Lubin-Hensel Factorization for Laurent Series (*) (**).

ALAIN ESCASSUT

Summary. ~ Let K be a compleie yltrametric algebraically closed field. Let D be a bounded closed
strongly infraconnected set in K with no T-filter, and let H(D) be the Banach algebra of the
analytic elements tn D. Let v', 7" be functions from D to R with bounds a, b such that 0 < a<
<v'(®) < r'(x)<b. Let C(D,r,v") be the Banach algebra of the Laurent series with coef-
ficients a, in EH(D) such that lim ( sup |a,(x)| max (r'(x)%, r'(x)°)) = O, provided with o switable

8->+ 0 2D
norm. In C(D,r',r") we fg‘we a kind of Hensel Faclorization for series whose olommatmg

coefficients af v'(x) and at v'(x) conserve the same rank. We take advanta,ge of this method
to correcting a mistake that happened in our previous article on the Hensel Factorizaiion for
Taylor series.

1. — Introduction and theorems.

Let (K, |- ) be a complete ultrametric algebraically closed field.

When 4 is a ring, we denote by A[Y] (resp. ACY)) the set of the Taylor
Series (resp. the Laurent Series) with coefficients in A.

Let D be a bounded closed subset of K. As usual, we will denote by H(D) the
Banach algebra of the analytic elements on D [E,}, and ||, the uniform convergence
norm on D deﬁned on H(D).

Let F(¥ Z a;Ye HD){Y¥Y. For each x € D we will denote by F, the series

Z“s Yse K((Y))

For ae K, g > 0 we will denote by d(a, o) (resp.d (a, 0)) the disk {r e K: |z — a|<p}
(resp. {re K: |» — a] < g}).

Also we will denote by C(a, g) the circle {: |z — a] = o}.

For every couple (a,b) e R, XR, with 0 <a <b, let L(a, b) be the algebra of
the Laurent series convergent for a<|s|<b.

The famous Hensel Lemma gives the classical factorization in the form P(¥)-
‘@A Y) for a Laurent series F(Y)e L(a,b) with P(Y) a monic polynomial whose

(*) Entrata in Redazione il 9 maggio 1984; versione riveduta il 23 novembre 1985,

(**) And Erratum to « Maximum principle for analytic elements and Lubin-Hengel’s
Theorem in H(D)[X]», 135, pp. 265-278 of this Journal.

Indirizzo dell’A.: Université de Bordeaux I, UER de Mathématiques et Informatique,
351 Cours de la Libération, F 33405 Talence, France.
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zeroes are those of F(¥) and G(Y) an invertible element of L{a, b) [A, L]. Jonathan
Lubin first gave conditions for a Taylor series F(Y) with coefficients in the algebra
H(d(0, 1)) to have a polynemial P(Y) with coefficients in H(d(0, 1)), such that, for
each xed(0,1), P, i3 the monic polynomial whose zerces are those of F,, in a
digk d(O, 7(#)} (1969, unpublished article) and this has been developped by B.
Dworxk ([D]) who pointed out to my attention this kind of factorization in the
algebras H(D)[Y]. (In 1979 J. LUBIN also gave 2 kind of factorization for series
with coefficients in linearly topologised ring [LU], which does not apply to algebras
H(D) in the geueral case.)

We avoided the technieal conditions on Newton Polygon happening in B. Dwosk’s
treatment and tried in [E,] Theorem 2 to give a Hensel Factorization for Taylor
series with coefficients in an algebra H(D) with D open closed, bounded, strongly
infraconnected. Unfortunately an error in the nse of Fuclidean Division in Proposi-
tion 2 of [E,] kindly pointed out to me by D. Bartenwerfer puts that result in
doubt.

Here we return to this problem of Hensel factorization in generalizing our study
to the Laurent Series with coefficients in algebras H(D). We will particularly use
the algebra morms |-’ and [|-||" defined as follows.

Let r, 7', " be bounded functions defined in the closed bounded set D, with
values in R, with bounds a, b for #/, " such that 0 < a<r'(z)<r"(#)<b whenever
reD.

Let F(Y) = %as Yee HD)[Y] (vesp. F(Y) :+§as Yie HD)KYY).

a=0 —oa
We will get || F|| "= sup (sup |a,(@)}r(z)*) (resp. [|F}|7 = sup (sup |a,(z)| max (' (z)°,
zeD seN 26D  seZ

r”(m)S)) ‘and we will denote by (D, r) (resp. &(D,r',+")) the set of the F(Y)e H(D)[Y[
(vesp. F(Y)e H(D){Yp) such that lim ||, Y*||"= 0 (respi lim ||a, Y5 = 0).

§—>oQ s]—>+oo

Clearly (D, r) is the Banach algebra completion of H(D)[Y] normed by |-
Likewise, let H(D){¥)» be the algebra of the Laurent series with a finite number

of terms: }njws Ys, a.c HD), m,neZ, m<n. Then &(D,r',+") is the Banach algebra
completi{);l:n(;f H(D)<{Y> normed by |-

Let f(¥) = goas Yse L{a, b). Fér 0 € [a, b] we will also denote by N*(f, g) (resp.
N~(f, 0)) the u;;que integer ¢ (resp. ¢) such that '

la,jof = sup |a,joc  and  [a,)0'> |a,Jo° whenever s>1
seZ

(resp. |ago?= sup |a,lo* and |a,|o?> |a,o® whenever s < g).
seZ

By classical results [A, L] we know that if f is a Laurent series convergent in
the set {we K: a<|s|<b} | has ewactly N*(f,b) — N™(f, a) zeroes (taking account of
multiplicities).
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If § is a Taylor series convergent for |x|<b, then f has exactly NT(f,b) zeroes in
(0, b).

For each n e N we will denote by T,(D, r) the subset of the F(¥) e T(D, ) sueh
that N*(F,, r(»)) = n whenever « e D.

By what precedes we then have the obvious proposition 4.

