
Lubin-Hensel Factorization for Laurent Series (*) (**). 

ALAI]~ ESCASSUT 

Summary.  - Let K be a complete ultrametric algebraically closed field. Let D be a bounded closed 
strongly in]raconneeted set in K with no T-filter, and let H(D) be the Banaeh algebra of ttvs 
analytic elements ,in D. Let r', r ~ be functions from D to R with bounds a, b such that 0 < a< 
<v'(x) < r"(x)<~b. Let s v ~, r") be the Banaeh algebra o/ the Laurent series with coef- 
ficients a s in H(D) such that lira ( sup [a~(x)] max (r'(x)~, r"(x)~)) = O, provided with a suitable 

[el.-> + ~ x e l )  

norm. In  s r', r ~') we give a kind of Hensel Factorization ]or series whose dominating 
coefficients at rt(x) and at r"(x) conserve the same rank. We take advantage of this method 
~o correcting a mistake that happened in our previous article on the Hansel 2'aetorization for 
Taylor series. 

1. - In troduct ion  anti theorems .  

Let  (K, l" I) be a complete u l t rametr ic  algebraically closed field. 
When A is ~ ring, we denote by  A~Y~ (resp. A((Y}}) the set of the Taylor  

Series (rasp. the Laurent  Series) with cpefficients in A. 
Let  D be a bounded closed subset of K.  As usual, we will denote  by  H ( D )  the  

Banach  aIgebra of the analyt ic  elements on D fel l ,  and ll" I/, the  uniform convergence 
norm on D defined on H(D) .  

+ o o  

Let  F ( ~ )  = ~ a~ Y~e H(D)((Y}}. For  each x e D we will denote by  F~ the series 
+ ~ o  - - 0 0  

~, a,(x) Y ' e  K (( Y)). 
- v o  

For  a e K,  q > 0 we will denote by  d(a, e) (rasp. d-(a,  9)) the disk (x e K :  lx -- a I < e) 

(rasp. {x e K :  Ix -- a I < ~}). 
Also we will denote by  C(a, 9) the circle (x: lx -- a] : e}. 
For  every  couple (a, b ) e  R+ •  with 0 < a < b, let  I ( a ,  b) be the algebr~ of 

the Lauren t  series convergent  for a <  ]x I <b.  
The famous Hansel Lamina gives the classical factorization in the form P (Y ) .  

�9 G(Y) for a Lauren t  series F ( t  z) e L ( a ,  b) with P ( Y )  ~ monic polynomial  whose 

(*) Entrata in Redazione it 9 maggio 1984; versione riveduta il 23 novembre 1985. 
(**) And Erratum to ~ Maximum principle for analytic elements and Lubin-Itensel's 

Theorem in H(D)~Y~ ~, 135, pp. 265-278 of this Journal. 
Indirizzo dell'A.: Universit6 de Bordeaux I, UER de Math6matiques et Inform~tique, 

351 Cours de la Libgration, F 33405 Talenee, France. 
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zeroes are those of/~(Y) and G(I0 an invcrtible element of L(a, b) [A, L]. Jona than  
Lubin fi~su gave conditions for a Taylor series F(Y) with coefficients in the algebra 
H(d(O, 1)) to have a polynomial P(N) wi.th coefficients in H(d(O, 1)), such that ,  for 
each x~d(O, 1), P~ is the menlo polynomial whose zeroes are those of F~, in a 
disk d(0, r(x)) (1969, unpublished article) and this has been developped by ]3. 
DWOnK ([D]) who pointed out to my  ,~&en~mn this kind of factorization in the 
algebras H(D),~Y~. (In 1979 J. LlJm~ also gave a kind of faetorization for series 
with coefficients in linearly topologised ring [LU], which does not  apply to algebras 
H(D) in the generM case.) 

We avoided the technical conditions on Newton Polygon happening in B. Dwozk' s 
t rea tment  and tried in [Ed] Theorem 2 to give a Hensel Factorizat ion for Taylor  
series with coefficients in an algebra H(D) with D open closed, bounded, strongly 
infraconnccted. Unfor tunate ly  an error in the use of Euclidean Division in Proposi- 
tion 2 of [Et] kindly pointed out to me by D, Bartenwerfer puts tha t  result in 
doubt.  

Here we return to this problem of Hensel faetorization in generalizing our s tudy 
to  the Laurent  Series with coefficients in algebras H(D). We will part icularly use 

the  algebra norms ill'Ill;" and ill'lit ~ defined as follows. 
Le t  r, r', r" be bounded fu_nc~ions defined in the ciosed bounded set D, with 

values in R+, with bounds a, b for r', r" such tha t  0 < a<r'(x)<r"(x)Kb whenever 
x ~ D .  

q=O --co 

( I]l/Vtll~,- sup (sup [a~(x)l max  (r'(x) ~, We wiil set I!IFI!I ~= sup (~up tG(x)tr(x) ~) reap. ~"-  
xffl)  S~N x~D s~Z 

r"(x)~)) land we will denote by ~ ( n ,  r) (resp. e(D, r', r")) the set of the i f (Z)~H(D)EY E 
(rcsp. F(Y) ~ H(D)((Y))) such t h a t  lira [[[G yq]lr = 0 (resp. lira [[[G PIl l ; ; --  0). 

s ~ o o  [ s l ~  + co 
Clearly 3;(D, r) is the Banaeh algebra completion of H(D)[Y] normed by [II']IJL 

Likewise, let I t (D) (Y}  be the a!gebra of the Laurent  series with a finite number  
n 

of terms : ~ a~ Y~, a ~  II (D), m, n ~ Z, m <,n. Then ~(D, r', r") is the Banaeh algebra 

completion of H(/))<Y} normed by Ill'l[]~. 
+ o o  

Let /(Y) ---- ~ G Y~e L(a, b). For @ e [a, b] we will also denote by N+(/, o) (resp. 
- -oo  

N-(/ ,  5)) the unique integer t (resp. q) such tha t  

a, te .... sup [a~iq ~ and  [a,]o'> ]a~[o~ whenever  s >  t 
sffZ 

(rasp. sup and I orO*> [ sIO whenever s <  q). 
SEZ 

t~y classical results [A~ L] we know tha t  if / is a Laurent  series convergent in 
the set {x ~ K: 6<<. IxJ-<b} / has exactly N+(/, b ) -  N- i f ,  a) zeroes (taking account of 

muitiplicities). 
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I] ] is a Taylor series convergent ]or [xl<b, then ] has exactly N + ( / ,  b) zeroes in 
d(O, b). 

For  each n e N we will denote by  ~ ( D ,  r) the subset of the E(Y) ~ ~(D,  r) such 
that N+(E~, r(x)) : n whenever  x ~ D. 

By  what  precedes we then  have the obvious proposition A. 

PROPOSITION _h. - Let D be a bounded closed subset o/ K,  let r be a bounded/unc- 
tions ]rom D into R+ with r(x) ~ 0 whenever x ~ D. Let n ~ N. Then ~ ( D ,  r) is the 
set o/ the F ( Y )  ~ ~(D,  r) such that ~ has exactly n zeroes in d(O, r(x)) (taking account 
o/ multiplieities) for every x e D. 

