
On Subtransversality (*). 

P. HOL~- S. JOHAN~ESE~ 

Summary. - Let (X, A) a~d (Y, B) be pairs o[ mani/olds. .By means o/ a ~( completed ~> bijet 
bundle over the blow-up o] X along A we give simple geometric interpretations o/ the notion 
o] subtransversality o/ a smooth map ~: (X, A) -> (Y, B) along A. 

The notion of subtr~nsversality is due to ALDO ANDI~EOTTI and was introduced 

in [2]. (See slso [i] for a recent contribution in the projective-geometric context.) 

In the present paper we show that subtransversality of /: X --> IF to B c IF along 

A c X, or ra ther  subtransversal i ty  af ter  blowing up A, has a simple geometric 
meaning in terms of ordinary t ransversal i ty  in t~ngent and normal  bundles. Here  
(X, A) and (Y, B) are smooth mani fo lds- -wi th- -submanifo lds  and ] is a smooth 
mapping sending A into B. The connection is made via a sort of (~ completed ~) bijet  
bundle  E - - i E ( X , A ;  Y ,B)  over the blow-up W = W ( X , A )  oi X along A. The 
bundle space J~ contains a smooth , singularity ~) submanifold Z with two strata,  
and the subtr~nsversali ty conditions are t ransla ted into *ransversali ty of the je t  
section to the s t ra ta  of Z along the s t ra ta  of W (proposition 2.1). F ro m  this one 
easily extracts  the results (theorems 1.1 and 1.2). 

1.  - P r e l i m i n a r i e s  a n d  s t a t e m e n t s .  

We recall a few concepts f rom [2]. Let  X and Y be smooth (i.e. C ~-) manifolds, 
dim X > 0, and let A and B be closed submanifolds o f  X and Y. We denote by  
C~176 A; Y, B) the set of smooth maps g: X - +  I 7 such tha t  g(A) C B. This is a 
closed subset of Coo(X, Y) in the Whi tney  topology ( =  the fine C~-topo]ogy). 

Fur thermore ,  denote by  C~(X) the local ring of germs of smooth functions at  
a e X. An ideal I _c C ~ (X) is regular of codimension k if I has k generators hi, h~,... ,  hk 
such tha t  dhlA...AdhT:# O. This requires I to be ~ proper  ideal of C~(X). In  
addit ien we consider I ~ C~(X) to be n regular ideal of codimension k for any  
integer k. Then V(I) = {x ~ (X, a) : h(x) -~ 0, Vh e I} is the germ of a smooth sub- 
manilold of X at  a of codimensio~ k (empty  if I - ~  C~(X)).  Clearly a m~pping 

(*) Entrat~ in Redazione il 5 marzo 1985. 
Indirizzo degli AA.: Universitetet i 0slo, Institute of Mathematics, P.O. Box 1053, 

Blindern, 0slo 3 - Norway. 
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g: X --> J~ is t ransverse  to B at  a ~ X  if and only if C~(X).g*I(B)~(~) is a regular 
ideal of codimension k, where k is the codimension of B at g(a)~and I(B)~(~)2 C~(~)(Y) 

i 

is the ideal of smooth germs at  g(a) vanishing on B. 
Next ,  let g ~ C~(X, A; ig, B) and let a ~ A ;  then  C2(X).g*I(B)~(~)c_I(A)~. Con- 

, ~ sider the conductor  ideal e~(I(A)~,I(B)~(~))c C~ ( . ) .  By  definition h~c~(I(A)~, 
I(B)g(~)) if and only if h.I(A)~g C2(X)'g*I(B)~(o). We say tha t  g is subtransverse 
to B at a if e~(I(A)~, I(B)o(~)) is regular  of codimension equal the codimensiou of B 
at g(a), and strongly subtransverse to B at a if vg(I(A)~, I(B)~(~)) + I(A)~ is regular 
of codimension equal  the  sum of the codimensions of A and  B at  a and g(a). 

Finally,  let 2 be the  blow-up of X along A and a: 3~ -> X the collapse mapping. 
Then 2~ is canonically a smooth manifold with z { - -  a-~(A) a codimension one sub- 
manifold,  cf. [3]. (Although the set t ing in [3] is complex anMytic the methods work 
equally well hi the  C ~ ease.) A mapping g e C~ A; [g, B) is (strongly) a-sub- 
t ransverse to  B at  a if goa is (strongly) subtransverse to B at  any  point  of a-~{a}. 

