Submanifolds of Kaehlerian Manifold ‘
with a Metric Compound Structure of Rank 2 (¥
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Sammary. — The metric compound structure of rank v is an abstructed struciure of an induced
structure on a real submanifold in an almost Hermitian mamifold. In this paper we deal
with 6 submanifold with metric compound structure of rank 2 in a Kaehlerian manifold and
-~we classify it under some suilable conditions. Namely it is a standard sphere or neither
Finstein nor conformally flat.

0. — Introduction.

In [3] and [8], Y. TasHIRO and I.-B. KiM have introduced the notion of metric
compound structure of rank # which is naturally induced on the submanifcld of
an almost Hermitian manifold. ;

In [8], they have investigated the case of rank 1. Also the case of rank 2 has
been studied by I.-B. KM [3]. Although I.-B. Kim [3] has applied his energies
to the study of such submanifolds, there is plenty of reom for improvement. For
instance, since the dominator of (6.8) in [3] may teke a value zero, we must be
careful how we treat it. Also, Theorem 6.4, 6.9 and their corollaries in [3] will be
improved.

The purpose of this paper is to sharpen the Kim’s results of Paragraph 6 in [3],
that is, we will prove the following Thecrem.

THEOREM. ~ Let M be an n-dimensional complete and connecied submanifold with
an induced metric compound structure of rank 2 in a Kaehlerian manifold M. Suppose
that 2 does not vanish identically, « and f are wmbilical sections on M and the sum of
squared mean curvature v® does not vanish on M ond

M={peM:1—2*%£0 at p} is connected .

Then we have the following:

(1) M is isometric with a sphere,

(*) Entrata in Redazione il 5 dicembre 1984; versione riveduta il 23 settembre 1985.
Indirizzo degli AA.: Department of Mathematics, Faculty of Science, Science University
of Tokyo, Tokyo, Japan, 162,
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or

(

&)

) each A-hypersurface is AS-homothetic to a Sasakian manifold M and neither M
is Hinstein nor conformally flat.

Although the majority of Xim’s results in the Paragraph 6 are only to find the
conditions that M is to be a space of constant curvature, by according to our above
Theorem, we can determine the submanifold M as follows: M is isometric with a
sphere or neither M is Einstein nor conformally flat and each A-hypersurface is
AS8-homothetic to a Sasakian manifold M.

We devote the first two sections for the preparation to a description of our
Theorem. In § 1, we will recall the fundamental properties of submanifolds. In
§ 2, we will give a brief summary of the notion of the metric compound structure
of rank 2 which is mainly developed by I.-B. KM and Y. TAsHIRO [3], [8]. The
last two sections will be devoted to the proof of our Theorem.

Throughout this paper, we assutne that manifolds and quantities are differen-
tiable of class 0°. Unless otherwise is stated, indices run over the following ranges

By Ay g Uy o =1, 2,8, everene e ,m,
hyi, 4, ky...=1,2,3,...,n,
Py Gy Py 8 vuv == n-+1,n+2,....,m,
ay b0 d,...= 2,3,...,n,

respectively.

1. — Submanifolds.

Let M be a Riemannian manifold of dimension m with Riemannian metric
g = (§,;) and M be a submanifold of dimension n (> 2) of M represented locally
by the equation

Y= y(x"),

where {#*} are local coordinates of M and {y*} local coordinates of J.
If we put

By#=0,y%, &;= 0/ow’,

then B,= (B (j =1,2,...,n) are linearly independent local vector fields tangent
to M. The Riemannian metrie tensor g = (g,;) of M is given by

(l.l) g = {7#;.3,-“3# .
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We can loeally choose m — »n mutually orthogonal unit normal vector fields
C,= (C,*) to M. Then the vectors B, and O, span the tangent space T, (M) of M
at every point ¥ € M and the matrix (B, CF) is regular. We have

(1.2) GuB#02=0 ’ Jur Opt C 2 = 61:1 .

On a submanifold M of a Riemannian manifold J, the van der Waerden-Bor-
tolotti covariant differentiation V, is defined by

(1.3) VB = 0;B#— B,* {jh@.} + BB,

h -
where {?. 1} and I',;* are the Christoffel’s symbols of M and M respectively. Since

V;B” is normal to M for fixed ¢ and j, we have the equation of Gauss

(1-4) VjBix:: hﬁpcﬂ" y

where h;;, is the second fundamental tensor,
Throughout this paper, the summation convention is applied to the repeated
indices on their own ranges. The equation of Weingarten is given by

(1.5) ViCp= — h;\yB¥+ 1,0, ,
where we have put
(1.6) V;0p=0;02- IyyxBCp,  hity= gi*hy,,

and 1, is the so-called third fundamental tensor.