For  every q, t e Z  with q< t ,  we will denote by  @q,t(D, r', r") the  subset of the 
]~(Y) e @(D, r', r") such tha t  N+(F~, r"(x)) : t, ~ - ( F ~ ,  r'(x)) : q whenever x e D. 

When no confusion is possible on the set D we will only write ~:(r) instead of 
~(D,  r), ~,,(r) instead of ~ ( D ,  r), @(r', r ~) instead of ~(D, r', r'~), @~ ~(r', r") instead 
of ~,~(D, r', r"). 

I~E~A~K. - I t  seems difficult to obtain a kind of Proposi t ion A for Lauren t  series. 
Of course, if a Lauren t  series i~(Y) lies in @q,t(D, r', r '~) by  definition / v  does have 
exact ly  t - - q  zeroes in the annulus { 2 e K :  r ' (x)<l~l<r"(x)}  for each x e D .  But  
there  is no converse, in the form:  

((If r '(x), r"(x) are functions f rom D to R~ (with bounds a, b such tha t  0 < a <  
<r'(x)<r"(x)  <b) such tha t  ~ h~s exact ly  n zeroes in the annulus {2: r ' (x)< IAI < 
<r"(x)} for each x e D, then  F lies in some set @q,~+,(D, r', r") )). The following 
counte~-example does show the problem. 

Let  t e K  with Ir < 1, and let P = { x e X :  I~l<lxl<l/l~l}. For  [ ~ l < ] x [ < l  let  
r'(x) = x, r"(x) = 1/I~1 and ~or ] <  lxl <~ / l~ l  let r ' (x)  = z / l ~ p ,  r " (x )  = I/1r P. :Let F ( Y )  = 
= 1 + x Y ~ - ~ " x ~ Y  2. Clearly N-(E~,  r'(x)) is not  constant  in D because when 
Ix[ < 1 , /~ - (F~ ,  1) = 0 while when Ix I = 1/l~l, N - ( F , ,  1/]zcp) = 1. However  we can 
show thnt  N+(F~, r"(x)) --  N - ( t ~ ,  r'(x)) ~- i whenever x e D. For  convenience, for 
each x e D, let us write F~(Y) ---- a. ~ a~ Y -~ as y2. 

Suppose first [ x] = I~]. Then lap]----1, 

{ l~l r~= I~1, [a~lr'= I~,P 

la~lr"= 1,  lair'---- I~P 

hence ~ - ( / ~ ,  r') : 0, ~Y+(F~, r") ~ 1. 

Suppose now [r < [x I < 1. Then 

lallr'= li]< 1 , 

l a l l r " =  > 1 , 

hence zV-(F~, r ' )  ~-- O, N+(E~,  r") ~ 1. 

la~lr'~= l~Plxl-~ 1 

la~lr"~= l~x~l < 1 
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Suppose now xl  : 1. Then 

hence N-(F~,  r') = 0, Zr+(F~, r") = 1. 
Final ly N - ( F ~  r') ~ 0, hr+(F~, r") = 1 is t rue  for 

1 < Ixl < ll l. Then 

la, lr"= ; 

hence N-(F~,  r') = 1, N§ r") = 2. 
At last, suppose Ix I = 1/lel. Then  

la~lr"'~ = > 

l i<lxl<l, Iqow, suppose 

1 1 1 

1 1 

hence N-(F~,  r') = 1, N+(F~, r") = 2. Thus this relation is t rue  for 1 < [x[ <1/]~ t. 
A Taylor  series /~(Y)~ ~n(r) will be said to have Hensel Favtorization in 7~n(r) 

(resp. in ~,~(r) n It(D)[Y]) if i t  m a y  be factorised in the form P(Y)  e G(IZ.) with P a 

n-degree monic polynomial  t ha t  lies in ~ ( r )  and G E ~0(r) (resp. G ~ ?s ~ t t (D)[Y]) .  
A Lauren t  series }~(Y)~ ~q,t(r', r") will be said to have Hensel Factorization in 

Y3q, t(r', r") if it  m a y  be !actorised in the form P(I~) ~ G(Y) with _P a (t -- q)-degree 

monic polynomial  t ha t  lies Y3o.t_q(r', tO, and G E ~3~q(r', r'9. 

REZ~AlCK. -- When a Taylor series _F(Y) (resp. a Laurent series F(Y) )  has HenseI 
t~aetorization in 7gn(r) (resp. in L~,t(r', r")), Hensel Eaetorization is unique. Indeed 
for each x ~ D, by classical results [A], we find back the Hensel  Lem m a  for 2w~ in 

T(r(x)) (reap. in 
Recall t ha t  set D in K is said to be in]raeonneeted if the  adherence of the set 

{ Ix - - a [ :  x ~ D }  is an in terval  in R whenever  a ~ D .  
Now D is said to be strongly infraeonneeted if  for every  hole d-(a, r) of D such 

tha t  r E IKI~ there  is a sequence a~ in D such that  [a~--a[ = Jan--a,~[ for every  

n =/= m l e a f .  
T-filters arc defined in leaf. 

TItEOl~ElW 1. - Let D be an open closed bounded strongly infraeonneeted subset of K 
with no T-filter and let r', r ~' be funvtions from D to R+, with bounds a, b such that 
O < a <r ' (x )<r"(x)<b whenever x ~ D. Let t, q ~ Z and let F ~ ~ t(D, r', r"). 
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Then /7 has Hensel /Tactorization in ~=,t(D, r', r"). 
In  the proof of theorem ! we will partictflarly use the following proposit ion B. 

PROPOSITION B .  - -  Let D be an open closed bounded infraeonnected set with no 
T-filter. Let a~ b ~ R with 0 ~ a < b and let q, t ~ Z with q < t. Let r', r" be functions 
from D to R+ such that 0 < a<r'(x)  <r"(x) <b whenever x E D. ~,t(D~ r', r") is closed 

in ~(D~ r', r"). 
' r") Suppose for eaeh m ~ N, /7~  has Let ~ be a convergent sequence in ~ , t (D,  r ,  . 

Hensel /Taetorization Pine G~ in ~q.t(D, r', r") with ~,~ a ( t -  q)-degree monic poly- 
nomial. Then the sequence _P,~ converges in ~o.t_~(D, r', r") to a ( t -  q)-degree monic 
polynomial t); the sequence Gm converges in ~.~(D, r', r") to a limit G. The limit iv 
of the sequence/7.~ has Hensel /Tactorization /7(Y.) ~- P ( Y )  ~ G(Y) in ~ , t (D,  r', r"). 

Whe~ we consider Taylor  series instead of Laurent  series, we can obtain results 

with weaker hypothesis.  

THEOaE~ 2. -- Let D be an open closed bounded strongly in]raeonnected subset of K 
with no T-]ilter~ let r be a bounded ]unction/tom D to R+, let M be a finite subset o ]D  
and let n E N. Let /7(Y) ~ ~(D, r) be such that /7~ has exactly n zeroes in d(O, r(x) ) 
(taking account of multiplicities) whenever x ~  D \ M .  Then /7 has a ]aetorization 
t ' ( Y )  ~ G(Y) in ~(D, r) with P a n-degree monic polynomial in H(D)[I~] and G( ]f) 
~ ( D , r )  such that 2V(G~, r (x)) -~  0 whenever x E D \ M .  I] /7(Y . )eH(D)[Y]  then 
G(Y) e H(D)[Y].  