The geometr ic  content  of these definitions is given b y  the  following 

T ~ o ~ E ) ~  1.1. - Let g E C~(X, A; Y, B). Then the statements 

(i) g is strongly ~-subtransverse to B at all points o/ A 

(ii) vg is transverse to 0 B outside O. 

are equivalent. 

Here  vg: vA .--> vB is the  normal  bundle mapping, and 0~ ~nd 0~ are the zero- 
sections of vX and vB. The theorem follows f rom proposit ion 2.1 and 2.2 of section 2. 

We will consider in more dete~il the case where g is ~ product  mapping ] •  
3 / •  3/ -~ P • P and A and B are the diagonals Ax and Ap respectively.  The normal  
bundles vA and vB can then  be identified with the  tangent  bm~dles z 3 / a n d  rP .  In  
this case we have  the fo!lowing sharper  result. 

T~EO~E~ 1.2. - Let i: 3/--~-P be a smooth mapping. Then the statements 

(i) i X ]  is a-subtransverse to Ap at atI points of A~,~. 

(ii) ]• is strongly a-subtransverse to AF at all points o] AN. 

(iii) 7:] is transverse to OF outside O~ 

are equivalent. 

Here  T]: v2~ ~ --> ~P is the  tangent  bmldle mapping and 0~ a~d 0F are the zero- 
sections of T~  ~md zlP. 

The theorem is a corollary el  proposit ion 2.1 and 2.2 with addendum.  I t  gener~- 
lizes and elucidates the results of section 19 in [2]. i n  part ieulgr  the  generieity of 
smooth mappings I with f •  (stroagly) a-subtransverse is immedia te ly  explained 
(see r emark  I in section 3). 
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2. - D o u b l e  points  and  res idual  s ingular i t ies .  

Let  W -~ W(X,  A) be the  blow-up of X along A. Thus W is obta ined  ~rom X 
b y  sui tably  replacing A with  PvA~ the project ivized normal  bundle  of A~ see for 

ins tance [3]. Set X - - A ~ W o  and  P v A = W I ,  so t h a t  W - ~ W o w W ~ .  
We construct  a smooth  manifoid  E = E(X, A; :Y, B) over W depending func- 

~orially on (X~ A) and  (Y, B). First ,  set /~ = EoU ~ where 

~o= {(x, y): x e X - - A ,  yeY} 

E~ = {(x, l, y, ~): x ~ A, y e B, l ~ P%A~ qJ ~ H e m  (l, v~B)} . 

Then there  is a na tu ra l  project ion z of E onto W defined b y  

z(x, y) = x (on ~0) 

z(x, l, y, ~) = (x, l) (on / ~ ) .  

Secondly, for every  g e C~176 A; :Y, B) there  is an induced m a p p i n g  ~: W - ~ E ,  
which is a section of z,  defined b y  

#(x) = (x, g(x)) (on W0) 

~(w, ~) = (x, l, g(x), ~gll) (on W~) . 

When  :g is a poin t  and  B = Y, then  I~(X, A; :g, B) = W(X, A) (as a set), and  
is the  iden t i ty  mapping .  

We need a smooth  s t ruc ture  on E. Set cure X = m, dim A = r and  dim Y ~ q, 

d im B ~ s. F i r s t  notice t ha t  Eo and E~ are na tura l ly  smooth  manifolds of dimen- 

sions m - k  q and  ( m - - l )  ~ - q  over  the  smooth  manifolds We and  W~. I n  fact  
~0 = ( X - - A ) •  Y. As for E~ let EvA be the  tautological  line bundle over  PvA, 
and I t e m  (.LvA, vB) the  corresponding vector  bundle over  _P~A• then  E1 = 

: H e m  (EVA, rB). We will show t h a t  /~ = / E ( X ,  A;  :g~ B) has a canonical smooth 
s t ruc ture  compat ib le  wi th  tha~ of E0 and/E~, such t ha t  zr is ~mcoth and  such tha t  
is smooth  for a n y  smooth  g. I n  par t icular  ~ ( X ,  A ; Y, B) = W(X: A) (as a manifold) 
when Y is a point  and  B = Y. 

