Lubin－Hensel Factorization for Laurent Series（＊）（＊＊）．

Adain Escassut

Abstract

Summary．－Let K be a compleie ultrametric algebraically closed field．Let D be a bounded closed strongly infraconneeted set in K with no T－filter，and let $H(D)$ be the Banach algebra of the analytic elements in D ．Let $r^{\prime}, r^{\prime \prime}$ be functions from D to \boldsymbol{R} with bounds a, b such that $0<a \leqslant$ $\leqslant r^{\prime}(x)<r^{\prime \prime}(x) \leqslant b$ ．Let $\mathfrak{L}\left(D, r^{\prime}, r^{\prime \prime}\right)$ be the Banach algebra of the Laurent series with coef－ ficients a_{s} in $H(D)$ such that $\lim \left(\sup \left|a_{s}(x)\right| \max \left(r^{\prime}(x)^{s}, r^{n}(x)^{s}\right)\right)=0$ ，provided with a suitable $|s| \rightarrow+\infty \quad x \in D$ norm．In $\mathfrak{L}\left(D, r^{\prime}, r^{\prime \prime}\right)$ we give a kind of Hensel Factorization for series whose dominating coefficients at $r^{\prime}(x)$ and at $r^{\prime \prime}(x)$ conserve the same rank．We take advantage of this method to correcting a mistake that happened in our previous article on the Hensel Factorization for Taylor series．

1．－Introduction and theorems．

Let $(K,|\cdot|)$ be a complete ultrametric algebraically closed field．
When A is a ring，we denote by $A \llbracket Y \rrbracket$（resp．$A 《 Y 》)$ the set of the Taylor Series（resp．the Laurent Series）with coefficients in A ．

Let D be a bounded closed subset of K ．As usual，we will denote by $H(D)$ the Banach algebra of the analytic elements on $D\left[\mathrm{E}_{1}\right]$ ，and $\|\cdot\|_{D}$ the uniform convergence norm on D defined on $H(D)$ ．

Let $F(Y)=\sum_{-\infty}^{+\infty} a_{s} Y^{s} \in H(D) 《 Y 》$ ．For each $x \in D$ we will denote by F_{x} the series $\left.\sum_{-\infty}^{+\infty} a_{s}(x) Y^{s} \in K \stackrel{-\infty}{\|}{ }^{-\infty}\right\rangle$.

For $a \in K, \varrho>0$ we will denote by $d(a, \varrho)$（resp．$\left.d^{-}(a, \varrho)\right)$ the disk $\{x \in K:|x-a| \leqslant \varrho\}$ （resp．$\{x \in K:|x-a|<\varrho\}$ ）．

Also we will denote by $C(a, \varrho)$ the circle $\{x:|x-a|=\varrho\}$ ．
For every couple $(a, b) \in \boldsymbol{R}_{+} \times \boldsymbol{R}_{+}$with $0<a<b$ ，let $L(a, b)$ be the algebra of the Laurent series convergent for $a \leqslant|x| \leqslant b$ ．

The famous Hensel Lemma gives the classical factorization in the form $P(Y)$ ． $\cdot G(Y)$ for a Laurent series $F(Y) \in L(a, b)$ with $P(Y)$ a monic polynomial whose
（＊）Entrata in Redazione il 9 maggio 1984；versione riveduta il 23 novembre 1985.
（＊＊）And Erratum to＂Maximum principle for analytic elements and Lubin－Hensel＇s Theorem in $H(D) \llbracket Y \rrbracket », 135$, pp． $265-278$ of this Journal．

Indirizzo dell＇A．：Université de Bordeaux I，UER de Mathématiques et Informatique， 351 Cours de la Libération，F 33405 Talence，France．
zeroes are those of $F(Y)$ and $G(Y)$ an invertible element of $L(a, b)$［A，L］．Jonathan Lubin first gave conditions for a Taylor series $F(Y)$ with coefficients in the algebra $H(d(0,1))$ to have a polynomial $P(Y)$ with coefficients in $H(d(0,1))$ ，such that，for each $x \in d(0,1), P_{x}$ is the monic polynomial whose zeroes are those of F_{x} ，in a disk $d(0, r(x))$（1969，unpublished article）and this has been developped by B ． DWork（［D］）who pointed out to my attention this kind of factorization in the algebras $H(D)[Y]$ ．（In 1979 J ．Lubry also gave a kind of factorization for series with coefficients in linearly topologised ring［LU］，which does not apply to algebras $H(D)$ in the general case．）

We avoided the technical conditions on Newton Polygon happening in B．Dwork＇s treatment and tried in $\left[\mathbf{E}_{4}\right]$ Theorem 2 to give a Hensel Factorization for Taylor series with coefficients in an algebra $H(D)$ with D open closed，bounded，strongly infraconnected．Unfortunately an exror in the use of Euclidean Division in Proposi－ tion 2 of $\left[\mathrm{E}_{4}\right]$ kindly pointed out to me by D ．Bartenwerfer puts that result in doubt．

Here we return to this problem of Hensel factorization in generalizing our study to the Laurent Series with coefficients in algebras $H(D)$ ．We will particularly use the algebra norms $\|\cdot\|_{r}^{r^{r}}$ and $\|\cdot\|^{r}$ defined as follows．

Let $r, r^{\prime}, r^{\prime \prime}$ be bounded functions defined in the closed bounded set D ，with values in \boldsymbol{R}_{+}，with bounds a, b for $r^{\prime}, r^{\prime \prime}$ such that $0<a \leqslant r^{\prime}(x) \leqslant r^{\prime \prime}(x) \leqslant b$ whenever $x \in D$ ．

Let $\left.F(Y)=\sum_{a=0}^{\infty} a_{s} Y^{s} \in H(D) \llbracket Y\right]$（resp．$\left.\left.F(Y)=\sum_{-\infty}^{+\infty} a_{s} Y^{s} \in H(D) 《 Y\right\rangle\right)$.
 $\left.r^{\prime \prime}(x)^{s}\right)$ ）and we will denote by $\mathfrak{T}(D, r)\left(\right.$ resp． $\mathfrak{\sim}\left(D, r^{\prime}, r^{\prime \prime}\right)$ ）the set of the $F(Y) \in H(D) \llbracket Y$ （resp．$F(Y) \in H(D) 《 Y 》)$ such that $\lim _{s \rightarrow \infty}\left\|a_{s} Y^{s}\right\| \|^{r}=0$（resp． $\lim _{|s| \rightarrow+\infty}\left\|a_{s} Y^{s}\right\| r_{r^{r}}^{r}=0$ ）．

Clearly $\mathfrak{I}(D, r)$ is the Banach algebra completion of $H(D)[Y]$ normed by $\||\cdot|\|^{r}$ ． Likewise，let $H(D)\langle Y\rangle$ be the algebra of the Laurent series with a finite number of terms：$\sum_{s=n}^{n} a_{s} Y^{s}, a_{s} \in \boldsymbol{H}(D), m, n \in \boldsymbol{Z}, m \leqslant n$ ．Then $\mathcal{Z}\left(D, r^{\prime}, r^{\prime \prime}\right)$ is the Banach algebra completion of $H(D)\langle Y\rangle$ normed by $\|\|\cdot\|\|_{r^{\prime \prime}}$ ，

Let $f(Y)=\sum_{-\infty}^{+\infty} a_{s} Y^{s} \in L(a, b)$ ．For $\varrho \in[a, b]$ we will also denote by $N^{+}(f, \varrho)$（resp． $N^{-}(f, \varrho)$ ）the unique integer t（resp．q）such that

$$
\left|a_{t}\right| \varrho^{t}=\sup _{s \in Z}\left|a_{s}\right| \varrho^{s} \quad \text { and } \quad\left|a_{t}\right| \varrho^{t}>\left|a_{s}\right| \varrho^{s} \quad \text { whenever } s>t
$$

（resp．$\left|a_{q}\right| \varrho^{q}=\sup _{s \in \mathcal{Z}}\left|\omega_{s}\right| \varrho^{s}$ and $\left|\alpha_{q}\right| \varrho^{q}>\left|a_{s}\right| \varrho^{s}$ whenever $s<q$ ）．
By classical results［ A, L ］we know that if f is a Laurent series convergent in the set $\{x \in K: a \leqslant|x| \leqslant b\} f$ has exactly $N^{+}(f, b)-N^{-}(f, a)$ zeroes（taking account of multiplicities）．

If f is a Taylor series convergent for $|x| \leqslant b$, then f has exactly $N^{+}(f, b)$ zeroes in $d(0, b)$.

