On Subtransversality (*).

P. Holm - S. Johannesen

Abstract

Summary. - Let (X, A) and ((X, B) be pairs of manitolds. By means of a «completed" bijet bundle over the blow-ip of X along A we give simple geometric interpretations of the notion of subtransversality of a smooth map $f:(X, A) \rightarrow(Y, B)$ along A.

The notion of subtransversality is due to Aldo Andreotxi and was introduced in [2]. (See also [1] for a recent contribution in the projective-geometric context.) In the present paper we show that subtransversality of $f: X \rightarrow Y$ to $B \subset Y$ along $A \subset X$, or rather subtransversality after blowing up A, has a simple geometric meaning in terms of ordinary transversality in tangent and normal bundles. Here (X, A) and (Y, B) are smooth manifolds-with-submanifolds and f is a smooth mapping sending A into B. The connection is made via a sort of "completed» bijet bundle $D=D(X, A ; Y, B)$ over the blow-up $W=W(X, A)$ of X along A. The bundle space E contains a smooth "singularity" submanifold Z with two strata, and the subtransversality conditions are translated into transversality of the jet section to the strata of Z along the strata of W (proposition 2.1). From this one easily extracts the results (theorems 1.1 and 1.2).

1. - Preliminaries and statements.

We recall a few concepts from [2]. Let X and Y be smooth (i.e. $C^{\infty}{ }^{\infty}$) manifolds, $\operatorname{dim} X>0$, and let A and B be closed submanifolds of X and Y. We denote by $C^{\infty}(X, A ; Y, B)$ the set of smocth maps $g: X \rightarrow Y$ such that $g(A) \subseteq B$. This is a closed subset of $C^{\infty}(X, Y)$ in the Whitney topology ($=$ the fine C^{∞}-topology).

Furthermore, denote by $C_{a}^{\infty}(X)$ the local ring of germs of smooth functions at $a \in X$. An ideal $I \subseteq C_{a}^{\infty}(X)$ is regular of codimension k if I has k generators $h_{1}, h_{2}, \ldots, h_{k}$ such that $d h_{1} \wedge \ldots \wedge d h_{k} \neq 0$. This requires I to be a proper ideal of $O_{a}^{\infty}(X)$. In addition we consider $I=C_{a}^{\infty}(X)$ to be a regular ideal of codimension k for any integer k. Then $V(I)=\{x \in(X, a): h(x)=0, \forall h \in I\}$ is the germ of a smooth submanifold of X at a of codimension k (empty if $I=C_{a}^{\infty}(X)$). Clearly a mapping
(*) Entrata in Redazione il 5 marzo 1985.
Indirizzo degli AA.: Universitetet i Oslo, Institute of Mathematics, P.O. Box 1053, Blindern, Oslo 3 - Norway.
$g: X \rightarrow Y$ is transverse to B at $a \in X$ if and only if $C_{a}^{\infty}(X) \cdot g^{*} I(B)_{g(a)}$ is a regular ideal of codimension k, where k is the codimension of B at $g(a)$ and $I(B)_{g(a)} \subseteq C_{g(a)}^{\infty}(Y)$ is the ideal of smooth germs at $g(a)$ vanishing on B.

Next, let $g \in C^{\infty}(X, A ; Y, B)$ and let $a \in A$; then $C_{a}^{\infty}(X) \cdot g^{*} I(B)_{g(a)} \subseteq I(A)_{a}$. Consider the conductor ideal $c_{g}\left(I(A)_{a}, I(B)_{o(a)}\right) \subseteq C_{a}^{\infty}(X)$. By definition $h \in c_{g}\left(I(A)_{a}\right.$, $\left.I(B)_{g(a)}\right)$ if and only if $h \cdot I(A)_{a} \subseteq O_{a}^{\infty}(X) \cdot g^{*} I(B)_{g(a)}$. We say that g is subtransverse to B at a if $c_{s}\left(I(A)_{a}, I(B)_{\sigma(a)}\right)$ is regular of codimension equal the codimension of B at $g(a)$, and strongly subtransverse to B at a if $\epsilon_{s}\left(I(A)_{a}, I(B)_{g(a)}\right)+I(A)_{a}$ is regular of codimension equal the sum of the codimensions of A and B at a and $g(a)$.

Finally, let \tilde{X} be the blow-up of X along A and $\sigma: \tilde{X} \rightarrow X$ the collapse mapping. Then \tilde{X} is canonically a smooth manifold with $\tilde{A}=\sigma^{-1}(A)$ a codimension one submanifold, cf. [3]. (Although the setting in [3] is complex analytic the methods work equally well in the C^{∞} case.) A mapping $g \in C^{\infty}(X, A ; Y, B)$ is (strongly) σ-subtransverse to B at a if $g \circ \sigma$ is (strongly) subtransverse to B at any point of $\sigma^{-1}\{a\}$.

The geometric content of these definitions is given by the following
Theorem 1.1. - Let $g \in O^{\infty}(X, A ; Y, B)$. Then the statements
(i) g is strongly σ-subtransverse to B at all points of A
(ii) νg is transverse to O_{B} outside O_{A}
are equivalent.
Here $v g: \nu A \rightarrow \nu B$ is the normal bundle mapping, and O_{A} and O_{B} are the zerosections of $v A$ and $v B$. The theorem follows from proposition 2.1 and 2.2 of section 2 .

We will consider in more detail the case where g is a product mapping $f \times f$: $N \times N \rightarrow P \times P$ and A and B are the diagonals A_{N} and Δ_{P} respectively. The normal bundles νA and νB can then be identificd with the tangent bundles τN and τP. In this case we have the following sharper result.

Theorem 1.2. - Let $f: N \rightarrow \boldsymbol{P}$ be a smooth mapping. Then the statements
(i) $f \times f$ is σ-subtransverse to Δ_{P} at all points of A_{N}.
(ii) $\dot{f} \times f$ is strongly σ-subtransverse to Δ_{P} at all points of Δ_{N}.
(iii) $r f$ is transverse to O_{P} outside O_{N}
are equivalent.
Here $\tau f: \tau N \rightarrow \tau \boldsymbol{P}$ is the tangent bundle mapping and O_{N} and O_{P} are the zerosections of τN and τP.