ProPOSITION A. — Let D be a bounded closed subset of K, let r be a bounded func-
tions from D into R, with v(x) > 0 whenever € D. Let ne N. Then T,(D,r) is the
set of the F(Y) e (D, r) such that F, has cxactly n zeroes in d(0, r(x)) (faking account
of multiplicities) for every m.€ D.

For every ¢, te Z with g<i, we will denote by &,.(D, ¢/, +") the subset of the
F(Y)e &(D, ¢, +") such that N*(F,, r"(#)) = t, N~ (F,, »'(x)) = ¢ whenever z e D.

When no confusion is possible on the set D we will only write T(r) instead of
(D, r), Talr) instead of T,(D,r), &', r") instead of (D, ', #"), &, .+, ") instead
of L4 D, 1, 1").

REMARK. — It seems difficult to obtain a kind of Proposition A for Laurent series.
Of course, if a Laurent series F(Y) Hes in &,,(D, 7', #") by definition F, does have
exactly ¢ — ¢ zeroes in the annulus {ie K:¢'(»)<|i|<r"(x)} for each #€D. But
there is no converse, in the form:

«If v'(w), r"(#) are functions from D to R, (with bounds @, b such that 0 < a<
<r'(#) <r"(x) <b) such that F, has exactly n zeroes in the annulus {A: '(#)<]i|<
<#"(x)} for each ze D, then F lies in some set LeainlD, v, 7")». The following
counter-example does show the problem.

Let e K with |o| <1, and let D = {ze X: |a|<|o|<1/|x[}. For |x|<|s|<1 lot
7'(2) =1,7"(#) = 1/|a| and for 1< [z|<1/[a| et #'(v) =1/, #"(2) = 1/|x[*. Let F(¥)=
=1+ oY 4 22 Y2 Clearly N~ (F,,(#)) is not constant in D because when
|| <1, N°(F,, 1) = 0 while when |¢| = 1/|x|, N~(F,, 1/|«|?) = 1. However we can
show that N*(F,,+"(#)) — N~(F,,r'(»)) = 1 whenever € D. For convenience, for
each z e D, let us write Fy(¥) = ay+ 0, ¥ + a, Y2

Suppose first x| = |a]. Then |a] =1,

[“1 7= l“[ ’ lazl"'lz !057‘5
lafr’=1,  |aspp"= |aft

hence N~ (F,,+') = 0, N*(F,, r") = 1.
Suppose now |a] < [#| << 1. Then

o’ = o] <1, a2 = |atlor< 1

&
jaalr” = u ST, Jaalr= et < 1

hence N~ (F,, ') = 0, N*(F,, ") =1.
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Suppose now || =1. Then

lafr' =1, l“zl"',z = [af*< 1
= = <1<

hence N~ (F,,r') = 0, NN (F,, ") =1.
Finally N~ (#,,7') = 0, N*(F,,»") =1 is true for |x/<|#|<1l. Now, suppose
1< |} <<1|x|. Then

oty |p" = ‘&wg >1; el = i%Z < }%
la, 1" = !% i et = —~: > %é
hence N™(F,,r') =1, Nt(@F,, r") = 2.
At last, suppose |#| =1/|x|. Then
= |Tx1’2‘; C faght= ‘—i-‘< l_o:cll_z
fanfr” = I_r;cl?l i el = T&IT3

hence N~ (F,,7') = 1, N¥(F,, ") = 2. Thus this relation is true for 1 < |#[<1/|x|.
A Taylor series F(Y)e T, (r) will be said to have Hensel Factorization in T (r)
(resp. in T,(r) N H(D)[Y]) if it may be factorised in the form P(Y) € G(¥) with P a
n-degree monie polynomial that lies in T,(r) and G € Fy(r) (vesp. G € Ty(r) N H(D)[Y]).
A Laurent series F(Y¥)e€ &, (¢, ") will be said to have Hensel Factorization in
.+, 7") if it may Dbe factorised in the form P(Y)e G(Y) with P a (t — ¢)-degree
monic polynomial that lies . _.(r', "), and G e L, (r', r").

REMARK. — When a Taylor series F(Y) (resp. a Laurent series F(Y)) has Hensel
Factorization in T.(r) (resp. in L, (', ")), Hensel Factorization is wnigue. Indeed
for each @ € D, by classical results [A], we find back the Hensel Lemmsa for F, in
T(r(w)) (resp. in L(r’(m),r”(m))).

Recall that set D in K is said to be infraconnected if the adherence of the sct
{l# — a|: © € D} is an interval in R whenever a € D.

Now D is said to be strongly infraconnected if for every hole d”(a,r) of D such
that r € |K|, there is a sequence a, in D such that |a,— a| = |a,— a.| for every
n % m [E,].

T-filters are defined in [B,].

THEOREM 1. — Let D be an open closed bounded strongly infraconnected subset of K
with wo T-filter and let v, v" be functions from D to R, with bounds a, b such that
0 < a<r(x)<r(w)<b whenever weD. Let t,qcZ and let F e, (D, 1, +").
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Then F has Hensel Factorization in L,.(D, ', v").
In the proof of theorem 1 we will particularly use the following proposition B.

PrROPOSITION B. — Let D be an open closed bounded infraconnected set with no
T-filter. Let a, b R with 0 << a <<b and let q, 1€ Z with g <t. Let v', 7" be functions
from D to R, such that 0 < a<y'(w)<r"(®) <b whenever xe D. &, (D, r',+") is closed
in (D, v, r").

Let F,, be a convergent sequence in &, (D, v',7"). Suppose for each m € N, F,, has
Hensel Factorization Py G, in L, (D, ¢, ¢") with P, a (t — q)-degree monic poly-
nomial. Then the sequence P,, converges in Lo;_o(D, +', ") to a (t — q)-degree monic
polynomial P; the sequence G, converges in L, (D, v',r") to a limit . The limit F
of the sequence F,, has Hensel Factorization F(¥) = P(Y¥) e G(Y) in L,.(D, ', #").

When we consider Taylor series instead of Laurent series, we can obtain results
with weaker hypothesis.

