(N^{*}\right)=X_{p} C_{p}{ }^{*}$ is called a normal section on M. The tensor $h_{j i p} \gamma_{p}$ is said to be the second fundamental tensor belonging to the normal section N. The mean curvature vector of M in \tilde{M} is given by

$$
H=H_{p} C_{p}^{*}, \quad H_{p}=(1 / n) g^{j i} h_{i i s}
$$

If the relation

$$
h_{i i p} r_{p}=\varrho g_{j i}
$$

is satisfied with a function ϱ on M for a normal section N, then N is said to be an umbilical section on M or M is umbilical with respect to N. If N is a unit normal section, then the function $\varrho=H_{i}{ }_{p} Y_{y} / n$ is called the mean curvature belonging to N. Moreover, if ϱ vanishes identically, then N is said to be a geodesic section on M.

2. - Submanifolds with a metric compound structure of rank 2 in a Kaehlerian manifold.

Let \tilde{M} be a Kaohlerian manifold of dimension m with structure tensors (\tilde{g}, J), where \tilde{g} is the Hermitian metric tensor and J the complex structure one. We consider a real submanifold M of dimension n in \tilde{M}. For $X \in T M$ and $N \in T^{\perp} M$, we put

$$
J X=f X+T X, \quad J N=-t N+f^{\perp} N,
$$

where $f X($ resp. $-t N)$ denotes the tangential component of $J X($ resp. $J N)$ and $T X$ (resp. $f^{\perp} N$) the normal component of $J X$ (resp. $J N$). Then f (resp. f^{\perp}) is an endomorphism on $T M$ (resp. $T^{\perp} M$), T is a $T^{\perp} M$-valued homomorphism on $T M$ and t is a $T M$-valued homomorphism on $T-M$. Moreover the relation between T and t is given by

$$
\tilde{g}(T X, N)=\tilde{g}(X, t N) .
$$

If $\operatorname{rank}(T)=r(0 \leqq r \leqq \operatorname{Min}(n, m-n))$ almost everywhere on M, then we say that M is a submanifold with compound metric structure of rank r. The phrase "almost everywhere on M » means "on the whole manifold M except a border subset of $M »$. If $r=0$ on M, M is nothing but an invariant submanifold and hence M is also a Kaehlerian manifold. If $r=1$ on M, M is to be an almost contact Riemannian manifold (see, [8]).

Remark. - Even if $r=\operatorname{dim} M, M$ is not necessary a totally real submanifold. Thus such submanifolds with metric compound structure of rank r are very wide class in all real submanifolds of a Kaehlerian manifold.

In the following, we assume that $r=2$ almost everywhere on M. Then we can choose mutually orthogonal normal vector fields α and β such that

$$
\begin{align*}
& J X=f X \quad+u(X) \alpha+v(X) \beta, \\
& J N=-\alpha(N) U-\beta(N) V+f^{\perp} N, \tag{2.1}
\end{align*}
$$

where α and β span image of $T, U=t \alpha, V=t \beta, u(X)=\tilde{g}(X, U), v(X)=\tilde{g}(X, V)$, $\alpha(N)=\tilde{g}(\alpha, N)$ and $\beta(N)=\tilde{g}(\beta, N)$. In terms of local coordinates, they are expressed as

$$
\begin{equation*}
J_{i^{2}} B_{i}{ }^{2}=f_{i}^{n} B_{h}{ }^{n}+u_{i} x_{p} C_{p^{2}}+v_{i} \beta_{p} O_{p^{2}}, \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{2}{ }^{\chi} Q_{q}{ }^{2}=-\alpha_{q}{ }^{\pi} w^{n} B_{h^{2}}-\beta_{q} v^{h} B_{h^{2}}+f_{g p} \partial_{p^{2}}, \tag{2.3}
\end{equation*}
$$

where we have set

$$
f_{j i}=\tilde{g}\left(J B_{j}, B_{i}\right), \quad f_{q p}=\tilde{g}\left(f^{\perp} C_{q}, C_{p}\right) \quad \text { and } \quad f_{i}^{i}=g^{i h} f_{j h}
$$