For each $n \in \boldsymbol{N}$ we will denote by $\mathfrak{I}_{n}(D, r)$ the subset of the $F(Y) \in \mathscr{I}(D, r)$ such that $N^{+}\left(F_{x}, r(x)\right)=n$ whenever $x \in D$.

By what precedes we then have the obvious proposition A.
Proposition A. - Let D be a bounded closed subset of K, let r be a boundedfunctions from D into \boldsymbol{R}_{+}with $r(x)>0$ whenever $x \in D$. Let $n \in \boldsymbol{N}$. Then $\mathfrak{I}_{n}(D, r)$ is the set of the $F(Y) \in \mathfrak{I}(D, r)$ such that F_{x} has exactly n zeroes in $d(0, r(x))$ (taking account of multiplicities) for every $x \in D$.

For every $q, t \in \boldsymbol{Z}$ with $q \leqslant t$, we will denote by $\mathfrak{L}_{q, t}\left(D, r^{\prime}, r^{\prime \prime}\right)$ the subset of the $F(Y) \in \mathfrak{L}\left(D, r^{\prime}, r^{\prime \prime}\right)$ such that $N^{+}\left(F_{x}, r^{\prime \prime}(x)\right)=t, N^{-}\left(F_{x}, r^{\prime}(x)\right)=q$ whenever $x \in D$.

When no confusion is possible on the set D we will only write $\mathfrak{I}(r)$ instead of $\mathfrak{I}(D, r), \mathfrak{I}_{n}(r)$ instead of $\mathfrak{I}_{n}(D, r), \mathfrak{L}\left(r^{\prime}, r^{\prime \prime}\right)$ instead of $\mathfrak{L}\left(D, r^{\prime}, r^{\prime \prime}\right), \mathfrak{L}_{q}\left(r^{\prime}, r^{\prime \prime}\right)$ instead of $\mathfrak{L}_{q, t}\left(D, r^{\prime}, r^{\prime \prime}\right)$.

Remark. - It seems difficult to obtain a kind of Proposition A for Laurent series. Of course, if a Laurent series $F^{\prime}(Y)$ lies in $\mathcal{Q}_{a, t}\left(D, r^{\prime}, r^{\prime \prime}\right)$ by definition F_{x} does have exactly $t-q$ zeroes in the annulus $\left\{\lambda \in K: r^{\prime}(x) \leqslant|\lambda| \leqslant r^{\prime \prime}(x)\right\}$ for each $x \in D$. But there is no converse, in the form:
"If $r^{\prime}(x), r^{\prime \prime}(x)$ are functions from D to \boldsymbol{R}_{+}(with bounds a, b such that $0<a \leqslant$ $\left.\leqslant r^{\prime}(x) \leqslant r^{\prime \prime}(x) \leqslant b\right)$ such that F_{x} has exactly n zeroes in the annulus $\left\{\lambda: r^{\prime}(x) \leqslant|\lambda| \leqslant\right.$ $\left.\leqslant r^{\prime \prime}(x)\right\}$ for each $x \in D$, then F lies in some set $\mathfrak{L}_{q, a+n}\left(D, r^{\prime}, r^{\prime \prime}\right) »$. The following counter-example does show the problem.

Let $\alpha \in K$ with $|\alpha|<1$, and let $D=\{x \in X:|\alpha| \leqslant|x| \leqslant 1 /|\alpha|\}$. For $|\alpha| \leqslant|\alpha| \leqslant 1$ let $r^{\prime}(x)=1, r^{\prime \prime}(x)=1 /|\alpha|$ and for $1<|x| \leqslant 1 /|\alpha|$ let $r^{\prime}(x)=1 /|\alpha|^{2}, x^{\prime \prime}(x)=1 /|\alpha|^{3}$. Let $F(Y)=$ $=1+x Y+\alpha^{3} x^{2} Y^{2}$. Clearly $N^{-}\left(F_{x}, r^{\prime}(x)\right)$ is not constant in D because when $|x|<1, N^{-}\left(F_{x}, 1\right)=0$ while when $|x|=1 /|\alpha|, N^{-}\left(F_{x}, 1 /|\alpha|^{2}\right)=1$. However we can show that $N^{+}\left(F_{x}, r^{\prime \prime}(x)\right)-N^{-}\left(F_{x}, r^{\prime}(x)\right)=1$ whenever $x \in D$. For convenience, for each $x \in D$, let us write $F_{x}(Y)=a_{0}+a_{1} Y+a_{2} Y^{2}$.

Suppose first $|x|=|\alpha|$. Then $\left|a_{0}\right|=1$,

$$
\begin{cases}\left|a_{1}\right| r^{\prime}=|\alpha|, & \left|a_{2}\right| r^{\prime}=|\alpha,|^{5} \\ \left|a_{1}\right| r^{\prime \prime}=1, & \left|a_{\mathrm{a}}\right| r^{\prime \prime}=|\alpha|^{3}\end{cases}
$$

hence $N^{-}\left(F_{x}, r^{\prime}\right)=0, N^{+}\left(F_{x}, r^{\prime \prime}\right)=1$.
Suppose now $|\alpha|<|x|<1$. Then

$$
\begin{cases}\left|a_{1}\right| r^{\prime}=|x|<1, & \left|a_{2}\right| r^{\prime 2}=|\alpha|^{3}|x|^{2}<1 \\ \left|a_{1}\right| r^{\prime \prime}=\left|\frac{x}{\alpha}\right|>1, & \left|a_{2}\right| r^{\prime \prime 2}=\left|\alpha x^{2}\right|<1\end{cases}
$$

hence $N^{-}\left(F_{x}, r^{\prime}\right)=0, N^{+}\left(F_{x}, r^{\prime \prime}\right)=1$.

Suppose now $|x|=1$. Then

$$
\begin{cases}\left|a_{1}\right| r^{\prime}=1, & \left|a_{2}\right| r^{\prime 2}=|\alpha|^{3}<1 \\ \left|a_{1}\right| r^{\prime \prime}=\frac{1}{|\alpha|}, & \left|a_{2}\right| r^{\prime \prime 2}=|\alpha|<1<\frac{1}{|\alpha|}\end{cases}
$$

hence $N^{-}\left(F_{x}, r^{\prime}\right)=0, N^{+}\left(F_{x}, r^{\prime \prime}\right)=1$.
Finally $N^{-}\left(F_{x}, r^{\prime}\right)=0, N^{+}\left(F_{x}, r^{\prime \prime}\right)=1$ is true for $|\alpha| \leqslant|x| \leqslant 1$. Now, suppose $1<|x|<1|\alpha|$. Then

$$
\left\{\begin{array}{l}
\left|a_{1}\right| r^{\prime}=\left|\frac{x}{\alpha^{2}}\right|>1 ; \quad\left|a_{2}\right| r^{\prime 2}=\left|\frac{x^{2}}{\alpha}\right|<\left|\frac{x}{\alpha^{2}}\right| \\
\left|a_{1}\right| r^{\prime \prime}=\left|\frac{x}{\alpha^{3}}\right| ; \quad\left|a_{2}\right| r^{\prime 2}=\left|\frac{x^{2}}{\alpha^{3}}\right|>\left|\frac{x}{\alpha^{3}}\right|
\end{array}\right.
$$

hence $N^{-}\left(F_{x}, r^{\prime}\right)=1, N^{+}\left(F_{x}, r^{\prime \prime}\right)=2$.
At last, suppose $|x|=1 /|\alpha|$. Then

$$
\begin{cases}\left|a_{1}\right| r^{\prime}=\frac{1}{\left|\alpha^{2}\right|} ; & \left|a_{2}\right| r^{\prime 2}=\frac{1}{|\alpha|}<\frac{1}{|\alpha|^{2}} \\ \left|a_{1}\right| r^{\prime \prime}=\frac{1}{\left|\alpha^{3}\right|} ; & \left|a_{2}\right| r^{\prime 2}=\frac{1}{|\alpha|^{3}}\end{cases}
$$

hence $N^{-}\left(F_{x}, r^{\prime}\right)=1, N^{+}\left(F_{x}, r^{\prime \prime}\right)=2$. Thus this relation is true for $1<|x| \leqslant 1 /|\alpha|$.
A Taylor series $F(Y) \in \mathfrak{I}_{n}(r)$ will be said to have Hensel Factorization in $\mathfrak{I}_{n}(r)$ (resp. in $\mathfrak{I}_{n}(r) \cap H(D)[Y]$) if it may be factorised in the form $P(Y) \in G(Y)$ with P a n-degree monic polynomial that lies in $\mathfrak{I}_{n}(r)$ and $G \in \mathfrak{I}_{0}(r)\left(r e s p . ~ G \in \mathfrak{I}_{0}(r) \cap H(D)[Y]\right)$.