THEOREM 2. — Let D be an open closed bounded strongly infraconnected subset of K
with no T-filter, let r be o bounded function from D to R, let M be a finite subset of D
and let ne N. Let F(Y)e (D, r) be such that F, has exactly n zeroes in d(0, r(z))
(taking account of multiplicities) whenever x € DNM. Then I' has a factorization
P(Y)e G(¥) in T(D,r) with P a n-degree monic polynomial in H(D) Y] and G(Y) e
€ XD, r) such that N(G., 7)) = 0 whenever we DN\M. If F(¥)e HD)Y] then
G(Y)e HD)Y].

COROLLARY. — Let D be an open closed bounded strongly infraconnected subset of K
with no T-filter, let r be a bounded function from D to R, let ne N, let FeZ,(D,r).
Then F has Hensel Factorization in T,(D, r).

If Fe H(D)[X] then it has Hensel Factorization in H(D)[¥]N (D, 7).

REMARK. — The hypothesis « D has no T-filter » could be hardly avoided (unless
assuming all the &, are quasi-invertible). Indeed in the proofs of the main results
we first divide the series F(Y) = > & Y° by &, then we use the classical result «if

&,/£, is bounded in D then (§,/8.) € H(D)». If D has a T-filter this property is some-
times false as it is proved in [S].

Comparison with Theorem 2 in [B,].

The proof of Theorem 2 in [E,] is not correct because the proof of Proposition 2
bas a mistake. Indeed in Propoesition 2 we considered a Euclidean division of a

Taylor series F(Y) = Y & ¥*e H(D)[¥] with £,=1 by the n-degrec monic poly-
§=0

n

nomial P(Y) = Z &, Ys. For each fixed x e D; the Buclidean division of 7, by P,

§=0
does exist in the Banach algebra of the Taylor series convergent for [z|<r(z) [A, 4.4.2].
Unfortunately, unless providing H (D)[[Yl] (or a subset § containing F and P) witha
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suitable topology we cannot deduce a division of F by P in H(D)[Y] (or in 8).
Even if we assume in Proposition 2 the condition

lim sup [(&7 6 E < 1

3—>00

that we assumed in Theorem 2, it does not seem possible to prove Proposition 2.
However we have no counter-example proving it could be false.

In the present article the REueclidean division of F by P is possible in I(D, r).
Consider now a Taylor Series F(Y¥) = 3 £,Y*e T,(D, r) satisfying the hypothesis of

§=0
Theorem 2 in the present article. For r(x) we can simply take the radius o(x) of the

smallest disk d(0, o(w)) containing exactly n zeroes of F, (taking account of mul-
tiplicities).
Then g(x) = max ||(&Yx)/E,(x)) |5 hence the &, satisfy
. 1

lim (sup ( g, (5,(m)/§n(m))|s/""‘)) =0 whenever [ =0,..,n—1
3->00 g€D

hence

(1) Hm [£r'85/El,=0 whenever [ =0,..,n—1.

Particularly in assuming &, divides all the &, as we did in Theorem 2 of [E,],
we can easily deduce

(2) Lim [§77 &8 b= 0.

§—>00

Indeed when D is open with no T-filter, every element f € H(D) is quasi-invertible
(i.e. it has a factorization in the form P(z) € k() with P & polynomial and b an
invertible element in H(D)). Then for any fixed element » € H(D) there is a constant
¢> 0 such that |uf],>elf|o whenever f € H(D) because by [E,] wH(D) is a closed
ideal, hence [uf|p and [[uf|| = |f|» define two equivalent topologies by Banach
Theorem.

Here, since &, divides & in H(D), we can factorise (£7'§;)/;, in the form
[(EE™) e (&0 /EL). Clearly (&7/&1) € H(D), hence the hypothesis (1) implies the
hypothesis (2).

Thus, our present hypothesis appears to be a little bit stronger than in [E,].
However, in the present article, Theorem 2 does not require &, to divide all the &
in H(D). For example the polynomial F(¥) = a3 + #¥ - ¥2 does satisfy the hypo-
thesis of Theorem 2 with #» =1, and D = d(0, 1), M = {0}.
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2. — Basic results.

The following Lemmsa 1 is immediate

LEMMA 1. ~ Let D be a closed bounded subset of K, let v, ', v" be bounded functions
defined in D, with values in R, with a, b such that 0 < a<r'(x) <7"(x) <b whenever
rxelD.

W= defines on (D, r) & norm of linear space that makes it o Banach space.

-5 defines on (D, #', ") @ norm of linear space that makes it a Banach space.

Let log be a logarithm function of base p > 1 and let v the valuation defined
on K by v(x) = — log ||
In order to recall easily some classical results and processes used in the rings

L(a, b) we define again the valuation function o(f, u)
+ oo

Let f(¥) = > a; Y€ L(a, b); for p e [— Log b, — Log al; let v(f, u) me(
+ ip). e

LeMMA 2, —~ Let D be a bounded closed infraconnected subset of K and let r be a
function from D to R, with bounds a, b such that 0 < a<y(x)<<b whenever z € D. Let
F(Y)eE(D,r) and let P(Y)ec HD)NYINT,.(D,r) bz a n-degree monic polynomial.

A) There exists G € T(D, r) and B e H(D)[ Y] with deg (R) < n, such that F =
= PG + R. Both G, R are unigue.

B) For each e D we have

(1) o(R,, — log r(@)) >0(F,, — log r(x))
(2) o(Gs, — log r(w)) >0(F,— log r(w)) — v(P,, — log r(w))
(3) N™(P + R, r(@) = N*(P,r(x)) =n.
C) Lat F(¥ E&Ysa%dfweaohneNletF ZESYS let B,,= PG, - R,
8=0 §=0

with Gy, B, HD)[ Y], deg R,,<<n. Then the sequence @, converges to G and R,
converges to 0 in T(D,r). .

