On Subtransversality (*).

P. Horm - S. JOHANNESEN

Summary. — Let (X, 4) end (¥, B) be pairs of manifolds. By means of a « completed » bijel
bundie over the blow-up of X along A we give simple geometric interpretations of the notion
of subtransversality of a smooth map f: (X, A) > (¥, B) along 4.

The notion of subtransversality is due to ALDO ANDREOTTI and was introduced
in [2]. (See also [1] for a recent contribution in the projective-geometric context.)
In the present paper we show that subtransversality of f: X —Y te Bc Y along
Ac X, or rather subtransversality after blowing up A4, has a simple geometric
meaning in terms of ordinary transversality in tangent and normal bundles. Here
(X, A) and (Y, B) are smooth manifolds—with—submanifolds and f is a smooth
mapping sending 4 into B. The connection is made via a sort of « completed » bijet
bundle E = B(X, A; ¥, B) over the blow-up W= W(X, A) of X along A. The
bundle space H contains 2 smooth «singularity » submanifold Z with two strata,
and the subtransversality conditions are translated into transversality of the jet
section to the strata of Z along the strata of W (proposition 2.1). From this one
easily extracts the results (theorems 1.1 and 1.2).

1. — Preliminaries and statements.

We recall a few concepts from [2]. Let X and ¥ be smooth (i.e. 0=-) manifolds,
dim X > 0, and let A and B be closed submanifolds of X and Y. We denote by
O=(X, A; Y, B) the set of smooth maps g: X — ¥ such that ¢(4)C B. This is a
closed subset of (®(X, Y) in the Whitney topology (= the fine C*-topology).

Furthermore, denote by 07 (X) the loeal ring of germs of smooth functions at
a€ X. Anideal IC 07 (X)is regular of codimension & if I has k generators hy, by, ..., bx
such that diyA...Adhy5 0. This requires I to be a proper ideal of C°(X). In
addition we consider I = (07 (X) to be a regular ideal of codimension % for any
integer k. Then V(I) = {we (X, a): h(») = 0, Vhe I} is the germ of a smooth sub-
manifold of X at @ of codimension k (empty if I = CP(X)). Clearly a mapping

(*) Entrata in Redazione il 5 marzo 1985.
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g: X - Y is transverse to B at a e X if and only if C7(X)-¢*I(B)ya is a regular
ideal of eodimension k, where k is the codimension of B at ¢{a) jand I(B),,C 07, (Y)
ig the ideal of smooth germs at g(a) vanighing on B.

Next, let g (X, A; Y, B) and let a € A; then C°(X)-g*I(B)ywC I(4),. Con-
sider the conductor ideal ¢,(I(A)s, I(B)yn) € C2(X). By definition he e,{(I(A).,
I(B)yw) if and only if h-I(A),C O (X) ¢*I(B)yn. We say that g is subtransverse
to B at a if ¢,(I(4),, I(B)ya) is regular of codimension equal the eodimension of B
at g(a), and strongly subiransverse to B at a if 6,(I(A)s, I(B)yw) + I(4), is regular
of codimension equal the sum of the esdimensions of 4 and B at o and g(a).

Finally, let X be the blow-up of X along 4 and ¢: X — X the eollapse mapping.
Then X is eanonically & smooth manifold with 4 = 071(4) a codimension one sub-
manifold, ef. [3]. (Although the setting in [3]is complex analytic the methods work
equally well in the O case.) A mapping ge 0°(X, 4; ¥, B) is (strongly) o-sub-
transverse to B at a if goo is (strongly) subtransgverse to B at any point of a—l{w}.

The geometric content of these definitions is given by the following

THEOREM 1.1. — Let g O°(X, A; Y, B). Then the statements
(i) g is strongly o-subtransverse to B at all poinis of A
(ii) »g is transverse to O, outside O,
are equivalent.

Here vg: v4 —»B i3 the normal bundle mapping, and 0, and O, are the zero-
sections of vA and »B. The theorem follows from proposition 2.1 and 2.2 of section 2.

We will consider in more deteil the case where g is a product mapping fXf:
NXN —PXP and A and B are the diagonals A, and A, respectively. The normal
bundles v4 and vB can then be identified with the tangent bundles N and ¢P. In
this case we have the following sharper result.

THEOREM 1.2. — Let f: N — P be o smooth mapping. Then the statements
(1) FXTf is o-subtransverse to Ap at all points of Ay.
(i) fXf is strongly o-sublransverse to Ap at all points of Ay.
(i) =f is transverse to Op ouiside Oy
are equivalent.