COROLLAI~u -- Let D be an open closed bounded st.~vngly in]raeonnected subset o] K 
with no T-filter~ let r be a bounded funct ion/ tom D to R+ , let n ~ N, let/7 ~ ~,,(D, r). 
Then /7 has Hensel Faetorization in ~ , (D,  r). 

I f  /7 ~ H(D)[Y] then it has Hensel /7actorization in H(D)[Y.] ~ ~ ( D ,  r). 

I~E~ARK. -- The hypothesis (( D h~s no T-filter ~> could be hardly  avoided (unless 
assuming all the ~ are quasi-invertible). Indeed in the proofs of the main results 
we first divide the series /7(Y) = ~ ~ P by  ~ then we use the classical result  (( if 
~/~,  is bounded in D then (~ /~ )  ~ H(D) >>. I f  D has a T-filter this p roper ty  is some- 
times false as it  is proved in [S]. 

Comparison with Theorem 2 in JEll. 

The proof of Theorem 2 in [Ed] is not  correct  becuuse the proof of Proposit ion 2 
has a mistake.  Indeed in Proposit ion 2 we considered a Euclidean division of a 

c o  

Taylor  series / 7 ( Y ) - - - - ~ s Y . ~ e H ( D ) ~  with ~ : 1  by  the n-degree monic poly- 
n 8 = 0  

nomial io(Y) ~_ ~ ~ y~. For  each fixed x ~ D;  the Euclidean division of /7~ by  P~ 
s = O  

does exist in the Banaeh algebra of the Taylor  series convergent for Ix I< r(x) [A, 4.4.2 ]. 
Unfortunately,  unless providing H(D)~Y.~ (or a subset S con ta in ing /7  and P)  witha 
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suitable topology we cannot  deduce a division of /# by  P in H(D)WY ~ (or in N). 
Even  if we assume in Proposi t ion 2 the condition 

lira sup " ~-z ~-~ ~-z I(% ~ /C )~l~<~ 
8---~ c o  

tha t  we assumed in Theorem 2, it does not  seem possible to prove Proposi t ion 2. 
t towever  we have no counter-example proving it could be false. 

In  the present  article the Eucl idean division of /~ by  P is possible in ~;(2), r). 
co 

Consider now a Taylor  Series F(Y) = ~ ~ Y ~  ~;~(D, r) satisfying the hypothesis  of 
s = 0  

Theorem 2 in the present  article. For  r(x) we can simply take  the radius ~o(x) of the 
smMlest disk d(0, o(x)) containing exact ly  n zeroes of F~ (taking account  of mul- 
tiplicities). 

I 1 i i/n--~ Then  @(~) -  max/!(~ (x)/G(x))ll~ hence the  ~ sa t is fy  
l = 0 , . . . ,  n - - 1  

l im (sup 0 whenever l =  O , . . . , n - -  1 
8 - + o o  a E / )  

hence 

(i) lira ~ ;~tr whenever  J = O , . . . , n - - 1  
8---> Co 

Part ictf lar ly in assuming ~ divides all the ~ ,  as we did in Theorem 2 of [Ed], 

we can easily deduce 

(2) lira' ~-~ "-'~ ~-~ 
8--> oo 

Indeed when D is open with no T-filter, every element ] ~ H(D) is quasi-invertible 
(i.e. it has a faetorization in the form P(x)c h(x) with P a polynomial a~Id h an 

invert ible element in H(D)). Then for ~ny fixed element  u e H(D) there  is a constant  
c > 0 such tha t  Iluf]]o>~cIl]ilD whenever  ] ~H(D) because by  [Ell uH(D) is a closed 
ideal, hence iluflID and ]l[u/llt = II]I]D define two equiva!ent  topologies by  Banach 

Theorem. 
'~:'~-~ "~V~ "'~ in the form Here,  since ~ divides ~ in H(D), we can factorise t ,  ~ . !  

[r Clearly ($'/~z~ H(D), hence the hypothesis  (1) implies the 

hypothesis  (2). 
Thus, our present  hypothesis  appears  to be a little bit stronger than  in [Ed]. 

However ,  in the present  article, Theorem 2 does not require ~ to divide all the  ~ 
in H(D). For  example  the polynqmial  F ( I  z) =- x 3 @ x ]z @ y-z does satisfy the hypo-  

thesis of Theorem 2 with n = 1, and D = d(0, 1), M = {0}. 
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2 .  - B a s i c  r e s u l t s .  

The re]lowing L e m m a  1 is immediate  

LE_~iA 1. - Zet D be a closed bounded subset of K,  let r, r', r" be bounded functions 
defined in D, with values in R+, with a, b such that 0 < a<r ' (x )<rH(x)<b whenever 

x e  l).  

HI" ][[ ~ defines on fs r) a norm of linear space that makes it a Banach space. 

IN" H]~ '~ defines on ~(D, r', a norm r") of linear space that makes it a Banach space. 

Let log be a logari thm function of base p :> 1 and let v the valuat ion defined 
on K by v ( x ) = -  log [x]. 

In  order to recall easily some classical results and processes used in the rings 
L(a, b) we define again the valuat ion function v(f, #). 

+ c o  

Let  l (~)  = ~: a~ : ~ e  L(a, b); ~or ~ e [-- Log b, -- hog a]; let v(/, ~) = i ~  (v(aa + 
+ i , ) .  - 

LElVllW_A 2. - Let D be a bounded closed infraconnected subset of K and let r be a 

function from D to R+ with bounds a, b such that 0 < a < r ( x ) < b  whenever x ~ D. Let 
F ( Y )  e ~(D,  r) and let P(  II) ~H(D)[Iz] N ~ ( D ,  r) be a n-degree menlo polynomial. 

A)  There exists G ~ ~(D,  r) and R e H(D)[Iz] with deg (R) < n, such that -F -~ 

PG ~ R. Both (7, B are unique. 

B) _For each x e D we have 

(1) 

(2) 

(3) 

with Gm, R ~ e  H(D)[Y],  deg 2g~< n. 
converges to 0 in ~(D,  r). 

v(R,, - log r(x)) > ~(r , ,  - log r(x)) 

v(G~, -- log r(x)) >v(-F,--  log r(x)) -- v(P, ,  -- log r(x)) 

iv+(r + R, r(x)) = iv+( r ,  r(~)) = n .  

C) Set r ( ~ )  = ~ ~ ]~ and for each n ~ N, let ~,~,(]~) = ~ ~, :(~, Zet-F~ = L'G~ + R~ 
8 ~ 0  s = O  

Then the sequence G~ converges to G and R~ 

PP.ooF. - Is G and R exist, they  are unique. Indeed for each x ~ D we have 
-F~ = -P~G~ -[- R~; this is the Euclidean division o~ the Taylor series F~ by P~ in the 
ring of the series convergent in d(0, r(x)) and we know they  both are unique. Also 
they  verify (1), (2), (3) by  classical results ([A], 4.4.2 and [L]). 