The theorem is a corollary of proposition 2.1 and 2.2 with addendum. It generalizes and elucidates the results of section 19 in [2]. In particular the genericity of smooth mappings f with $f \times f$ (strongly) σ-subtransverse is immediately explained (see remark 1 in section 3).

2. - Double points and residual singularities.

Let $W=W(X, A)$ be the blow-up of X along A. Thus W is obtained from X by suitably replacing A with $P \nu A$, the projectivized normal bundle of A, see for instance [3]. Set $X-A=W_{0}$ and $P v A=W_{1}$, so that $W=W_{0} \cup W_{1}$.

We construct a smooth manifold $E=E(X, A ; Y, B)$ over W depending functorially on (X, A) and (Y, B). First, set $E=E_{0} \cup E_{1}$ where

$$
\begin{aligned}
& \boldsymbol{E}_{0}=\{(x, y): x \in X-A, y \in Y\} \\
& E_{1}=\left\{(x, l, y, \varphi): x \in A, y \in B, l \in P_{\nu_{x}} A, \varphi \in \operatorname{Hom}\left(l, v_{y} B\right)\right\}
\end{aligned}
$$

Then there is a natural projection π of E onto W defined by

$$
\begin{array}{ll}
\pi(x, y)=x & \left(\text { on } E_{0}\right) \\
\pi(x, l, y, \varphi)=(x, l) & \left(\text { on } E_{1}\right) .
\end{array}
$$

Secondly, for every $g \in C^{\infty}(X, A ; Y, B)$ there is an induced mapping $\hat{g}: W \rightarrow E$, which is a section of π, defined by

$$
\begin{array}{ll}
\hat{g}(x)=(x, g(x)) & \left(\text { on } W_{0}\right) \\
\hat{g}(x, l)=(x, l, g(x), \nu g \mid l) & \left(\text { on } W_{1}\right) .
\end{array}
$$

When Y is a point and $B=Y$, then $E(X, A ; Y, B)=W(X, A)$ (as a set), and π is the identity mapping.

We need a smooth structure on E. Set $\operatorname{dim} X=m, \operatorname{dim} A=r$ and $\operatorname{dim} Y=q$, $\operatorname{dim} B=s$. First notice that E_{0} and E_{1} are naturally smooth manifolds of dimensions $m+q$ and $(m-1)+q$ over the smooth manifolds W_{0} and W_{1}. In fact $E_{0}=(X-A) \times Y$. As for E_{1} let $L v A$ be the tautological line bundle over $P v A$, and Hom $(L v A, v B)$ the corresponding vector bundle over $P \nu A \times B$; then $E_{1}=$ $=\operatorname{Hom}(L v A, v B)$. We will show that $D=\boldsymbol{E}(X, A ; Y, B)$ has a canonical smooth structure compatible with that of E_{0} and E_{1}, such that π is smooth and such that \hat{g} is smooth for any smooth g. In particular $E(X, A ; Y, B)=W(X, A)$ (as a manifold) when Y is a point and $B=Y$.

Consider first the case $X=\boldsymbol{R}^{m}, Y=\boldsymbol{R}^{q}, A=\boldsymbol{R}^{r} \times\{0\} \subset X$ and $B=\boldsymbol{R}^{s} \times\{0\} \subset \boldsymbol{Y}$. Define $A_{k} \subset D, 1 \leqslant k \leqslant m-r$, by $A_{k}=A_{k 0} \cup A_{k 1}$ where

$$
\begin{aligned}
& A_{k 0}=\left\{(x, y) \in D_{0}: x_{r+k} \neq 0\right\} \\
& A_{k_{1}}=\left\{(x, l, y, \varphi) \in E_{1}: l_{k} \neq 0\right\}
\end{aligned}
$$

and $\left(l_{1}, \ldots, l_{m-r}\right)$ are homogeneous coordinates for l. Evidently $E=A_{1} \cup \ldots \cup A_{m-r}$.

Next, define mappings $\alpha_{k}: A_{k} \rightarrow \boldsymbol{R}^{m} \times \boldsymbol{P}^{m-r-1} \times \boldsymbol{R}^{q}(1 \leqslant k \leqslant m-r)$ by

$$
\begin{array}{ll}
\alpha_{k}(x, y)=\left(x, \boldsymbol{R} x^{\prime \prime}, y^{\prime}, y^{\prime \prime} \mid x_{r+k}\right) & \text { (on } \left.A_{k \theta}\right) \\
\alpha_{k}(x, l, y, \varphi)=\left(x, l, y^{\prime}, \varphi\left(l_{1 k}, \ldots, l_{m-r, k}\right)\right) & \text { (on } \left.A_{k 1}\right)
\end{array}
$$

where $x=\left(x^{\prime}, x^{\prime}\right) \in \boldsymbol{R}^{r} \times \boldsymbol{R}^{m-r}, y=\left(y^{\prime}, y^{\prime \prime}\right) \in \boldsymbol{R}^{s} \times \boldsymbol{R}^{q-s}$ and $l_{i k}=l_{i} / l_{k}$ for $1 \leqslant i \leqslant m-r^{2}$.
Clearly α_{k} is injective for all k. We topologize A_{k} so that α_{k} is a homeomorphism onto its image. Then $A_{k} \cap A_{l}$ is an open subset of A_{k} and. A_{l} for each k and l, as is quickly checked, and the topology induced by $A_{k c}$ on $A_{l z} \cap A_{l}$ coincides with the topology induced by A_{l} since the mappings $\alpha_{l} \circ \alpha_{l}^{-1}$ are continuous and therefore homeomorphisms. Consequently there is a unique topology on E such that each space A_{k} occurs as an open subspace of E. It is easy to see that E is a Hausdorff space.