Here 7f: tN — tvP is the tangent bundle mapping and Oy and O are the zero-
sections of TN and vP.

The theorem is & corollary of proposition 2.1 and 2.2 with addendum. It geners-
lizes and elucidates the results of section 19 in [2]. In particular the genericity of
smooth mappings f with fX7 (strongly) o-subtransverse is immediately explained
{see remark 1 in section 3).
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2. - Double points and residual singularities.

Let W= W(X, A) be the blow-up of X along A. Thus W is obtained from X
by suitably replacing A with PyA, the projectivized normal bundle of A, see for
ingtance [3]. Set X — A = W, and Pv4 = W,, so that W= W,U W,.

We construct a smooth manifeld F = E(X, A; ¥, B) over W depending funec-
torially on (X, 4) and (Y, B). First, set B = E,U E, where

By,={(z,y): 2eX—~ A, ye Y}
B={xly,p:0cd yeB,lcPyA pecHom (v, B)}.

Then there is a natural projection n of E onto W defined by

(@, y) = @ (on H)
(@, b, y, p) = (#,1) (on Ey).

Secondly, for every ge 0®(X, A4; Y, B) there is an induced mapping §: W — F,
which is a section of 7, defined by

§(x) = (2, g(x)) (on W,)
G(w, 1) = (9&‘, [ g(m)ﬂ"gll) (on W,).

When Y is a point and B =Y, then (X, 4;Y,B)= W(X,4) (as a set), and @
is the identity mapping.

We need a smooth structure on H. Set dim X = m, dim A =y and dim ¥ = ¢,
dim B = s. First notice that E, and FE, are naturally smooth manifolds of dimen-
sions m + ¢ and (m—1) 4+ ¢ over the smooth manifolds W, and W,. In fact
By=(X—A)xY. As for E, let LyA be the tautological line bundle over PyA,
and Hom (Ly4, yB) the corresponding vector bundle over PyvAXB; then E, =
= Hom (IvA, vB). We will show that = E(X, 4; Y, B) has & canonical smooth
structure compatible with that of B, and FE,, such that x is smcoth and such that §
is smooth for any smooth g. In particular H(X, 4; Y, B) = W(X, 4) (as 2 manifold)
when Y is a point and B=17.

Consider first the case X = R", ¥ = Ry, 4 = R"x{0} c X and B = R*x {0} c Y.
Define A,c B, 1<k<m —1r, by A= A4,,U A,, where

Apy= {(z, y) € By: @, .5 0}
Ay = {(ma Ly o)eE: 0}

and (ly, ..., ln_,) are homogeneous coordinates for I. Evidently B = 4, U ...U 4,,_,.
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Neoxt, define mappings o: A, — RexX P 1x R (1<k<m — r) by

|

ox(z, y) = (@, Ra", y', " [2,14) (on Ay)
“k(wy l? ’9’7 9’) == (377 l7 ?/’7 (P(lllw vy lm—-r,k)) (On Akl)

where ¢ = (@', ") e RRXR™ ", y = (¢, ¢") € R*X R and 1= 1,/l; for i<i<m —r.
Clearly o, is injective for all k. We topologize 4, so that «; is a homeomorphism
onto its image. Then A,MN 4, is an open subset of 4, and A, for each k and I,
as is quickly checked, and the topology induced by 4, on 4,M 4, eoincides with
the topology induced by A4, sinece the mappings a0, are continuous and therefore
homeomorphisms. Consequently there is a unique topeology on F such that each
space 4, occurs as an open subspace of B. Itis easy to see that ¥ is a Hausdorff space.
We show that o (4,) i3 & (m -+ ¢)-dimensional smooth submanifold of Rm=X
XPr—r1x Re, Set U,= R"XPy "7 xR where P;” " ig the affine open ccordinate
set {L € P L;5 0} in Pmr1 Then o4(4,)c U; for k=1,...,m —r; in fact
(&, L, n) is in oy(4d,) if and only if L= 0 and &, ,Ly==§, . L; for 1<i<m —r.

Define 0;: U, — R™1 by 6,(& L, 0) = (&,11— Lufrany oovy En~— Lp_r1&z) Where
the k-th component (= 0) is omitted. Then 6§, is a submersion onto R, Since
on(Ay) = 6;1{0}, it follows that ax(4;) is a smeoth submanifold of U, hence of
R x P~1x Re, of codimension m —r —1.

