On Subtransversality (*).

P. HOLM - S. JOHANNESEN

Summary. – Let (X, A) and (Y, B) be pairs of manifolds. By means of a «completed » bijet bundle over the blow-up of X along A we give simple geometric interpretations of the notion of subtransversality of a smooth map $f: (X, A) \to (Y, B)$ along A.

The notion of subtransversality is due to ALDO ANDREOTTI and was introduced in [2]. (See also [1] for a recent contribution in the projective-geometric context.) In the present paper we show that subtransversality of $f: X \to Y$ to $B \subset Y$ along $A \subset X$, or rather subtransversality after blowing up A, has a simple geometric meaning in terms of ordinary transversality in tangent and normal bundles. Here (X, A) and (Y, B) are smooth manifolds—with—submanifolds and f is a smooth mapping sending A into B. The connection is made via a sort of « completed » bijet bundle E = E(X, A; Y, B) over the blow-up W = W(X, A) of X along A. The bundle space E contains a smooth « singularity » submanifold Z with two strata, and the subtransversality conditions are translated into transversality of the jet section to the strata of Z along the strata of W (proposition 2.1). From this one easily extracts the results (theorems 1.1 and 1.2).

1. - Preliminaries and statements.

We recall a few concepts from [2]. Let X and Y be smooth (i.e. C^{∞} -) manifolds, dim X > 0, and let A and B be closed submanifolds of X and Y. We denote by $C^{\infty}(X, A; Y, B)$ the set of smooth maps $g: X \to Y$ such that $g(A) \subseteq B$. This is a closed subset of $C^{\infty}(X, Y)$ in the Whitney topology (= the fine C^{∞} -topology).

Furthermore, denote by $C_a^{\infty}(X)$ the local ring of germs of smooth functions at $a \in X$. An ideal $I \subseteq C_a^{\infty}(X)$ is regular of codimension k if I has k generators h_1, h_2, \ldots, h_k such that $dh_1 \wedge \ldots \wedge dh_k \neq 0$. This requires I to be a proper ideal of $C_a^{\infty}(X)$. In addition we consider $I = C_a^{\infty}(X)$ to be a regular ideal of codimension k for any integer k. Then $V(I) = \{x \in (X, a) : h(x) = 0, \forall h \in I\}$ is the germ of a smooth submanifold of X at a of codimension k (empty if $I = C_a^{\infty}(X)$). Clearly a mapping

^(*) Entrata in Redazione il 5 marzo 1985.

Indirizzo degli AA.: Universitetet i Oslo, Institute of Mathematics, P.O. Box 1053, Blindern, Oslo 3 - Norway.

 $g: X \to Y$ is transverse to B at $a \in X$ if and only if $C_a^{\infty}(X) \cdot g^*I(B)_{g(a)}$ is a regular ideal of codimension k, where k is the codimension of B at g(a) and $I(B)_{g(a)} \subseteq C_{g(a)}^{\infty}(Y)$ is the ideal of smooth germs at g(a) vanishing on B.

Next, let $g \in C^{\infty}(X, A; Y, B)$ and let $a \in A$; then $C_a^{\infty}(X) \cdot g^*I(B)_{g(a)} \subseteq I(A)_a$. Consider the conductor ideal $c_g(I(A)_a, I(B)_{g(a)}) \subseteq C_a^{\infty}(X)$. By definition $h \in c_g(I(A)_a, I(B)_{g(a)})$ if and only if $h \cdot I(A)_a \subseteq C_a^{\infty}(X) \cdot g^*I(B)_{g(a)}$. We say that g is subtransverse to B at a if $c_g(I(A)_a, I(B)_{g(a)})$ is regular of codimension equal the codimension of B at g(a), and strongly subtransverse to B at a if $c_g(I(A)_a, I(B)_{g(a)})$ is regular of explanation of A and B at a and g(a).

Finally, let \tilde{X} be the blow-up of X along A and $\sigma: \tilde{X} \to X$ the collapse mapping. Then \tilde{X} is canonically a smooth manifold with $\tilde{A} = \sigma^{-1}(A)$ a codimension one submanifold, cf. [3]. (Although the setting in [3] is complex analytic the methods work equally well in the C^{∞} case.) A mapping $g \in C^{\infty}(X, A; Y, B)$ is (strongly) σ -subtransverse to B at a if $g \circ \sigma$ is (strongly) subtransverse to B at any point of $\sigma^{-1}\{a\}$.

The geometric content of these definitions is given by the following

THEOREM 1.1. – Let $g \in C^{\infty}(X, A; Y, B)$. Then the statements

(i) g is strongly σ -subtransverse to B at all points of A

(ii) vg is transverse to O_B outside O_A

are equivalent.

Here $vg: vA \to vB$ is the normal bundle mapping, and O_A and O_B are the zerosections of vA and vB. The theorem follows from proposition 2.1 and 2.2 of section 2.

We will consider in more detail the case where g is a product mapping $f \times f$: $N \times N \to P \times P$ and A and B are the diagonals Δ_N and Δ_P respectively. The normal bundles νA and νB can then be identified with the tangent bundles τN and τP . In this case we have the following sharper result.