When F is a polynomial the Euclidean dixdsion by the monie polynomial P does 
exist in H(D)[Y] then we have G e H(D) [ I  z] and R e H(D)[Y]  with deg/~ < n such 
tha t  zv = _PG ~-/~. 
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co 

Now suppose 2w is a Taylor  series ~ 1 2 ~  ($~aH(D)). For  each m e n  let 

/7(12) == ~ ~ p and let / ~  = PG ~-k  Rm be the Eucl idean division of / ~  by  P.  

B y  (1) we can easily show the sequence / ~  is a Cauchy sequence in 3;(D, .r) for its 
. 1 o norm 111' 115 !:~m~ed the Eucl idean Division of F,~+~-- Y,~ is P(G,,~+~-- G~,) -I- (t4,+~-- 

- - / ~ )  hence v((R,,+~-- R~)~, -- log r(x)) > v((F.~+~-- t',,)~, -- log r(x)) there  b y  we have 

[lI/~+l-/t~AIF < IIIFo~+~-/~.dF so (/~,,,) is a Cauehy sequence; it  then  converges to a 
polynomial  R e l l (D)[12]  of degree < n. Similarly since r ( x )> a  > 0. by  (2) we can 
see the sequence G~ is a Cauehy sequence 3;(D, r);  hence it  converges to a Taylor  
series G(12)e ~;(D~/~) such tha t  F = P G  @ R. L e m m a  2 is then  proved.  

LE~U_A 3. - Let D be an open closed bounded in]raeonneeted subset o~ K and let r 

be a function ]royt D to R+~ with bounds a, b such that 0 < a <r(x) <b whenever x ~ D. 
q 

.Let M = {o~1, . . .  , O~q} c ~ and ]or every @ > O, let D e : D ~  ~j d(oti, ~) and let r o be the 

restriction o/ r in D o . ~=~ 
Let n e N~ let ~ ( 1 2 ) e ~ . ( D ,  r) and assume ]or every @ > O~ F has Hensel. 

~aetorization in 3;,(Do, %). Then F has Hensel Faetorization in ~,(D~ r). 

P~ooF. - By  hypothesis  we can define a n-degree monte polynomial  P(Y)  and a 

Taylor  series G(Y) such tha t  P ( Y ) e H ( D Q ) [ Y ]  and G ( Y ) e  3;(/)0, %) whenever @ > 0 
and _F~(Y) = P~(Y) e G~( I z) whenever  x a D \ M  and the n zeroes of P~ are the zeroes 
of F~ in d(0, r(x)). Since r(x)<<.b the coefficients of P~ are clearly upper  bounded 
by  max  (1, b ~) in D \ M .  

Since they  are in H(Do) whenever @ > 0, we know by  the Lem m a  9 of [E~] they  
do belong to H(D). By Lemma  3 it  is obvious G(I2) e ~(D,  r). Indeed  b y  Euclidean 
Division in 3;(D, r) we have /~(12) = P(12), F(12) +/~(12),  R(12) e H(D)[12]. 

Since /~(Y)  = P~(12)G~(12), whenever  m e D \ M  clea.rly we have G~(12) = F~(12), 

R~(Y) = 0 whenever  x e D \ M ,  hence finally R = O, V = G. 

3 .  - S e t s  w i t h  n o  T - f i l t e r .  

We will of ten use .;he following Lemmas  

L~zcrgx 4. - Net D be a closed bounded subset of K with no T-filter and let ] a H(D) 

be such that /(x):/: 0 whenever x ~ D. 

Then f is invertible in H(D).  

PBooF. - Suppose ] is not  quasi-invertible. Then it  approaches zero on a pierced 
filter 5- [E~]. Since ] has no zero in D, then  ~ is not  a Cauehy pierced filter, hence 
it  is a large pierced filter [E3]. Then f also approaches zero on a T-filter [E3] what  
is impossible by  hypothesis .  Hence f is qnasi-invertible in H(D). Since ] has no 

zero it  is invertible.  
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L e m m a  5 is classical [A, K . ,  L] 
q 

LE~d-~A 5. - -  Let p(~z) = ~ a ~ Y , ~ K [ y ] ,  let n o n  with n <q,  and let r e R +  be 
i=0 

such that N+(P,  r) -~ n > N - ( P ,  r) = h. Then r -~ ]a~ea.[ ~/(~-h). 

~EMM_X 6. - Let D be a closed bounded subset o/ K with no T-jilter and let r be a 
/unction ]~vm D into R+ with bounds a, b such that 0 < a < r ( x ) < b  whenever x ~ D. 

Zet n e N, let ~ ( Y )  = ~, 2. P e  ~ , (D,  r) and assume N+(F~, r(x)) > N - ( ~ ,  r(x)) when- 
ever x a D. 8=0 

Then there exists 2 < ] such that 2]2.(x)[r(x)'> [2.(x)Jr(x) 8 whenever x ~ D, whenever 

s > n .  

PROOF. - B y  L e m m a  4 we know t h a t  2. is invert ible  in H(D), hence we can 
clearly assume 2. = 1 withou~ loss of general i ty.  

Le t  l e N  be such t ha t  12,(x)lr(x)~<a/2 whenever  x ~ D ,  for s>l .  Then i t  only 

remains  to p rove  for each s = n ~ 1 , . . . ,  l, there  exists @~< 1 such t h a t  @~[2.(x)Jr(x)"> 

> 12.(x)[r(x)" whenever  x e D. 
B y  the  hypothes is  N+(F~, r(x)) > N-(lv~, r(x)), b y  L e m m a  5 we know t h a t  for 

each x a D, r(x) is in the  fo rm 

r(x) : ]2 1](n- - l (x ) )  with r(x) > [2h(x)I :l(n-h) ~t(x) 

whenever  h : 0, . . . ,  n -  1 hence we have  

(1) 12,(x) 1 

whenever  x ~ D, whenever  h = 0~ ...,  n - -  1. 
B y  L e m m a  8 in [E4] i t  follows t h a t  

2n--h 2s--n (2) 118 l g < l .  

Indeed,  if (2) is false, b y  (1) we have  lf~-a2~-'tl~ = 1. 

Since D is s t rongly  infraconnected,  b y  L e m m a  8 in [Ed] there  exists g E D such 
t h a t  12~(~)~-~2a(~) ~-"] = 1 in contradic t ion with (2). 

n--h s--n l[(n--h) Then we can t ake  9~ : (112~ 2h l]~) and  so, L e m m a  6 is proved.  