By means of «, we pull back the smooth strueture on o,(4;) to 4,. We now
need to show that 4, and 4, induce the same smooth structure on the open set
AN A, for any two k and 1. But this holds since the mappings aoc,® are smooth
and therefore diffeomorphisms. Thus B = 4,U ... U 4,,_, receives a smooth strue-
ture in whieh 4,,..., 4,._. are open submanifolds.

For ¢ = 0, i.e. B=Y = {0}, we clearly get B = W. (Alternatively define the
smooth structure on W(R™, Rr).as that of B(R™ Rr; 0,0).) Throughout the paper
we shall use primed letters A,’c, oc,,c, ... in the particular case E = W, i.e. primed
letters refer to W. Then we have a commutative diagram

[0 4
A, —%> Rmx Pn-r-1x Ra

1

[0
Allc d > R» XPm—r-—l

showing that n is smooth on A4,, 1<k<m — . Thus & is smooth (on E).

Finally we need to check that §: W — F is smeoth for smooth g. Obviously it
suffices to check this at a peint (#,1) € W,. Let k be such that (z,1) € 4,. We have
§(Ay) c A, and therefore a map 7i: op(ds) — an(d,) defined by the commutative
diagram

Ay =Ty o (4y)

,.4\
g Ty

AL 25 (AL
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Extend 7, to a mapping Ty: Uy — U, in the following way: Write
) m—r
9osilb) = 2 £,,6G,(8), 1<i<q-—s,
i=1
with the

” __f 89s+z E, 5//) dt fOI‘ S e (51 El/) = R"XR”"
Ly g5
such that G (&) = (0g.,.:/0%,.;)(&) When &= 0. Now set

Tw(§, L) = ( s Ly g1(E)y oevy g5(& Z L Gyy(8 Z LpG,y s, 7(5)) .

Then T, extends 7, as claimed. Since T, is smooth, so is 7,. Consequently § is
smooth.

This proves the claim in the affine case X = R™, ¥ = R¢. The extengion to
the case where X and Y are diffeomorphic to R” and R? is by transport of struec-
ture; the result is easily seen to be independent of the choice of diffeornorphisms.
The extension to the general case is then by patehing over coordinate neigh-
bourhoods in X and Y, therchby constructing the germ of F along F, compatible
with E;. The procedure is straightforward. We omit further details.

REMARKS. — 1) By construction H, and FE, are built in as submanifolds of .
Since F, is an open submanifold, E, is a closed codimension one submanifold of Z.

2) There is also a smooth projection m,: B — Y defined by

(%, Y) =y (on Ej)

(@, by, @) =y (on By.
More symmetrically we have the smooth projections

X<—-——E———>Y

where 7, = oom. Thus the extension § of g fits into the commutstive diagram

A

w—Lsm

]

x .y
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We next define a special submanifold Z of B. Let Z = Z,U Z;, where

Zy= {(“7 y) € By: ?/EB}
Zy= {(00, Ly, QU)EEI: Y = 0} .

Then Z cE; we claim that Z is a closed submanifold of E. First notice that
Z N B,= Z, is certainly a closed submanifold of B;. If ¢ € B, is in the closure of Z,
then ¢ € B(U, UN A; V, VN B) for suitable coordinate systems (U, g) and (V, y)
in X and Y such that p(UN A) = R X {0} and p(V N B) = R x{0}. Thus acZ
HZNEU, UNA; V, VN B)is closed in B(U, UN 4; V, VN B). Moreover, Z is
a submanifold of F locally around ¢ if ZN B(U, UN A; V, V' N B) is a submanifold
of B(U, UN A; V, VN B). Consequently we are reduced to substantiating our
claim in the affine case X = R, ¥ = R7, 4 = R"X{0} c X and B = R*x {0} c Y.
Again, in the affine case it suffices to show that Z N 4, is a closed submanifold of
Ay for E=1,...,m—r. Let g: R X Pr 71X R?— R be the projection to the last
¢ — s coordinates. It is quickly checked that elo(4:) has constant rank ¢ — s, i.e.
that oy has constant rank ¢—s. But ZN 4,= (gooy) {0}, and so ZN 4, is
indeed a eclosed submanifold of 4,.

Notice that Z, is a closed codimensgion cne submanifold of Z. This follows by
the same arguments as above if we use the projection A,: RBmx Pr—r-1x R?-»> Re-stl
defined by

(&, 1, B = (Er+k3 sty woey Ha)

instead of .
The construction Z c E — W is hopefully justified by the following

ProrositioN 2.1, — Lei ge O°(X, A; Y, B). Then g is o-subiransverse to B ai
all points of A if and only if § is transverse to Z on W, and strongly o-subiransverse
if and only if ¢ is transverse to Z, on Wi.