THEOREM 1.2. – Let $f: N \rightarrow P$ be a smooth mapping. Then the statements

- (i) $f \times f$ is σ -subtransverse to Δ_P at all points of Δ_N .
- (ii) $f \times f$ is strongly σ -subtransverse to Δ_P at all points of Δ_N .
- (iii) τf is transverse to O_P outside O_N

are equivalent.

Here $\tau f: \tau N \to \tau P$ is the tangent bundle mapping and O_N and O_P are the zerosections of τN and τP .

The theorem is a corollary of proposition 2.1 and 2.2 with addendum. It generalizes and elucidates the results of section 19 in [2]. In particular the genericity of smooth mappings f with $f \times f$ (strongly) σ -subtransverse is immediately explained (see remark 1 in section 3).

2. - Double points and residual singularities.

Let W = W(X, A) be the blow-up of X along A. Thus W is obtained from X by suitably replacing A with $P\nu A$, the projectivized normal bundle of A, see for instance [3]. Set $X - A = W_0$ and $P\nu A = W_1$, so that $W = W_0 \cup W_1$.

We construct a smooth manifold E = E(X, A; Y, B) over W depending functorially on (X, A) and (Y, B). First, set $E = E_0 \cup E_1$ where

$$\begin{split} E_0 &= \{(x, y) \colon x \in X - A, \ y \in Y\} \\ E_1 &= \{(x, l, y, \varphi) \colon x \in A, \ y \in B, \ l \in P_{\mathcal{V}_x}A, \ \varphi \in \operatorname{Hom}(l, \mathcal{V}_yB)\} \;. \end{split}$$

Then there is a natural projection π of E onto W defined by

$$egin{array}{ll} \pi(x,\,y) = x & ({
m on} \ E_0) \ \pi(x,\,l,\,y,\,arphi) = (x,\,l) & ({
m on} \ E_1) \ . \end{array}$$

Secondly, for every $g \in C^{\infty}(X, A; Y, B)$ there is an induced mapping $\hat{g}: W \to E$, which is a section of π , defined by

$$egin{aligned} \hat{g}(x) &= ig(x,g(x)ig) & ext{(on } W_0ig) \ \hat{g}(x,l) &= ig(x,l,g(x),rg|lig) & ext{(on } W_1ig). \end{aligned}$$

When Y is a point and B = Y, then E(X, A; Y, B) = W(X, A) (as a set), and π is the identity mapping.

We need a smooth structure on E. Set dim X = m, dim A = r and dim Y = q, dim B = s. First notice that E_0 and E_1 are naturally smooth manifolds of dimensions m + q and (m-1) + q over the smooth manifolds W_0 and W_1 . In fact $E_0 = (X - A) \times Y$. As for E_1 let LvA be the tautological line bundle over PvA, and Hom (LvA, vB) the corresponding vector bundle over $PvA \times B$; then $E_1 =$ = Hom (LvA, vB). We will show that E = E(X, A; Y, B) has a canonical smooth structure compatible with that of E_0 and E_1 , such that π is smooth and such that \mathcal{G} is smooth for any smooth g. In particular E(X, A; Y, B) = W(X, A) (as a manifold) when Y is a point and B = Y.

Consider first the case $X = \mathbb{R}^m$, $Y = \mathbb{R}^q$, $A = \mathbb{R}^r \times \{0\} \subset X$ and $B = \mathbb{R}^s \times \{0\} \subset Y$. Define $A_k \subset \mathbb{E}$, $1 \leq k \leq m-r$, by $A_k = A_{k0} \cup A_{k1}$ where

$$egin{aligned} & A_{k0} = \{(x, y) \in E_0 \colon x_{r+k}
eq 0\} \ & A_{k1} = \{(x, l, y, \varphi) \in E_1 \colon l_k
eq 0\} \end{aligned}$$

and $(l_1, ..., l_{m-r})$ are homogeneous coordinates for l. Evidently $E = A_1 \cup ... \cup A_{m-r}$.

Next, define mappings $\alpha_k \colon A_k \to \mathbf{R}^m \times \mathbf{P}^{m-r-1} \times \mathbf{R}^q \ (1 \leq k \leq m-r)$ by

$$egin{aligned} lpha_k(x,\,y) &= (x,\,oldsymbol{R} x'',\,y',\,y''/x_{r+k}) & (ext{on } A_{k0}) \ lpha_k(x,\,l,\,y,\,arphi) &= ig(x,\,l,\,y',\,arphi(l_{1k},\,\ldots,\,l_{m-r,k})ig) & (ext{on } A_{k1}) \end{aligned}$$

where $x = (x', x'') \in \mathbf{R}^r \times \mathbf{R}^{m-r}$, $y = (y', y'') \in \mathbf{R}^s \times \mathbf{R}^{q-s}$ and $l_{ik} = l_i/l_k$ for $1 \leq i \leq m-r$.

Clearly α_k is injective for all k. We topologize A_k so that α_k is a homeomorphism onto its image. Then $A_k \cap A_l$ is an open subset of A_k and A_l for each k and l, as is quickly checked, and the topology induced by A_k on $A_k \cap A_l$ coincides with the topology induced by A_l since the mappings $\alpha_l \circ \alpha_k^{-1}$ are continuous and therefore homeomorphisms. Consequently there is a unique topology on E such that each space A_k occurs as an open subspace of E. It is easy to see that E is a Hausdorff space.