Proor. — If ¢ and R exist, they are unique. Indeed for each z €D we have
F,= P,G,-- R,; this iy the Buclidean division of the Taylor series F, by P, in the
ring of the series convergent in d(0, #(v)) and we know they both are unique. Also
they verify (1), (2), (3) by classical results ([A], 4.4.2 and [L]).

When F is a polynomial the Huclidean division by the monic pelynomial P does
exist in H(D)[¥] then we have G € H(D)[¥] and Re H(D)[¥] with deg R < » such
that F — PG 4 R. :
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Now sunpose F is 2 Taylor series Ests (é,€ H(D)). For each me N let
F,.( zfs Ys and let F,= P4, + R, be the Euclidean division of #,, by P.

s=0

By (1) we can easily show the sequence E,, is & Cauchy sequence in (D, r) for its
norm [|-[i". Indeed the Euclidean Division of F, — F, is P(Gy— G) + (Bpy—
— R,) henee 9((Ropa— Ru)o, — log r(z)) >0((Foyi— Fr)ay, —logr(x)) there by we have
I Bmis— Boll" < Frsz— Fall” so (B,) is a Cauchy sequence; it then converges to 2
polynomial B e H(D)[ Y] of degree < n. Similarly since r(x)>a > 0, by (2) we can
see the sequence @, is a Cauchy sequence T(D, 7); hence it converges to a Taylor
series G(¥)e (D, R) such that F = PG -+ B. Lemma 2 is then proved.

LemyA 3. — Let D be an open closed bounded infraconnected subset of K and let r
be a function from D to R, with bounds a, b such that 0 < a <v(x) <b whenever x € D.

aq
Let M = {o, ..., xg} C D and jor every ¢ > 0, let D, = D\ U d(a;, o) and let 7, be the
restriction of v in D,. i=1
Let ne N, let F(Y)eZ,(D,r) and assume for every o> 0, ¥ has Hensel.
Factorization in T,(D,,r,). Then F has Hensel Faclorization in ZT,(D, r).

Proor. — By hypothesis we can define a n-degree monie polynomial P(¥) and a
Taylor series G(Y) such that P(Y)e H(D)[ Y] and G(Y)e I(D,, r,) whenever ¢ > 0
and F (Y¥) = P.(Y) e Q,(¥) whenever € D\M and the » zeroes of P, are the zeroes
of F, in d(90, (). Since r(z)<b the coefficients of P, are clearly upper bounded
by max (1, ) in D\ M.

Since they are in H(D,) whenever ¢ > 0, we know by the Lemma 9 of [E,] they
do belong to H(D). By Lemma 3 it is obvious G(Y) e T(D, r). Indeed by Euclidean
Division in (D, r) we have F(Y) = P(Y), V(Y) + R(Y ), R(¥ye HD)[Y].

Since Fo(¥) = P,(¥)G.(¥), whenever o € DN\M elearly we have G,(Y) = V(¥),
R,(Y) = 0 whenever z € D\M, hence finally R =0, V= @G.

3. ~ Sets with no T-filter.

We will oiten use the following Lemmas

LeMMA 4. — Let D be o closed bounded subset of K with no T-filier and let f € H(D)
be such that f(z) # 0 whenever x D,
Then | is invertible in H(D).

ProoF. — Suppose f is not quasi-invertible. Then it approaches zero on a pierced
filker & [E,]. Since f has no zero in D, then & is not a Cauchy pierced filter, hence
it is & large pierced filter [E;]. Then f also approaches zero on a T-filter [B;] what
is impossible by hypothesis. Hence f is quasi-invertible in H(D). Since f has no
zero it is invertible.
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Lemma b is classical [A, K;, 1i]

q
LEMMA 5. — Let P(¥) = Y a,Yic K[Y], let ne N with n <g, and let r € R, be
=0
such that N*(P,r) =n> N"(P,7) = h. Then r = |aze@n|/"".

LEMMA 6, — Let D be a closed bounded subset of K with no T-filter and let v be a
funetion from D into R, with bounds a, b such that 0 << a<r(x)<b whenever xc D.

Let neN, let F(Y) = 3 & Y€TD,r) and assume N*(F,,r(x)) > N~ (F,, r(»)) when-
ever w € D. §=0

Then there exists A <1 such that A&, (z)r(z)" > |&(@)|r(x)* whenever x € D, whenever
§$>Mn.

Proor. — By Lemma 4 we know that &, is invertible in H(D), hence we can
clearly assume &,=1 without loss of generality.

Let 1€ N be such that |&(x)|r(x)*<a/2 whenever x € D, for s>1. Then it only
remains to prove for each s =n -+ 1,...,1, there exists g,<<1 such that g,|4,(x)]r(z)" >
= |&(2)|r(x)* whenever w e D.

By the hypothesis N*(F,, r(x)) > N~ (F., r(x)), by Lemma 5 we know that for
each ¢ €D, r(x) is in the form

r(w):lg:l(w)llj(n—l(w)) with  #(@)> £, (@) YW

whenever h = 0, ...,n —1 hence we have
(1) Ifs(w)th(w)](3-’n)[(%_h)< 1

whenever € D, whenever h =20, ...,n —1.
By Lemma 8 in [E,] it follows that

(2) & s <1

Indeed, if (2) is false, by (1) we have [&r&™| =1.

Since D is strongly infraconnected, by Lemma 8 in [E,] there exists o € D such
that - |&,(a)"*&,(x)* | =1 in contradiction with (2).

Then we can take g = (& &™|,)"™ and so, Lemma 6 is proved.

ProPOSITION P. ~ Let D be a closed bounded strongly infraconnected subset of K
with no T-filter. Let v be a function from D into R . with bounds a, b such that 0 < a<C
<r(@)<b whenever x €D, let ne€ N and let ¥(¥)e HD)[¥]N T (D, r). Then F(Y)
has Hensel Factorization in H(D)Y]N (D, r).