Consider first the  case X = R% Iz : R~, A : R~•  {0} c X and B : R~X {0} c Y. 
Define Ak c :E, J. < k < m --  r, b y  Ak = A~o tJ A ~  where 

A~o = {(x, y) z Be: x~+~:/: 0} 

and (/1, ..., l~_~) are homogeneous coordinates for 1. Eviden*ly /E  = At u ... u A~_,.  
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Next ,  define mappings  ~k: A~ --~ R ~' • P . . . . .  1 • Rq (1 < k ~< m --  r) b y  

~ ( x ,  y) = (x,  R x " ,  y ' ,  y"Ix,+~) (on A~o) 

~ ( x ,  l, y ,  ~o) : (x ,  l, y ' ,  ~(l~,:, ..., ~ ..... ~)) (on Ak~) 

where x == (x ' ,  x") e R ~ ' •  . . . .  , y ~- (y ' ,  y") ~ R ~ •  q-~ and li~:~ li/l~ for l ~ i < m  - -  r. 

Clearly ~ is injeeti~o for ~11 k. ~u topologize Ak so t ha t  ~ is a homeomorph i sm 
onto its im~ge. Then A~(~ A~ is an open subset  of Ak and Az for each k ~nd l, 

as is quickly checked,  and  the  topology induced b y  A~ on A~ (~ A~ coincides wi th  

the  topology  induced b y  A~ since the  mappings  ~ z o ~  ~ are continuous and  therefore  
homeomorph i sms .  Consequent ly  there  is ~ unique topology on E such tha t  each 

space Ak occurs as an  open subspace of E.  i t  is e~sy to see t ha t  E is a Hausdorf f  sp~ce. 
We show t h a t  a~(A~) is a (m + q)-dimensional smooth  submanifold  of R ~ •  

m m - - r - - 1  m - - r - - 1  X P . . . .  x • Rq. Set U~: = R X Pk • R~ where Pk is the  a~ffme open coordinate  

set { L E P  . . . . .  ~: s  in P ...... ~. Then al~(A~)c UT~ for k--~ 1, ..., m - - r ;  in fact  
(~, Z, ~) is in ~(Ak)  if and  only if LT~:/: 0 and  ~ + ~ L ~  ~+~L~ for l < i < m -  r. 

Define 0~: U~ --~ R . . . .  ~ b y  0~($, L, ~/) -~ (~,§ L l ~ + ~ ,  ...~ ~ - -  L . . . .  ~ + ~ )  where 
the  k-th componen t  (---- 0) is omit ted .  Then 0~ is a submersion onto R . . . . .  ~. Since 
~(A~) = 0~-t{0}, i~ follows t h a t  a~(A~) is u smooth  submanifold  of U~, hence of 

R ~ • P . . . .  ~ • R ~, of codimension m --  r --  1. 

B y  means  of ~ we pull  back  the  smoo~h s t ruc ture  on ~(A~) to A~. We now 

need to show t h a t  A~ and A~ induce the  same smooth  st~'ucture on ~he open set 
A~ n A~ for a n y  two k ~nd 1. Bu t  this holds ~ince the  mappi-_,~gs ~ , o ~  ~ are smooth  
~nd therefore  diffeomorphisms.  Thus /E----At w ... ~3 A~_, receives a smooth  struc- 

ture  in which A~, . . . ,A~_ ,  are open snbmauifolds.  
For  q ~ O, i.e. B ----- Y ~- {0}, we clearly get /E : W. (Al ternat ively  define the  

smooth  s t ruc ture  on W ( R  ~, R~') ~s t h a t  of E ( R  "~, R~; 0, 0).) Throughout  the pape r  
l 

we shall use p r imed  let ters A'~, ~o, . . .  in the  p~rt icular  case /E = W, i.e. p r imed  
let ters  refer to W. Then we have  a c o m m u t a t i v e  d iagram 

A~ ~ > R m •  . . . . .  ~ •  q 

showing ~h~t z is smooth  on A~, 1 < k < m -  r. Thus ~ is smooth  (on ]~). 
F i n a l l y  we need to check tha~t ~: W --~ E is smooth  for smooth  g. Obviously  i t  

suffices to check this s~ a point  (x, l) ~ W1. L~t /r be such theft (x, l) ~ A~. We h~ve 
g(A,) c a w  ~nd therefore  ~ m a p  ~ :  ~(A~)-+a~(A~)  defined b y  the  c o m m u t a t i v e  
d iagram 