We show that $\alpha_k(A_k)$ is a (m+q)-dimensional smooth submanifold of $\mathbb{R}^m \times \mathbb{P}^{m-r-1} \times \mathbb{R}^q$. Set $U_k = \mathbb{R}^m \times \mathbb{P}_k^{m-r-1} \times \mathbb{R}^q$ where \mathbb{P}_k^{m-r-1} is the affine open coordinate set $\{L \in \mathbb{P}^{m-r-1} : L_k \neq 0\}$ in \mathbb{P}^{m-r-1} . Then $\alpha_k(A_k) \subset U_k$ for k = 1, ..., m-r; in fact (ξ, L, η) is in $\alpha_k(A_k)$ if and only if $L_k \neq 0$ and $\xi_{r+i}L_k = \xi_{r+k}L_i$ for $1 \leq i \leq m-r$.

Define θ_k : $U_k \to \mathbf{R}^{m-r-1}$ by $\theta_k(\xi, L, \eta) = (\xi_{r+1} - L_{1k}\xi_{r+k}, \dots, \xi_m - L_{m-r,k}\xi_{r+k})$ where the k-th component (= 0) is omitted. Then θ_k is a submersion onto \mathbf{R}^{m-r-1} . Since $\alpha_k(\mathbf{A}_k) = \theta_k^{-1}\{0\}$, it follows that $\alpha_k(\mathbf{A}_k)$ is a smooth submanifold of U_k , hence of $\mathbf{R}^m \times \mathbf{P}^{m-r-1} \times \mathbf{R}^q$, of codimension m-r-1.

By means of α_k we pull back the smooth structure on $\alpha_k(A_k)$ to A_k . We now need to show that A_k and A_l induce the same smooth structure on the open set $A_k \cap A_l$ for any two k and l. But this holds since the mappings $\alpha_l \circ \alpha_k^{-1}$ are smooth and therefore diffeomorphisms. Thus $E = A_1 \cup \ldots \cup A_{m-r}$ receives a smooth structure in which A_1, \ldots, A_{m-r} are open submanifolds.

For q = 0, i.e. $B = Y = \{0\}$, we clearly get E = W. (Alternatively define the smooth structure on $W(\mathbf{R}^m, \mathbf{R}^r)$ as that of $E(\mathbf{R}^m, \mathbf{R}^r; 0, 0)$.) Throughout the paper we shall use primed letters A'_k, α'_k, \ldots in the particular case E = W, i.e. primed letters refer to W. Then we have a commutative diagram

$$\begin{array}{ccc} A_{k} & \xrightarrow{\alpha_{k}} & \mathbf{R}^{m} \times \mathbf{P}^{m-r-1} \times \mathbf{R}^{q} \\ \pi & & & \downarrow \\ \pi & & \downarrow pr \\ A_{k}' & \xrightarrow{\alpha_{k}'} & \mathbf{R}^{n} \times \mathbf{P}^{m-r-1} \end{array}$$

showing that π is smooth on A_k , $1 \leq k \leq m - r$. Thus π is smooth (on E).

Finally we need to check that $\hat{g}: W \to E$ is smooth for smooth g. Obviously it suffices to check this at a point $(x, l) \in W_1$. Let k be such that $(x, l) \in A'_k$. We have $\hat{g}(A'_k) \subset A_k$ and therefore a map $\tau_k: \alpha'_k(A'_k) \to \alpha_k(A_k)$ defined by the commutative diagram

$$\begin{array}{c} A_{k} \xrightarrow{\alpha_{k}} \alpha_{k}(A_{k}) \\ \hat{g} \uparrow \qquad \uparrow \tau_{k} \\ A_{k}' \xrightarrow{\alpha_{k}'} \alpha_{k}'(A_{k}') \end{array}$$

Extend τ_k to a mapping $T_k: U'_k \to U_k$ in the following way: Write

$$g_{s+i}(\xi) = \sum_{j=1}^{m-r} \xi_{r+j} G_{ij}(\xi) , \quad 1 \leq i \leq q-s ,$$

with the

$$G_{ij}(\xi) = \int_0^1 \frac{\partial g_{s+i}}{\partial x_{r+j}}(\xi', t\xi'') dt \quad \text{for } \xi = (\xi', \xi'') \in \mathbf{R}^r \times \mathbf{R}^{m-r},$$

such that $G_{ii}(\xi) = (\partial g_{s+i}/\partial x_{r+i})(\xi)$ when $\xi'' = 0$. Now set

$$T_k(\xi, L) = \left(\xi, L, g_1(\xi), \dots, g_s(\xi), \sum_{j=1}^{m-r} L_{jk} G_{1j}(\xi), \dots, \sum_{j=1}^{m-r} L_{jk} G_{q-s,j}(\xi)\right).$$

Then T_k extends τ_k as claimed. Since T_k is smooth, so is τ_k . Consequently \hat{g} is smooth.