Then, the tensor field $\gamma_{j}{ }^{i}$ and vector fields u^{i}, v^{i}, α_{p} and β_{p} satisfy the following equations

$$
\begin{align*}
& f_{j}{ }^{i} f_{i}{ }^{h}=-\delta_{j}{ }^{h}+u_{j} u^{h}+v_{j} v^{h} \tag{2.4}\\
& f_{j} u_{i}=\lambda v_{j}, \quad f_{i}{ }^{i} v_{i}=-\lambda u_{j} \tag{2.5}\\
& u_{i} v^{i}=0, \quad u_{i} u^{i}=v_{i} v^{i}=1-\lambda^{2} \tag{2.6}
\end{align*}
$$

where we put $\lambda=f_{4 p} \alpha_{a} \beta_{p}$. Therefore, the submanifold M has the so-called $(f, g$, u, v, λ-structure.

Denote by τ and ϱ the mean curvature belonging to α_{p} and β_{p} respectively, namely

$$
\tau=H_{p} \alpha_{p} \quad \text { and } \quad \varrho=H_{p} \beta_{p}
$$

Then, we put

$$
\begin{equation*}
\nu^{2}=\tau^{2}+\varrho^{2}, \quad l_{j}=\beta_{p} \nabla_{j}^{\perp} \alpha_{p} \tag{2.7}
\end{equation*}
$$

where $\nabla_{j}^{\frac{1}{j}} \alpha_{p}=\partial_{j} \alpha_{p}+\alpha_{q} l_{j q p}$. We also define a vector field ξ on M by

$$
\begin{equation*}
\xi^{h}=\tau u^{h}+\varrho v^{h} \tag{2.8}
\end{equation*}
$$

and denote by η the associated. 1-form of ξ. Suppose that both α and β are umbilical sections on M and one of them is not a geodesic section.

Consequently, from (2.4)-(2.6) and (2.8), we can get the following relations

$$
\begin{align*}
& f_{j}^{i} f_{i}^{h}=-\delta_{j}^{h}+v^{-2}\left(\lambda_{j} \lambda^{h}+\eta_{j} \xi^{h}\right) \tag{2.9}\\
& f_{j}^{i} \lambda_{i}=\lambda \eta_{i}, \quad f_{j}^{i} \eta_{i}=-\lambda \lambda_{j} \tag{2,10}\\
& \lambda_{i} \xi^{i}=\eta_{i} \lambda^{i}=0, \quad \lambda_{i} \lambda^{i}=\eta_{i} \xi^{i}=\nu^{2}\left(1-\lambda^{2}\right) \tag{2.11}
\end{align*}
$$

where we put $\lambda_{i}=\nabla_{i} \lambda$.
The following Theorem A and B proved by Kim (Theorem 6.2 and 6.3 in [3]) play important roles in this paper:

Theorem A. - Let M be a submanifold of dimension $n(>2)$ with an induced metric compound structure of rank 2 in a Kaehlerian manifold. Assume that λ does not vanish almost everywhere on M, α and β are umbilical sections on M and one of them is not a
geodesic section. Then we have the equations

$$
\begin{align*}
& \nabla_{k} f_{j i}=\eta_{j} g_{k i}-\eta_{i} g_{k j} \tag{2.12}\\
& \nabla_{i} \lambda_{i}=\psi\left(\lambda_{i j} \lambda_{i}+\eta_{i} \eta_{i}\right)-\lambda \nu^{2} g_{j i} \tag{2.13}\\
& \nabla_{j} \eta_{i}=\psi\left(\lambda_{j} \eta_{i}-\eta_{j} \lambda_{i}\right)+\nu^{2} f_{j i} \tag{2.14}\\
& \nabla_{i} \nu^{2}=2 \nu^{2} \psi \lambda_{j} \tag{2.15}
\end{align*}
$$

where $\psi=A / v^{2}, A=u^{i}\left(\varrho_{i}+\tau l_{i}\right) /\left(1-\lambda^{2}\right)$ and $\varrho_{i}=\nabla_{i} \varrho$.
Theorem B. - Under the same assumptions of Theorem A, each λ-hypersurface is AS-homothetio to a Sasakian manifold \bar{M}.