A normal vector field N = (N*) = ¥, C,” is called a normal section on M. The
tensor h;, 7, is said to be the second fundamental tensor belonging to the normal
section N. The mean curvature vector of M in I is given by

HZH,,O,,”, H,= (1/n)giih,-“,.
I the relation
ha’z‘p T‘ﬂ = 09

is satisfied with a function g on M for a normal section N, then N is said to be an
umbilical section on M or M is umbilical with respect to N. If N is a unit normal
section, then the function ¢ = H,/,¥,/n is called the mean curvature belonging

to N. Moreover, if o vanishes identically, then N is said to be a geodesic section
on M.
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2, ~ Submanifolds with a metric compound structure of rank 2 in a Kaehlerian
manifold.

Let M be a Kachlerian manifold of dimension m with structure tensors (f, J),
where § is the Hermitian metrie tensor and J the complex structure one. We con-
sider a real submanifold M of dimension » in M. For XeTM and NeT*M,
we put

JX =X +TX, JN=—tN-7N,

where fX (resp. — tN) denotes the tangential component of JX (resp. JN) and TX
(vregp. L N) the normal component of JX (resp. JN). Then f (resp. /*} is an ende-
morphism on TM (resp. T+ M), T is a T+ M-valued homomorphism on TM and ¢
is a TM-valued homomorphism on T+M. Moreover the relation between I’ and ¢
is given by

J(ITX,N) = §(X,tN) .

If rank (T) = » (0 < r < Min (n, m — n)) almost everywhere on M, then we say
that M is a submanifold with compound metrie structure of rank v. The phrase
« almost everywhere on M » means «on the whole manifold M exeept a border sub-
set of M». If r = 0 on M, M is nothing but an invariant submanifold and hence M
is also a Kaehlerian manifold. If » =1 on M, M is to be an almost contact Rie-
mannian manifold (see, [8]).

REMARK. — Bven if » = dim M, M is not necesgary a totally real submanifold.
Thus such submanifolds with metric eompound structure of rank r are very wide
class in all real submanifolds of a Kaehlerian manifold,

In the following, we assume that » = 2 almost everywhere on M. Then we can
choose mutually orthogonal normal veetor fields « and B such that

JX =X + w(X)x 4 v(X)B,

(2.1)
JN = —a(N)U - BN)V +*+ N,

where o and 8 span image of T, U = fa, V =i, w(X) = §{X, U), v(X) = §(X, V),
a(N) = §ee, N) and B(N)=§(f, N). In terms of local coordinates, they are ox-
pressed as

(2.2) JirBh = [ #By# 4 w0, 0% -+ 0:8,0,7
and

(2.3) It 0p = — a,ut Byt — ﬁq”hBh” + 10y,
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where we have sef

sz':fﬂJBﬂBi) y fqug(fLan 01») and fii:gihfih-

Then, the tensor field f; and vector fields w%, v, a, and B, satisfy the following
equations

(2.4) fiffd = — 0"+ wut + v,0%,
(2.5) fiéws = Av;, fiv:=— duy,
(2.6) w0t =10, wuu =00 =1-—)2

where we put A = f,,8,. Therefore, the submanifold M has the so-called (f,g,
u, v, A)-structure.

Denote by 7 and g the mean curvature belonging to «, and B, respectively,
namely

T=H,x, and p=H/S,.
Then, we put
(2.7) v=140%, I;=p,Y0,,
where Vo, = 0,0, + ot,l;p,. We also define a vector field & on M by
(2.8) &= Tyt oo,
and denote by y the associated 1-form of £, Suppose that both « and f are nmbilical

sections on M and one of them is not a geodesic section.
Consequently, from (2.4)-(2.6) and (2.8), we can get the following relations

(2.9) [ifd=—d+ v (A 4 1:6%) ,
(2.10) [iihi= ;071'7 fiini': ~U~u
(2-11) }-@El: 7]121 = O ’ }.i;viz 7]157‘: 1)2(1 _ }-2) s

where we put 1,= V, 1.
The following Theorem A and B proved by Kim (Theorem 6.2 and 6.3 in [3])
play important roles in this paper:

THEOREM A. ~ Let M be a submanifold of dimension n (> 2) with an induced metrie
compound structure of rank 2 in a Kaehlerian manifold. Assume that A does not vanish
almost everywhere on M, o and f are umbilical sections on M and one of them is not a
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geodesic section. Then we have the equations

(2.12) Vifsi= 0390~ N:Gns s

(2.13) Vide = 9(lihi+ nym;) — Wv?g,,,
(2.14) Vo= w{mi—n;4) + v,
(2.15) V2 = 292yl;,

where y = Afv?, A = u*(0;+ 7l;)[(1 — A%) and o,= V,p.

THEOREM B. — Under the same assumptions of Theorem A, each 2-hypersurface is
AS-homothetic to a Sasakian manifold M.