A Laurent series $F(\bar{Y}) \in \mathfrak{L}_{q, t}\left(r^{\prime}, r^{\prime \prime}\right)$ will be said to have Hensel Factorization in $\mathcal{L}_{\alpha, t}\left(r^{\prime}, r^{\prime \prime}\right)$ if it may be factorised in the form $P(Y) \in G(Y)$ with P a $(t-q)$-degree monic polynomial that lies $\mathcal{E}_{0, t-q}\left(r^{\prime}, r^{\prime \prime}\right)$, and $G \in \mathcal{E}_{q}\left(r^{\prime}, r^{\prime \prime}\right)$.

REMark. - When a Taylor series $F(Y)($ resp. a Laurent series $F(Y)$) has Hensel Factorization in $\mathfrak{I}_{n}(r)$ (resp. in $L_{q, t}\left(r^{\prime}, r^{\prime \prime}\right)$), Hensel Factorization is unique. Indeed for each $x \in D$, by classical results [A], we find back the Hensel Lemma for F_{x} in $T(r(x))\left(\right.$ resp. in $\left.L\left(r^{\prime}(x), r^{\prime \prime}(x)\right)\right)$.

Recall that set D in K is said to be infraconneoted if the adherence of the set $\{|x-a|: x \in D\}$ is an interval in \boldsymbol{R} whenever $a \in D$.

Now D is said to be strongly infraconnected if for every hole $d(a, r)$ of D such that $r \in|K|$, there is a sequence a_{n} in D such that $\left|a_{n}-a\right|=\left|a_{n}-a_{m}\right|$ for every $n \neq m\left[\mathbb{E}_{4}\right]$.
T-filters are defined in $\left[\mathrm{E}_{3}\right]$.
Theoren 1. - Let D be an open closed bounded strongly infraconnected subset of K with no T-filter and let $r^{\prime}, r^{\prime \prime}$ be functions from D to \boldsymbol{R}_{+}, with bounds a, b such that $0<a \leqslant r^{\prime}(x) \leqslant r^{\prime \prime}(x) \leqslant b$ whenever $x \in D$. Let $t, q \in \boldsymbol{Z}$ and let $F \in \mathcal{L}_{q}\left(D, r^{\prime}, r^{\prime \prime}\right)$.

Then F has Hensel Factorization in $\mathcal{Q}_{q, t}\left(D, r^{\prime}, r^{\prime \prime}\right)$.
In the proof of theorem 1 we will particularly use the following proposition \boldsymbol{B}.
Proposimion B. - Let D be an open closed bounded infraconnected set with no T-filter. Let $a, b \in \boldsymbol{R}$ with $0<a<b$ and let $q, t \in \boldsymbol{Z}$ with $q<t$. Let $r^{\prime}, r^{\prime \prime}$ be functions from D to \boldsymbol{R}_{+}such that $0<a \leqslant r^{\prime}(x) \leqslant r^{\prime \prime}(x) \leqslant b$ whenever $x \in D . \mathfrak{Q}_{q, t}\left(D, r^{\prime}, r^{\prime \prime}\right)$ is closed in $\mathcal{L}\left(D, r^{\prime}, r^{\prime \prime}\right)$.

Let F_{m} be a convergent sequence in $\mathfrak{Q}_{q, t}\left(D, r^{\prime}, r^{\prime \prime}\right)$. Suppose for each $m \in N, F_{m}$ has Hensel Factorization $P_{m} \in G_{m}$ in $\mathcal{L}_{a, t}\left(D, r^{\prime}, r^{\prime \prime}\right)$ with $P_{m} a(t-q)$-degree monic polynomial. Then the sequence P_{m} converges in $\mathfrak{R}_{0, t-q}\left(D, r^{\prime}, r^{\prime \prime}\right)$ to a $(t-q)$-degree monic polynomial P; the sequence G_{m} converges in $\mathfrak{Q}_{q, q}\left(D, r^{\prime}, r^{\prime \prime}\right)$ to a limit G. The limit F of the sequence F_{m} has Hensel Factorization $F(Y)=P(Y) \in G(Y)$ in $\mathfrak{B}_{q, t}\left(D, r^{\prime}, r^{\prime \prime}\right)$.

When we consider Taylor series instead of Laurent series, we can obtain results with weaker hypothesis.

Theorem 2. - Let D be an open closed bounded strongly infraconnected subset of K with no T-filter, let r be a bounded function from D to \boldsymbol{R}_{+}, let M be a finite subset of D and let $n \in \mathbb{N}$. Let $F(\mathcal{Y}) \in \mathfrak{I}(D, r)$ be such that F_{x} has exactly n zeroes in $d(0, r(x))$ (taking account of multiplicities) whenever $x \in D \backslash M$. Then F has a factorization $P(Y) \in G(Y)$ in $\mathfrak{I}(D, r)$ with P a n-degree monio polynomial in $H(D)[Y]$ and $G(Y) \in$ $\in \mathfrak{I}(D, r)$ such that $N\left(G_{x}, r(x)\right)=0$ whenever $x \in D \backslash M$. If $F(Y) \in H(D)[Y]$ then $G(Y) \in H(D)[Y]$.

Corollary. - Let D be an open closed bounded strongly infraconnected subset of K with no T-filter, let r be a bounded function from D to \boldsymbol{R}_{+}, let $n \in \boldsymbol{N}$, let $F \in \mathfrak{I}_{n}(D, r)$. Then F has Hensel Factorization in $\mathfrak{I}_{n}(D, r)$.

If $F \in H(D)[Y]$ then it has Hensel Factorization in $H(D)[Y] \cap \mathfrak{I}_{n}(D, r)$.
Remark. - The hypothesis " D has no T-filter» could be hardly avoided (unless assuming all the ξ_{s} are quasi-invertible). Indeed in the proofs of the main results we first divide the series $F(Y)=\sum \xi_{3} Y^{s}$ by ξ_{n} then we use the classical result "if ξ_{s} / ξ_{n} is bounded in D then $\left(\xi_{s} / \xi_{n}\right) \in H(D)$. . If D has a T-filter this property is sometimes false as it is proved in [S].

Comparison with Theorem 2 in $\left[\mathrm{E}_{4}\right]$.
The proof of Theorem 2 in $\left[\mathrm{E}_{4}\right]$ is not correct because the proof of Proposition 2 has a mistake. Indeed in Proposition 2 we considered a Euclidean division of a Taylor series $F(Y)=\sum_{s=0}^{\infty} \xi_{s} Y^{s} \in H(D) \llbracket Y \rrbracket$ with $\xi_{n}=1$ by the n-degree monic polynomial $P(Y)=\sum_{s=0}^{n} \xi_{s} \stackrel{s=0}{Y^{s}}$. For each fixed $x \in D$; the Euclidean division of F_{x} by P_{x} does exist in the Banach algebra of the Taylor series convergent for $|x| \leqslant r(x)$ [A, 4.4.2]. Unfortunately, unless providing $H(D)[Y]$ (or a subset S containing F and P) witha
suitable topology we camnot deduce a division of F by P in $H(D)[Y]$ (or in \mathbb{S}). Even if we assume in Proposition 2 the condition

$$
\limsup _{s \rightarrow \infty} \|\left(\xi_{s}^{n-l} \xi_{l}^{s-n} / \xi_{n}^{s-l}\right)_{D}<1
$$

that we assumed in Theorem 2, it does not seem possible to prove Proposition 2. However we have no counter-example proving it could be false.