3. - Fundamental Lemmas.

At first, we prepare some equations. We restrict our calculations on M^{\prime} in this section. Differentiating (2.15) covariantly and making use of (2.15) again, we have

$$
\nabla_{i} \nabla_{j} v^{2}=2 v^{2}\left(2 \psi^{2} \lambda_{i} \lambda_{j}+\psi_{i} \lambda_{j}+\psi \nabla_{i} \lambda_{j}\right)
$$

where $\psi_{i}=\nabla_{i} \psi$. If we take a skew-symmetric part of the above equation, then we obtain

$$
2 \nu^{2}\left(\psi_{i} \lambda_{j}-\psi_{j} \lambda_{i}\right)=0,
$$

which means that ψ_{i} and λ_{i} are proportional to each other, that is,

$$
\begin{equation*}
\psi_{i}=a \lambda_{i} \tag{3.1}
\end{equation*}
$$

where a is a proportional factor and we have used $y^{2} \neq 0$ on M.
Operating ∇_{k} to (2.14), (2.13) and (2.12) respectively and taking account of (2.10)-(2.15) and (3.1), we find the following equations

$$
\begin{align*}
& \nabla_{k} \nabla_{j} \eta_{i}=b \lambda_{k} U_{j i}+\nu^{2}(1+\lambda \psi)\left(\eta_{j} g_{k i}-\eta_{i} g_{k j}\right)+\nu^{2} \psi\left(\lambda_{j} f_{k i}-\lambda_{i} f_{k j}+2 \lambda_{k} f_{j i}\right) \tag{3.2}\\
& \nabla_{k} \nabla_{j} \lambda_{i}=b \lambda_{k i}\left(\lambda_{j} \lambda_{i}+\eta_{j} \eta_{i}\right)-\lambda \nu^{2} \psi\left(g_{k j} \lambda_{i}\right.\left.+g_{k i} \lambda_{j}\right) \tag{3.3}\\
& \quad+\nu^{2} \psi\left(f_{k j} \eta_{i}+f_{k i} \eta_{j}\right)-\nu^{2}(1+2 \lambda \psi) g_{j i} \lambda_{k} \\
& \nabla_{l} \nabla_{k} f_{j i}=\left(\psi U_{l j}+\nu^{2} f_{l j}\right) g_{k i}-\left(\psi U_{l i}+v^{2} f_{l i}\right) g_{k j} \tag{3.4}
\end{align*}
$$

where we have put $b=a+2 \psi^{2}$ and $U_{i i}=\lambda_{j} \eta_{i}-\lambda_{i} \eta_{j}$.

Therefore, by virtue of the Ricci's identity and the above equations, it follows that

$$
\begin{align*}
& R_{k j i}{ }^{r} \eta_{r}=b \lambda_{i} U_{k j}-\nu^{2}(1+\lambda \psi)\left(\eta_{j} g_{k i}-\eta_{k k} g_{j i}\right)-\nu^{2} \psi\left(\lambda_{k} f_{j i}-\lambda_{j} f_{k i}-2 \lambda_{i} f_{k j}\right), \tag{3.5}\\
& R_{k j i} \lambda_{r}=-\left(b \eta_{i} U_{k j}+\nu^{2} \psi\left(2 \eta_{i} f_{k j}+\eta_{j} f_{k i}-\eta_{k} f_{j i}\right)+\nu^{2}(1+\lambda \psi)\left(\lambda_{i} g_{k i}-\lambda_{k} g_{j i}\right)\right), \tag{3.6}\\
& -R_{l k j}{ }^{r} f_{r i}-R_{l k i}{ }^{r} \eta_{j r}=\left(\psi U_{l j}+\nu^{2} f_{l j}\right) g_{k i}-\left(\psi U_{l i}+\nu^{2} f_{l i}\right) g_{k j} \tag{3.7}\\
& -\left(\psi U_{k i j}+\nu^{2} f_{k j}\right) g_{l i}+\left(\psi U_{k i}+\nu^{2} f_{k i}\right) g_{l j}
\end{align*}
$$