1
PrOOF. — Let F(Y) = 3 & Y*. By hypothesis £, does not vanish in D; since D
8=0

has no T-filter, by Lemma 4, &, is invertible in H(D), so we can clearly assume
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£,=1 without loss of generality. Then the polynomial P,(¥) = f &, Y, is monic
and P, €T, (D, r). So we can make the Euclidean Division of F8 boy P F(Y) =
= P(Y)F(Y) -+ B (Y), G(F) e (D, r), Bye H(D)[Y], deg R, <<n. Then the poly-
nomial P,= P, -+ R, is monic and it lies in T,(D, r) also. Thus, by an immediate
induction we can define sequences P, = P,_,+ B,_,, ¢.eT(D,r), R, HD)[Y],
deg R, < n such that F = P, G, B, with relations (1), (2), (3) satisfled for each m.

(1) o(Rq, — log r(x)) >v(F,, — log r(x))
(2) o(Gyy — 10g r(@)) >v(F,, — log r(x)) — v(P,— log r(w))
{3) N*(P,+ R, (@) = N*(Pq, r(w)) = n.

Now we can assume d(0, 7(x)) is the smallest disk of center 0 containing exactly »
zeroes of F, (taking account of multiplicities), whenever # € D. Indeed, if we prove
Proposition P when # is so, it is obvious it holds when # is bigger as long as d(0, 7(x))
only contains n zeroes of F, whenever » € D. Thus we can assume N*(F,, r(x)) >
> N (F,, r(x)) = U).

Then we can apply Lemma 6 and we have 0 > 0 such that v(£,(2)) — s log #(x)>
>— nlog #(z) + 6 whenever x € D, whenever § > n, hence

o((F — P, — log r(a)) — o(F., — log r(@) >0

whenever e D.
Then we can follow the classical way like in [A], 4.4.4. First we can prove that

v(Gﬁl+1— Gm)w, - ]-Og 7'(.’1})) >m0 .

Then the sequence &, is a Cauchy sequence for the norm || - " in the space H(D)[ ¥ 1.

Hence (@,.) converges to a limit G € H(D)[Y]. Likewise, the sequence P, con-
verges in H(D)[¥] to a n-degree monic polynomial P that also lies in T.(D, r). At
last the sequence R, converges t0 0. So we have F == PG in H(D)[Y].

NOTATIONS. ~ Let a, b € R with a<b. We will denote by 4(a, b) the set {reK:
a<l|o|<b}. Let q,teZ with ¢<i; L, (a,b) will denote the set of the fe L(a,b)
with N~ (f,a) = ¢ and N*(f,b) =t. Let | [ =" ]a@u-

LEMMA 7.~ Lett,qgeZ,t>q,leta,be R (0 <a<1,a<b)andlet Fy, Fye L, ,(a, b).
+ 00

Assume | Fy|| = | Fy|| > [|[Fy— Faf|. Let Fylw) = D &Y and let A = |&,| and assume
i i 2] I !

A<1. Let P,G; be the Hensel factorization of F, with P, the monic polynomials whose
zevoes are the t — q zevoes of F, in A(a, b) (i = 1, 2) and let ¢ > 0 be such that for each
zero o of Py d(a, o) C A(a, b).
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Then

| By — F,|ite-a ]

, | by Tyt
“ 61_ G’z“ < At—qu(t—q)aq : : '

, P~ Py < Aot g0 ga

ProOF. — Let « be a zero of F, in A(a, b). Then we have

[Fifen) — Fz(“l)} = 1?2(“1) éz(%)l .

+ o0

Let @5(Y) = 3 g.Y*; then [Gy(4)| = |g,/|A[” whenever A€ A(a, b). Set n =1 — q.
On the other hand |Fy| > £bt, &b = b*[g,b¢ hence |g,| = &), [Gs(ex)] = golloali—

= [&:floes].7
Then
|[Fi— Fa| [ Fi— Fof
IPa(OC1)I< IGz(“z)l = lft”%lq
hence
|1~ F]
lpz(‘xl)l< ”W‘— .

Then it is easily seen the nearest zero «, from o« of P, is such that

|F',— F,
lotz— oer]* < [ Pofon) | < L.lAa_qzﬂ
thereby we have
[-Fy— Fs1n
(1) loa— o] < W

Let Fi(x) = (» "fh)Fl, F, (o) = (v — dz)Fz; let D = A(a, b)\(d(o:l, o) U d(o, 9)).
By classical results [, E,] we know that if ¥ e L(a,b) then |F|,==|F|. Here

we have
1 1
(i Zam e
T— o0y B— o)

wj%mzwﬂ~Fﬁey

F,— F,
T— o4

@) NE—EwwE-Ew@m4

?
D
On the first hand we have

FI_Fz

T— & |ip

(3)

<|Fi— Fallp

On the second hand

FZ( 1 _ 1 ) “2_ 061
W“"(xl m"—'ag

— i“zf o | < | — Fy| 1
(& — o)z — o)

1
b a2 S Aln pzaq/n_ #

<[ Fy»
D

(4)




84 ALAIN Escassur: Lubin-Hensel factorization for Laurent series

Since |F,— F,| <1, we have [|F;— F,|V"> |F,— F,|. Also A<1, a<g<1 hence

ek

1
a < Allngza,q/ﬂ :

Finally we have

5 _ g 1Fi— Faftir

”Fl— F2”< AI/”QZCL‘U"‘
hence with greater reason

= 3 Fy— F,|»
(5) [y~ F] < “Wji—ﬁ%_

. 4+ oo
Let F(¥Y) = > £, Y. Then by classical results [A] we know that

N*(F,y —logh)=1—1, [&]=|&]

hence we are set back to the same problem with » — 1 instead of n, F, instead of
F;. Let us remind now that A<1, o<1, a<1.
By an immediate decreasing induction after n similar operations we obtain

|1 — Foftin!