This proves the claim in the affine case $X = \mathbb{R}^m$, $Y = \mathbb{R}^q$. The extension to the case where X and Y are diffeomorphic to \mathbb{R}^m and \mathbb{R}^q is by transport of structure; the result is easily seen to be independent of the choice of diffeomorphisms. The extension to the general case is then by patching over coordinate neighbourhoods in X and Y, thereby constructing the germ of E along E_1 compatible with E_0 . The procedure is straightforward. We omit further details.

REMARKS. - 1) By construction E_0 and E_1 are built in as submanifolds of E. Since E_0 is an open submanifold, E_1 is a closed codimension one submanifold of E.

2) There is also a smooth projection $\pi_2: E \to Y$ defined by

$$egin{array}{lll} \pi_2(x,\,y) &= y & (ext{on} \ E_0) \ \pi_2(x,\,l,\,y,\,arphi) &= y & (ext{on} \ E_1) \ . \end{array}$$

More symmetrically we have the smooth projections

$$X \xleftarrow{\pi_1} E \xrightarrow{\pi_2} Y$$

where $\pi_1 = \sigma \circ \pi$. Thus the extension \hat{g} of g fits into the commutative diagram

$$W \xrightarrow{\hat{g}} E$$

$$\sigma \downarrow \qquad \qquad \downarrow \pi_2$$

$$X \xrightarrow{g} Y$$

We next define a special submanifold Z of E. Let $Z = Z_0 \cup Z_1$, where

$$egin{aligned} & Z_6 = \{(x,\,y) \in E_0 \colon y \in B\} \ & Z_1 = \{(x,\,l,\,y,\,\varphi) \in E_1 \colon \varphi = 0\} \end{aligned}$$

Then $Z \,\subset E$; we claim that Z is a closed submanifold of E. First notice that $Z \cap E_0 = Z_0$ is certainly a closed submanifold of E_0 . If $a \in E_1$ is in the closure of Z, then $a \in E(U, U \cap A; V, V \cap B)$ for suitable coordinate systems (U, φ) and (V, φ) in X and Y such that $\varphi(U \cap A) = \mathbf{R}^r \times \{0\}$ and $\psi(V \cap B) = \mathbf{R}^s \times \{0\}$. Thus $a \in Z$ if $Z \cap E(U, U \cap A; V, V \cap B)$ is closed in $E(U, U \cap A; V, V \cap B)$. Moreover, Z is a submanifold of E locally around a if $Z \cap E(U, U \cap A; V, V \cap B)$. Moreover, Z is a submanifold of E locally around a if $Z \cap E(U, U \cap A; V, V \cap B)$. Consequently we are reduced to substantiating our claim in the affine case $X = \mathbf{R}^m, Y = \mathbf{R}^q, A = \mathbf{R}^r \times \{0\} \subset X$ and $B = \mathbf{R}^s \times \{0\} \subset Y$. Again, in the affine case it suffices to show that $Z \cap A_k$ is a closed submanifold of A_k for k = 1, ..., m - r. Let $\varrho: \mathbf{R}^m \times \mathbf{P}^{m-r-1} \times \mathbf{R}^q \to \mathbf{R}^{q-s}$ be the projection to the last q - s coordinates. It is quickly checked that $\varrho |\alpha_k(A_k)$ has constant rank q - s, i.e. that $\varrho \circ \alpha_k$ has constant rank q - s. But $Z \cap A_k = (\varrho \circ \alpha_k)^{-1}\{0\}$, and so $Z \cap A_k$ is indeed a closed submanifold of A_k .

Notice that Z_1 is a closed codimension one submanifold of Z. This follows by the same arguments as above if we use the projection $\lambda_k \colon \mathbb{R}^m \times \mathbb{P}^{m-r-1} \times \mathbb{R}^q \to \mathbb{R}^{q-s+1}$ defined by

$$\lambda_k(\xi, l, \mu) = (\xi_{r+k}; \mu_{s+1}, ..., \mu_q)$$

instead of ϱ .

The construction $Z \subset E \to W$ is hopefully justified by the following

PROPOSITION 2.1. – Let $g \in C^{\infty}(X, A; Y, B)$. Then g is σ -subtransverse to B at all points of A if and only if \hat{g} is transverse to Z on W_1 and strongly σ -subtransverse if and only if \hat{g} is transverse to Z_1 on W_1 .

Apart from questions of subtransversality we have quite generally

PROPOSITION 2.2. – Let $g \in C^{\infty}(X, A; Y, B)$. Then \hat{g} is transverse to Z_1 on W_1 if and only if the normal bundle map $vg: vA \to vB$ is transverse to the zero-section $O_B \subset vB$ outside $O_A \subset vA$.

REMARK. – If \hat{g} is transverse to Z_1 on W_1 , then it is transverse to Z_1 on all of W, since it cannot hit Z_1 outside W_1 .

We lack a corresponding general interpretation of transversality of \hat{g} to Z. However, in the situation where g equals $f \times f$ for a smooth mapping $f: N \to P$ and A and B are the diagonals in $N \times N$ and $P \times P$ the two cases coincide (over W_1).

ADDENDUM. - If g is of the form $f \times f: N \times N \to P \times P$ and $A = \Delta_N, B = \Delta_P$, then on $W_1 \hat{g}$ is transverse to Z_1 if and only if it is transverse to Z.