Taking the cyclic sum of (3.7) with respect to the indices l, k and j and making use of the first Bianchi's identity, we get

$$
\begin{align*}
-R_{l k i}^{r} f_{j r}-R_{k j i}^{r} f_{l r}-R_{j l i}^{r} f_{k r}=2\left(\left(\psi U_{l i}+\nu^{2} f_{l j}\right) g_{k i}+\left(\psi U_{k l}+\nu^{2} f_{k l}\right) g_{j i}\right. \tag{3.8}\\
\left.+\left(\psi U_{j k}+\nu^{2} f_{j k}\right) g_{l i}\right)
\end{align*}
$$

Let us show the following.
Levma 3.1. - Under the same assumptions of Theorem A, we obtain

$$
\begin{equation*}
y(1+\lambda \psi)=0 \quad \text { on } M^{\prime} \tag{3.9}
\end{equation*}
$$

Proof. - Operating ∇_{l} to (3.5) and regarding to (2.12)-(2.15), we get

$$
\begin{aligned}
-\nabla_{l} R_{k j i}{ }^{r} \eta_{r}-R_{k j i}{ }^{r} & \left(\psi U_{l r}+\nu^{2} f_{l r}\right)=\left(b_{l} \lambda_{i}+b \nabla_{l} \lambda_{i}\right) ण_{j k} \\
& +b \lambda_{i}\left(\nabla_{i} \lambda_{j} \eta_{l k}+\lambda_{j} \nabla_{l} \eta_{k}-\nabla_{l} \lambda_{k} \eta_{j}-\lambda_{k} \nabla_{l} \eta_{j}\right)+c v^{2} \lambda_{l}\left(\eta_{j} g_{k i}-\eta_{k} g_{j i}\right) \\
& +\nu^{2}(1+\lambda \psi)\left(\nabla_{l} \eta_{j} g_{k i}-\nabla_{l} \eta_{k} g_{j i}\right)+b v^{2} \lambda_{l}\left(\lambda_{k} f_{j i}-\lambda_{j} f_{k i}-2 \lambda_{i} f_{k j}\right) \\
& +\nu^{2} \psi\left(\nabla_{l} \lambda_{k} f_{j i}+\lambda_{k} \nabla_{l} f_{j i}-\nabla_{l} \lambda_{j} f_{k i}-\lambda_{j} \nabla_{l} f_{k i}-2 \nabla_{l} \lambda_{i} f_{k j}-2 \lambda_{i} \nabla_{l} f_{k j}\right)
\end{aligned}
$$

where we have put $b_{l}=\nabla_{l} b$ and $c=3 \psi+2 \lambda \psi^{2}+a \lambda$. Taking the cyclic sum of the above equation with respect to the indices l, k and j and taking account of (2.12)-(2.14), (3.5), (3.6), (3.8) and the second Bianchi's identity, we can find that
3.10) $\quad \lambda_{i}\left(b_{l} U_{j k}+b_{k} U_{l j}+b_{j} U_{k l}\right)+2 v^{2} \psi(1+\lambda \psi)\left(g_{l i} U_{j k}+g_{k i} U_{l j}+g_{j i} U_{k l}\right)=0$.