1~ G < T Argrrar
Then [(Py— Py) G| <max (|Fy— F,|, [|Py(Gi— @)]). By hypothesis [G,(4)] =

= |g,)|A]* = A|A]¢ hence |Gy(4)|>A min (as, b7) thereby

max (| F;— Fy, | Py(Gi— G)])
A min (a2, b9)

i °

1P,— Py <

[P1(Gr— Go)| < | Po]|||Gr— G < b Fy— Fyf Um! _ bo|F, - Byt

An 92naq Angz'mw]
hence clearly:
o b | Fy— F |y»)
max (|- B, 1206, )] < o I
Finally
b*|Fy— F |Y=!
|Pi— P < W

and so lemms is proved.
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COROLLARY. — Let F,(Y) be a convergence sequence of limit F in L(a, b) for the
canonical norm ||, and let P, @, be the Hensel Factorization of F,, in L(a, b), let
PG be the Hensel Factorization of F. Then

P=limP,, G=Ilim@G,.

m—> 0 m—>co
There are integers q <t such that F € Ly (a, b), F,.€ L, (a, b) for m high enough.

PROOF. — By the classical Hensel Lemma in L(a, b) there are integers ¢ < ¢ such

+ oo
that F € L, ,(a, b) [A]l. Then P is a (t — q) degree polynomial. Let F(Y) = > a, Yo

+ oo
F(Y) =3 a4, Y*. We know a,=lima,, whenever sc Z. Since Fe L, (a,b) we
have —° e

|a:]bt > |a,|b> whenever seZ,

lay|bt > |asb*  whenever s>t

thereby the inequalities hold for |@, .|, |@, »| When m is high enough. We also have
the symetric relations with [a,|, thereby F,€ L,,(a, b) for m high enough.
Then Lemmsa 7 shows eagily that

P=limP,, G=lmG,.

M 0O m—>co

PROOF OF PROPOSITION B. — First we can shortly prove &,,(r',s") is closed in
L'y r"). Let U, be a Cauchy sequence in &, ,(+’, ') and let U be its limit in L, ).
By Corollary L, .(a,b) is closed in L(a, b) hence

N*((Fy),, r"(#)) =t  whenever v D,

N ((Fpa 7' (®)) =¢ whenever ze D,

so Ue R, 7).

In the following, in order to apply easily Lemma 7 we will suppose b < 1, what
we can do (by changing of variable) without loss of generality.

Then we have #'(#) <1. For each zeD, let ||-|, be the canonical norm on
L(r'(z), "()) and let [|-]| be the norm on Q" ¢").

+ o0 + o0
Let F(Y) = Y & ¥° and for each me N let F,(¥) = > &.,Y. By what fore-

goes, F e, (v, r") hence &, &, cannot vanish in D. Since D has no 7T-filter &, &,
are invertible by Lemma 4.

Let B> 0 be such that min (|£,(z)], |&,(2)

)>B whenever z € D.
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Let § = min (bt, a7, b2, ¢*) and let n € IV be high enough to have [|F — F,.[| < B0,
whenever m > n. Then #"(#)t>0, 7'(2)7>0 whenever # € D hence [§,(w) — &, .(2)] < B
and [Eq(x) - Eq,m(m)‘ < B7 §0 that

Et,m(m” - Ift(w)l > !Si,m—;—l(w) - St m(m)[
om(@)] = [5(®)] > |Eamr(®@) — Eqm(®)]

whenever m >4, Whenever x € D.

Then the relations [ Fn.i— Fnl.< |Fnl|. are clearly verified when m>w, (for
each we D). Thus we can apply Lemma 4.

For m>u, we have

| (Fra)o— (Fom)af 57!

” (Gm—}—l)x— (Gm)acum< Igt(w) Pr’(w)W*q’

hence with greater reason

I Fmy— Fufr21
BQaIZ(t—Q)

whenever x € D, thereby

I Emyr— Ff 21
B« aZ(t—q) ’

”I GM+1 - Gm”\ <

Similarly we have

bi-q“lpm+1_ me 1/(—g) §
Bi-atigrt—g .

um.{.l_ Pmm <

Thus the sequences G, P, are clearly convergent in &(r',¢"). Let G = lim Gy
P =lim P,. Obviously, F = PG and by classical 1esult P,G, is the Hensel Fac-
torization of F, in L(r'(x), #"(x)) hence P@ is the Hensel Factorization of F in ', ).
That concludes the proof of Proposition B.

4. — Proofs of the Theorems.

PROPOSITION Q. — Let D be an open closed bounded strongly infraconnected subset
of K with no T-filter, let v be a funciion from D to R, with bounds a, b such that
0 < a<r(®)<b whenever x€ D. Let ne N and let FeZT,(D,r). Then F has Hensel
Factorization in T, (D, r).

oo m

PROOF. — Let F(Y) = 3 & ¥¢ and for every me N, let F,(¥) = 3 &Y
5=0 8=0

Then F,.cT,.(D,r) for every m>n, hence by Proposition P, I, has Hensel

Factorization in ¥,(D,r) in the form P,G&, with P, a n-degree monie polynomial,
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Without loss of generality we can assume &, is not the nul element in H(D). Indeed
if & =& = 0, &+ 0, then F is factorized in the form ¥* F(¥) with F(¥) = > Y
and A,, different of the nul element in H(D). §=0
Since D is open with no T-filter, then &, is quasi-invertible hence the set Z of
the zeroes of & in D is finite. We obviously have N*(F,, 0) = N*((F,)., 0) when-
ever ¢ € D\Z, whenever m < N.
Let o be >0 and let D,= D\(Ud («, 0)) and let r, be the restriction of r

«cZ
in D,. Then & is invertible in H(D,) hence there is ¢, > 0 such that |[&(z)|>0,
whenever x € D). For each x € Dy, if « is a zero of F,, by Lemma 5 we know that
for every I = 0, ..., » — 1 we have |a|> ((lEJ)/(HE: HD))W. In considering the constant
funetion 7, defined in D, by

(@) = & mi _0_)’
rel®) = 3 i (usznp

we can see that each F, has no zero in d(0, T;(cv)) whenever z € D,, hence F,, does
belong to ,,(D,,r,,r,). Since r, is a strictly ‘positive constant funetion we can
obvicusly apply Proposition B to the sequence F,, hence F has Hensel Factorization
in £.(D,, ré, 7,) 80 it also has Hensel Factorization in T,(De, 7o). Then by Lemma 3
F has Hensel Factorization in T,(D, r).