A~ ~ > ~(A~) 

0 v~ 
l 

A; "A" 
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Ex tend  v~ to a mapping T~: U'~-> U~ in the following way:  Write  

m - - ~  

g.+,(~)= ~ ~:.+;G.(~), ; < i < q - s ,  
i = l  

with the 
1 

0 

for ~ : (~', ~") e R" • R ~-~ , 

such tha t  G~(~) ---- (~g~+~/~x,+~)(~) when ~ " :  0. l~ow set 

m - - ~ '  

( , ) T~(~, L) -~- ~, L,  g~(~), , g~($) ~ L~kG~(~), . . . ,  ~ j~ ~_~/(~) 
J = l  j = l  

Then T~ extends v~ as claimed. Since T~ is smooth, so is v~. Consequently ~ is 
smooth.  

This proves the  claim in the affme case X - ~  R m, Y ~ R ~. The extension to 
the case where X and Y ure diffeomorphic to R ~ and R q is by  t ranspor t  of struc- 
ture ;  the result  is easily seen to be independent  of the choice of diffeomorphisms. 
The extension to the general ease is then  by  punching over coordinate neigh- 
bourhoods in X and I z, thereby  construct ing the germ 0f :E along ~ compatible 
with Eo. The procedm~e is straightforward.  We omit  fur ther  details. 

RE~_ARKS. - 1) By  construct ion E0 and E, are built  in as submanifolds of E.  
Since J~o is an open submanifold, E ,  is a closed codimension one submanifold of E.  

2) There is also a smooth projection z~: E - >  I7 defined by  

z~(x, y) = y (on Eo) 

~ ( x ,  l, y, ~) = y (on E l ) .  

More symmetr ical ly  we have the smooth projections 

where zl  : ao~. Thus the extension ~ of g fits into the commuta t ive  diagram 

W ~ E  

1 
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We nex t  define a special submanifold  Z of E.  Le t  Z ~ Z0 ~)Z~, where 

z0 = {(x, y) e ~0: u e ~}  

z ,  = {(~, ~, y, v) ~ El: ~ = 0} .  

Then Z c E ;  we clMm t h a t  Z is a closed submauifo ld  of E. F i r s t  notice t ha t  

Z (~ Eo - -  Zo is cer ta in ly  a closed submauifo ld  of Eo. I f  a a E~ is in the  closure of Z, 
then  a c E ( U ,  U ~ A ;  V, V n  B) for sui table coordinate  sys tems (U, 9) and  (V, V) 
in x and I ~ such tha t  ~(U(SA)= R~• and w(VnB)= R~• Thus a e Z  
if Z ( S E ( U ,  U ~ A ;  V , V ~ B )  is closed in E(U,  UC~A;  V , V ~ B ) .  Moreover,  Z i s  
a submauifo ld  of E locally a round  a ii Z (5 E( U~ U (5 A;  V, V (5 B) is a submanifo ld  

of E(U, U(5 A; V, V(~ B). Consequently we are  reduced r subs tant ia t ing  our 
claim in the  affine case X : R  ~, Y ~ - R q ,  A : R  '~• c X  and B : R  ~ •  
Again,  in the  Miine case i t  saifices to show t h a t  Z (5 A~ is a closed submanifo ld  of 
A~ for k = 1~ ...~ m --  r. Le t  Q: RmX pro-r-1 • Rq __> Rq-s be the  project ion to the  last  

q - -  s coordinates.  I t  is quickly checked t h a t  ~I~r has cons tan t  r a n k  q - -  s, i.e. 

t h a t  ~ o ~  has cons tan t  r a n k  q - - s .  Bu t  Z (5 A ~ - -  (0og~)-~(0}, and  so Z C~ A~ is 
indeed a closed ~ubmauifold of A~.. 

~o t i ce  t h a t  Z~ is a closed codimension one submanifold  of Z. This follows b y  
the  same a rguments  as above  if we use the  project ion X~:/{~•  P ,  . . . .  ~ X R q ---> R q-s+1 

defined b y  

)M~, ~,/~) = (~+~; ~+~, ..., ~o) 

ins tead of ~o. 
The construct ion Z c E - +  W is hopeful ly justified b y  the  following 

PRoPosI~Io~ 2.1. - Let g ~ C~176 A; Y, B). Then g is a-subtransverse to B at 
all points el A i ]  and only i] ~ is t~'ansverse to Z on W1 and strongly a-subtransverse 
if and only i] ~ is transverse to Z1 on WI. 