In the present article the Euclidean division of F by P is possible in $\mathfrak{L}(D, r)$. Consider now a Taylor Series $F(Y)=\sum_{s=0}^{\infty} \xi_{s} Y^{s} \in \mathfrak{I}_{n}(D, r)$ satisfying the hypothesis of Theorem 2 in the present article. For $r(x)$ we can simply take the radius $\varrho(x)$ of the smallest disk $d(0, \varrho(x))$ containing exactly n zeroes of F_{x} (taking account of multiplicities).

$$
\begin{aligned}
& \text { Then } \varrho(x)=\max _{l=0, \ldots, n-1}\left\|\left(\xi^{1}(x) / \xi_{n}(x)\right)\right\|_{D}^{1 / n-l} \text { hence the } \xi_{s} \text { satisfy } \\
& \qquad \lim _{s \rightarrow \infty}\left(\sup _{x \in D}\left(\left|\xi_{s} \|\left(\xi_{l}(x) \mid \xi_{n}(x)\right)\right|^{s / n-l}\right)\right)=0 \quad \text { whenever } l=0, \ldots, n-1
\end{aligned}
$$

hence

$$
\begin{equation*}
\lim _{s \rightarrow \infty}\left\|\xi_{s}^{n-l} \xi_{l}^{s} / \xi_{n}^{s}\right\|_{D}=0 \quad \text { whenever } l=0, \ldots, n-1 \tag{1}
\end{equation*}
$$

Particularly in assuming ξ_{n} divides all the ξ_{s}, as we did in Theorem 2 of $\left[\mathbf{E}_{4}\right]$, we can easily deduce

$$
\begin{equation*}
\lim _{s \rightarrow \infty}\left\|\xi_{s}^{n-l} \xi_{l}^{s-q} / \xi_{n}^{s-l}\right\|_{D}=0 \tag{2}
\end{equation*}
$$

Indeed when D is open with no T-filter, every element $f \in H(D)$ is quasi-invertible (i.e. it has a factorization in the form $P(x) \in h(x)$ with P a polynomial and h an invertible element in $H(D)$). Then for any fixed element $u \in H(D)$ there is a constant $c>0$ such that $\|u f\|_{D} \geqslant c\left\|_{f}\right\|_{D}$ whenever $f \in H(D)$ because by $\left[\mathrm{E}_{1}\right] u H(D)$ is a closed ideal, hence $\|u f\|_{D}$ and $\|u f\|_{=}=\|f\|_{D}$ define two equivalent topologies by Banach Theorem.

Here, since ξ_{n} divides ξ_{l} in $H(D)$, we can factorise $\left(\xi_{s}^{n-l} \xi_{l}^{s}\right) / \xi_{n}^{s}$ in the form $\left[\left(\xi_{s}^{n-l} \xi_{l}^{s-n}\right) \mid \xi_{n}^{s-l}\right]\left(\xi_{l}^{n} / \xi_{n}^{l}\right)$. Clearly $\left(\xi_{l}^{n} \mid \xi_{n}^{l}\right) \in H(D)$, hence the hypothesis (1) implies the hypothesis (2).

Thus, our present hypothesis appears to be a little bit stronger than in $\left[\mathrm{E}_{4}\right]$. However, in the present article, Theorem 2 does not require ξ_{n} to divide all the ξ_{s} in $H(D)$. For example the polynomial $F(Y)=x^{3}+x Y+Y^{2}$ does satisfy the hypothesis of Theorem 2 with $n=1$, and $D=d(0,1), M=\{0\}$.

2. - Basic results.

The following Lemma 1 is immediate
Lemma 1. - Let D be a closed bounded subset of K, let $r, r^{\prime}, r^{\prime \prime}$ be bounded functions defined in D, with values in \boldsymbol{R}_{+}, with a, b such that $0<a \leqslant r^{\prime}(x) \leqslant r^{\prime \prime}(x) \leqslant b$ whenever $x \in D$.
$\left\|\|\cdot\|^{r}\right.$ defines on $\mathfrak{T}(D, r)$ a norm of linear space that makes it a Banach space.
$\|\cdot\| \|_{r^{\prime}}^{r^{\prime \prime}}$ defines on $\mathcal{L}\left(D, r^{\prime}, r^{\prime \prime}\right)$ a norm of linear space that makes it a Banach space.
Let \log be a logarithm function of base $p>1$ and let v the valuation defined on K by $v(x)=-\log |x|$.

In order to recall easily some classical results and processes used in the rings $L(a, b)$ we define again the valuation function $v(f, \mu)$.

Let $f(\mathbb{Y})=\sum_{-\infty}^{+\infty} a_{i} \Psi^{i} \in L(a, b) ;$ for $\mu \in[-\log b,-\log a] ;$ let $v(f, \mu)=\inf _{i \in Z}\left(v\left(a_{i}\right)+\right.$ $+i \mu)$.

Lemma 2. - Let D be a bounded closed infraconnected subset of K and let r be a function from D to \boldsymbol{R}_{+}with bounds a, b such that $0<a \leqslant r(x) \leqslant b$ whenever $x \in D$. Let $F(Y) \in \mathscr{I}(D, r)$ and let $P(Y) \in H(D)[Y] \cap \mathscr{I}_{n}(D, r)$ bz a n-degree monic polynomial.
A) There exists $G \in \mathfrak{I}(D, r)$ and $R \in H(D)[Y]$ with $\operatorname{deg}(R)<n$, such that $F=$ $=P G+R$. Both G, R are unique.
B) For each $x \in D$ we have

$$
\begin{align*}
& v\left(R_{x},-\log r(x)\right) \geqslant v\left(F_{x},-\log r(x)\right) \tag{1.}\\
& v\left(G_{x},-\log r(x)\right) \geqslant v\left(F_{x}-\log r(x)\right)-v\left(P_{x},-\log r(x)\right) \tag{2}\\
& N^{+}(P+R, r(x))=N^{+}(P, r(x))=n \tag{3}
\end{align*}
$$

C) Let $F(\Psi)=\sum_{s=0}^{\infty} \xi_{s} Y^{s}$ and for each $n \in \mathbb{N}$, let $F_{m}(Y)=\sum_{s=0}^{m} \xi_{s} Y^{s}$, let $F_{m}=P G_{m}+R_{m}$ with $G_{m}, R_{m} \in H(D)[Y]$, deg $R_{m}<n$. Then the sequence G_{m} converges to G and R_{m} converges to 0 in $\mathfrak{I}(D, r)$.

Proof. - If G and R exist, they are unique. Indeed for each $x \in D$ we have $F_{x}=P_{x} G_{x}+R_{x}$; this is the Euclidean division of the Taylor series F_{x} by P_{x} in the ring of the series convergent in $d(0, r(x))$ and we know they both are unique. Also they verify (1), (2), (3) by classical results ([A], 4.4.2 and [L]).

When F is a polynomial the Euclidean division by the monic polynomial P does exist in $H(D)[Y]$ then we have $G \in H(D)[Y]$ and $R \in H(D)[Y]$ with $\operatorname{deg} R<n$ such that $F=P G+R$.

Now suppose F is a Taylor series $\sum_{s=0}^{\infty} \xi_{s} Y^{s}\left(\xi_{s} \in H(D)\right)$. For each $m \in N$ let $F_{m}(Y)=\sum_{s=0}^{m} \xi_{s} Y^{s}$ and let $F_{m}=P G_{m}+R_{m}$ be the Euclidean division of F_{m} by P. By (1) we can easily show the sequence R_{m} is a Cauchy sequence in $\mathfrak{I}(D, r)$ for its norm $\|\cdot\|$. Traced the Euclidean Division of $F_{m+1}-F_{m}$ is $P\left(G_{m+1}-G_{m}\right)+\left(R_{m+1}-\right.$ $\left.-R_{m}\right)$ hence $v\left(\left(R_{m_{+1}}-R_{m}\right)_{x},-\log r(x)\right) \geqslant v\left(\left(F_{m+1}-F_{m}\right)_{x},-\log r(x)\right)$ there by we have $\left\|R_{m+1}-R_{m}\right\|^{r} \leqslant\left\|F_{m+1}-F_{m}\right\|^{r}$ so $\left(R_{m}\right)$ is a Cauchy sequence; it then converges to a polynomial $R \in H(D)[Y]$ of degree $<n$. Similarly since $r(x) \geqslant a>0$, by (2) we can see the sequence $G_{i n}$ is a Cauchy sequence $\mathcal{T}(D, r)$; hence it converges to a Taylor series $G(Y) \in \mathfrak{T}(D, R)$ such that $F=P G+R$. Lemma 2 is then proved.

Lemma 3. - Let D be an open closed bounded infraconnected subset of K and let r be a function from D to \boldsymbol{R}_{+}, with bounds a, b such that $0<a \leqslant r(x) \leqslant b$ whenever $x \in D$. Let $M=\left\{\alpha_{1}, \ldots, \alpha_{a}\right\} \subset D$ and for every $\varrho>0$, let $D_{Q}=D \backslash \bigcup_{i=1}^{Q} d\left(\alpha_{i}, \varrho\right)$ and let r_{Q} be the
restriction of $;$ in D. restriction of r in D_{Q}.