3. — Fundamental Lemmas.

At first, we prepare some equations. We restrict our ealeulations on M’ in this
section. Differentiating (2.15) covariantly and making use of (2.15) again, we have

ViVj'Vz = 272(27/)2 Ai}bf—i— 7/)1';»,' + 1/)VJ»,) I

where y,= V,p. If we take a skew-symmetric part of the above equation, then
we obtain

202 (i hy— ;) =0,
which means that vy, and A, are proportional to each other, that is,

(3.1) Y= al;,

where @ is a proportional factor and we have used »2z2 0 on M.
Operating V, to (2.14), (2.13) and (2.12) respectively and taking account of
(2.10)-(2.15) and (3.1), we find the following equations
(3.2) ViVimi = bAp Usi 4 v2(1 -+ M) (13ri— i Grs) -+ V2P(Asfei— it + 22fi0)
(3.3) Vi Vidi= 0in(di 0+ nime) — 229G i+ Grids)
+ v2(fem + funs) —r2(1 4+ 22995

(3.4) ViVifi= (9Uy+ v*f1) 90— (w Ui + v 1) 90 »

where we have put b = a + 29 and U, = 4,m,— A7,
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Therefore, by virtue of the Ricei’s identity and the above equations, it follows
that

(3.5) Ry 1y = bA; Upy— v*(1 4 29) (09— MaGie) — V2 Afsi— Aifue— 20:Fri)
(3.6) By de = — (bn,- Ups + v2 920 frs -+ NiFas— mefid) + 21 + Ay (Aigni— Zkg,-i)) )

(3.7 — Ry fri— B fir= (U + v* 1)) gri— (@ Usi -+ v F10) s
— (WU + v2f2i) g0+ (@ Usi+ 2 1) 915 -

Taking the cyclic sum of (3.7) with respect to the indices I, ¥ and j and making
use of the first Bianchi’s identity, we get

(3:8) — Buxs fir— Busi fro— B frr = 2((1/’sz + 12f1)gps + (WU + V2 1) s
+ (pUsp~+ vzfﬂc)gli) .

Let us show the following.

LeMumA 3.1. — Under the same assumptions of Theorem A, we obtain
(3.9) pA 4+ Apy)=0 on M.

ProOOF. — Operating V,; to (3.5) and regarding to (2.12)-(2.15), we get

— Vi By )y — Bair (9 Use + 2 f1r) = (014, +4- BViAi) Uy
+ 04UV A+ 45 Vop— Videns— AV} -+ v 240390 — 118s4)
+ 221+ A)(Vinigei— Vimegss) -+ 002 2a(Aafii— A5 fri— 22:fes)
4 29(VidoFie + AVifi— Vidifoo— L, Vifoi— 2V difri— 2.V frs)

where we have put b;= V;b and ¢ = 3y + 2ip* 4 al. Taking the cyclic sum of
the above equation with respect to the indices 7, & and §j and taking account of
(2.12)-(2.14), (3.5), (3.6), (3.8) and the second Bianchi’s identity, we can find that
3.10) Z-i(bl Ujp+ b, Uy + b, chz) + 21’2?/)(1 + /1%0)(911: U+ Jri Ui+ Gi: Ukl) =0.

These calculations are simple but lengthy, so we omit the caleulations. By contrac-
tion of this equation with A% it is clear that

lr”(bz Uik+ by, Uli+ bj Ukl) =0.

Since 4,47 0, we have

bl Uak_i" kal:i_l" bj UkZ:O on J}[,.
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Hence, it follows from (3.10) that
20291+ 29N Vs G U+ 9:Un) =0,
which implies that
2(n — 2)p2p(l 4 Ay) = 0.
Therefore, by virtue of the assumptions n > 2 and »*3= 0, we have

p(d 4+ Ay) =0.

This completes the proot.
Now, we pub
Uy={peM:y=0 at p}

and

Up={peM':1 4+ dy=0 at p}.

Then U; and U, are closed subsets of M', M'= U,V U, and U;N U,= 9. If M’
is connceted, we can see that M'= U, or M'= U, So we can get the following.

LeMMA 3.2. — Under the same assumptions of Theorem A and if M’ is connected,
then we find

M=U o M=TU,.

4, — The case of M'= U,;.

Let us prove the following.

LEMMA 4.1, ~ Lei M be a complete and connecied submanifold with the same assump-
tions of Theorem A. If M'= Uy, then M is isomeiric with a sphere of radius 1/V/v2.

Proor. — We can find from (2.15) that »® is constant on M because »? is con-
tinuous on M and M — M’ has no interior points. Therefore, it is elear from (2.13)
that

V,-Viﬂ. == “"sz.gji on M’ .