Apart from questions of subtransversality we have quite generally

PROPOSITION 2.2. ~ Lei g 0°(X, A; Y, B). Then § is transverse to Z; on W, if
and only if the normal bundle map vg: vA —vB i3 transverse to the zero-section
0,cvB outside O, CvA.

REMARK. — If § is transverse t0 Z, on W,, then it is transverse to Z, on all of W,
sinee it canpot hit Z, outside Wi.

We lack a corresponding general interpretation of transversality of § to Z.
However, in the situation where g equals X7 for a2 smooth mapping f: N — P
and A and B are the diagonals in N X N and P X P the two cases coincide (over W,).

ADDENDUM. ~ If g is of the form [Xf: NXN —+~PXP and A= Ay, B = 4,
then on W § is iransverse to Z, if and only ¢f it is transverse to Z.
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In this situation of course the normal bundles »Ay and v4, can be identified with
the tangent bundles TN and tP. For brevity we will denote the mapping §: W — F
by /4 when g = fXf. Then we have

COROLLARY 2.3. ~ The mapping f4: W — F is transverse to Z if and only if
() fXf is transverse to Ap outside Ay. -

(ii) =f is tramsverse to OpC TP outside OyC TN,
In fact (i) and (ii) are equivalent to the transversality of 2 to Z on W, and W, respectively.

The proofs of proposition 2.1 and proposition 2.2 with addendum are given in
section 3.

3. ~ Proofs. Complements.

We first prove proposition 2.2 and its addendum and then proposition 2.1. The
symbol § will mean « transverse to ».

Let w = (a,1) € W,. We will show that § d Z, at w if and only if vg H O, at some
(hence any) non-zero vector v in Icv,A. Set ¢ = rank (vg),.

By restrieting to suitable coordinate patches around a and g(a), it suffices to
consider the case X = R® ¥ = R, A = R'X{0} cX, B=RX{0}cY, a =0, g(a) = 0.
In fact we may assume the coordinatisation at @ and g(a) performed such that
g = (g, §2): R* — R X Re—s with ¢,(0) = 0 and

ga(@) = (wr+1’ eoey Lty "/)(J/')) )

where y: Rm— Re-—* is a smooth mapping such that y(4) = {0} and Dyp(0) = 0.
Now, let » = (v/, v") € Rt X Rm—* be a non-zero vector and [ e Pr-1= Py, Rn"
the line spanned by v. We have §(0,1) = (0, [, 0, »g(0)|) with

gl

Suppose ©'= 0. With notations as before choose % such that (0,1) € A;; then
§(0,17) € A;. Recall that A;o0a;: A, R+ is a submersion and that Z,N 4,=
= (Az00;)~1{0}. Thus

I,

79(0) = [—0—

Thus »¢(0)» = v and so

1) ¢(0,1) ¢ Z, if and only if »'5£ 0.

ghZ, at  (0,7)
<> poaof: Ay —> Ro—st1 is submersive at (0, 1)
<= Aoty o(Ay) — Remstl is submersive at (0, 1)

<> Ao Tyoiy: oy(Ay) — Re-s+1  is submersive at o (0, 1) .
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Here i,: a,(4,) — U, is the inclusion mapping,

Ty > U, )'k > Re—st+1

-7
1

13 i & - I

CAWRY U,

b

Rm-r—l

Qonsequently we want to determine the range of D(ZkoTkoz','c)(ac,'c(O, 1)). Since
ir(a(Ar) = 6:7{0}, we have range Diy(ox(0,1)) = ker Di(ox(0, 1)), with a(0, 1) =
= (0, (¥4, e, V). Now Di((0,7)) bas the matrix block form

0 I —V, 0 0
0 0 —Vy; I 0O

where as usual 7 means an identity matrix and 0 a zero matrix. V, and V, are the
column matrices

D1, Vky1,n
: and : )

Uk-—l,k /vm-'r,k

where ¥y = U;[x. (Recall that vy 0 since (0, 1) = (O, (D15 vy Upr)) GA,’;.) In par-
ticular v, = ... = v,,= 0 since v'= 0.