A p a r t  f rom questions of sub t ransversa l i ty  we have  quite general ly 

P~0P0SITION 2.2. - Let g ~ C~176 A; Y~ B). Then ~ is transverse to Z~ on WI i] 
and only i/ the normal bundle map vg: vA-> vB is transverse to the zero-section 
O~ c vB outside O~ r 

R]~A~K.  - I f  ~ is t r ansverse  to Z~ on W~, then  it  is t r ansverse  to Z~ on all of W, 
since it  cannot  hi t  Z1 outside W~. 

We  l~ck ~ corresponding general  in te rpre ta t ion  of t ransversaI i ty  of ~ to Z. 

However ,  in the  s i tuat ion where g equals ]• for a smooth  mapp ing  ]: N - +  P 
and  A and B are the  4i~ogonMs in ~u • N and  P • P the  two cases coincide (over W0. 

ADnE~DU~I. - If  g is o/ the /orm ]• N •  --> P •  and A = LJN~ B ~ Lie, 
Zhen on W~ ~ is transverse to Z~ if and only if it is transverse to Z. 
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In  this situation of course the normal  bundles uzJ~ and rap  can be identified with 
the t~ngent  bundles Ts and TP. For  b rev i ty  we will denote  the mapping ~: W --> E 
by  ]~ when g = f •  Then we have 

C0~0LLA~Y 2.3. - The mapping ]~: W ---> E is transverse to Z if and only if 

(i) ]•  is transverse to ~Je out.~ide z]N. 

(ii) vf is transverse to Opc ~:P outside O~.c vN. 

In  ]aet (i) and (ii) are equivalent to the transversality o] ]~ to Z on Wo and WI, respeetiveSy. 

The proofs of proposition 2.1 and p~ooposition 2.2 with addendum ure given in 

section 3. 

3.  - Proof s .  C o m p l e m e n t s .  

We first prove proposit ion 2.2 and its addendum and then proposit ion 2.1. The 
symbol ~ will mean <( t ransverse to ~. 

Le t  w ~ (a, 5) e W~. We will show tha t  # ~ Z~ at  w if and only  if ~g ~ O, at  some 
(hence any) non-zero vector  v in 1 c ~ A .  Set t ~ rank  (~g)~. 

By  restrict ing to suitable coordinate patches ~round a and g(a), it  suffices to 
consider the c~se X ~-- R% Y : R q, A --~ R ' •  {0} c X ,  B : R~• {0} c Y, a : O, g(a) : O. 
In  f~ct we may  ~ssume the coordinatisation at  ct and g(a) performed such tha t  

g -~ (g~, g~): R ~ - + R ~ •  ~-~ with g~(0) = 0 and 

g~(x) =- (x~+l, ..., x,+~, W(x)) , 

where ~: R ~ - - . R  q-~-t is a smooth mapping such that ~ ( A ) =  {0} and D~p(0)z  0. 
Now, let v ~ (v', v") ~ R t • R ~-~-t be a non-zero vector  and l ~ p.~=r-~ = PvoR,~-~ 

the  line spanned by  v. We have ~(0, l) = (0, 5, O, vg(O)]l) with 

~g(0)=[0  0 j "  
Thus ~g(O)v ~--v' and so 

(i) ~(0, l) ~ Z~ if and 0nly i f  v ' r  0. 

A'  Suppose v ' =  0. With  notations as before choose k such tha t  (0, 5)e ~; then  
~(O, 5) e A k .  Recall tha t  A ~ o ~ : A ~ - * R  q-~+~ is a submersion and tha t  Z ~ t ' ~ A ~  
= (ho~)-l{0}. Thus 

3,~o~o#: A'~ -~ R~ -~+~ 

r r R q _ s + l  

at  (0, 5) 

is submersive at  (0, 5) 
t 

is submersive at  ~(0,  5) 
! 

is submersive at  ~k(0, 1). 
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,! ! / ! 
H e r e  z~: g~(Ae) --> U~ is t he  inc lus ion  m a p p i n g ,  

. !  