In this situation of course the normal bundles $\nu \Delta_N$ and $\nu \Delta_P$ can be identified with the tangent bundles τN and τP . For brevity we will denote the mapping $\hat{g}: W \to E$ by f^{Δ} when $g = f \times f$. Then we have

COROLLARY 2.3. - The mapping $t^4: W \to E$ is transverse to Z if and only if

- (i) $t \times f$ is transverse to Δ_P outside Δ_N .
- (ii) τf is transverse to $O_P \subset \tau P$ outside $O_N \subset \tau N$.

In fact (i) and (ii) are equivalent to the transversality of f^{4} to Z on W_{0} and W_{1} , respectively.

The proofs of proposition 2.1 and proposition 2.2 with addendum are given in section 3.

3. - Proofs. Complements.

We first prove proposition 2.2 and its addendum and then proposition 2.1. The symbol ϕ will mean «transverse to».

Let $w = (a, l) \in W_1$. We will show that $\hat{g} \uparrow Z_1$ at w if and only if $vg \uparrow O_p$ at some (hence any) non-zero vector v in $l \in v_a A$. Set $t = \operatorname{rank} (vg)_a$.

By restricting to suitable coordinate patches around a and g(a), it suffices to consider the case $X = \mathbf{R}^m$, $Y = \mathbf{R}^q$, $A = \mathbf{R}^q \times \{0\} \subset X$, $B = \mathbf{R}^s \times \{0\} \subset Y$, a = 0, g(a) = 0. In fact we may assume the coordinatisation at a and g(a) performed such that $g = (g_1, g_2) \colon \mathbf{R}^m \to \mathbf{R}^s \times \mathbf{R}^{q-s}$ with $g_1(0) = 0$ and

$$g_2(x) = (x_{r+1}, ..., x_{r+t}, \psi(x)),$$

where $\psi: \mathbf{R}^{n} \to \mathbf{R}^{q-s-t}$ is a smooth mapping such that $\psi(A) = \{0\}$ and $D\psi(0) = 0$.

Now, let $v = (v', v'') \in \mathbf{R}^t \times \mathbf{R}^{m-r-t}$ be a non-zero vector and $l \in \mathbf{P}^{m-r-1} = Pv_0 \mathbf{R}^{m-r}$ the line spanned by v. We have $\hat{g}(0, l) = (0, l, 0, \nu g(0)|l)$ with

$$\nu g(0) = \left[\frac{I_t}{0} \middle|_{0} \frac{0}{0} \right].$$

Thus vg(0)v = v' and so

<

(i) $\hat{g}(0, l) \notin Z_1$ if and only if $v' \neq 0$.

Suppose v' = 0. With notations as before choose k such that $(0, l) \in A'_k$; then $g(0, l) \in A_k$. Recall that $\lambda_k \circ \alpha_k \colon A_k \to \mathbf{R}^{q-s+1}$ is a submersion and that $Z_1 \cap A_k =$ $= (\lambda_k \circ \alpha_k)^{-1} \{0\}$. Thus

 $\hat{g} \uparrow Z_1$

$$\Leftrightarrow \lambda_k \circ \alpha_k \circ \hat{g} \colon A'_k \to \mathbf{R}^{q-s+1}$$
 is submersive at $(0, l)$

$$\Leftrightarrow \lambda_k \circ \tau_k \colon \alpha'_k(A'_k) \to \mathbf{R}^{q-s+1}$$
 is submersive at $\alpha'_k(0, l)$

$$\Leftrightarrow \lambda_k \circ T'_k \circ i'_k \colon \alpha'_k(A'_k) \to \mathbf{R}^{q-s+1}$$
 is submersive at $\alpha'_k(0, l)$.

at (0, l)

Here $i'_k : \alpha'_k(A'_k) \to U'_k$ is the inclusion mapping,

$$\alpha'_{k}(A'_{k}) \xrightarrow{i'_{k}} U'_{k} \xrightarrow{T_{k}} U_{k} \xrightarrow{\lambda_{k}} \mathbf{R}^{q-s+1}$$

$$\downarrow \theta'_{k}$$

$$\mathbf{R}^{m-r-1}$$

Consequently we want to determine the range of $D(\lambda_k \circ T_k \circ i'_k)(\alpha'_k(0, l))$. Since $i'_k(\alpha'_k(A'_k)) = \theta'_k^{-1}\{0\}$, we have range $Di'_k(\alpha'_k(0, l)) = \ker D\theta'_k(\alpha'_k(0, l))$, with $\alpha'_k(0, l) = (0, (v_1, \dots, v_{m-r}))$. Now $D\theta'_k(\alpha'_k(0, l))$ has the matrix block form

$$\begin{bmatrix} 0 & I & -V'_k & 0 & 0 \\ 0 & 0 & -V''_k & I & 0 \end{bmatrix}$$

where as usual I means an identity matrix and 0 a zero matrix. V'_k and V''_k are the column matrices

$$\begin{bmatrix} v_{1,k} \\ \vdots \\ v_{k-1,k} \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} v_{k+1,k} \\ \vdots \\ v_{m-r,k} \end{bmatrix},$$

where $v_{ik} = v_i/v_k$. (Recall that $v_k \neq 0$ since $(0, l) = (0, (v_1, \dots, v_{m-r})) \in A'_k$.) In particular $v_{1,k} = \dots = v_{i,k} = 0$ since v' = 0.