Since 1 is smooth on M, this equation holds on M. This implies that M is isometrie
with a sphere of radius 1/v2 (cf. [6], [7] or [10]).
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5. — The case of M' = U,.

Lot us recall some results on A-hypersurfaces in [3]. Since points of M’ are ordi-
nary, we can choose a suitable local coordinate system (a?, #*) for the funection 4
in a neighborhood W, with respect to the components of metric tensor g of M’
such that

Ju=1, Jo1= o= 0.

The first local coordinate x* is the arc length of A-eurve R and (z°) is the local
coordinate of each A-hypersurface M. Then M’ is locally expressed as M'= RX M.
In terms of such a coordinate system (%, 2¢), we denote by prime the ordinary
differentiation with respect to the arc length ' and it follows from (2.11) that

p=E&=1=0.

Let the (n — 1)-dimensional manifold # be 2 Riemannian manifold endowed
with the metric tensor § defined below. Then we have the relations

(5.1) Fia=& and 5= gufb=1,
where ¢ is given by
(5.2) gr= (1 — A2 e — (1 — At — (A)2) e,
Moreover, we can see that 7, §°, 7, and £ are independent of #*. Now, we put
Voéo = fe,

where V is the covariant differentiation with respect to g of M. Since & is a unit
Killing vector field of M, we have

éeﬁaﬁa: ﬁa€m§g: 0.

In the following, we assume that M'= U,, that is, 1 + Ay =0 on M'. We
restriet our calculations on M’ and note that A+ 0 on M’'. Taking account of
(2.15) and (2.11), we have :

(5.3) p = (M) + 21— 22),
which yields that

AT A= —1]4A— A/(1 — ).
Integrating the above equation, we can get

(5.4) N=1kV1=TA,
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where & is nonzero constant. Also we can get from (5.4) that

(5.5) A= 28

By the way, differentiating 1 4 Ay = 0 covariantly and making use of (3.1},
we get
a =1/,
from which
== g + 2y?= 3[A2.

Consequently, the equation (3.5) can be rewritten as follows:

Ry ne = (3/42) 24 Ups + (B 23 (Aafii— Aifui— 22:fri) -
Transvecting this equation with g7/, we have
(5.6) ernT: — (3]02/}»4)7];0 .

LEMMA 5.1. — Let M be a submanifold with the same assumptions of Theorem A.
If 1+ 2y =0 on M, then M is not an Einstein manifold.

Proo¥. —~ If M is an Einstein manifold, then the equation (5.6) implies that

(5.7) Sjn = — 3k2/2%

where § is the secalar eurvature of M. Since the scalar curvature of Einstein mani-
fold is constant, the equation (5.7) tells us that 4 is constant. This contradicts to
our assumptions. This completes the proof.

As M'= U,, we find the components of the Riemannian curvature tensor R,;"
of M as follows:

R1111= Rnla: Rub“ =0 9

1 — A% _ - - =
Ryt = — *(7’*—)‘ (Fafos— Tefav— 2T fae)
EB(1—AnE =
B = — ‘L“"M—) (chfb“ - "]bf'ca) ’
3k4(1 — A2) _
(6.8) Ryt = . ( 76 )77d"7b 5

3k _ -

Rlcla = '“;:Z 7]c§a ’

Run® = Rt — k2000 — 8.°Fmn) ~+ (2 — 1) (845, 7p — 0.°7ailo— JasTo&®
4 Fopiae) - (k2[22 —1)(2fafo® + fafe— Fald®
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where Rdczfﬁ is the Riemannian curvature tensor of M. From these, we get the
components of the Ricei tensor of M as follows:

R11 _ - 3k2/;\.4 3

-Rla = O 3

R, = R,,— (k*(n — 3) — 3k2/A2 + 2) .
+ (B —1)(n — 3) + 3(k*[A*—1) — 3E4(1 — A2)/A%) 75y ,

(5.9)

where R, is the Ricei tensor of .

LEMMA 5.2. — Let M be a submanifold with the same assumptions of theorem A.
If M'= TU,, then M is not conformally flat.

Proor. - If M is conformally flat, then we have the equation

2
Cri = Ryt - ooy (R0t — Ry 03" + gri B — 5. B?)

S .
1) m =) Wm0 0) =0

Putting h =1,i=05,j = ¢ and % = d in the above equation, we have from (5.9)
R, '=0.

Consequently, it follows from the second equation of (5.8) that

31— AnE . -3 =
L‘AT‘—) (7]dfob_770fdb—“ anfdc) =0,

from which we have &k = 0. This contradicts to
) = kVI — A2[A 0.

ProOF oF 0UR THEOREM. — Summing up the Lemma 3.1, 3.2, 4.1, 5.1, 5.2 and
Theorem B, we can prove the Theorem stated in § 0.
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