Consequen t ly  we wan~ to  d e t e r m i n e  the  r a n g e  of D(X, oT~oi'~)(~',(O, l)). Since 
,~(~(A~))" ' ' 0~'-'{0}, we h a v e  r a n g e  Di'~(a'~(O, l)) = ke r  DO'~(a'~(O, l)), with :r l) = 
= (0, ( v ,  . . . ,  v~_,)). N o w  DO'~(og~(O, l)) has  t h e  m a t r i x  b lock  f o r m  

[~ . ~ ~ o - v ~  

! g 

where  as usug l  I m e a n s  a n  i d e n t i t y  m a t r i x  a n d  0 a zero m a t r i x .  V~ a n d  V, a r e  t he  

c o l u m n  maSriees  [Vl"l F'I 
and i 

L ~ - 1 , ~  J Lv . . . .  ~ J 

where  v,k = v,/vk. ( g e c a l l  t h a t  v.=/= 0 since (0, l) = (0, (v~, . . . ,  v,~_,)) e A~.) I n  pa r -  

t i cu la r  v~,k = ... = v~,~ = 0 since v ' ~  O. 
I t  r~ow ~ollows b y  s t raigh~ f o r w a r d  c o m p u t a t i o n  t h a t  r a n g e  D(~oT~oi'~)(~'~(O, l)) 

is s p a n n e d  b y  the  t s tu.udard bas i s  vec to r s  e~, ...~ e~+~ in R q-~+~ t o g e t h e r  w i t h  t he  r 

vec to r s  (1 < i < r )  

o, o, ..., o, ~-~§ ~,~ ~ ,  ~x.+ (~ ..., ~=,+~2 ~'~ ~-~ ~-S.-~.+ 

~nd r v e c t o r  

~_ ,  ~ - ,  82~, 1 
2, o, ..., o, ~ ~ ~,~,~ (o>, . . . ,  

~ = t + l  ~ = t + l  ~Xr+i ~Xr+J 

i = t + l ,  i = t + l  ~Xr+i ~ X r + i  

W e  t h e r e f o r e  h a v e  

(ii) ~(0, l ) a  Z1 nnd  ~ ~ Z~ a~ (0, l) if a n d  on ly  if t h e  vec to r s  

o,o , . . . ,o ,  ~ v: (o),..., ~ v; (o> 

for  l ~ . i ~ r  f o r m  a se t  of r a n k  q -  s .  t in  R ~-*+1, 
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To complete the proof of proposition 2.2 we now appeal to the following 
elementary 

~ ~.~. - ~ t  ~ c = ( ~ , ~ . •  ~ , m x { 0 } )  ~e a m a ~ i . ~  o/ the /or~ 
g(x) : (g~(x); x,+~, ..., x,+t, F(x)) with g~: R ~ -+ R% ~f: R ~ ---> R ~-~-~ such that g~(O) : 0 

and ~(R'X{0}) = {0}, Dye(0)= 0. Let  (0, v) = (0, v',  v") be a non-zero vector in  the 

~ormal ~acc ~o(~'X {0}) = {0} X ~  .... = {0} X m  X ~  . . . .  ' .  

Then  vg ~ 0mxm} at (O, v) i] and  only i] either 

(i) v' =A 0 (then vg(0, v) r 0m ~{o}) or 

(ii) v ' =  0 (then vg(O, v) ~ 0m• and the matr ix  

~-~ ~ ~-~ 8~y~ 

F z (o),..., z (o)] 
/ j = t + l  UWl (J r+~" 5=t+l OXr OXr+~ I 

/ i i I I I I I I . . . . . . . . . . .  1 i i I . . . . .  I I i I i I i i i 

I m--r ~ ~n m--~ ~ t~n  I 
V "Fa--s--t "t'q--s--t 

/ 2  ,~a-ZT:~, (o), ..., 2 ~ , = = - - ( o ) /  
L ~ ' = t +  1 1 r+~" j = t + l  OXr OXr+~ J 

has rank  q - -  s - -  t. 

The proof of lemma 3.1 is left to the discretion of the reader. 
Next we turn  to the addendum. Again let (a, l) ~ W1 and assume tha t  ]~(a, l) e Z1. 