P~OPOSITIO~ P. - Zet D be a closed bounded strongly in]raconnected subset o] K 
with no T-Jilter. _Let r be a /unc t ion  ]rom D into R+ with bounds a, b such that 0 < a < 
<r(x)  < b  whenever x e D, let n e N and let ~(Y)  e H(D)[Y]  ~ ~n(D, r). Then F ( Y )  
has Hensel Factorization in H(D)[Y]  • ~n(D, r). 

l 

P~ooF.  - Le t  F (Y)  = ~ 2, ys.  B y  hypothesis  2~ does not  vanish  in D;  since D 
s=O 

has no T-filter, b y  L e m m a  4, 2. is invert ible in H(D), so we can clearly assume 
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~ - - 1  wi thout  loss of generMi~y. Then the polynomia l  2P~(~) = ~ ~. :Y, is monie 
S ~ 0  

and  P1 eS; . (D,  r). So we can make  the  Eucl idean Division of ~ b y  P~: F (Y)  = 
= P ~ ( Y ) ~ ( Y )  @ l?~(Y), ~ ( Y )  e ~ ( D ,  r), I ~ e H ( D ) [ Y ] ,  d c g R ~ <  n. Then ~he poly- 
nomia l  P~ = P t  @ R~ is monic  and  it~ lies in ~ , (D ,  r) also. Thus,  by  an immed ia t e  

induct ion we can define sequences P , , = - P ~ _ I @ / ~ _ ~ ,  ~ . , , a ~ ( D , r ) ,  R . ~ H ( D ) [ Y ] ,  
deg R.~< n such ths~ F = P,~G.~@ R., wi~h relat ions (1), (2), (3) satisfied for each m. 

(1) 

(2) 

(~) 

..(n., - log r(~))>~(~. ,  - l o g  r(~)) 

v ( G . ,  - -  log r(x))  > v ( t " . ,  - -  Iog r(x))  - -  v ( P . - -  log r(x))  

~ + ( ~ .  + ~ . ,  r(~)) = . v §  r(~)) = n . 

Now we can assume d(0, r(x)) is the  smMlest disk of center  0 contMning exac t ly  n 
zeroes of F ,  (takLng account  of multiplicities),  whenever  x ~ D. Indeed,  if we p rove  

Proposi t ion P when r is so, i t  is obvious i t  holds when r is bigger as long as d(O, r(x)) 
only contains n zeroes of / ~  whenever  x ~ D. Thus  we can assume N+(/7~, r(x)) > 
> ~ v - ( ~ ,  r(~)) = l(x). 

Then we can app ly  L e m m a  6 and  we h~ve 0 > 0 such ~hat v($~(x)) -- s log r(x)>~ 
- -  n log r(x) @ 0 whenever  x ~ D, whenever  s > n, hence 

. ( ( F  - P~) . ,  - l og  r(~))  - v ( F . ,  - log  r(~)) >10 

whenever  x ~ D. 
Then we can follow the  classical way  like in [A], ~.4.4. F i r s t  we can p rove  t ha t  

v(G.~+~-  G,~)., - Iog  r(x)) > toO.  

Then ~he sequence Gm is a Cauchy sequence for the  no rm ]1[" Ill" in ~he space H(D)[Y].  
Hence (G.O converges to a l imit  G eH(D)[Y] .  Likewise,  ~he sequence P~  con- 

verges in H(D)[Y] to a n-degree monie po lynomia l  P tha~ also lies in S:~(D, r). At  

last  the  sequence R~ converges ~o 0. So we have  F = P G  in TI(D)[Y]. 

NOTAtIOnS. - Le t  a, b ~ R~ with a<~b. We will deno~e b y  A(a, b) She set {x e K :  
etKlxIKb}. Let  q, t ~ Z  with q'<~t; Lq, t(a, b) will deno~e the  set of the  ]~.L(a,b)  

with N - ( ] ,  a) -~ q and  2V§ b) -~ t. Le t  ]]. I[ = l] "][~(a,b)" 

L E ~ A  7. - .Let t, q ~Z,  t > q, let a, b ~ R+ (0 < a < 1, a < b) and let -F1, F2e T%t(a, b). 
§  

A s s u m e  j I F l J l -  i[F,!l > ] i F 1 - r . [ ] .  Let r ~ ( x ) - -  Z ~. ~" and let _4 = I~d and ~ssume 

A ~ I .  Let _P,G~ be the Hensel ]aetorization o/F~ with P~ the monie polynomials whose 
zeroes are the t -- q zeroes of -~ in A(a, b) (i - -  1, 2) and let @ > 0 be such that for each 

zero ~ oi P ,  d(~, q ) c  A(a, b). 



A~hi~w EScASsV~: Lubin-Hensel ]aetorization for Zaurent series 83 

Then 

l i .~ , -  ~I1'~"-~ ! b'-"l l .~,-  .~li " -o )  ! 

P g o o ~ .  - L e t  ~r be  a zero of F~ in A(a, b). T h e n  we h a v e  

+ o o  

L e t  G~(Y) = ~_, g~ Y~; t h e n  [d~(~t)[ = lgqII2[~ w h e n e v e r  ), cA(a ,  b). Se~ n = t - -  q. 
- - o o  

o n  *he oUher ha,~d IlF~]! > I~,lb', I~,lb' = b"lg,lbq h e n c e  fg,~[ = I~,1, I ~ (~ ) !  = Ig~ll~[ ~= 

T h e n  

hence  

I~,I I~1 ~ 

IP2(~,)I< I I F , -  .F~IJ 

T h e n  i* is eas i ly  seen the  n e a r e s t  zero ~2 f r o m  ~ of /)2 is such  t h a t  

t h e r e b y  we h a v e  

(1) 

.A.a~ 

11"~1 - "~21t 1/ .  
(Aaq)ll ~ 

L e t  Fl(x)  = (x - -  ~i)_~1, F~(x) = (x - -  a2)F~; let  D = A(a, b)\(d(o~, ~) U d(o:~, 0)). 
B y  classical  resul ts  i-1~, E~] we k n o w  "that if  ~ e L ( a ,  b) t h e n  I]FH~= [I/vii. H e r e  
we h a v e  

(2) [[F~-- F,~[I = IIF~-- F~n~<max (t]/7~- ~ ( 1 1 ) )  

On the  f i rs t  h a n d  we h a v e  

(3) ~1 ~11 .<~, ~2o 1 L (1) 

On the  second  h a n d  

(,~) r (  1 l~)ll<.r~oli ~ '  r I ~ -  ~1 l IPs-  -F~ll ~z', 
a ~ <~ .A.il~o~aql% .~ 
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1 1 
a A.tlmQ~aqlm 

Finally we have 

A 1/~ ~o I ~,~/~ 

hence with greater reason 

(5) / l ~ -  P~il < IIF~- ~[I TM 
A~aql  . 

+ o o  

Let Y~(~) -~ ~ ~ P .  Then by  classical results [A] we know tha t  
- - o o  

-~+(F~,  --  log b) = t --  1 ,  I~,l = la.I 

hence we ~re set back to the same problem with n --  1 instead of n, ~ instead of 

/v~. Let  us remind now tha t  A < I ,  0 < 1 ,  a < l .  

By  an immediate  decreasing induction after  n similar operations we obtain 

A.mo2"aq 

Then t!(p,- Pl)G, li<max (llF,-- ~,II, !IP~(G~- ~,)II). By hypothesis I~(~)l -~ 

= lgoll~]~ = ~ l~ l~  h e n c e  ]O~(~) l>~t  rain (aq, bq) t h e r e b y  

Now 

A rain (aq, bq) 

A m ~ a  �9 A m O~me~q 

hence clearly: 

b~iI.F~-- .F il~/m ! 