We show that $\alpha_{k}\left(A_{k}\right)$ is a $(m+q)$-dimensional smooth submanifold of $\boldsymbol{R}^{m} \times$ $\times \boldsymbol{P}^{m-r-1} \times \boldsymbol{R}^{q}$. Set $U_{k}=\boldsymbol{R}^{m} \times \boldsymbol{P}_{k}^{m-r-1} \times \boldsymbol{R}^{q}$ where $\boldsymbol{P}_{k}^{m-r-1}$ is the affine open coordinate set $\left\{L \in \boldsymbol{P}^{m-r-1}: L_{k} \neq 0\right\}$ in \boldsymbol{P}^{m-r-1}. Then $\alpha_{k}\left(A_{k}\right) \subset U_{k}$ for $k=1, \ldots, m-r$; in fact (ξ, L, η) is in $\alpha_{k}\left(A_{k}\right)$ if and only if $L_{k} \neq 0$ and $\xi_{r+i} L_{k}=\xi_{r+k} L_{i}$ for $1 \leqslant i \leqslant m-r$.

Define $\theta_{k}: U_{k} \rightarrow \boldsymbol{R}^{m-r-1}$ by $\theta_{k}(\xi, L, \eta)=\left(\xi_{r+1}-L_{1 k} \xi_{r+k}, \ldots, \xi_{m}-L_{m-r, k} \xi_{r+k}\right)$ where the k-th component $(=0)$ is omitted. Then θ_{k} is a submersion onto \boldsymbol{R}^{m-r-1}. Since $\alpha_{k}\left(A_{k}\right)=\theta_{k}^{-1}\{0\}$, it follows that $\alpha_{k}\left(A_{k}\right)$ is a smooth submanifold of U_{k}, hence of $\boldsymbol{R}^{m} \times \boldsymbol{P}^{m-r-1} \times \boldsymbol{R}^{q}$, of codimension $m-r-1$.

By means of α_{k} we pull back the smooth structure on $\alpha_{k_{k}}\left(A_{k}\right)$ to A_{k}. We now need to show that A_{k} and A_{l} induce the same smooth structure on the open set $A_{k} \cap A_{l}$ for any two k and l. But this holds since the mappings $\alpha_{l} \circ \alpha_{k}^{-1}$ are smooth and therefore diffeomorphisms. Thus $E=A_{1} \cup \ldots \cup A_{m \ldots r}$ receives a smooth structure in which $A_{1}, \ldots, A_{m \rightarrow r}$ are open submanifolds.

For $q=0$, i.e. $B=Y=\{0\}$, we clearly get $E=W$. (Alternatively define the smooth structure on $W\left(\boldsymbol{R}^{m}, \boldsymbol{R}^{r}\right)$ as that of $\left.\boldsymbol{E}\left(\boldsymbol{R}^{m}, \boldsymbol{R}^{r} ; 0,0\right).\right)$ Throughout the paper we shall use primed letters $A_{k}^{\prime}, \alpha_{k}^{\prime}, \ldots$ in the particular case $E=W$, i.e. primed letters refer to W. Then we have a commutative diagram

showing that π is smooth on $A_{k}, 1 \leqslant k \leqslant m-r$. Thus π is smooth (on E).
Finally we need to check that $\hat{g}: W \rightarrow E$ is smooth for smooth g. Obviously it suffices to check this at a point $(x, l) \in W_{1}$. Let k be such that $(x, l) \in A_{k}^{\prime}$. We have $\hat{g}\left(A_{k}^{\prime}\right) \subset A_{k}$ and therefore a map $\tau_{k}: \alpha_{k}^{\prime}\left(A_{k}^{\prime}\right) \rightarrow \alpha_{k}\left(A_{k}\right)$ defined by the commutative diagram

Extend τ_{k} to a mapping $T_{k}: U_{k}^{\prime} \rightarrow U_{k}$ in the following way: Write

$$
g_{s+i}(\xi)=\sum_{j=1}^{m-r} \xi_{r+j} G_{i j}(\xi), \quad 1 \leqslant i \leqslant q-s
$$

with the

$$
G_{i j}(\xi)=\int_{0}^{1} \frac{\partial g_{s+i}}{\partial x_{r+j}}\left(\xi^{\prime}, t \xi^{\prime \prime}\right) d t \quad \text { for } \xi=\left(\xi^{\prime}, \xi^{\prime \prime}\right) \in \boldsymbol{R}^{r} \times \boldsymbol{R}^{m-r}
$$

such that $G_{i j}(\xi)=\left(\partial g_{s+i} / \partial x_{r+j}\right)(\xi)$ when $\xi^{\prime \prime}=0$. Now set

$$
T_{k}(\xi, L)=\left(\xi, L, g_{1}(\xi), \ldots, g_{s}(\xi), \sum_{j=1}^{m-r} L_{j k} G_{1 j}(\xi), \ldots, \sum_{j=1}^{m-r} L_{j k} G_{z-s, j}(\xi)\right)
$$

Then T_{k} extends $\tau_{l c}$ as claimed. Since $T_{l b}$ is smooth, so is τ_{k}. Consequently \hat{g} is smooth.

This proves the claim in the affine case $X=\boldsymbol{R}^{m}, Y=\boldsymbol{R}^{2}$. The extension to the case where X and Y are diffeomorphic to \boldsymbol{R}^{m} and \boldsymbol{R}^{q} is by transport of structure; the result is easily seen to be independent of the choice of diffeomorphisms. The extension to the general case is then by patching over coordinate neighbourhoods in X and Y, thereby constructing the germ of E along E_{1} compatible with \boldsymbol{E}_{0}. The procedure is straightforward. We omit further details.