THEOREM 1. — Let D be an open closed bounded strongly infraconnected subset of K
without T-filter, and let v, +" be functions defined on D with bounds @, b such that
0 < a<¥(z) <r"(@)<b whenever e D. Let t,qeZ and let Fe &, (v',r"). Then F
has Hensel Factorization in L, {r', ¢").

ProoF. — First we will prove Theorem when F is a Taylor series. Then F(Y) e
€Z,(+"). By Proposition Q, F has the Hensel Factorization P(¥). G(¥) with P a
t-degree monic polynomial and G e Z(»r").

Since F e &, (", v') for each # €.D, F, has exactly ¢ — q zeroes in the annulug
A(r' (@), 7"(¢)) hence it has exactly g zerces in d (0, »'(x)).

For each x € D let d(0, o(#)) be the smallest disk of center 0 containing exactly ¢
zeroes of F,. Then we can clearly apply Theorem to F in T (e) so that we have a
Hengel Factorization in the form Q(¥)H(¥) with @ a ¢-degree monic polynomial.
We can eagily verify @ does divide P in H(D)[Y]. Indeed, for each z € D if we write

t
Pm(Y) == 1__[ (Y—' O.’,j) With l“j!< ,0{,’_{_1' ’
j=1

]
we obviously have @,= [] (¥ — «;), hence @, divides P, in K[¥]. In considering
i=1
the Euclidean division of P by @ in H(D)[¥] the remainder R does verify RE,=0
whenever » € D hence B = 0. ‘
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Let P(¥) = T(Y)Q(Y) in H(D)[¥]. Then T, has eactly ¢ — ¢ zeroes in A(r'(x),
7"(#)) whenever x €D, so in writing F(¥) = T(¥)[Q(Y)G(Y)] we have the Hensel
tactorization for F(Y) in L., ).

Immediately we also have the Hensel Factorization in £,.(r, ") for Laurent

h
series F(¥) in the form Y & ¥°(n > 0), in considering F(y) = »FP(Y).

g§=—~h + oo
At last in the general case, let F(Y) = > & ¥°. By definition we have
Hm |F— Fli=0 with F,= ¥ &7,

m—»o0 s=—m

We have just proved the Hensel Factorization exists for each F,, se it holds
for F by Proposition B. '

NOTATION. — Let a € K, g,, 0.€ R,. We will denote by I'(a, 0, 0,) the set {x € K:
o< o — al < gu.

Levmma 8. — Let D be a closed bounded subset of K thal contains o disk (d(0, d).
Let v be a bounded function from D to R, such that }}-{% r(w) = 0.

For each ¢ 10, 8], let Do= D\d (0, p), let 7o be the restriction of r in Dy, and
let ao be the lower bound of v in I'(0, g, 6).

We suppose ap> 0 whenever g > 0.

Let G = 3 b,Y° be a Taylor series that lies in T(D,, ro) whenever ¢ > 0. Let G,
$=0
be a sequence of T(D,r) that converges to G in T(D,, re) whenever o> 0. Then

Ge (D, r) and G, converges to G in T(D,r).

PROOF. — We first prove that G(¥) e H(D)[Y]. Suppose b,¢ H(D) for some leN.
Either b, has a pole at 0, or it has an essential singularity at 0. In all cases, by
classical results, for every g > 0, there exist g, g, With 0 < ;<< g,<< ¢ such that
o(by, w) is in the form A4 4 tu for pe[— log g,, — log ¢}, with 1€ Z, 1 < 0 and

(1) v(by (@) = v(b;, v(@)) .

Let a, be the lower bound of # in I'(0, oy, g). Let # = p~"® 718 and let

[e]

& = n(ap)’. There does exist » e N such that |G.— Gl{rg1 >e. Lot Gh= 2 b, Y"

$=0

Then {b,,.n(#) — by(#)|a, < e for all w€ D, hence {bym(x)— b(@)| < n for all xe I'(0,

01y 02)-
Then (1) shows that o(b,.(#) — b, (2)) > v(b,(x)) hence v(b;m(®)) = v(b(@)) =
= A - to(w), when x e I'(0, gy, 0,), thereby

O(br, p) = A + 1 for pe[—log gy, —logail.
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But b,..€ H(D), henece b, .€ H(d((), 92)) hence the function u ~ v(b, .., u) cannot
be A -+ éu with t < 0. So we see that b,e H(D) whenever se N.

In the same way We can prove now that lim [b; ¥¢,= 0. Let g,€10, 6] and
set 1 = @, and let go€ J0, gs[ be such that r(z) <e for |o|<g,. Let ¢>0 and
let NeN be such that- [b,(z)r(x)*<e whenever w€ D, , whenever s>N. Then
[b,(2)|A*<e whenever » e I'(0, g;, §) hence

1Bslirco, 0, 004" <& -

On the other hand, since d(0, g,) C 4(0, §) c D and b,e H(D) we have b0 ,.1<
< |bsllaco,6p= 18sllr(o,0,,6)- Thus for every s>N when x e d(0, g,) We have

1bs(2)(%)° <185l a0,00)2° < D5l r0,0,8)4° <& -
Of course, by hypothesis when x € D, Wwe also have [b,(#)|r(z)<e, hence finally
|6, Yelr<e for s>N.

That finishes to prove G(Y)e Z(D, r).