These calculations are simple but lengthy, so we omit the calculations. By contraction of this equation with λ^{i}, it is clear that

$$
\lambda_{r} \lambda^{r}\left(b_{l} U_{j b}+b_{k} U_{l j}+b_{j} U_{l c l}\right)=0
$$

Since $\lambda_{r} \lambda^{r} \neq 0$, we have

$$
b_{l} U_{i l k}+b_{k} U_{l j}+b_{j} U_{k l}=0 \quad \text { on } \quad M^{\prime}
$$

Hence, it follows from (3.10) that

$$
2 \nu^{2} \psi(1+\lambda \psi)\left(g_{l i} U_{j k}+g_{k i} U_{l j}+g_{j i} U_{k l}\right)=0
$$

which implies that

$$
2(n-2) v^{2} \psi(1+\lambda \psi)=0 .
$$

Therefore, by virtue of the assumptions $n>2$ and $\nu^{2} \neq 0$, we have

$$
\psi(1+\lambda \psi)=0
$$

This completes the proof.
Now, we put

$$
U_{\mathrm{x}}=\left\{p \in M^{\prime}: \psi=0 \text { at } p\right\}
$$

and

$$
U_{2}=\left\{p \in M^{\prime}: 1+\lambda \psi=0 \text { at } p\right\}
$$

Then U_{1} and U_{2} are closed subsets of $M^{\prime}, M^{\prime}=U_{1} \cup U_{2}$ and $U_{1} \cap U_{2}=\emptyset$. If M^{\prime} is connected, we can see that $M^{\prime}=U_{1}$ or $M^{\prime}=U_{2}:$ So we can get the following.

LEMMA 3.2. - Under the same assumptions of Theorem A and if M^{\prime} is connected, then we find

$$
M^{\prime}=U_{1} \quad \text { or } \quad M^{\prime}=U_{2}
$$

4. - The case of $M^{\prime}=U_{1}$.

Let us prove the following.
Lemma 4.1. - Let M be a complete and connecied submanifold with the same assumptions of Theorem A. If $M^{\prime}=\bar{U}_{1}$, then M is isometric with a sphere of radius $1 / \sqrt{v^{2}}$.

Proof. - We can find from (2.15) that v^{2} is constant on M because v^{2} is continuous on M and $M-M^{\prime}$ has no interior points. Therefore, it is clear from (2.13) that

$$
\nabla_{j} \nabla_{i} \lambda=-v^{2} \lambda g_{j i} \quad \text { on } M^{\prime}
$$

Since λ is smooth on M, this equation holds on M. This implies that M is isometrie with a sphere of radius $1 / \sqrt{\nu^{2}}$ (ci. [6], [7] or [10]).

5. - The case of $M^{\prime}=U_{2}$.

Let us recall some results on λ-hypersurfaces in [3]. Since points of M^{\prime} are ordinary, we can choose a suitable local coordinate system (x^{1}, x^{a}) for the function λ in a neighborhood W, with respect to the components of metric tensor g of M^{\prime} such that

$$
g_{11}=1, \quad g_{b 1}=g_{1 a}=0
$$

The first local coordinate x^{1} is the arc length of λ-curve R and (x^{a}) is the local coordinate of each λ-hypersurface M. Then M^{\prime} is locally expressed as $M^{\prime}=R \times \bar{M}$. In terms of such a coordinate system $\left(x^{1}, x^{a}\right)$, we denote by prime the ordinary differentiation with respect to the are length x^{1} and it follows from (2.11) that

$$
\eta_{1}=\xi^{1}=\lambda_{a}=0
$$

Let the $(n-1)$-dimensional manifold \vec{M} be a Riemannian manifold endowed with the metric tensor \bar{g} defined below. Then we have the relations

$$
\begin{equation*}
\bar{g}^{b a} \bar{\eta}_{a}=\bar{\xi}^{b} \quad \text { and } \quad \bar{\eta}_{a} \bar{\xi}^{a}=\bar{g}_{a b} \bar{\xi}^{a} \xi^{b}=1 \tag{5.1}
\end{equation*}
$$

where $\bar{g}^{b a}$ is given by

$$
\begin{equation*}
g^{b a}=\left(1-\lambda^{2}\right)^{-1} \bar{g}^{b a}-\left(\left(1-\lambda^{2}\right)^{-1}-\left(\lambda^{\prime}\right)^{-2}\right) \bar{\xi}^{a} \bar{\xi}^{b} . \tag{5.2}
\end{equation*}
$$