By suitable coordi_n~isations we may  assume N = R ~, a = O, P = R ~, ](a) = O. 

Using t h e  diffeomorphism tt~: R ~ x R  ~ --> R ~ x R  ~ defned  by #n(x, y) = (x, y -- x), 
we m a y  fur ther  ident ify the diagonal ~R- with #~(AR. ) : R ~ X {0} snd  similarly AR~ 
with/~(AR~) = R~ X {0}. The product  mapping [ X /: R '~ X R ~ -+ R~ x R~ is then  iden- 
tiffed with g = i~o(]X/)ol~-2 ~, which is given by g(x, y ) - ~  (](x), ](x + y ) - / ( x ) ) .  

" ' ' R ~is a submersion We know tha t  ]A ~ Z aS (0, l) if and only if ~oTko~k: ~k(A~) --> 
at  ~(0~ 1). Since @ = pr~o2~ where P h :  R x R  ~-+ R ~ is the projection, this is equi- 

l 
valent to l~oT~oi~ being transverse to K : RX {0} c R x R ~  at  ~ ( 0 ,  1). 

We show tha t  T 0 g c r a n g e  D(2pT~oi~)(~'~(0, 1)). Thus if ] ~  Z at  (0, 1), then 
~l~oTkoi'~ is e submersion at  =~(0, l) and so ] ~ Z ~  at  (0~ l). As usual le~ (l~, ..., 1,) 
be homogeneous coordinates for 1 and set l~  = l~/l~ when l~V= 0, ~ -~ 1~ ..., n. Define 
the smooth curve c: <-- e, e> --> :e'~(A~) by c(t) -~ (-- t l~ ,  ...~ - -  t l~ ,  2t l~,  . . . ,  2tI,~, l); 

! 
then c(0) = zr 1). Since 

1 

~] gs) ,LoT~(~, m =(~, ~l~,,f ~(~'+ ~") 
0 

1 

\ ~'=1 J ~ X j  " " '  
0 
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F r o m  this we get 

d ( . t  , ---/,,~,ooT,~o~,~oc)to) = (~, o, ... o) eIoK 

which confirms t h a t  T o ~  sists in the r a ,  ge ~l D(~oY~oi',)(a'~(0, 1)). Thus ]~r~ Z~ 
on W~ i~ ] ~  Z on W~. The converse  is of course tr ivial .  

F inal ly  we p rove  propes i t ion  2.1. As a lways let (a, l) e W~ and b = g(a). Again, 

by  suitable ceordinatisation~ we m a y  assume that X = R ~, ~Y = R q, A = R r X {0} C X ,  

B = R- ' •  {0} c Y ~nd t h a t  g is of the  l o r m  g(x) -~ (g,(x); x,+~, . . . ,  x,+,, ~v(x)) wi th  
g~: R~--> R ' ,  y~: R"---> R ~-~-~ smooth  mappings  such t h a t  g~(0) = 0, ~(A) ~- {0} a~d 

D~(O) : O. 
Let  (/~, .. . ,  l~_~) be homogeneous  coordinates for I and  assume l~# 0, i.e. l~ P~- ' -~ .  

Define the  projec t ion  s~: R ~ X P ...... :~ X R~ --~ R b y  s~(~, L, #) = ~+~ and let s'~: R ~ X 
! . !  l / 

x P  . . . . .  ~->.R be equal  s~ when q -~ 0. Then s~o~oa~: A~-->R is a submersion,  and  
t ! "Y l 1 W ~  A~ = (s~o~o~)-  {0}. Therefore  I(W~)(o,~) is the principal  ideal )generated b y  

I . !  ! 
the  ge rm of s~o~o~ at (0, l). 

NOW let ~0: R q - > R  ~-" and @: R ~ x P  . . . . .  I •  ~-~ be project ions to the  last  

q -  s coordinates.  Recal l  the  c o m m u t a t i v e  d iagram 

,L- 
X g > Y  

The ideal I(B)o is genera ted  b y  the germs of ~1, ... ,  ~0~_~ at 0. The pul lback  b y  the 

mapp i ng  goa is therefore  genera ted  b y  the germs of ~o~2o~ at  (0, 1), j = 1, .. . ,  q - -  s. 