Remarks. - 1) By construction E_{0} and D_{1} are built in as submanifolds of E. Since E_{0} is an open submanifold, \boldsymbol{E}_{1} is a closed codimension one submanifold of \boldsymbol{E}.
2) There is also a smooth projection $\pi_{2}: E \rightarrow Y$ defined by

$$
\begin{array}{ll}
\pi_{2}(x, y)=y & \left(\text { on } E_{0}\right) \\
\pi_{2}(x, l, y, \varphi)=y & \left(\text { on } E_{1}\right)
\end{array}
$$

More symmetrically we have the smooth projections

$$
X \stackrel{\pi_{1}}{\longleftrightarrow} E \xrightarrow{\pi_{2}} I
$$

where $\pi_{1}=\sigma \circ \pi$. Thus the extension \hat{g} of g fits into the commutative diagram

We next define a special submanifold Z of E. Let $Z=Z_{0} \cup Z_{1}$, where

$$
\begin{aligned}
& Z_{0}=\left\{(x, y) \in E_{0}: y \in B\right\} \\
& Z_{1}=\left\{(x, l, y, \varphi) \in E_{1}: \varphi=0\right\}
\end{aligned}
$$

Thon $Z \subset E$; we claim that Z is a closed submanifold of E. First notice that $Z \cap E_{0}=Z_{0}$ is certainly a closed submanifold of E_{0}. If $a \in E_{1}$ is in the closure of Z, then $a \in E(J, U \cap A ; V, V \cap B)$ for suitable coordinate systems (U, φ) and (V, ψ) in X and Y such that $\varphi(U \cap A)=\boldsymbol{R}^{r} \times\{0\}$ and $\psi(V \cap B)=\boldsymbol{R}^{s} \times\{0\}$. Thus $a \in Z$ if $Z \cap E(U, U \cap A ; V, V \cap B)$ is closed in $E(U, U \cap A ; V, V \cap B)$. Moreover, Z is a submanifold of E locally around a if $Z \cap E(U, U \cap A ; V, V \cap B)$ is a submanifold of $E(U, U \cap A ; V, V \cap B)$. Consequently we are reduced to substantiating our claim in the affine case $X=\boldsymbol{R}^{m}, Y=\boldsymbol{R}^{a}, A=\boldsymbol{R}^{r} \times\{0\} \subset X$ and $B=\boldsymbol{R}^{s} \times\{0\} \subset \overline{\text {. }}$. Again, in the affine case it suffices to show that $Z \cap A_{k}$ is a closed submanifold of A_{k} for $k=1, \ldots, m-r$. Let $\varrho: \boldsymbol{R}^{m} \times \boldsymbol{P}^{m-r-1} \times \boldsymbol{R}^{a} \rightarrow \boldsymbol{R}^{a-s}$ be the projection to the last $q-s$ coordinates. It is quickly checked that $\varrho \mid \alpha_{k}\left(A_{k_{k}}\right)$ has constant rank $q-s$, i.e. that $\varrho \circ \alpha_{k}$ has constant rank $q-s$. But $Z \cap A_{k}=\left(\varrho \circ \alpha_{k}\right)^{-1}\{0\}$, and so $Z \cap A_{k}$ is indeed a closed submanifold of A_{k}.

Notice that Z_{1} is a closed codimension one submanifold of Z. This follows by the same arguments as above if we use the projection $\lambda_{k}: \boldsymbol{R}^{m} \times \boldsymbol{P}^{n-r-1} \times \boldsymbol{R}^{q} \rightarrow \boldsymbol{R}^{q-s+1}$ defined by

$$
\lambda_{k}(\xi, l, \mu)=\left(\xi_{r+k} ; \mu_{s+1}, \ldots, \mu_{q}\right)
$$

instead of ϱ.
The construction $Z \subset E \rightarrow W$ is hopefully justified by the following
Proposition 2.1. - Let $g \in O^{\infty}(X, A ; Y, B)$. Then g is σ-subtransverse to B at all points of A if and only if \hat{g} is transverse to Z on W_{1} and strongly σ-subtransverse if and only if \hat{g} is transverse to Z_{1} on W_{1}.

Apart from questions of subtransversality we have quite generally
Proposition 2.2. - Let $g \in C^{\infty}(X, A ; Y, B)$. Then \hat{g} is transverse to Z_{1} on W_{1} if and only if the normal bundle map $v g: \nu A \rightarrow v B$ is transverse to the zero-section $O_{B} \subset \nu B$ outsile $O_{A} \subset \nu A$.

Remark. - If \hat{g} is transverse to Z_{1} on W_{1}, then it is transverse to Z_{1} on all of W, since it cannot hit Z_{1} outside W_{1}.

We lack a corresponding general interpretation of transversality of \hat{g} to Z. However, in the situation where g equals $f \times f$ for a smooth mapping $f: N \rightarrow P$ and A and B are the diagonals in $N \times N$ and $P \times P$ the two cases coincide (over W_{1}).

ADDENDUM. - If g is of the form $f \times f: N \times N \rightarrow P \times P$ and $A=A_{N}, B=A_{P}$, then on $W_{1} \hat{g}$ is transverse to Z_{1} if and only if it is tronsverse to Z.

In this situation of course the normal bundles νA_{N} and $\nu \Delta_{P}$ can be identified with the tangent bundles τN and τP. For brevity we will denote the mapping $\hat{g}: W \rightarrow E$ by f^{Δ} when $g=f \times f$. Then we have

Corollary 2.3. - The mapping $f^{4}: W \rightarrow E$ is transverse to Z if and only if
(i) $f \times f$ is transverse to Λ_{P} outside Δ_{N}.
(ii) τf is transverse to $O_{P} \subset \tau P$ outside $O_{N} \subset \tau N$.

In fact (i) and (ii) are equivalent to the transversality of f^{4} to Z on W_{0} and W_{1}, respectively.
The proofs of proposition 2.1 and proposition 2.2 with addendum are given in section 3.

3. - Proofs. Complements.

We first prove proposition 2.2 and its addendum and then proposition 2.1. The symbol ϕ will mean «transverse to ».

Let $w=(a, l) \in W_{1}$. We will show that $\hat{g} \uparrow Z_{1}$ at w if and only if $v g \phi O_{B}$ at some (hence any) non-zero vector v in $l \subset v_{a} A$. Set $t=\operatorname{rank}(\nu g)_{a}$.