Final ly 

[Ip~- P 1[ < An+ 1 O~maq 

and so lemma is proved.  
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COI~0L~,ARY. -- Let Fro(Y) be a convergence sequence o/ limit ~ in L(a, b) /or the 
canonical norm ]l" ][, and let P~G~ be the Hensel ~'aetorization of lyre in Z(a, b), let 
PG be the Hensel ~actorization o] ~.  Then 

P = l ira P ~ ,  G = l ira G,~. 
m - ~ o o  m--~ oo 

There are integers q < t such that F ~ Lq.,(a, b ) , / v ~  Lq ~(a, b) for m high enough. 

P~OOF. - By  the classical H e n s e l / , e m m a  in L(a, b) there  are integers q < t such 

tha t  /~ e Lq, tia, b) [A]. Then P is a (t -- q) degree polynomial.  Let  /F(Y) = ~ a, P ,  
- ~ o o  - - o o  

2',~(Y) = ~ a~,,~ P .  We know a~ = lira a~,~ whenever  s e Z. Since 2' e Lq,~(a, b) we 
h~ve - oo m~ oo 

]at[b ~ > ]a~lb~ whenever  s ~ Z ,  

[a~[b * > [a~ [b ~ whenever  s > t 

thereby  the inequalities hold for [at,~[, [a~,~[ when m is high enough. We also have 
the symetr ie  relations with la~], thereby Free L~,~(a, b) for m high enough. 

Then Lemma  7 shows es~sily tha t  

P = l i m  P , ~ ,  G = l i m  G ~ .  
m--e- co ~ - - >  oo 

PROOF Or PnOP0SITIO~ B. - Fi rs t  we can short ly prove 2~,t(r', r") is closed in 
2(r', r"). Let  U~ be a Cauehy sequence in 2~,t(r', r") and let U be its limit in 2(r ' ,  r"). 

By  Corollary L~,,(a, b) is closed in L(a, b) hence 

N+((/Tt)., r"(x)) = t whenever x ~ D ,  

~ - ( ( F o ) . ,  r  = q wheneve r  x e D ,  

so U ~ 2~,~(r', r"). 

In  the following, in order  to apply  easily Lem m a  7 we will suppose b < 1, what  
we can do (by changing of varia~b!e) without  loss of generality. 

Then we have r ' ( x ) <  1. For  each x ~ D ,  let [[.]!~ be the canonical norm on 
L(r '(x),  r'r(x)) and let lit" ][] be the norm on ~(r ' ,  r"). 

+ c o  + c o  

Let  F(Y)  = ~ ~ Y~ and for each m ~ N let F~(Y) = ~ ~,.,,. P .  By  what  fore- 

goes, F ~ ~,.,(r ' ,  r") hence ~,, ~, cannot vanish in D. Since D has no T-filter ~,, ~ 
are invert ible by  L e m m a  4. 

Le t  B > 0 be such tha t  rain (l~,(x)] , [$q(X)[)>B whenever  x ~ D. 



86 ~kLAX~ Escnssvm:  Lubin-Hensel factorization for Laurent series 

Let  0 = mh~ (bt~ a,, b ~, a ~) and  let n ~ N be high enough to h~ve IH~ - ~1[] < BO, 
whenever  m > n. Then  r"(x)t>O, r'(x?>O whenever  x ~ D hence [St(x) - -  St.~(x)I < B 

a n d  l$~(x) - ~,,~(x)I < B,  so t h a t  

!~=,~(x) l = I~ (x )  l > I~,~+~(x)  - ~ , ~ ( x )  l 

whenever .m> u~ whenever x ~ D. 
Then the relat ions IIF~+~--Lv~iI~< ]lE~]]~ ~re clearly verified when re>u, (for 

e~ch x e D). Thus we ee~n ~pply  L e m m ~  4. 

:For  m ~ u ~  w e  have 

' ~< [ I ( F ~ + ' ) ~ -  (~m)~llY(t-')! 

11 ( 6 % + ~ ) ~ -  ((~.,)~ll �9 ~ I~ (x )  I~r'(x) ~`~-~ 

hence with  grea ter  reason 

whenever  x E D~ the reby  

IIIG~+~- Go~III < 

Simile, f ly  we h~ve 

Baa~(t-q) 

Bq  a 2( t-q) 

B t-q+ l a ~,t-q 

Thus the  sequences G~, P~  are clearly convergent  in ~(r', r"). Let G-~limoG~ , 

P = l i r a  oPt. .  Obviously,  F = P G  and by  classicM iesul t  P~G~ is the  Hensel  F~e- 

tor izat iou o f / 7  in L(r'(x), r"(x)) hence PG is the  Hensel  Fgctor izut ion of F in ~(r ' ,  r'~). 

Tha t  concludes the  proof of Proposition B. 

4. - Proofs  o f  the  T h e o r e m s .  

P~oros imio~ ~ Q. - Let D be an open closed bounded strongly infraconnevted subset 
of K with no T-filter, let r be a function from D to R+ with bounds a, b such that 
0 < a<r(x )<b  whenever x E D .  Let n ~ N  and let F e ~ , , ( D ,  r). Then F has Hensel 

Factorization in ~.(D, r). 

P~oo~'. - Le t  F (Y)  = ~ y8 and  for every  m E N, let F~(Y)  = ~ ~s ys. 
s=0 s=O 

Then F . e ~ . ( D ,  r) for every  m > n ,  hence by  Proposi t ion P, /g~ has Hensel  
Faetor izut ion in ~:,(D~ r) i n  the  forln P,~G,~ with  Pm a n-degree monic  polynomial .  
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Without  loss of generality we can assume $0 is not the nul element in H(D). Indeed 

if ~o = ~ = 0, ~ r 0, then ~ is factorized in the form Y~ ~#(]Z) with _#(Y) = ~ ~ P 
and ~0, different of the nul element in H(D). ~=0 

Since D' is  open with no T-filter, then ~0 is quasi-invertible hence the set Z of 
the zeroes of ~o in D is finite. We obviously have N§ 0) = IV+((/7,0, , 0) when- 
ever r e D \ Z ,  whenever m e N. 

Let  @ be > 0  and let D e =  D \ (  U d-(~, @)) and let ro be the restriction of r 
ecffZ 

in Do. Then ~ is invertible in H(D~) hence there is co > 0 such tha t  [~o(x)[>c ~ 
whenever x e D o .  l%r each x e D o ,  if e is a zero of ~ , ,  by  Lemma 5 we know tha t  
f o r  e w r y  = 0 ,  . . . ,  n - -  1 w e  ha e l ' l >  considering the constant  
function r~ defined in D~ by 

r~(z) = ~ m ] n  - -  

! 

we can see tha t  e a c h / ~  has no zero in d(0, re(x)) whenever x a De, h e n c e / ~  does 
! ! 

belong to ~0,,(Dq, rq~ r ) .  Since rq is a strictly !positive constant  function we can 
obviously apply Proposition B to the sequence F~ hence /v  has Hensel Factorization 
in ~0,.(Dq, r~, re) so i t  also has Hensel Factorization in ~.(De,  re). Then by l~emma 3 
/~ has Hensel Faetorization in ~ ( D ,  r). 