Le t  rk: R ~ x P  . . . .  1XRq--->Rq be the  mapp ing  r~.(~, 1 , # ) =  (#', $~+~#') for # = 
= ( # ' , # " ) a R ~ x R ~ - ~ , ! < t ~ < m - - r .  Since ~ 2 ] A ~ : r ~ o i ~ o ~ ,  we have  ~ o a ~ o g l A ~ :  

�9 A ' !  ! " t  ! = (s~@)o~1~og~og ~ (s~:o~o~)(@oTT:o~.~o~k) with T~ as before. The conductor  c~(I(W~)(o.n, 

I(B)o) is therefore  the  ideal genera ted  by  the  germs of OjoT~oi;~o~;~ at (0, l)~ j = 

Final ly,  let A~: R ~ x P  ...... ~ x R q  -> R ~-~+~ be the  project ion )~(~, l, #) = (~+~r #") 
for # = (#', #") a R ~ x R  q-~. Then cg(I(Wx)(o,~), I(B)o) ~- I(W~)(o,~) is the  ideal gen- 

e ra ted  b y  the  germs of Ar a t  (0, l), j = 1, .. . ,  q - -  s -}- 1. 
For  the  first p a r t  of the  theorem:  Suppose I~ r  0 ~or some k < t .  On U~ we 

have  
1 

0 

Thus cg(I(W1)(o,~)~ I(B)o) contains the  uni t  e lement  in C(o,z)(W), and  so b y  our con- 

vent ion is regular  of codimension q - -  s a t  (0~ 1). Bu t  we have  also ~(0, l) e E l - -  Z1 = 

= E~--Z (p. 7 s t a t emen t  (i)). 
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Sttppose on the other hand l~ . . . . .  It -~ 0. Then cg(I(W~)(o,~), I(B)o) is regular 
, !  ! 

of codimension q -- s if and only if ~oTko~ is a submersion at ~k(0, 1). But  the last 
condition is equivalent to ~ ~ Z at  (0, l); this follows by an argument  analogous 
to tha t  for the e~se ~ Z~ on page 7. 

For the second part  of the theorem: Suppose again I~# 0 for some k<t .  Then 
e~(I(W~)io,zl, I(B)o ) ~- I(W~)(o,, I -= C(~.2)(W ) and so is regular of co~mension q -- s ~- 1, 
and_ ~ ~ Z~ at  (0, l) ~ince ~(0, l) ~ Z~. 

Suppose on the other hand l~ . . . . .  l t =  0. Then c~(%(W1)(0,~), Z(B)o) ~- I(W~)(o,~l 
�9 l ! 

is regular of codimension q -- s -~- 1 if and on]y if X~oT~o,~ is a submersion a~ a,(0, l). 
Bu t  this is equivalent to ~ ~ Z~ at  (0, l) (p. 7). 

I t  Yollows tha t  g is strongly a-subtransverse to B at  all points of A if and only 
if ~ ~ Z~ on W~. This completes the proof of proposition 2.1. 

RE~rA~KS. - 1) I t  follows from corollary 2.3 tha t  the smooth mappings f: 2q -+ 2 ~ 
such tha t  ]z is transverse to Z1 form an open dense subset of Cr -, P). For  the con- 
dition ]z ~ Z1 is equivalent to ~] @ O~ outside 0~, and the latter condition is satisfied 
for an open dense set of mappings f by  a s tandard transversali ty argument.  

One can also prove a general transversali ty result: Let M c E be a smooth sub- 
manifold of B. The smooth mappings f: 2V --~ P such that fz is transverse to M form a 
dense subset of C~(2q, P). I f  M or N is compact, this subset is also open. 

In  general the openness property fails unless there is a compactness condition. 
The first case holds without  compactness because of the special character of the 
submanifol4 Z~. 

2) The construction E is tailored to the s tudy  of the generic double points 
of f, as indicated by corollary 2.3. Let  Dsc N be the locus of genuine double points 
of f and Sfc  2V the singular locus of f. Thus x E Ds if /(X) = f(x') for some point 
x've x, and x E Nj if ker v~] # {0}. Then for a proper smooth mapping ] such tha t  ]~ 
is transverse to Z~Df equals DIU #f, as is easily seen. In  particular D s =  DI u Ss 
is a generic property  for proper mappings, satisfied by those mappings f e C~(2V, P) 
such tha t  ~f ~ Op outside 0~. 
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