By restricting to suitable coordinate patches around a and $g(a)$, it suffices to consider the case $X=\boldsymbol{R}^{m}, Y=\boldsymbol{R}^{q}, A=\boldsymbol{R}^{r} \times\{0\} \subset X, B=\boldsymbol{R}^{s} \times\{0\} \subset Y, a=0, g(a)=0$. In fact we may assume the coordinatisation at and $g(a)$ performed such that $g=\left(g_{1}, g_{2}\right): \boldsymbol{R}^{m} \rightarrow \boldsymbol{R}^{s} \times \boldsymbol{R}^{\alpha-s}$ with $g_{1}(0)=0$ and

$$
g_{2}(x)=\left(x_{r_{+1}}, \ldots, x_{r_{+} t}, \psi(x)\right)
$$

where $\psi: \boldsymbol{R}^{m} \rightarrow \boldsymbol{R}^{q-s-t}$ is a smooth mapping such that $\psi(A)=\{0\}$ and $D \psi(0)=0$.
Now, let $v=\left(v^{\prime}, v^{\prime}\right) \in \boldsymbol{R}^{t} \times \boldsymbol{R}^{m-r-t}$ be a non-zero vector and $l \in \boldsymbol{P}^{m-r-1}=P \nu_{0} \boldsymbol{R}^{m-r}$ the line spanned by v. We have $\hat{g}(0, l)=(0, l, 0, v g(0) \mid l)$ with

$$
v g(0)=\left[\begin{array}{c|c}
I_{t} & 0 \\
\hline 0 & 0
\end{array}\right] .
$$

Thus $\nu g(0) v=v^{\prime}$ and so
(i) $\hat{g}(0, l) \notin Z_{1}$ if and only if $v^{\prime} \neq 0$.

Suppose $v^{\prime}=0$. With notations as before choose k such that $(0, l) \in A_{k}^{\prime}$; then $\hat{g}(0, l) \in A_{k}$. Recall that $\lambda_{k} \circ \alpha_{k}: A_{k} \rightarrow \boldsymbol{R}^{q-s+1}$ is a submersion and that $Z_{1} \cap A_{k}=$ $=\left(\lambda_{k} \circ \alpha_{k}\right)^{-1}\{0\}$. Thus

$$
\begin{array}{ll}
\quad \hat{g} \dagger Z_{1} & \text { at } \quad(0, l) \\
\Leftrightarrow \lambda_{k} \circ \alpha_{k} \circ \hat{g}: A_{k}^{\prime} \rightarrow \boldsymbol{R}^{q-s+1} & \text { is submersive at }(0, l) \\
\Leftrightarrow \lambda_{k} \circ \tau_{k}: \alpha_{k}^{\prime}\left(\boldsymbol{A}_{k}^{\prime}\right) \rightarrow \boldsymbol{R}^{q-s+1} & \text { is submersive at } \alpha_{k}^{\prime}(0, l) \\
\Leftrightarrow \lambda_{k} \circ I_{k} \circ \dot{\partial}_{k}^{\prime}: \alpha_{k}^{\prime}\left(A_{k}^{\prime}\right) \rightarrow \boldsymbol{R}^{q-s+1} & \text { is submersive at } \alpha_{k}^{\prime}(0, l)
\end{array}
$$

Here $i_{k}^{\prime}: \alpha_{k}^{\prime}\left(A_{k}^{\prime}\right) \rightarrow U_{t}^{\prime}$ is the inclusion mapping,

Consequently we want to determine the range of $D\left(\lambda_{k} \circ T_{k} \circ i_{k}^{\prime}\right)\left(\alpha_{k}^{\prime}(0, l)\right)$. Since $i_{k}^{\prime}\left(\alpha_{k}^{\prime}\left(\mathcal{A}_{k}^{\prime}\right)\right)=\theta_{k}^{\prime-1}\{0\}$, we have range $D i_{k_{k}}^{\prime}\left(\alpha_{k_{k}}^{\prime}(0, l)\right)=\operatorname{ker} D \theta_{k}^{\prime}\left(\alpha_{k}^{\prime}(0, l)\right)$, with $\alpha_{k}^{\prime}(0, l)=$ $=\left(0,\left(v_{1}, \ldots, v_{m-r}\right)\right)$. Now $D \theta_{k}^{\prime}\left(\alpha_{k}^{\prime}(0, l)\right)$ has the matrix block form

$$
\left[\begin{array}{lllll}
0 & I & -V_{k}^{\prime} & 0 & 0 \\
0 & 0 & -V_{k}^{\prime \prime} & I & 0
\end{array}\right]
$$

where as usual I means an identity matrix and 0 a zero matrix. V_{k}^{\prime} and $V_{k}^{\prime \prime}$ are the column matrices

$$
\left[\begin{array}{c}
v_{1, k} \\
\vdots \\
v_{k-1, k}
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{c}
v_{k+1, k} \\
\vdots \\
v_{m-r, k}
\end{array}\right]
$$

where $v_{i k}=v_{i} / v_{k}$. (Recall that $v_{k} \neq 0$ since $(0, l)=\left(0,\left(v_{1}, \ldots, v_{m-r}\right)\right) \in \boldsymbol{A}_{k}^{\prime}$. .) In particular $v_{1, k}=\ldots=v_{t, s}=0$ since $v^{\prime}=0$.

It now follows by straight forward computation that range $D\left(\lambda_{k} \circ T_{k} \circ i_{k}^{\prime}\right)\left(\alpha_{k}^{\prime}(0, l)\right)$ is spanned by the t standard basis vectors e_{2}, \ldots, e_{t+1} in $\boldsymbol{R}^{\alpha-s+1}$ together with the r vectors ($1 \leqslant i \leqslant r$)

$$
\left(0,0, \ldots, 0, \sum_{j=t+1}^{m-r} v_{j k} \frac{\partial^{2} \psi_{1}}{\partial x_{i} \partial x_{r+j}}(0), \ldots, \sum_{j=t+1}^{m-r} v_{j k} \frac{\partial^{2} \psi_{\alpha-s-t}}{\partial x_{i} \partial x_{r+j}}(0)\right)
$$

and the vector

$$
\begin{aligned}
&(2,0, \ldots, 0, \sum_{i=t+1}^{m-r} \\
& \sum_{j=t+1}^{m-r} v_{i k} v_{j k} \frac{\partial^{2} \psi_{1}}{\partial x_{r+i} \partial x_{r+j}}(0), \ldots, \\
&\left.\sum_{i=t+1, r}^{m-r} \sum_{j=t+1}^{m-r} v_{i k} v_{j k} \frac{\partial^{2} \psi_{q-s-t}}{\partial x_{r+i} \partial x_{r+j}}(0)\right)
\end{aligned}
$$