Let $n \in N$, let $F(Y) \in \mathfrak{S}_{n}(D, r)$ and assume for every $\varrho>0, F$ has Hensel.
Factorization in $\mathfrak{I}_{n}\left(D_{\varrho}, \mathfrak{r}_{\varrho}\right)$. Then F has Hensel Factorization in $\mathfrak{I}_{n}(D, r)$.
Proof. - By hypothesis we can define a n-degree monic polynomial $P(Y)$ and a Taylor series $G(Y)$ such that $P(Y) \in H\left(D_{\varrho}\right)[Y]$ and $G(Y) \in \mathscr{I}\left(D_{\varrho}, r_{e}\right)$ whenever $\varrho>0$ and $F_{x}(Y)=P_{x}(Y) \in G_{x}(Y)$ whenever $x \in D \backslash M$ and the n zeroes of P_{x} are the zeroes of F_{x} in $d(0, r(x))$. Since $r(x) \leqslant b$ the coefficients of P_{x} are clearly upper bounded by $\max \left(1, b^{n}\right)$ in $D \backslash M$.

Since they are in $H\left(D_{e}\right)$ whenever $\varrho>0$, we know by the Lemma 9 of $\left[\mathrm{E}_{4}\right]$ they do belong to $H(D)$. By Lemma 3 it is obvious $G(Y) \in \mathscr{T}(D, r)$. Indeed by Euclidean Division in $\mathcal{L}(D, r)$ we have $F(Y)=P(Y), V(Y)+R(Y), R(Y) \in H(D)[Y]$.

Since $F_{x}(Y)=P_{x}(Y) G_{x}(Y)$, whenever $x \in D \backslash M$ clearly we have $G_{x}(Y)=V_{x}(Y)$, $R_{x}(Y)=0$ whenever $x \in D \backslash M$, hence finally $R=0, V=G$.

3. - Sets with no T-filter.

We will often use the following Lemmas
Lemma 4. - Let D be a closed bounded subset of K with no T-filter and let $f \in H(D)$ be such that $f(x) \neq 0$ whenever $x \in D$.

Then f is invertible in $H(D)$.
Proof. - Suppose f is not quasi-invertible. Then it approaches zero on a pierced filter $\mathscr{F}\left[\mathrm{E}_{2}\right]$. Since f has no zero in D, then \mathcal{F} is not a Cauchy pierced filter, hence it is a large pierced filter $\left[\mathrm{E}_{3}\right]$. Then f also approaches zero on a T-filter $\left[\mathrm{E}_{3}\right]$ what is impossible by hypothesis. Hence f is quasi-invertible in $H(D)$. Since f has no zero it is invertible.

Lemma 5 is classical [$\left.\mathbf{A}, \mathbf{K}_{3}, \mathrm{~L}\right]$
LEMMA 5. - Let $P(\Psi)=\sum_{i=0}^{q} a_{i} Y^{i} \in K[Y]$, let $n \in \boldsymbol{N}$ with $n \leqslant q$, and let $r \in \boldsymbol{R}_{+}$be such that $N^{+}(P, r)=n>N^{-}(P, r)=h$. Then $r=\left|a_{n \varrho} a_{n}\right|^{1 /(n-h)}$.

Lemma 6. - Let D be a closed bounded subset of K with no T-filter and let r be a function from D into \boldsymbol{R}_{+}with bounds a, b such that $0<a \leqslant r(x) \leqslant b$ whenever $x \in D$. Let $n \in N$, let $F(Y)=\sum_{s=0}^{\infty} \xi_{s} Y^{s} \in \mathfrak{I}_{n}(D, r)$ and assume $N^{+}\left(F_{x}, r(x)\right)>N^{-}\left(F_{x}^{\prime}, r(x)\right)$ when-
ever $x \in D$.

Then there exists $\lambda<1$ such that $\lambda\left|\xi_{n}(x)\right| r(x)^{n} \geqslant\left|\xi_{s}(x)\right| r(x)^{s}$ whenever $x \in D$, whenever $s>n$.

Proof. - By Lemma 4 we know that ξ_{n} is invertible in $H(D)$, hence we can clearly assume $\xi_{n}=1$ without loss of generality.

Let $l \in \boldsymbol{N}$ be such that $\left|\xi_{s}(x)\right| r(x)^{s} \leqslant a / 2$ whenever $x \in D$, for $s \geqslant l$. Then it only remains to prove for each $s=n+1, \ldots, l$, there exists $\varrho_{s}<1$ such that $\varrho_{s}\left|\lambda_{n}(x)\right| r(x)^{n} \geqslant$ $\geqslant\left|\xi_{s}(x)\right| r(x)^{s}$ whenever $x \in D$.

By the hypothesis $N^{+}\left(F_{x}, r(x)\right)>N^{-}\left(F_{x}, r(x)\right)$, by Lemma 5 we know that for each $x \in D, r(x)$ is in the form

$$
r(x)=\left|\xi_{l(x)}\right|^{1 /(n-l(x))} \quad \text { with } \quad r(x) \geqslant\left|\xi_{h}(x)\right|^{1 /(n-h)}
$$

whenever $h=0, \ldots, n-1$ hence we have

$$
\begin{equation*}
\left|\xi_{3}(x)\right|\left|\xi_{h}(x)\right|^{(s-n) /(n-h)}<1 \tag{1}
\end{equation*}
$$

whenever $x \in D$, whenever $h=0, \ldots, n-1$.
By Lemma 8 in $\left[\mathrm{E}_{4}\right]$ it follows that

$$
\begin{equation*}
\left\|\xi_{s}^{n-h} \xi_{h}^{s-x}\right\|_{D}<1 \tag{2}
\end{equation*}
$$

Indeed, if (2) is false, by (1) we have $\left\|\xi_{s}^{n-h} \xi_{h}^{s-n}\right\|_{D}=1$.
Since D is strongly infraconnected, by Lemma 8 in $\left[\mathrm{E}_{4}\right]$ there exists $\alpha \in D$ such that $\left|\xi_{s}(\alpha)^{n-h} \xi_{h}(\alpha)^{s-n}\right|=1$ in contradiction with (2).

Then we can take $\varrho_{s}=\left(\left\|\xi_{s}^{n-h} \xi_{h}^{s-n}\right\|_{n}\right)^{1 /(n-h)}$ and so, Lemma 6 is proved.
Proposition P. - Let D be a closed bounded strongly infraconnected subset of K with no T-filter. Let r be a function from D into \boldsymbol{R}_{+}with bounds a, b such that $0<a \leqslant$ $\leqslant r(x) \leqslant b$ whenever $x \in D$, let $n \in N$ and let $F(Y) \in H(D)[Y] \cap \mathfrak{I}_{n}(D, r)$. Then $F(Y)$ has Hensel Factorization in $H(D)[\bar{Y}] \cap \mathfrak{I}_{n}(D, r)$.

Proof. - Let $f(Y)=\sum_{s=0}^{l} \xi_{s} Y^{s}$. By hypothesis ξ_{n} does not vanish in D; since D has no T-filter, by Lemma $4, \xi_{n}$ is invertible in $H(D)$, so we can clearly assume
$\xi_{n}=1$ without loss of generality. Then the polynomial $P_{1}(Y)=\sum_{s=0}^{n} \xi_{s} Y_{s}$ is monic and $P_{1} \in \mathfrak{I}_{n}(D, r)$. So we can make the Euclidean Division of F^{H} by $P_{1}: F(Y)=$ $=P_{1}(\bar{Y}) G_{1}(Y)+R_{1}(Y), G_{1}(Y) \in \mathfrak{I}(D, r), R_{1} \in F(D)[Y]$, deg $R_{1}<n$. Then the polynomial $P_{2}=P_{1}+R_{1}$ is monic and it lies in $\mathfrak{T}_{n}(D, r)$ also. Thus, by an immediate induction we can define sequences $P_{m}=P_{m-1}+R_{m-1}, G_{m} \in \mathcal{I}(D, r), R_{m} \in H(D)[Y]$, deg $R_{m}<n$ such that $F=P_{m} G_{m}+R_{m}$ with relations (1), (2), (3) satisfied for each m.

$$
\begin{align*}
& v\left(R_{x},-\log r(x)\right) \geqslant v\left(F_{x},-\log r(x)\right) \tag{1}\\
& v\left(G_{x},-\log r(x)\right) \geqslant v\left(F_{x},-\log r(x)\right)-v\left(P_{x}-\log r(x)\right) \tag{2}\\
& N^{+}\left(P_{x}+R_{x}, r(x)\right)=N^{+}\left(P_{x}, r(x)\right)=n \tag{3}
\end{align*}
$$

Now we can assume $d(0, r(x))$ is the smallest disk of center 0 containing exactly n zeroes of F_{x} (taking account of multiplicities), whenever $x \in D$. Indeed, if we prove Proposition P when r is so, it is obvious it holds when r is bigger as long as $d(0, r(x))$ only contains n zeroes of F_{*} whenever $x \in D$. Thus we can assume $N^{+}\left(F_{x}, r(x)\right)>$ $>N^{-}\left(F_{x}, r(x)\right)=l(x)$.