It now follows by straight forward computation that range D(ZkoTkoi;)(oc,'c(O, l))
is spanned by the ¢ standard basis vectors e, ..., €;,, in Re=*+! together with the
vectors (1<i<y)

< o* P =y ot WYa_s—t )
0 v; 0), ... Vsn 0
( v ,J t+1 ka amr+9( )’ 7i=§l-1 aw aqu_g( )
and the veetor
m=—r |7 821/)1
2,0,...,0 V05 = (0), ...
( T ’i=t+13=2+ ' kamrw axﬂ-f( e
m=—r m—r azt/)a—s.—t )
/01' 'Uj T O .
AP Pl ka$r+£ a$r+;~( )

We therefore have

(i) §(0,1) e Z, and ¢ Z, at (0,7) if and only if the vectors

m—r o2 %-s_
, 0, P; 0),... v; 0
( i %—1 ox; a‘vu-:( ) ’9 %—1 g aw awr«u ( ))

for 1<i<r form a set of rank ¢ — s — ¢ in Reot,
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To complete the proof of proposition 2.2 we now appeal to the following
elementary

LemMa 3.1. — Let ge O=(Rm, R x{0}; Rs, R*x{0}) be a mapping of the form
9() = (Gu(#)5 Bria, ooy Trps, P(@) with g2 R™ — R, p: R™— R such that g,(0) = 0
and (R x {0}) = {0}, Dyp(0) = 0. Let (0,v) = (0,',0") be a non-zero vector in the
normal space vy(R*X{0}) = {0} X R» = {0} X Rt X Rm—-*,

Then vg 1 Ogey oy @t (0, 0) if and only if either

(i) v's= 0 (then vg(0, v) ¢ORGX{O}) oy

(ii) =0 (then v9(0, v) € Ops,(q) and the matriz

m-—1 2 m-—r 2
O 0), ..., v; v
i<tr1 OBy Oy

.....................................

m—1r az "Pa—s—t m—q 32 w«—s_t

i (0)y .. ;
j=t+1 856‘1 8mr+5 j=f+1 aw, 6m,+,~

—
~—

has rank ¢ — s —1.

The preof of lemma 3.1 is left to the disecretion of the reader.

Next we turn to the addendum. Again let (a, 1) € W, and assume that f4(a, 1) € Z,.
By suitable coordinatisations we may assume N = R", a = 0, P = R?, f(a) = 0.
Using the- diffeomorphism u,: R" X R"— R*XR" defined by u.(z,y) = (x, y — x),
we may further identify the diagonal Ag. with p.(dg.) = R* X {0} and similarly g,
with p,(Adgs) = R?X {0}. The product mapping f Xf: R* X R" — R* X R? is then iden-
tified with g = p,o(fXf)ou,*, which is given by g(, y) = (f(#), f(z + y) — ().

We know that f4h Z at (0, 1) if 2nd only if goTyodz: ay(A) — R? is a submersion
at o(0,1). Since g = pryod, where pr,: RXR? — R? is the projection, this is equi-
valent t0 A,0T,o0f; being transverse to K = RX {0} c RXR® at a0, 1).

We show that ToK c range D(A0Toig)(a(0,1)). Thus if 4 d Z at (0, 1), then
AyoTyoiy, is a submersion at «(0,17) and so A Zy at (0,1). As usual let (I, ..., 1,)
be homogeneous coordinates for ! and set ;= I;/l, when [,# 0, j =1, ..., n. Define
the smooth curve ¢: (— &, &> — ay(4r) by 6(f) = (— tlyy oo, — Uy 28y oov, 20y 1)

then ¢(0) = 0;(0,1). Since
1

IsoT4(E, L) = (s 3 L f T (4 s ds>
0

for £ = (&,&)e R*"XR", L, 0, we find

a0

1
, L 0
Ao Tyoiloo(t) = (2t, > U 5}(75(28 — 1) (T vy Lot)) ds).
i=1 &g
0
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From this we get

pr \l,coTkoftkoc)(O) (2,0,..,0)eT K
which confirms that T,K sists in the range of D(A.0T,0ir)(0x(0,7)). Thus 44 Z,
on W, if {44 Z on W,. The converse is of course trivial.

Finally we prove proposition 2.1. As always let (a,1) € W, and b = g(¢). Again,
by suitable ecordinatisations we may assume that X = R», ¥ = R¢, 4 = R"X {0} c X,
B = Rsx{0} cY and that g is of the form g(@) = (62(#); Tri1y .r; Ty Y(@)) With
g,: R — R, y: R — Re—+* ymooth mappings such that ¢,(0) = 0, p(4) = {0} and
Dy(0) = 0.