We therefore have
(ii) $\hat{g}(0, l) \in Z_{1}$ and $\hat{g} \hat{\gamma} Z_{1}$ at $(0, l)$ if and only if the vectors

$$
\left(0,0, \ldots, 0, \sum_{j=t+1}^{m-r} v_{j} \frac{\partial^{2} \psi_{1}}{\partial x_{i} \partial x_{r+j}}(0), \ldots, \sum_{j=t+1}^{m-r} v_{j} \frac{\partial^{2} \psi_{q-s-t}}{\partial x_{i} \partial x_{r+j}}(0)\right)
$$

for $1 \leqslant i \leqslant r$ form a set of rank $q-s-t$ in \boldsymbol{R}^{q-s+1},

To complete the proof of proposition 2.2 we now appeal to the following elementary

Lemma 3.1. - Let $g \in C^{\infty}\left(\boldsymbol{R}^{m}, \boldsymbol{R}^{r} \times\{0\} ; \boldsymbol{R}^{q}, \boldsymbol{R}^{s} \times\{0\}\right)$ be a mapping of the form $g(x)=\left(g_{1}(x) ; x_{r+1}, \ldots, x_{r+t}, \psi(x)\right)$ with $g_{1}: \boldsymbol{R}^{m} \rightarrow \boldsymbol{R}^{s}, \psi: \boldsymbol{R}^{m} \rightarrow \boldsymbol{R}^{q-s-t}$ such that $g_{1}(0)=0$ and $\psi\left(\boldsymbol{R}^{r} \times\{0\}\right)=\{0\}, D \psi(0)=0$. Let $(0, v)=\left(0, v^{\prime}, v^{\prime \prime}\right)$ be a non-zero vector in the normal space $\nu_{0}\left(\boldsymbol{R}^{r} \times\{0\}\right)=\{0\} \times \boldsymbol{R}^{n-r}=\{0\} \times \boldsymbol{R}^{t} \times \boldsymbol{R}^{m-r-t}$.

Then $v g \uparrow O_{R^{s} \times\{0\}}$ at $(0, v)$ if and only if either.
(i) $v^{\prime} \neq 0\left(\right.$ then $\left.\nu g(0, v) \notin O_{R^{\varepsilon} \times\{0\}}\right)$ or
(ii) $v^{\prime}=0\left(\right.$ then $\left.v g(0, v) \in O_{R: \times\{0\}}\right)$ and the matrix

$$
\left[\begin{array}{l}
\sum_{j=t+1}^{m-r} v_{j} \frac{\partial^{2} \psi_{1}}{\partial x_{1} \partial x_{r+j}}(0), \ldots, \sum_{j=t+1}^{m-r} v_{j} \frac{\partial^{2} \psi_{1}}{\partial x_{r} \partial x_{r_{+j}}}(0) \\
\cdots \sum_{j=t+1}^{m-r} v_{j} \frac{\partial^{2} \psi_{q-s-t}}{\partial x_{r} \partial x_{r_{+j}}}(0)
\end{array}\right]
$$

has rank $q-s-t$.
The proof of lemma 3.1 is left to the discretion of the reader.
Next we turn to the addendum. Again let $(a, l) \in W_{1}$ and assume that $f^{4}(a, l) \in Z_{1}$. By suitable coordinatisations we may assume $N=\boldsymbol{R}^{n}, a=0, P=\boldsymbol{R}^{p}, f(a)=0$. Using the diffeomorphism $\mu_{n}: \boldsymbol{R}^{n} \times \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n} \times \boldsymbol{R}^{n}$ defined by $\mu_{n}(x, y)=(x, y-x)$, we may further identify the diagonal $\Delta_{\mathbf{R}^{n}}$ with $\mu_{n}\left(\Delta_{\boldsymbol{R}^{n}}\right)=\boldsymbol{R}^{n} \times\{0\}$ and similarly $\Delta_{\mathbf{R}^{p}}$ with $\mu_{p}\left(\Delta_{\boldsymbol{R}^{p}}\right)=\boldsymbol{R}^{p} \times\{0\}$. The product mapping $f \times f: \boldsymbol{R}^{n} \times \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{p} \times \boldsymbol{R}^{p}$ is then identified with $g=\mu_{p} \circ(f \times f) \circ \mu_{n}^{-1}$, which is given by $g(x, y)=(f(x), f(x+y)-f(x))$.

We know that $f^{4} \uparrow Z$ at $(0, l)$ if and only if $\varrho \circ T_{k} \circ \circ_{k}^{\prime}: \alpha_{k}^{\prime}\left(A_{k}^{\prime}\right) \rightarrow \boldsymbol{R}^{p}$ is a submersion at $\alpha_{k}^{\prime}(0, l)$. Since $\varrho=p r_{2} \circ \lambda_{k}$ where $p r_{2}: \boldsymbol{R} \times \boldsymbol{R}^{p} \rightarrow \boldsymbol{R}^{p}$ is the projection, this is equivalent to $\lambda_{k} \circ T_{k} \circ i_{k}^{\prime}$ being transverse to $K=\boldsymbol{R} \times\{0\} \subset \boldsymbol{R} \times \boldsymbol{R}^{p}$ at $\alpha_{k}^{\prime}(0, l)$.