Then we can apply Temma 6 and we have $\theta>0$ such that $v\left(\xi_{s}(x)\right)-s \log r(x) \geqslant$ $\geqslant-n \log r(x)+\theta$ whenever $x \in D$, whenever $s>n$, hence

$$
v\left(\left(F-P_{1}\right)_{x},-\log r(x)\right)-v\left(F_{x},-\log r(x)\right) \geqslant \theta
$$

whenever $x \in D$.
Then we can follow the classical way like in [A], 4.4.4. First we can prove that

$$
\left.v\left(G_{m+1}-G_{m}\right)_{x},-\log r(x)\right) \geqslant m \theta
$$

Then the sequence G_{m} is a Cauchy sequence for the norm $\|\cdot\| r$ in the space $H(D)[Y]$.
Hence (\mathcal{G}_{m}) converges to a limit $G \in H(D)[Y]$. Likewise, the sequence P_{m} converges in $H(D)[Y]$ to a n-degree monic polynomial P that also lies in $\mathfrak{I}_{n}(D, r)$. At last the sequence R_{m} converges to 0 . So we have $F=P G$ in $H(D)[Y]$.

Notations. - Let $a, b \in \boldsymbol{R}_{+}^{*}$ with $a \leqslant b$. We will denote by $\Delta(a, b)$ the set $\{x \in K$: $a \leqslant|x| \leqslant b\}$. Let $q, t \in \boldsymbol{Z}$ with $q \leqslant t ; L_{q, t}(a, b)$ will denote the set of the $f \in L(a, b)$ with $N^{-}(t, a)=q$ and $N^{+}(f, b)=t$. Let $\|\cdot\|=\|\cdot\|_{\Delta(a, b)}$.

Lemma 7. - Let t, $q \in \boldsymbol{Z}, t>q$, let $a, b \in \boldsymbol{R}_{+}(0<a<1, a<b)$ and let $F_{1}, F_{2} \in L_{a, t}(a, b)$. Assume $\left\|F_{1}\right\|=\left\|F_{2}\right\|>\left\|F_{1}-F_{2}\right\|$. Let $F_{2}(x)=\sum_{-\infty}^{+\infty} \xi_{3} Y^{s}$ and let $A=\left|\xi_{t}\right|$ and assume $A \leqslant 1$. Let $P_{i} G_{i}$ be the Hensel factorization of F_{i} with P_{i} the monic polynomials whose zeroes are the $t-q$ zeroes of F_{i} in $\Delta(a, b)(i=1,2)$ and let $\varrho>0$ be such that for each zero α of $P_{2} d(\alpha, \varrho) \subset \Delta(a, b)$.

Then

$$
\left\|G_{1}-G_{2}\right\| \leqslant \frac{\left\|F_{1}-F_{2}\right\|^{1 /(t-q)}!}{A^{t-q} \varrho^{2(t-q)} a^{q}}, \quad\left\|P_{1}-P_{2}\right\| \leqslant \frac{b^{t-q}\left\|F_{1}-F_{2}\right\|^{1 /(t-q)}!}{A^{t-q+1} \varrho^{2(t-q)} a^{q}}
$$

Proof. - Let α_{1} be a zero of F_{1} in $\Delta(a, b)$. Then we have

$$
\left|F_{1}\left(\alpha_{1}\right)-F_{2}\left(\alpha_{1}\right)\right|=\left|P_{2}\left(\alpha_{1}\right) \hat{G}_{2}\left(\alpha_{1}\right)\right| .
$$

Let $G_{2}(Y)=\sum_{-\infty}^{+\infty} g_{s} Y^{s}$; then $\left|G_{2}(\lambda)\right|=\left|g_{q}\right||\lambda|^{q}$ whenever $\lambda \in \cdot \Delta(a, b)$. Set $n=t-q$.
On the other hand $\| F_{2}| | \geqslant\left|\xi_{t}\right| b^{t},\left|\xi_{t}\right| b^{t}=b^{n}\left|g_{q}\right| b^{q}$ hence $\left|g_{q}\right|=\left|\xi_{t}\right|,\left|G_{2}\left(\alpha_{1}\right)\right|=\left|g_{q}\right|\left|\alpha_{1}\right| q^{=}=$ $=\left|\xi_{t}\right|\left|\alpha_{1}\right| .{ }^{q}$

Then

$$
\left|P_{2}\left(\alpha_{1}\right)\right| \leqslant \frac{\left\|F_{1}-F_{2}\right\|}{\left|G_{2}\left(\alpha_{1}\right)\right|}=\frac{\left\|F_{1}-F_{2}\right\|}{\left|\xi_{t} \| \alpha_{1}\right|^{q}}
$$

hence

$$
\left|P_{2}\left(\alpha_{1}\right)\right| \leqslant \frac{\left\|F_{1}-F_{2}\right\|}{\left|\xi_{t}\right| a^{q}} .
$$

Then it is easily seen the nearest zero α_{2} from α_{1} of P_{2} is such that

$$
\left|\alpha_{2}-\alpha_{1}\right|^{n} \leqslant\left|P_{2}\left(\alpha_{1}\right)\right| \leqslant \frac{\left\|F_{1}-F_{2}\right\|}{A a^{q}}
$$

thereby we have

$$
\begin{equation*}
\left|\alpha_{2}-\alpha_{1}\right| \leqslant \frac{\left\|F_{1}-F_{2}\right\|^{1 / n}}{\left(A a^{q}\right)^{1 / n}} . \tag{1}
\end{equation*}
$$

Let $F_{1}(x)=\left(x-\alpha_{1}\right) \bar{F}_{1}, F_{2}(x)=\left(x-\alpha_{2}\right) \bar{F}_{2} ;$ let $D=\Delta(a, b) \backslash\left(d\left(\alpha_{1}, \varrho\right) \bigcup d\left(\alpha_{2}, \varrho\right)\right)$. By classical results $\left[\mathbf{A}, \mathrm{E}_{1}\right]$ we know that if $F \in L(a, b)$ then $\|F\|_{D}=\|F\|$. Here we have

$$
\begin{equation*}
\left\|\bar{F}_{1}-\bar{F}_{2}\right\|=\left\|\bar{F}_{1}-\bar{F}_{2}\right\|_{D} \leqslant \max \left(\left\|\frac{F_{1}-F_{2} \|_{1}}{x-\alpha_{1}}\right\|_{D},\left\|F_{2}\left(\frac{1}{x-\alpha_{1}}-\frac{1}{x-\alpha_{2}}\right)\right\|_{D}\right) . \tag{2}
\end{equation*}
$$

On the first hand we have

$$
\begin{equation*}
\left\|\frac{F_{1}-F_{2}}{x-\alpha_{1}}\right\|_{D} \leqslant\left\|F_{1}-F_{2}\right\|_{D}\left\|\frac{1}{x-\alpha_{1}}\right\|_{D}=\left\|F_{1}-F_{2}\right\|\left(\frac{1}{\varrho}\right) . \tag{3}
\end{equation*}
$$

On the second hand

$$
\begin{equation*}
\left\|F_{2}\left(\frac{1}{x-\alpha_{1}}-\frac{1}{x-\alpha_{2}}\right)\right\|_{D} \leqslant\left\|F_{2}\right\|_{D}\left\|\frac{\alpha_{2}-\alpha_{1}}{\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)}\right\|_{D}=\frac{\left|\alpha_{2}-\alpha_{1}\right|}{a^{2}} \leqslant \frac{\left\|F_{1}-F_{2}\right\|^{1 / n}}{A^{1 / n} Q^{2} a^{q / n}} . \tag{4}
\end{equation*}
$$