Moreover, we can see that $\bar{g}_{a b}, \bar{g}^{a b}, \bar{\eta}_{a}$ and $\bar{\xi}^{a}$ are independent of x^{1}. Now, we put

$$
\bar{\nabla}_{b} \bar{\xi}^{a}=\bar{f}_{b}{ }^{a},
$$

where $\bar{\nabla}$ is the covariant differentiation with respect to \bar{g} of \bar{M}. Since $\bar{\xi}$ is a unit Killing vector field of \bar{M}, we have

$$
\xi_{e} \bar{\nabla}_{e} \bar{\eta}_{a}=\bar{\eta}_{a} \bar{\nabla}_{a} \bar{\xi}^{e}=0 .
$$

In the following, we assume that $M^{\prime}=U_{2}$, that is, $1+\lambda \psi=0$ on M^{\prime}. We restrict our calculations on M^{\prime} and note that $\lambda \neq 0$ on M^{\prime}. Taking account of (2.15) and (2.11), we have

$$
\begin{equation*}
\psi=\lambda^{\prime \prime} /\left(\lambda^{\prime}\right)^{2}+\lambda /\left(1-\lambda^{2}\right) \tag{5.3}
\end{equation*}
$$

which yields that

$$
\lambda^{\prime \prime} /\left(\lambda^{\prime}\right)^{2}=-1 / \lambda-\lambda /\left(1-\lambda^{2}\right)
$$

Integrating the above equation, we can get

$$
\begin{equation*}
\lambda^{\prime}=k \sqrt{1-\lambda^{2}} / \lambda, \tag{5.4}
\end{equation*}
$$

where k is nonzero constant. Also we can get from (5.4) that

$$
\begin{equation*}
\lambda^{\prime \prime}=-k^{2} / \lambda^{3} \tag{5.5}
\end{equation*}
$$

By the way, differentiating $1+\lambda \psi=0$ covariantly and making use of (3.1), we get

$$
a=1 / \lambda^{2}
$$

from which

$$
b=a+2 \psi^{2}=3 / \lambda^{2}
$$

Consequently, the equation (3.5) can be rewritten as follows:

$$
\boldsymbol{R}_{k j i}{ }^{r} \eta_{r}=\left(3 / \lambda^{2}\right) \lambda_{i} U_{k j}+\left(k^{2} / \lambda^{3}\right)\left(\lambda_{k} f_{j i}-\lambda_{j} f_{k i}-2 \lambda_{i} f_{k j}\right) .
$$

Transvecting this equation with $g^{j i}$, we have

$$
\begin{equation*}
R_{k r} \eta^{r}=-\left(3 k^{2} / \lambda^{4}\right) \eta_{k} \tag{5.6}
\end{equation*}
$$

Lemina 5.1. - Let M be a submanifold with the same assumptions of Theorem A. If $1+\lambda \psi=0$ on M^{\prime}, then M is not an Einstein manifold.

Proor. - If M is an Einstein manifold, then the equation (5.6) implies that

$$
\begin{equation*}
\$ / n=-3 k^{2} / \lambda^{4} \tag{5.7}
\end{equation*}
$$

where S is the scalar curvature of M. Since the scalar curvature of Einstein manifold is constant, the equation (5.7) tells us that λ is constant. This contradicts to our assumptions. This completes the proof.