It now follows by straight forward computation that range $D(\lambda_k \circ T_k \circ i'_k)(\alpha'_k(0, l))$ is spanned by the *t* standard basis vectors e_2, \ldots, e_{t+1} in \mathbf{R}^{q-s+1} together with the *r* vectors $(1 \le i \le r)$

$$\left(0, 0, \dots, 0, \sum_{j=t+1}^{m-r} v_{jk} \frac{\partial^2 \psi_1}{\partial x_i \partial x_{r+j}}(0), \dots, \sum_{j=t+1}^{m-r} v_{jk} \frac{\partial^2 \psi_{a-s-t}}{\partial x_i \partial x_{r+j}}(0)\right)$$

and the vector

$$\left(2, 0, \dots, 0, \sum_{i=t+1}^{m-r} \sum_{j=t+1}^{m-r} v_{ik} v_{jk} \frac{\partial^2 \psi_1}{\partial x_{r+i} \partial x_{r+j}}(0), \dots, \sum_{i=t+1}^{m-r} \sum_{j=t+1}^{m-r} v_{ik} v_{jk} \frac{\partial^2 \psi_{a-s-t}}{\partial x_{r+i} \partial x_{r+j}}(0) \right).$$

We therefore have

(ii) $\hat{g}(0, l) \in Z_1$ and $\hat{g} \uparrow Z_1$ at (0, l) if and only if the vectors

$$\left(0, 0, \dots, 0, \sum_{j=t+1}^{m-r} v_j \frac{\partial^2 \psi_1}{\partial x_i \partial x_{r+j}}(0), \dots, \sum_{j=t+1}^{m-r} v_j \frac{\partial^2 \psi_{a-s-t}}{\partial x_i \partial x_{r+j}}(0)\right)$$

for $1 \leq i \leq r$ form a set of rank q - s - t in \mathbf{R}^{q-s+1} .

To complete the proof of proposition 2.2 we now appeal to the following elementary

LEMMA 3.1. - Let $g \in C^{\infty}(\mathbb{R}^m, \mathbb{R}^r \times \{0\}; \mathbb{R}^q, \mathbb{R}^s \times \{0\})$ be a mapping of the form $g(x) = (g_1(x); x_{r+1}, ..., x_{r+t}, \psi(x))$ with $g_1: \mathbb{R}^m \to \mathbb{R}^s$, $\psi: \mathbb{R}^m \to \mathbb{R}^{q-s-t}$ such that $g_1(0) = 0$ and $\psi(\mathbb{R}^r \times \{0\}) = \{0\}$, $D\psi(0) = 0$. Let (0, v) = (0, v', v'') be a non-zero vector in the normal space $v_0(\mathbb{R}^r \times \{0\}) = \{0\} \times \mathbb{R}^{m-r} = \{0\} \times \mathbb{R}^t \times \mathbb{R}^{m-r-t}$.

Then $vg \uparrow O_{\mathbf{R}^s \times \{0\}}$ at (0, v) if and only if either

- (i) $v' \neq 0$ (then $\nu g(0, v) \notin O_{\mathbf{R}^s \times \{0\}}$) or
- (ii) v'=0 (then $vg(0, v) \in O_{\mathbf{R}^{*} \times \{0\}}$) and the matrix

has rank q - s - t.

The proof of lemma 3.1 is left to the discretion of the reader.

Next we turn to the addendum. Again let $(a, l) \in W_1$ and assume that $f^4(a, l) \in Z_1$. By suitable coordinatisations we may assume $N = \mathbf{R}^n$, a = 0, $P = \mathbf{R}^p$, f(a) = 0. Using the diffeomorphism $\mu_n \colon \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}^n \times \mathbf{R}^n$ defined by $\mu_n(x, y) = (x, y - x)$, we may further identify the diagonal $\Delta_{\mathbf{R}^n}$ with $\mu_n(\Delta_{\mathbf{R}^n}) = \mathbf{R}^n \times \{0\}$ and similarly $\Delta_{\mathbf{R}^p}$ with $\mu_p(\Delta_{\mathbf{R}^p}) = \mathbf{R}^p \times \{0\}$. The product mapping $f \times f \colon \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}^p \times \mathbf{R}^p$ is then identified with $g = \mu_p \circ (f \times f) \circ \mu_n^{-1}$, which is given by g(x, y) = (f(x), f(x + y) - f(x)).

We know that $f^{d} \uparrow \mathbf{Z}$ at (0, l) if and only if $\varrho \circ T_{k} \circ i'_{k} : \alpha'_{k}(A'_{k}) \to \mathbf{R}^{p}$ is a submersion at $\alpha'_{k}(0, l)$. Since $\varrho = pr_{2} \circ \lambda_{k}$ where $pr_{2} : \mathbf{R} \times \mathbf{R}^{p} \to \mathbf{R}^{p}$ is the projection, this is equivalent to $\lambda_{k} \circ T_{k} \circ i'_{k}$ being transverse to $K = \mathbf{R} \times \{0\} \subset \mathbf{R} \times \mathbf{R}^{p}$ at $\alpha'_{k}(0, l)$.