Since $\left\|F_{1}-F_{2}\right\|<1$, we have $\left\|F_{1}-F_{2}\right\|^{1 / n}>\left\|F_{1}-F_{2}\right\|$. Also $A \leqslant 1, a \leqslant \varrho \leqslant 1$ hence

$$
\frac{1}{a} \leqslant \frac{1}{A^{1 / n} \varrho^{2} a^{q / n}}
$$

Finally we have

$$
\left\|\bar{F}_{1}-\bar{F}_{2}\right\| \leqslant \frac{\left\|F_{1}-F_{2}\right\|^{1 / n}}{A^{1 / n} \varrho^{2} a^{\alpha / n}}
$$

hence with greater reason

$$
\begin{equation*}
\left\|\bar{F}_{1}-\bar{F}_{2}\right\| \leqslant \frac{\left\|F_{1}-F_{2}\right\|^{1 / n}}{A \varrho^{2} a^{q / n}} \tag{5}
\end{equation*}
$$

Let $\bar{F}_{2}(Y)=\sum_{-\infty}^{+\infty} \hat{\xi}_{s} Y^{s}$. Then by classical results [A] we know that

$$
N^{+}\left(F_{2},-\log b\right)=t-1, \quad\left|\hat{\xi}_{s}\right|=\left|\xi_{s}\right|
$$

hence we are set back to the same problem with $n-1$ instead of n, \bar{F}_{i} instead of F_{i}. Let us remind now that $A \leqslant 1, \varrho \leqslant 1, a \leqslant 1$.

By an immediate decreasing induction after n similar operations we obtain

$$
\left\|G_{1}-G_{2}\right\| \leqslant \frac{\left\|F_{1}-F_{2}\right\|^{1 / n}!}{A^{n} \varrho^{2 n} a^{q}}
$$

Then $\left\|\left(P_{2}-P_{1}\right) G_{2}\right\| \leqslant \max \left(\left\|F_{2}-F_{1}\right\|,\left\|P_{1}\left(G_{1}-G_{2}\right)\right\|\right)$. By hypothesis $\left|G_{2}(\lambda)\right|=$ $=\left|g_{q}\right||\lambda|^{q}=A|\lambda|^{a}$ hence $\left|G_{2}(\lambda)\right| \geqslant A \min \left(a^{a}, b^{a}\right)$ thereby

$$
\left\|P_{1}-P_{2}\right\| \leqslant \frac{\max \left(\left\|F_{1}-F_{2}\right\|,\left\|P_{1}\left(G_{1}-G_{2}\right)\right\|\right)}{A \min \left(a^{q}, b^{q}\right)} .
$$

Now

$$
\left\|P_{1}\left(G_{1}-G_{2}\right)\right\| \leqslant\left\|P_{1}\right\|\left\|G_{1}-G_{2}\right\| \leqslant \frac{b^{n}\left\|F_{1}-F_{2}\right\|^{1 / n}!}{A^{n} \varrho^{2 n} a^{q}}=\frac{b^{n}\left\|F_{1}-F_{2}\right\|^{1 / n}!}{A^{n} \varrho^{2 n} a^{q}}
$$

hence clearly:

$$
\max \left(\left\|F_{1}-F_{2}\right\|,\left\|P_{1}\left(G_{1}-G_{-}\right)\right\|\right) \leqslant \frac{b^{n}\left\|F_{1}-F^{1}\right\|^{1 / n}!}{A^{n} \varrho^{2 n} a^{q}} .
$$

Finally

$$
\left\|P_{1}-P\right\| \leqslant \frac{b^{n}\left\|F_{1}-F\right\|^{1 / n}!}{A^{n+1} \varrho^{2 n} a^{q}}
$$

and so lemma is proved.

Corollary. - Let $F_{m}(Y)$ be a convergence sequence of limit F in $L(a, b)$ for the canonical norm $\|\cdot\|$, and let $P_{m} G_{m}$ be the Hensel Factorization of F_{m} in $L(a, b)$, let PG be the Hensel Factorization of F. Then

$$
P=\lim _{m \rightarrow \infty} P_{m}, \quad G=\lim _{m \rightarrow \infty} G_{m}
$$

There are integers $q<t$ such that $F \in L_{q, t}(a, b), F_{m} \in L_{q}(a, b)$ for m high enough.
Proof. - By the classical Hensel Lemma in $L(a, b)$ there are integers $q<t$ such that $F \in \underset{\substack{L_{q, i} \\+i}}{ }(a, b)[A]$. Then P is a $(t-q)$ degree polynomial. Let $F(Y)=\sum_{-\infty}^{+\infty} a_{s} Y^{s}$, $F_{m}(\bar{Y})=\sum_{-\infty}^{+\infty} a_{s, m} Y^{s}$. We know $a_{s}=\lim _{m \rightarrow \infty} a_{s, m}$ whenever $s \in \boldsymbol{Z}$. Since $\boldsymbol{F} \in L_{a, t}{ }^{-\infty}(a, b)$ we
have

$$
\begin{array}{ll}
\left|a_{t}\right| b^{t} \geqslant\left|a_{s}\right| b^{s} & \text { whenever } s \in \boldsymbol{Z} \\
\left|a_{t}\right| b^{t}>\left|a_{s}\right| b^{s} & \text { whenever } s>t
\end{array}
$$

thereby the inequalities hold for $\left|a_{t, m}\right|,\left|a_{s, m}\right|$ when m is high enough. We also have the symetric relations with $\left|a_{a}\right|$, thereby $F_{m} \in L_{q, t}(a, b)$ for m high enough.

Then Lemma 7 shows easily that

$$
P=\lim _{m \rightarrow \infty} P_{m}, \quad G=\lim _{m \rightarrow \infty} G_{m}
$$

Proof of proposition B. - First we can shortly prove $\mathcal{L}_{q, t}\left(r^{\prime}, r^{\prime \prime}\right)$ is closed in $\mathfrak{Z}\left(r^{\prime}, r^{\prime \prime}\right)$. Let U_{m} be a Cauchy sequence in $\mathfrak{L}_{q, t}\left(r^{\prime}, r^{\prime \prime}\right)$ and let U be its limit in $\mathfrak{B}\left(r^{\prime}, r^{\prime \prime}\right)$.

By Corollary $L_{q, t}(a, b)$ is closed in $L(a, b)$ hence

$$
\begin{array}{ll}
N^{+}\left(\left(F_{t}\right)_{x}, r^{\prime \prime}(x)\right)=t & \text { whenever } x \in D \\
N^{-}\left(\left(F_{q}\right)_{x}, r^{\prime}(x)\right)=q & \text { whenever } x \in D
\end{array}
$$

so $U \in \mathfrak{Z}_{q, t}\left(r^{\prime}, r^{\prime \prime}\right)$.
In the following, in order to apply easily Lemma 7 we will suppose $b<1$, what we can do (by changing of variable) without loss of generality.

Then we have $r^{\prime}(x)<1$. For each $x \in D$, let $\|\cdot\|_{x}$ be the canonical norm on $L\left(r^{\prime}(x), r^{\prime \prime}(x)\right)$ and let $\|\cdot\| \|$ be the norm on $\mathfrak{P}\left(r^{\prime}, r^{\prime \prime}\right)$.

Let $F(Y)=\sum_{-\infty}^{+\infty} \xi_{s} Y^{s}$ and for each $m \in N$ let $F_{m}(Y)=\sum_{-\infty}^{+\infty} \xi_{s, n} Y^{s}$. By what foregoes, $F \in \mathfrak{Q}_{q, t}\left(r^{\prime}, r^{\prime \prime}\right)$ hence ξ_{t}, ξ_{q} cannot vanish in D. Since D has no T-filter ξ_{t}, ξ_{q} are invertible by Lemma 4.

Let $B>0$ be such that $\min \left(\left|\xi_{t}(x)\right|,\left|\xi_{q}(x)\right|\right) \geqslant B$ whenever $x \in D$.