As $M^{\prime}=U_{2}$, we find the components of the Riemannian curvature tensor $R_{k j i}{ }^{h}$ of M as follows:
where $\bar{R}_{a c b}^{a}$ is the Riemannian curvature tensor of \bar{M}. From these, we get the components of the Ricci tensor of M as follows:

$$
\left\{\begin{array}{l}
R_{11}=-3 k^{2} / \lambda^{4} \tag{5.9}\\
R_{1 a}=0 \\
R_{c b}=\bar{R}_{c b}-\left(k^{2}(n-3)-3 k^{2} / \lambda^{2}+2\right) \vec{g}_{c b} \\
\quad+\left(\left(k^{2}-1\right)(n-3)+3\left(k^{2} / \lambda^{2}-1\right)-3 k^{4}\left(1-\lambda^{2}\right) / \lambda^{6}\right) \bar{\eta}_{c} \tilde{\eta}_{b}
\end{array}\right.
$$

where $\bar{R}_{c b}$ is the Ricei tensor of \bar{M}.
Lemma 5.2. - Let M be a submanifold with the same assumptions of theorem A . If $M^{\prime}=U_{2}$, then M is not conformally flat.

Proof. - If M is conformally flat, then we have the equation

$$
\begin{aligned}
& C_{k j i}^{h}=R_{k j i}^{h}+\frac{2}{n-2}\left(R_{k i} \delta_{j}^{h}-R_{j i} \delta_{k i}^{h}+g_{k i} R_{i j}^{h}-g_{j i} R_{k}^{h}\right) \\
&-\frac{S}{(n-1)(n-2)}\left(g_{k i} \delta_{j}^{h}-g_{j i} \delta_{k i}^{h}\right)=0
\end{aligned}
$$

Putting $h=1, i=b, j=c$ and $k=d$ in the above equation, we have from (5.9)

$$
R_{d c b}^{1}=0
$$

Consequently, it follows from the second equation of (5.8) that

$$
\frac{h^{3}\left(1-\lambda^{2}\right)^{\frac{3}{2}}}{\lambda^{4}}\left(\bar{\eta}_{d} \bar{f}_{c b}-\bar{\eta}_{c} \bar{f}_{d b}-2 \bar{\eta}_{b} \bar{f}_{a c}\right)=0
$$

from which we have $k=0$. This contradicts to

$$
\lambda^{\prime}=k \sqrt{1-\lambda^{2}} / \lambda \neq 0
$$

Proof of our Theorem. - Summing up the Lemma 3.1, 3.2, 4.1, 5.1, 5.2 and Theorem B, we can prove the Theorem stated in $\S 0$.

REFERENCES

[1] B. Y. Chen, Geometry of submanifolds, Marcel Dekker, Inc., New York, 1973.
[2] S. Ishihara and U.-H. Kr, Complete Riemannian manifolds with (f, g, u, v, λ)-structure, J. Diff. Geom., 8 (1973), pp. 541-554.
[3] I.-B. Kim, Submanifolds of Kaehlerian manifolds and motrio compound structures, Hiroshima Math. J., 13 (1983), pp. 401-443.
[4] S. SASAKI, Almost contact manifolds I, Lecture Notes, Tôhoku Univ., 1965.
[6] Y. Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc., 117 (1965), pp. 251-275.
[7] Y. Tashiro, Conformal transformations in complete Riemannian manifolds, Publ. of the Study Group of Geometry, Kyoto Univ., 1967.
[8] Y. Tashiro and I.-B. Kim, On almost contact metric compound structure, Kōdai Math. J., 5 (1982), pp. 13-29.
[9] K. Yano and M. Okumura, $O_{n}(f, g, u, v, \lambda)$-structures, Kōdai Math. Sem. Rep., 22 (1970), pp. 401-423.
[10] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan, 14 (1962), pp. 333-340.

[^0]: (*) Entrata in Redazione il 5 dicembre 1984; versione riveduta il 23 settembre 1985 Indirizzo degli AA.: Department of Mathematics, Faculty of Science, Science University of Tokyo, Tokyo, Japan, 162.