LEMMA 9. — Let D be an open bounded closed infraconnected subset of K with no
T-filter amd let v be & bounded function from D into R,. Let ne N and let F(¥) =

= Y £ Y€ T (D, r). Assume there is some t<n — 1 such that &5 0, and let oy, ..., o,
8§=0
be the points in D such that &e;) = ... = &, 1(o;) = 0 whenever § =1,...,q9. For

a
each o> 0, let Do= D\ U d (as, 0); there exists ao> 0 such that r(x)>a, whenever
zeD,. i=1

PrRoOF. — By hypothesis N*(F,, (z)) = n whenever z € D, hence by Lemma 5

1f(n—14)

&n(@)

r(®)> max
0<i<n—~1

Since D is open with no T-filber, there does exist h << n such that &, is quasi-
invertible. Let i, ..., B; be the zeroes of & in D,.
For each j there is I(j) such that &,;{f;) ¥ 0 hence there exists p'e 10, g] such
that |£x,(2)| has a lower bound 6,> 0 in.d~(8;, o).
i

Let D'= D\ U d_(8;, ¢'). Then &, is invertible in H(D'); hence there exists
i=1

A> 0 such that |&(x)]>21 whenever 2 € D. Thus in D' we have

' Yne) {1\ Un—1)
o> () > (3)

()

————

&)
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then in each d7(f;, o’) we have

§un(@)

1(n—1) (g \LU(n—1®)
£.(@) g (_) '

rw) > A

Let = ggij%e,/b;ﬂw—“m, then we can take ap= min ((1/b)™~", (.

LrmMa 10, —~ Let D be o closed bounded infraconnected subset of K, and let

¢
o, ..., ag€D. Let 9 R, and let Dy= D\(Ud’(oct-, g)).
i=1
Let v be a bounded function from D to R,. For each ¢ =1,...,q let D, =
= D, U d (a:;, 0) and lot v; be the restriction of v in D, ;.

Let F(Y)e (Do, ). If for each i =1,...,q, FeT(D,;, r;) then FeI(D,7).
Proo¥. ~ Let F(¥) = Y & Y*. For each se N, & lies in H(D,

5=0

=1,...,q, hence by the Mittag-Lefflerian Decomposition Theorem on the infra-
connected set Do, it iy easily seen that & H(D).
On the other hand we have lim & ¥°], = 0 whenever i =1,...,¢. Let ¢>0;

p,i) Whenever i =

there exists N(e) such that |£,(#)r(#)*<e whenever » € D, ; whenever s> N(g), when-
ever ¢ =1, ..., q. Hence, we clearly have |£(x)|r(z)*<e whenever x € D, whenever
3> N(e) and go, Lemma 10 is proved.

THEOREM 2. ~ Let D be an open closed bounded strongly infraconnected set with
no T-filter. Let M be a finite subset of D. Let r be a bounded function from D to R, .
Let ne N and let F(Y)e (D, r) be such that N*(F,, r(»)) = n whenever x € D\M.
Then F has Hensel Factorization P(Y)GY) in T(D,r) with P a n-degree monic
polynomial and G(Y) € XD, r) such that NT(G,, r(x)) = 0 whenever © € D\M.

Proo¥. — Let F(Y) = ¥ &(») ¥°. Without loss of generality we can assume &
8=0
is not nul in H(D). Indeed if &= ...=§&, =0, &% 0 with h <n, we can fac-
torize F in the form ¥» P(¥) with F(Y) = ¥ 2, ¥+ and 2,5 0.

8==0

Let Z be the set of the points « in D such that &(x) = 0 and let M'= MU Z.

For each ¢ >0, let Do= D\({ U d (a, 0)) and let 7, be the restriction of r
in Dg. aeM’

By Lemma 9 there exists ap> 0 such that #(w)>a, whenever € .D,. On the
other hand F(¥) belongs to T.(D,, 7e) hence by Proposition @, F has Hensel Fae-
torization P(Y)HY) in T(De, 7o) (With P a n-degree monic polynomial).

If we can prove that for each ae M’ we have P(Y)e H(D)[Y] and G(Y)e
e T(D,U d_(, 0), 7,,4) {With 7, , the restriction of r in Do\J d~ (o, o)) then conclusion
will follow by Lemma 10.

Thus without loss of generality we can assume M’ has only one point; then we
can also assume this point is 0.
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First suppose 7(0) 5= 0. By the hypothesis on D, all the & are nul or quasi-
invertible in H(D); by the hypothesis

(1) F.eT.(r(z)) for e DN\M', we have &,(x) 0 for every = 0, hence &,
has a factorization xm0,(x) with 8, invertible in H(D).

Also by (1) we have |&(2)|r(z)*"<C |é.(%)] hence
(2) [Es(@)]ag™ < [@["|0a()|  for |z[<e.

Then it clearly appears that «» does divide &;.
On the other hand, sinee r(x) is bounded, we can easily verify am also divides
&y +ooy &uy because of the inequalities

&) Ir(@)* < |Eul(@) ()" .

Finally F has a factorization in the form 2 F(Y) with F(¥) = > 0,(w) ¥, then
3=0

6, invertible in H(D). So F eT,(D,r) and we are sent back to the case M'= 0.

Thus we can assume now r(0) = 0.

For every o > 0, let D,= D\d (0, ¢) and let », be the restriction of # in D,.
Then F, considered as an element of T(Dy, 70}, has Hensel Factorization in (D, #)
in the form P(Y)G(Y) with P(¥) e H(D,)[¥], G(Y) € T(Dy, 1), and this is true for
every o> 0.

We can easily show that Pe H(D)[¥]. Indeed, sinee r is bounded by some A4,
each zero of P is so, hence [P, <A™ whenever # € D, hence each coefficient a,
of P is a bounded function in D\ Z that lies in H(D,) whenever ¢ > 0. By Lemma
a, € H(D), henece Pc H(D)[Y].

Now let us prove that F(¥) = P(Y)(Y) with H{(Y) e Z(D, »).

m
For each m € N let F,, = > £, ¥°, and let F,,= PG, 4 B, be the _Euclidean Di-

§=0
vision of F,, by P in H(D)[¥]. For each ¢ > 0, by Lemma 9 », has a lower bound
ap > 0, hence we apply Lemma 2 that shows the sequence R,, converges to 0 and
the sequence @, converges to G in ¥(D,, re). Then Lemma 8 shows G, converges
to ¢ in (D, r), and that ends the proof.
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