Let (I;, ..., l,_,) be homogeneous coordinates for I and assume ;5 0, i.e. le Py
Define the projection s,: R»X P71 X R?— R by sk(f, L, p) = &, and let sp: Rmx
X Pm-r=1 5 R be equal s, when ¢ = 0. Then s of, ooc,c A, —>Ris a submersmn, and
W.N A= (skozkoock 1{0}. Therefore I(Wi)qn is the principal ideal Agenerated by
the germ of s oi o0, at (0,1).

Now let p: R¢— R and g: R*X Pm-1X R‘— R be projections to the last
g — s coordinates. Recall the commutative diagram

W—g>E

|

X——g—>Y

The ideal I(B), is generated by the germs of ¢y, ..., g,._, at 0. The pullback by the
mapping goo is therefore generated by the germs of g omyof at (0,1),j =1,...,9 —s.
Let r,: RmXPr—r1XR?— Rt be the mapping ru(é, 1, ) = (¢’ Erpup) for p =
= (', @) e RsX R, 1<k<m — r. Since m|d,= rioizoo,, We have pomyof| Ay =
= (sp0)0i,0000 = (spotzooy)(po Tyoiyzooy) With T, as before. The conductor ¢,(I(Wi)o,n,
I(B),) is therefore the ideal generated by the germs of Q,oTko@,coa,c at (0,1),7j=
=1,..,4—8. ‘

Finally, let A: RmX Pt x R¢— Re=s+1 be the projeetion 1.(5,1, u) = (&1, p")
for u= (4, u') € R*x R Then ¢,(I(Wy)ou, I(B)s) + I(Wi)en is the ideal gen-
erated by the germs of A,o0Toio0 at (0,1), j=1,..., 4 —s -+ 1.

Tor the first part of the theorem: Suppose l,7 0 for some k<t. On U, we
have

m—r a stk , "
0 T(&, 1)) = szf ek (g1, 18)
0

Thus ¢{I{Wi)e,n, I(B),) contains the unit element in Cg (W), and so by our con-
vention is regular of codimension ¢ — s at (6,1). Bub we have also §(o,lye B, —
= E,— Z (p. 7 statement (i)).
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Suppose on the other hand I, =...=1, = 0. Then ¢,(I{W1)q,n, I(B),) is regular
of codimension ¢ — s if and only if goToiy is 2 submersion at (0, 1). But the last
condition is equivalent to §h Z at (0,1); this follows by an argument analogous
to that for the case §h Z; on page 7.

For the second part of the theorem: Suppose again I,5£ 0 for some k<?. Then
¢, (LW )0 IB)o) + (W) o= 0z (W) and so is regular of codimension ¢ —s + 1,
and §o Z, at (0,1) since §(0,17) ¢ Z,.

Suppose on the other hand ;= ... = I,= 0. Then ¢,(I(Wy)on, I(B)o) + I(Wi)w.n
is regular of codimension ¢ — s -+ 1 if and only if 4,0 To4y is a submersion ab a,'c(O, D).
But this is equivalent to b Z; at (0,1) (p. 7).

It follows that g is strongly o-subtransverse to B at all points of A if and only
if § Z, on W,. This completes the proof of proposition 2.1.

REMARKS. — 1) It follows from corollary 2.3 that the smooth mappings f/: ¥ — P
such that f4 is transverse to Z, form an open dense subset of 0*(N, P). For the con-
dition 4 ¢ Z, is equivalent to 7f & 0, outside Oy, and the latter condition is satisfied
for an open dense set of mappings f by a standard transversality argument.

One can also prove a general fransversality result: Let M c E be a smooth sub-
manifold of E. The smooth mappings f: N — P such that {4 is transverse to M form a
dense subset of O°(N, P). If M oy N is compact, this subsel is also open.

In general the openness property fails unless there is a compactness condition,
The first case holds without compactness because of the special character of the
submanifold Z,.

2) The construction E is tailored to the study of the generic double points
of f, ag indieated by corollary 2.3. Let D,c N be the locus of genuine double points
of f and 8,c N the singular locus of f. Thus » e D, if f(x) = f(2') for some point
#'7 2, and » € 8; if ker 7,f  {0}. Then for a proper smooth mapping f such that 4
is transverse to Z, D, equals D;U §;, as is easily seen. In particular D;= D,U §,
is a generic property for proper mappings, satisfied by those mappings f e C (N, P)
such that zf } O, outside Oy.
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