We show that $T_{0} K \subset$ range $D\left(\lambda_{k} \circ T_{k} \circ i_{k}^{\prime}\right)\left(\alpha_{k}^{\prime}(0, l)\right)$. Thus if $f^{4} \phi Z$ at $(0, l)$, then $\lambda_{k} \circ T_{k} \circ i_{k}^{l}$ is a submersion at $\alpha_{k}^{\prime}(0, l)$ and so $f^{4} \dot{\uparrow} Z_{1}$ at $(0, l)$. As usual let $\left(l_{1}, \ldots, l_{n}\right)$ be homogeneous coordinates for l and set $l_{j k}=l_{j} / l_{k}$ when $l_{k} \neq 0, j=1, \ldots, n$. Define the smooth curve $c:\langle-\varepsilon, \varepsilon\rangle \rightarrow \alpha_{k}^{\prime}\left(A_{k}^{\prime}\right)$ by $c(t)=\left(-t l_{1 k}, \ldots,-t l_{n k}, 2 t l_{1 k}, \ldots, 2 t l_{n k}, l\right)$; then $c(0)=\alpha_{k}^{\prime}(0, l)$. Since

$$
\lambda_{k} \circ T_{k}(\xi, L)=\left(\xi_{k}, \sum_{j=1}^{n} L_{i k} \int_{0}^{1} \frac{\partial f}{\partial x_{j}}\left(\xi^{\prime}+s \xi^{\prime \prime}\right) d s\right)
$$

for $\xi=\left(\xi^{\prime}, \xi^{\prime \prime}\right) \in \boldsymbol{R}^{n} \times \boldsymbol{R}^{n}, L_{k} \neq 0$, we find

$$
\lambda_{k b} \circ T_{l o} \circ i_{l_{k}^{\prime}}^{\prime} \circ c(t)=\left(2 t, \sum_{j=1}^{n} l_{j k} \int_{0}^{1} \frac{\partial f}{\partial x_{j}}\left(t(2 s-1)\left(l_{1 k}, \ldots, l_{n k}\right)\right) d s\right) .
$$

From this we get

$$
\frac{d}{d t}\left(\lambda_{k} \circ T_{k} \circ i_{k}^{\prime} \circ c\right)(0)=(2,0, \ldots, 0) \in T_{0} K
$$

which confirms that $T_{0} K$ sists in the range of $D\left(\lambda_{z} \circ T_{k i} \circ i_{k}^{\prime}\right)\left(\alpha_{k}^{\prime}(0, l)\right)$. Thus $\gamma^{\Delta} \uparrow Z_{1}$ on W_{1} if $f^{\Delta} \uparrow Z$ on W_{1}. The converse is of course trivial.

Finally we prove proposition 2.1. As always let $(a, l) \in W_{1}$ and $b=g(a)$. Again, by suitable ceordinatisations we may assume that $X=\boldsymbol{R}^{m}, Y=\boldsymbol{R}^{q}, A=\boldsymbol{R}^{r} \times\{0\} \subset X$, $B=\boldsymbol{R}^{s} \times\{0\} \subset Y$ and that g is of the form $g(x)=\left(g_{1}(x) ; x_{r+1}, \ldots, x_{r+t}, \psi(x)\right)$ with $g_{1}: \boldsymbol{R}^{m} \rightarrow \boldsymbol{R}^{s}, \psi: \boldsymbol{R}^{m} \rightarrow \boldsymbol{R}^{q-s-t}$ smooth mappings such that $g_{1}(0)=0, \psi(A)=\{0\}$ and $D \psi(0)=0$.

Let $\left(l_{1}, \ldots, l_{m-r}\right)$ be homogeneous coordinates for l and assume $l_{k} \neq 0$, i.e. $l \in \boldsymbol{P}_{k}^{m-r-1}$. Define the projection $s_{k}: \boldsymbol{R}^{m} \times \boldsymbol{P}^{m-r-1} \times \boldsymbol{R}^{q} \rightarrow \boldsymbol{R}$ by $s_{k}(\xi, L, \mu)=\xi_{r+k}$ and let $s_{k}^{\prime}: \boldsymbol{R}^{m} \times$ $\times \boldsymbol{P}^{m-r-1} \rightarrow \boldsymbol{R}$ be equal s_{k} when $q=0$. Then $s_{k}^{\prime} \circ i_{\%_{k}}^{\prime} \circ \alpha_{k}^{\prime}: A_{k}^{\prime} \rightarrow \boldsymbol{R}$ is a submersion, and $W_{1} \cap A_{k}^{\prime}=\left(s_{k}^{\prime} \circ i_{k}^{\prime} \circ \alpha_{k}^{\prime}\right)^{-1}\{0\}$. Therefore $I\left(W_{1}\right)_{(0, l)}$ is the principal ideal 'generated by the germ of $s_{k}^{\prime} \circ i_{k}^{\prime} \circ \alpha_{k}^{\prime}$ at $(0, l)$.

Now let $\varphi: \boldsymbol{R}^{q} \rightarrow \boldsymbol{R}^{q-s}$ and $\varrho: \boldsymbol{R}^{m} \times \boldsymbol{P}^{m-r-1} \times \boldsymbol{R}^{q} \rightarrow \boldsymbol{R}^{q-s}$ be projections to the last $q-s$ coordinates. Recall the commutative diagram

The ideal $I(B)_{0}$ is generated by the germs of $\varphi_{1}, \ldots, \varphi_{a_{-s}}$ at 0 . The pullback by the mapping $g \circ \sigma$ is therefore generated by the germs of $\varphi_{j} \circ \pi_{2} \circ \hat{g}$ at $(0, l), j=1, \ldots, q-s$.

Let $r_{k}: \boldsymbol{R}^{m} \times \boldsymbol{P}^{m-r-1} \times \boldsymbol{R}^{q} \rightarrow \boldsymbol{R}^{q}$ be the mapping $r_{k}(\xi, l, \mu)=\left(\mu^{\prime}, \xi_{r+k} \mu^{\prime \prime}\right)$ for $\mu=$ $=\left(\mu^{\prime}, \mu^{\prime \prime}\right) \in \boldsymbol{R}^{s} \times \boldsymbol{R}^{q-s}, 1 \leqslant k \leqslant m-r$. Since $\pi_{2} \mid A_{k}=r_{k} \circ i_{k} \circ \alpha_{k}$, we have $\varphi \circ \pi_{2} \circ \hat{g} \mid A_{k}^{\prime}=$ $=\left(s_{k} \varrho\right) \circ i_{k} \circ \alpha_{k} \circ \hat{g}=\left(s_{k} \circ i_{k}^{\prime} \circ \alpha_{k}^{\prime}\right)\left(\varrho \circ T_{k} \circ i_{k}^{\prime} \circ \alpha_{k}^{\prime}\right)$ with T_{k} as before. The conductor $c_{g}\left(I\left(W_{1}\right)_{(0, v)}\right.$, $\left.I(B)_{0}\right)$ is therefore the ideal generated by the germs of $\varrho_{j} \circ T_{k} \circ i_{k}^{\prime} \circ \alpha_{k}^{\prime}$ at $(0, l), j=$ $=1, \ldots, q-s$.