We show that $T_0 K \subset \text{range } D(\lambda_k \circ T_k \circ i'_k) (\alpha'_k(0, l))$. Thus if $f^{d} \neq Z$ at (0, l), then $\lambda_k \circ T_k \circ i'_k$ is a submersion at $\alpha'_k(0, l)$ and so $f^{d} \neq Z_1$ at (0, l). As usual let (l_1, \ldots, l_n) be homogeneous coordinates for l and set $l_{jk} = l_j/l_k$ when $l_k \neq 0$, $j = 1, \ldots, n$. Define the smooth curve $c: \langle -\varepsilon, \varepsilon \rangle \to \alpha'_k(A'_k)$ by $c(t) = (-tl_{1k}, \ldots, -tl_{nk}, 2tl_{1k}, \ldots, 2tl_{nk}, l)$; then $c(0) = \alpha'_k(0, l)$. Since

$$\lambda_k \circ T_k(\xi, L) = \left(\xi_k, \sum_{j=1}^n L_{jk} \int_0^j \frac{\partial f}{\partial x_j} (\xi' + s\xi'') ds\right)$$

for $\boldsymbol{\xi} = (\boldsymbol{\xi}', \boldsymbol{\xi}'') \in \boldsymbol{R}^n \times \boldsymbol{R}^n, \ L_k \neq 0$, we find

$$\lambda_k \circ T_k \circ i'_k \circ c(t) = \left(2t, \sum_{j=1}^n l_{jk} \int_0^1 \frac{\partial f}{\partial x_j} (t(2s-1)(l_{1k}, \dots, l_{nk})) ds\right).$$

From this we get

$$\frac{d}{dt}(\lambda_k \circ T_k \circ i'_k \circ c)(0) = (2, 0, \dots, 0) \in T_0 K$$

which confirms that T_0K sists in the range of $D(\lambda_k \circ T_k \circ i'_k)(\alpha'_k(0, l))$. Thus $f^{\Delta} \uparrow Z_1$ on W_1 if $f^{\Delta} \uparrow Z$ on W_1 . The converse is of course trivial.

Finally we prove proposition 2.1. As always let $(a, l) \in W_1$ and b = g(a). Again, by suitable coordinatisations we may assume that $X = \mathbf{R}^m$, $Y = \mathbf{R}^q$, $A = \mathbf{R}^r \times \{0\} \subset X$, $B = \mathbf{R}^s \times \{0\} \subset Y$ and that g is of the form $g(x) = (g_1(x); x_{r+1}, \dots, x_{r+i}, \psi(x))$ with $g_1: \mathbf{R}^m \to \mathbf{R}^s, \ \psi: \mathbf{R}^m \to \mathbf{R}^{q-s-t}$ smooth mappings such that $g_1(0) = 0, \ \psi(A) = \{0\}$ and $D\psi(0) = 0$.

Let (l_1, \ldots, l_{m-r}) be homogeneous coordinates for l and assume $l_k \neq 0$, i.e. $l \in \mathbf{P}_k^{m-r-1}$. Define the projection $s_k: \mathbf{R}^m \times \mathbf{P}^{m-r-1} \times \mathbf{R}^q \to \mathbf{R}$ by $s_k(\xi, L, \mu) = \xi_{r+k}$ and let $s'_k: \mathbf{R}^m \times \mathbf{P}^{m-r-1} \to \mathbf{R}$ be equal s_k when q = 0. Then $s'_k \circ i'_k \circ \alpha'_k: A'_k \to \mathbf{R}$ is a submersion, and $W_1 \cap A'_k = (s'_k \circ i'_k \circ \alpha'_k)^{-1}\{0\}$. Therefore $I(W_1)_{(0,l)}$ is the principal ideal generated by the germ of $s'_k \circ i'_k \circ \alpha'_k$ at (0, l).

Now let $\varphi: \mathbf{R}^q \to \mathbf{R}^{q-s}$ and $\varrho: \mathbf{R}^m \times \mathbf{P}^{m-r-1} \times \mathbf{R}^q \to \mathbf{R}^{q-s}$ be projections to the last q-s coordinates. Recall the commutative diagram

The ideal $I(B)_0$ is generated by the germs of $\varphi_1, \ldots, \varphi_{q-s}$ at 0. The pullback by the mapping $q \circ \sigma$ is therefore generated by the germs of $\varphi_j \circ \pi_2 \circ \hat{g}$ at $(0, l), j = 1, \ldots, q-s$.

Let $r_k: \mathbf{R}^m \times \mathbf{P}^{m-r-1} \times \mathbf{R}^q \to \mathbf{R}^q$ be the mapping $r_k(\xi, l, \mu) = (\mu', \xi_{r+k}\mu'')$ for $\mu = (\mu', \mu'') \in \mathbf{R}^s \times \mathbf{R}^{q-s}, 1 \leq k \leq m-r$. Since $\pi_2 | A_k = r_k \circ i_k \circ \alpha_k$, we have $\varphi \circ \pi_2 \circ \hat{g} | A'_k = (s_k \varrho) \circ i_k \circ \alpha_k \circ \hat{g} = (s_k \circ i'_k \circ \alpha'_k)(\varrho \circ T_k \circ i'_k \circ \alpha'_k)$ with T_k as before. The conductor $c_g(I(W_1)_{(0,l)}, I(B)_0)$ is therefore the ideal generated by the germs of $\varrho_j \circ T_k \circ i'_k \circ \alpha'_k$ at $(0, l), j = 1, \ldots, q-s$.