TI~IEO]~E~ 1. - Let D be an open closed bounded strongly in]raeonneeted subset o / K  
without T-/ilter, and let r', r" be /unctions de]ined on D with bounds a, b such that 
0 < a~r ' (x )  <:i'"(x) <b whenever x ~ D. .Let t, q ~ Z and let .E ~ ~q,~(r', r'~). Then F 
has Hensel Faetorization in ~,,t(r'~ r'~). 

PgooF. - Firs t  we will prove Theorem when /~ is a Taylor series. Then /~(Y) 
e ~t(..,r). By  Proposition Q , / ~  has the Kensel Faetorization P(Y). G(Y) with P a 
t-degree monie polynomial and G ~ ~(r"). 

Since /~ ~ ~, t(r" ,  r') for each x a D, F~ has exactly t - - q  zeroes in the annulus 
LJ(r'(x), r hence i t  has exactly q zeroes in d-(0, r'(x)). 

For  each x e D let d(0, @(x)) be the smallest disk of center 0 containing exactJy q 
zeroes of F~. Then we can clearly apply Theorem to F in ~(@) so tha t  we have 
Hensel Factorization in the form Q(Y)H(Y) with Q a q-degree monie polynomial. 
We can easily verify Q does divide/~ in H(D)[Y]. Indeed, for each x e D if we write 

P (Y) = 1-I ( Y -  
j = l  

q 

we obviously have @~ = 1-[ 

with I~,-I< taj+~l, 

(Y- -  ~) ,  hence Q~ divides P~ in K[Y]. In considering 

the Euclidean division of P by Q in H(D)[Y] the remainder B does verify R~----- 0 
whenever x e D hence R ---- 0. 
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Let  P ( Y )  ~- T(Y)Q(J/)  in H(D)[Y].  Then T ,  has eaet ly  t -- q zeroes in A(r'(x)7 
rqx)) whenever  x e D, so in writing F ( Y ) =  T(Y) [Q(Y)G(Y) ]  we have the  Hensel 
faetorizat ion for JY(J() in ~,~(r ' ,  r~). 

Immedia te ly  we also have the Hensel  Faetor iza t ion in E~,~(r', r") for Lauren t  
h 

series F ( i  r) in the form ~ @~ I ~ (n > 0), in considering _~(Y) = :Y~F(Y). 
s = - - h  +cr 

At last in the general case, let F(:g) = ~ $~ P .  By  definition we have 

W-e have jus~ proved the Hensel  Faetor iza t ion exists for each 2~  7 so it  holds 
for F by  Proposi t ion B. 

NOmATI05. - J~et a e K, @1, @~ R+. We wiil denote by  F(a,  0~, @~) the set {x e K:  

LEIVISIA 8. - Let D be a closed bounded subset o] K that contains a disk (d(0, ~). 
Let r be a bounded ]unction ]rom D to R~_ such that lira r(m) = 0. 

' X - ~ ' O  

t~or each ~ e ]0~ ~[, let De = D~d-(O,  @), let rQ be the restriction o/ r in De 7 and 

let ae be the lower bound o/ r in I'(O 7 @, d). 

We suppose ae > 0 whenever @ > O. 

Let G = ~ b , Y  ~ be a Taylor series that lies in ~(De, ro~) whenever @ > O. Let G.~ 

be a sequence o] ~2(D, r) that converges to G in ~2(De7 re) whenever @ > O. Then 

O ~ ~L(D~ r) c~nd G~ converges to O in ~(D,  r). 

PI~OOF. - We first prove t ha t  G(Y) ~H(D)~Y~.  Suppose b~r for some l ~ N .  
Either  b~ has a pole at 07 or it has an essential singulari ty at 0. In  all cases, by  
classical results, for every  @ > 0, there  exist  @17 Q~ with 0 < @~< @2< @ such tha t  
v(b~, #) is in the  form A @ t# for # ~ [-- log @37 -- log ~1], with ~ e Z, t < 0 and 

(1) v(b,(x)) = v(b 7 

Let  ae be the lower bomld of r in F(0,  or7 @2). Let  ~ = p-V(b,-1o~QO, and let 
c~ 

s = ~(ae)L There does exist n ~ N  such tha t  IIG~,~ - Gl!ro~ > e .  Le t  G,~= ~ b  ..... Y~. 
S = 0  

Then lb~,~,(x)- b~(x)la~ e < e for all x~D~,  hence [bz.~(x)- b~(x)[ < ~/ for all x e F(07 

q~, @~). 
Then (1) shows tha t  v(bz,.,(x) -- b~(x)) > v(b,(x)) hence v(b~,~(x)) -~ v(bt(x)) -= 

= A -b tv(x), when x s F(0, @17 @3), thereby  

v(b~,~,~, #) = A @ t/~ for # ~ [-- log 93, -- log @1]. 
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But  b,.m~ H(D),  hence b,,~e H(d(0, ~)) hence the function ~ -~ v(b,,~,/z) cannot 
be A + t / ~  with t < 0 .  So we see tha t  b, e H ( D )  whenever s e N .  

In  the same way we can prove now tha t  l im I]b~Y~t],= 0. Let  ~ e ] 0 ,  ~[ and 

set A = a e , ,  and let 0 o e ] 0 , ~ [  be such tha t  r ( x ) < a  for ]x]<~o. Let  e > 0  and 
let 2VeN be such t h a t  ]b,(x)[r(x)*<.<e whenever x e D o , ,  whenever s>lV. Then 
[b,(x)l~'<e whenever x e F(0, ~ ,  ~) hence 

llb, ltr(o,o,,o)~t'<~. 

On the other hand, since d(O, eo) c d(O, b) c D and b,e H(D) we have []b,[ld(O,o.)< 
<I]b~[]a(o,~)= Hb,[[r(o,~,,~). Thus for every s > N  when x ~d(0, Co) we have 

Ib,(x) l(x)" < lib, ]la(o,eo)~t~ < ]lb,/Ir(o,o,,~)3,' < 8 .  

Of course, by  hypothesis when x e D~. we also have Ib,(x)]r(x)~<e, hence finally 

Ilb, Y,H,<e for s>_~. 

That  finishes to prove G(Y)~ ~(D, r). 

Lv,~_MA 9. - Let D be an open bounded closed in]raconneeted subset of K with no 
T-filter and let r be ~ bounded function from D into R+. Zet n e N and let F ( Y )  = 

= ~ $~ 7# ~ e ~ ( D ,  r). Assume there is some i < n -- 1 such that $~ =# O, and let o~, ..., ~ 
s = 0  

be the points in D such that $o(~J) . . . . .  $~-1(~,') = 0 whenever ~ = 1, ..., q. For 
q 

each @ > O, let De = D ~  U d-(o~i, Q); there exists ae> 0 such that r(x)>ae whenever 

x ~De.  i=1 

P~ooF. - By  hypothesis .hr+(F~, r(x)) = n whenever x e D, hence by Lemma 5 

~,(x) 11(,,-~) 
r@)> max  

Since D is open with no T-filter, there does exis~ h < n such tha t  $~ is quasi- 
invertible. Let  ill, ...,fl~ be the zeroes o f  ~r in De. 