Finally, let $\lambda_{k}: \boldsymbol{R}^{m} \times \boldsymbol{P}^{m-r-1} \times \boldsymbol{R}^{q} \rightarrow \boldsymbol{R}^{q-s+1}$ be the projection $\lambda_{k}(\xi, l, \mu)=\left(\xi_{r+k}, \mu^{\prime \prime}\right)$ for $\mu=\left(\mu^{\prime}, \mu^{\prime \prime}\right) \in \boldsymbol{R}^{s} \times \boldsymbol{R}^{q-s}$. Then $c_{g}\left(I\left(W_{1}\right)_{(0, l)}, I(B)_{0}\right)+I\left(W_{1}\right)_{(0, l)}$ is the ideal generated by the germs of $\lambda_{k j} \circ T_{k} \circ i_{k}^{\prime} \circ \alpha_{k}^{\prime}$ at $(0, l), j=1, \ldots, q-s+1$.

For the first part of the theorem: Suppose $l_{k} \neq 0$ for some $k \leqslant t$. On U_{k} we have

$$
\varrho_{k}\left(T_{k_{k}}(\xi, L)\right)=\sum_{j=1}^{m-r} L_{j k} \int_{0}^{1} \frac{\partial g_{s+k}}{\partial x_{r+j}}\left(\xi^{\prime}, t \xi^{\prime \prime}\right) d t=1
$$

Thus $\varepsilon_{g}\left(I\left(W_{1}\right)_{(0, v)}, I(B)_{0}\right)$ contains the unit clement in $C_{(0, v)}^{\infty}(W)$, and so by our convention is regular of codimension $q-s$ at $(0, l)$. But we have also $\hat{g}(0, l) \in E_{1}-Z_{1}=$ $=E_{1}-Z(p .7$ statement (i)).

Suppose on the other hand $l_{1}=\ldots=l_{t}=0$. Then $o_{g}\left(I\left(W_{1}\right)_{(0, v)}, I(B)_{0}\right)$ is regular of codimension $q-s$ if and only if $\varrho \circ T_{k} \circ i_{k}^{\prime}$ is a submersion at $\alpha_{k}^{\prime}(0, l)$. But the last condition is equivalent to $\hat{g} \dagger Z$ at ($0, l$); this follows by an argument analogous to that for the case $\hat{g} \phi Z_{1}$ on page 7 .

For the second part of the theorem: Suppose again $l_{k} \neq 0$ for some $k \leqslant t$. Then $c_{g}\left(I\left(W_{1}\right)_{(0, l)}, I(B)_{0}\right)+I\left(W_{1}\right)_{(0, l)}=C_{(0, v)}^{\infty}(W)$ and so is regular of codimension $q-s+1$, and $\hat{g} \uparrow Z_{1}$ at $(0, l)$ since $\hat{g}(0, l) \notin Z_{1}$.

Suppose on the other hand $l_{1}=\ldots=l_{t}=0$. Then $c_{v}\left(I\left(W_{1}\right)_{(0, v)}, I(B)_{0}\right)+I\left(W_{1}\right)_{(0, v)}$ is regular of codimension $q-s+1$ if and only if $\lambda_{k} \circ T_{k} \circ \circ_{k}^{\prime}$ is a submersion at $a_{k}^{\prime}(0, l)$. But this is equivalent to $g \phi Z_{1}$ at $(0, l)$ (p. 7).

It follows that g is strongly σ-subtransverse to B at all points of A if and only if $\hat{g} \dagger Z_{1}$ on W_{1}. This completes the proof of proposition 2.1.

Remarks. - 1) It follows from corollary 2.3 that the smooth mappings $f: N \rightarrow P$ such that f^{4} is transverse to Z_{1} form an open dense subset of $C^{\infty}(N, P)$. For the condition $f^{4} \pitchfork Z_{1}$ is equivalent to $\tau f \dot{f} O_{p}$ outside O_{N}, and the latter condition is satisfied for an open dense set of mappings f by a standard transversality argument.

One can also prove a general transversality result: Let $M \subset E$ be a smooth submanifold of E. The smooth mappings $f: N \rightarrow P$ such that f^{4} is transverse to M form a dense subset of $C^{\infty}(N, P)$. If M or N is compact, this subset is also open.

In general the openness property fails unless there is a compactness condition. The first case holds without compactness because of the special character of the submanifold Z_{1}.
2) The construction E is tailored to the study of the generic double points of f, as indicated by corollary 2.3. Let $D_{f} \subset N$ be the locus of genuine double points of f and $S_{f} \subset N$ the singular locus of f. Thus $x \in D_{f}$ if $f(x)=f\left(x^{\prime}\right)$ for some point $x^{\prime} \neq x$, and $x \in S_{f}$ if ker $\tau_{x} f \neq\{0\}$. Then for a proper smooth mapping f such that f^{A} is transverse to $Z_{1} \bar{D}_{f}$ equals $D_{f} \cup S_{f}$, as is easily seen. In particular $\bar{D}_{f}=D_{f} \cup S_{f}$ is a generic property for proper mappings, satisfied by those mappings $f \in C_{\mathrm{pr}}^{\infty}(N, P)$ such that $\tau f 巾 O_{p}$ outside O_{N}.

REFERENCES

[I] W. Adkins, Weak normality and Lipshitz saturation for ordinary singularities, Compositio Mathematika, 51 (1984), pp. 149-157.
[2] A. Andreotit - P. Holm, Quasianalytic and parametric spaces, Real and complex singularities, Oslo 1976; Sijthoof \& Nordhoff Intern. Publ., (1977), pp. 13-97.
[3] P. Griffiths - J. Harris, Principles of algebraic geometry, J. Wiley, 1978.