Finally, let $\lambda_k \colon \mathbf{R}^m \times \mathbf{P}^{m-r-1} \times \mathbf{R}^q \to \mathbf{R}^{q-s+1}$ be the projection $\lambda_k(\xi, l, \mu) = (\xi_{r+k}, \mu'')$ for $\mu = (\mu', \mu'') \in \mathbf{R}^s \times \mathbf{R}^{q-s}$. Then $c_g(I(W_1)_{(0,l)}, I(B)_0) + I(W_1)_{(0,l)}$ is the ideal generated by the germs of $\lambda_{kj} \circ T_k \circ i'_k \circ \alpha'_k$ at $(0, l), j = 1, \dots, q-s+1$.

For the first part of the theorem: Suppose $l_k \neq 0$ for some $k \leq t$. On U_k we have

$$\varrho_k(T_k(\xi, L)) = \sum_{j=1}^{m-r} L_{jk} \int_0^1 \frac{\partial g_{s+k}}{\partial x_{r+j}} (\xi', t\xi'') dt = 1.$$

Thus $c_g(I(W_1)_{(0,l)}, I(B)_0)$ contains the unit element in $C_{(0,l)}^{\infty}(W)$, and so by our convention is regular of codimension q - s at (0, l). But we have also $\hat{g}(0, l) \in E_1 - Z_1 = E_1 - Z$ (p. 7 statement (i)).

Suppose on the other hand $l_1 = \ldots = l_t = 0$. Then $c_g(I(W_1)_{(0,l)}, I(B)_0)$ is regular of codimension q - s if and only if $\varrho \circ T_k \circ i'_k$ is a submersion at $\alpha'_k(0, l)$. But the last condition is equivalent to $\hat{g} \uparrow Z$ at (0, l); this follows by an argument analogous to that for the case $\hat{g} \uparrow Z_1$ on page 7.

For the second part of the theorem: Suppose again $l_k \neq 0$ for some $k \leq t$. Then $c_g(I(W_1)_{(0,l)}, I(B)_0) + I(W_1)_{(0,l)} = C^{\infty}_{(0,l)}(W)$ and so is regular of codimension q-s+1, and $\hat{g} \uparrow Z_1$ at (0, l) since $\hat{g}(0, l) \notin Z_1$.

Suppose on the other hand $l_1 = \ldots = l_i = 0$. Then $c_g(I(W_1)_{(0,l)}, I(B)_0) + I(W_1)_{(0,l)}$ is regular of codimension q - s + 1 if and only if $\lambda_k \circ T_k \circ i'_k$ is a submersion at $a'_k(0, l)$. But this is equivalent to $\hat{g} \uparrow Z_1$ at (0, l) (p. 7).

It follows that g is strongly σ -subtransverse to B at all points of A if and only if $\hat{g} \uparrow Z_1$ on W_1 . This completes the proof of proposition 2.1.

REMARKS. - 1) It follows from corollary 2.3 that the smooth mappings $f: N \to P$ such that f^{Δ} is transverse to Z_1 form an open dense subset of $C^{\infty}(N, P)$. For the condition $f^{\Delta} \Leftrightarrow Z_1$ is equivalent to $\tau f \Leftrightarrow O_P$ outside O_N , and the latter condition is satisfied for an open dense set of mappings f by a standard transversality argument.

One can also prove a general transversality result: Let $M \subset E$ be a smooth submanifold of E. The smooth mappings $f: N \to P$ such that f^A is transverse to M form a dense subset of $C^{\infty}(N, P)$. If M or N is compact, this subset is also open.

In general the openness property fails unless there is a compactness condition. The first case holds without compactness because of the special character of the submanifold Z_1 .

2) The construction E is tailored to the study of the generic double points of f, as indicated by corollary 2.3. Let $D_f \subset N$ be the locus of genuine double points of f and $S_f \subset N$ the singular locus of f. Thus $x \in D_f$ if f(x) = f(x') for some point $x' \neq x$, and $x \in S_f$ if ker $\tau_x f \neq \{0\}$. Then for a proper smooth mapping f such that f^A is transverse to $Z_1 \overline{D}_f$ equals $D_f \cup S_f$, as is easily seen. In particular $\overline{D}_f = D_f \cup S_f$ is a generic property for proper mappings, satisfied by those mappings $f \in C_{pr}^{\infty}(N, P)$ such that $\tau f \uparrow O_p$ outside O_N .

REFERENCES

- W. ADKINS, Weak normality and Lipshitz saturation for ordinary singularities, Compositio Mathematika, 51 (1984), pp. 149-157.
- [2] A. ANDREOTTI P. HOLM, Quasianalytic and parametric spaces, Real and complex singularities, Oslo 1976; Sijthoof & Nordhoff Intern. Publ., (1977), pp. 13-97.
- [3] P. GRIFFITHS J. HARRIS, Principles of algebraic geometry, J. Wiley, 1978.