For  each j there is l(j) such tha t  ~(j)(fl~)r 0 hence there exists 9 'e f0, Q] such 
tha t  I~,j)(x)l has a lower bound 0s>  0 i n d - ( f l j ,  ~'). 

Let D ' =  D~\ ( . J  d(fl~, Q'). Then ~, is invertible in H(D');  hence there exists 
i = l  

2 > 0 such tha t  I~(x)]>2 whenever x e D. Thus in D' we have 

, 
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then in each d-(fl~ @~) we have 

r(x)> ~(J)(x) 1/(~-~(J)) > (0J) 1/(n-z(~)) 
T (%T 

Let  0 = l<J/A~ml~ ~ j ~ j  , then  we can t ake  a~ = rain ((2tb) 1/(n-h), 0(. 

] ]E~IA 10. - Let D be a closed bounded in]raeonnected subset of K,  and let 
q 

~q~ D. ~et o~ ~ ~_{_ and let D ~ :  D ~ (  U d-(o~i, ~)). 
x 

Let r be a bounded function from D to R+. Eor each i = l~. . .~q let De~= 
= D e [.J d-(~i~ @) and let r~ be the restriction o] r in DQ.~. 

Let F( X) e ~(De,  r). I f  ]or each i --- 1, ..., q, E e ~(D~,~, r~) then E e l ( D ,  r). 
co 

P~ooF.  - Le t  /v (y )  = ~ ~ y~. Fo r  each s e N, ~ lies in H(De,~) whenever  i = 
S : 0  

= 1, ...~ q~ hence b y  the  Mittag-Lett ter ian Decomposi t ion Theorem on the  infr~- 

connected set  D~, i t  is easily seen t h a t  ~ e  H(D).  
On the other  hand  we have  ~im I]~Y~]I, ~ - 0  whenever  i = ! ,  . . . ,  q. Le t  e > 0; 

there  exists ~(~) such t ha t  I~(x)]r(x)~Cs whenever  x E DQ,~ whenever  s>s when- 
ever i - ~  1, .. . ,  q. Hence,  we clearly have  [~(x)[r(x)*<e whenever  x ~ D ,  whenever  

s>~V(e) a.nd so, L e m m a  10 is proved.  

Tm~onE~[ 2. - Let D be an open closed bounded strongly in]raeonnected set with 
no T-filter. Let M be a ]inite subset of D. Let r be a bounded/unction ]rom D to R+. 
Let n ~ N  and let F ( Y ) a ~ ( D ,  r) be such that ~Y+(~,  r(x)) -~ n whenever x ~ D ~ M .  
Then ~ has Hensel ~aetorization LP(Y)G(:Y) in ~(D,  r) with _P a n-degree monie 
polynomial and G(TK) ~ ~(D,  r) such that I~+(G~, r(x)) -~ 0 whenever x e .D~M.  

P~oo~.  - Le t  F ( Y ) - ~  ~ ( x ) P .  Wi thou t  loss of general i ty  we c~n assume ~o 
S : 0  

is not  nul  in H(D).  Indeed  if ~o . . . . .  ~ ~ 0, Sa+~=/= 0 wi th  h < n, we can f~e- 

torize /~ in the  fo rm Y~/~(Y) with  /0(y)  = ~ 2~ 17~ and  )~ r 0. 
S = 0  

Let  Z be the  set of the  points  ~ in D such that  ~0(~) = 0 and  let M ' =  M k )  Z. 
For  each @ > 0~ let D e = - D \ ( [ _ j d - ( g ,  @)) and  let r o be the  restr ic t ion of r 

in D~. ~e~' 
]~y L e m m a  9 there  exists  a e ~  0 such t h a t  r(x)>~a~ whenever  x a D ~ .  On the 

o ther  hand  F(Y)  belongs to ~ ( D ~ ,  r~) hence b y  Proposi t ion Q , / 7  has Hense l  Fae-  

tor izat ion .P(Y)G(Y)  in ~ ( D ~ ,  re) (with P a n-degree monic polynomial) .  

If we can p rove  t h a t  for each ~ e M '  we have  P(Y)  e H ( D ) [ Y ]  and  G(Y) e 
e ~ ( D ~ 9  d_(~., @), re,~) (with %,~ the  restr ic t ion of r in DeW d-(~, @)) then  conclusion 

will follow b y  L e m m a  10. 
Thus wi thout  loss of genera l i ty  we can assume M '  has only one poin t ;  t hen  we 

can also assume this poin t  is 0. 
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Firs t  suppose r(0)ve 0. By  the hypothesis  on D, all the ~ are nul  or quasi- 
invertible in H(D) ;  by  the hypothesis  

(1) F~eT~(r(x)) for x e D \ M ' ,  we have ~ ( x ) #  0 for every  x #  0, hence $~ 
has a factorization x~'O~(x) with 0~ invertible in H(D). 

Also by  (1) we have I$~(x)[r(x)~-~< l~=(x) l hence 

(2) 

Then it  clearly appears  tha t  x "~ does divide $.. 
On the other  hand,  since r(x) is bounded~ we can easily verify x -~ also divides 

~0~ . . . :~.-~ because of the inequalities 

I~(x) It(x/< I~(x)fr(xp. 

Final ly  27 has  a factorization in the form x'~J~(Y) with _~(Y) ---- ~ O~(x)Y:~, then  
3 = 0  

0~ invertible in H(D). So F e ~ ( D ,  r) an4 we are sent back to the case M' -=  0. 
Thus we can assume now r(0) -~ 0. 
For  every  @ > 0~ let D a = D\d-(O, @) and let re be the restr ict ion of r in De. 

Then F,  considered as an element of ~:(/)e~ re), has t tensel  Factor izat ion in ~,(DQ, rq) 
in the form _P(Y)G(Y) with 20(Y)~ H(Dq)[Y], G ( Y ) e  ~:(D~, rQ)~ and this is t rne for 
eve ry  @ > 0. 

We can easily show tha t  /~ e H(D)[Z] .  Indeed,  since r is bounded by  some A, 
each zero of _P is so, hence HP~II ~r < A  ~ whenever x ~ D~ hence each coefficient a~ 
of _P is a bounded function in D \ Z  tha t  lies in H(Dq) whenever  ~ > 0. By  Lemma 
ai e H(D), hence _P E H(D)[](] .  

Now let us prove tha t  /~(!z) : 2 (Y)  G(Y) with G(Y) e ~:(D~ r). 

For  each m e N let ~ -~ ~ ~ Iz~, and let F~ : PG., ~ - / ~  be the Euclidean Di- 
s=0 

vision of ~ by  _P in H(D)[~] .  For  each ~ > 0, by  Lemma 9 rq has a lower bound  
a~ > 0, hence we apply  Lemma 2 tha t  shows the sequence R~ converges to 0 and 
the sequence G~ converges to G in ~(De~ re). Then Lem m a  8 shows G~ converges 
to G in ~(D, r), and tha t  ends the proof. 

[A] 
[D] 
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