Let $\theta=\min \left(b^{t}, a^{a}, b^{a}, a^{i}\right)$ and let $n \in \boldsymbol{N}$ be high enough to have $\left\|\left\|-F_{m}\right\|<B \theta\right.$, whenever $m>n$. Then $r^{\prime \prime}(x)^{t} \geqslant \theta, r^{\prime}(x)^{q} \geqslant \theta$ whenever $x \in D$ hence $\left|\xi_{t}(x)-\xi_{t, m}(x)\right|<B$ and $\left|\xi_{q}(x)-\xi_{a, m}(x)\right|<B$, so that

$$
\begin{aligned}
& \left|\xi_{t, m}(x)\right|=\left|\xi_{t}(x)\right|>\left|\xi_{t, m+1}(x)-\xi_{t m}(x)\right| \\
& \left|\xi_{q, m}(x)\right|=\left|\xi_{q}(x)\right|>\left|\xi_{q, m+1}(x)-\xi_{q, m}(x)\right|
\end{aligned}
$$

whenever $m \geqslant u$, whenever $x \in D$.
Then the relations $\left\|F_{m+1}-F_{m}\right\|_{x}<\left\|F_{m}\right\|_{x}$ are clearly verified when $m \geqslant u$, (for each $x \in D$). Thus we can apply Lemma 4.

For $m \geqslant u$, we have

$$
\left\|\left(G_{m+1}\right)_{x}-\left(G_{m}\right)_{x}\right\|_{x} \leqslant \frac{\left\|\left(F_{m+1}\right)_{x}-\left(F_{m}\right)_{x}\right\|_{x}^{1 /(t-q)}!}{\left|\xi_{t}(x)\right|^{q} \boldsymbol{r}^{\prime}(x)^{2(t-q)}}
$$

hence with greater reason

$$
\left\|\left(G_{m+1}\right)_{x}-\left(G_{m}\right)_{x}\right\|_{x} \leqslant \frac{\left\|F_{m+1}-F_{m}\right\| \|^{1(t-q)}!}{B^{q} a^{2(t-q)}}
$$

whenever $x \in D$, thereby

$$
\left\|G_{m+1}-G_{m}\right\| \leqslant \frac{\left\|F_{m+1}-F_{m}\right\|^{1 /(t-q)}!}{B^{q} a^{2(t-q)}}
$$

Similarly we have

$$
\left\|P_{m_{+1}}-P_{m}\right\| \leqslant \frac{b^{t-q}\| \| F_{m+1}-F_{m} \|^{1 /(t-q)}!}{B^{t-q+1} a^{2 t-q}}
$$

Thus the sequences G_{m}, P_{m} are clearly convergent in $\mathcal{L}\left(r^{\prime}, r^{\prime \prime}\right)$. Let $G=\lim _{m \rightarrow \infty} G_{m}$, $P=\lim _{m \rightarrow \infty} P_{m}$. Obviously, $F=P G$ and by classical result $P_{x} G_{x}$ is the Hensel Factorization of F_{x} in $L\left(r^{\prime}(x), r^{\prime \prime}(x)\right)$ hence $P G$ is the Hensel Factorization of F in $\mathcal{L}\left(r^{\prime}, r^{\prime \prime}\right)$. That concludes the proof of Proposition B.

4. - Proofs of the Theorems.

Proposmion Q. - Let D be an open olosed bounded strongly infraconnected subset of K with no T-fitter, let r be a function from D to \boldsymbol{R}_{+}with bounds a, b such that $0<a \leqslant r(x) \leqslant b$ whenever $x \in D$. Let $n \in N$ and let $F \in \mathfrak{I}_{n}(D, r)$. Then F has Hensel Factorization in $\mathfrak{I}_{n}(D, r)$.

Proof. - Let $F(Y)=\sum_{s=0}^{\infty} \xi_{s} Y^{s}$ and for every $m \in \mathbf{N}$, let $F_{m}(Y)=\sum_{s=0}^{m} \xi_{s} Y^{s}$.
Then $F_{m} \in \mathfrak{I}_{n}(D, r)$ for every $m \geqslant n$, hence by Proposition P, F_{m} has Hensel Factorization in $\mathfrak{I}_{n}(D, r)$ in the form $P_{m} G_{m}$ with P_{m} a n-degree monic polynomial,

Without loss of generality we can assume ξ_{0} is not the nul element in $H(D)$. Indeed if $\xi_{0}=\xi_{h}=0, \xi_{h} \neq 0$, then F is factorized in the form $\Psi^{h} \hat{F}(Y)$ with $\hat{F}(Y)=\sum_{s=0}^{\infty} \lambda_{s} Y^{s}$
and λ_{0}, different of the nul element in $H(D)$. and λ_{0}, different of the nul element in $H(D)$.

Since D is open with no T-filter, then ξ_{0} is quasi-invertible hence the set Z of the zeroes of ξ_{0} in D is finite. We obviously have $N^{+}\left(F_{x}, 0\right)=N^{+}\left(\left(F_{m}\right)_{x}, 0\right)$ whenever $x \in D \backslash Z$, whenever $m \in \boldsymbol{N}$.

Let ϱ be >0 and let $D_{e}=D \backslash\left(\bigcup_{\alpha \in Z} a^{-}(\alpha, \varrho)\right)$ and let r_{e} be the restriction of r in D_{Q}. Then ξ_{0} is invertible in $H\left(D_{Q}\right)$ hence there is $\boldsymbol{c}_{e}>0$ such that $\left|\xi_{0}(x)\right| \geqslant \theta_{e}$ whenever $x \in D_{e}$. For each $x \in D_{e}$, if α is a zero of F_{x}, by Lemma 5 we know that for every $l=0, \ldots, n-1$ we have $|\alpha| \geqslant\left(\left(\left|\xi_{0}\right|\right) /\left(\left\|\xi_{l}\right\|_{0}\right)\right)^{1 / 2}$. In considering the constane function r_{g}^{\prime} defined in D_{g} by

$$
r_{e}^{\prime}(x)=\frac{1}{2} \min _{0 \leqslant l<u}\left(\frac{e_{e}}{\left\|\xi_{l}\right\|_{D}}\right)^{1 / 2}
$$

we can see that each \boldsymbol{F}_{m} has no zero in $d\left(0, r_{e}^{\prime}(x)\right)$ whenever $x \in D_{e}$, hence \boldsymbol{F}_{m} does belong to $\Omega_{0, n}\left(D_{e}, r_{e}^{\prime}, r_{e}\right)$. Since r_{e}^{\prime} is a strictly 'positive constant function we can obviously apply Proposition B to the sequence F_{m} hence F has Hensel Factorization in $\Omega_{0, n}\left(D_{e}, r_{e}^{\prime}, r_{e}\right)$ so it also has Hensel Factorization in $\mathfrak{T}_{n}\left(D_{e}, r_{e}\right)$. Then by Lemma 3 F has Hensel Factorization in $\mathfrak{I}_{n}(D, r)$.

Theorem 1. - Let D be an open closed bounded strongly infraconnected subset of K without T-filter, and let $r^{\prime}, r^{\prime \prime}$ be functions defined on D with bounds a, b such that $0<a \leqslant \eta^{\prime}(x)<\dot{\gamma}^{\prime \prime}(x) \leqslant b$ whenever $x \in D$. Let $t, q \in \boldsymbol{Z}$ and let $F \in \mathfrak{Q}_{q, t}\left(r^{\prime}, r^{\prime \prime}\right)$. Then F has Hensel Factorization in $\mathfrak{Q}_{q, t}\left(r^{\prime}, r^{\prime \prime}\right)$.

Proof. - First we will prove Theorem when F is a Taylor series. Then $F(\bar{X}) \in$ $\in \mathfrak{I}_{t}\left(\gamma^{\prime \prime}\right)$. By Proposition \mathbb{Q}, F has the Hensel Factorization $P(\mathbb{Y}) . G(\bar{F})$ with P a t-degree monic polynomial and $G \in \mathfrak{I}\left(r^{\prime \prime}\right)$.

Since $F \in \mathfrak{R}_{\chi, t}\left(\tau^{\prime \prime}, r^{\prime}\right)$ for each $x \in D, F_{x}$ has exactly $t-q$ zeroes in the annulus $\Delta\left(r^{\prime}(x), r^{\prime \prime}(x)\right)$ hence it has exactly q zeroes in $\tilde{d}^{-}\left(0, r^{\prime}(x)\right)$.

For each $x \in D$ let $d(0, \varrho(x))$ be the smallest disk of center 0 containing exactly q zeroes of \boldsymbol{F}_{x}. Then we can clearly apply Theorem to F in $\mathfrak{I}_{g}(\varrho)$ so that we have a Hensel Factorization in the form $Q(\bar{Y}) H\left(Y^{\prime}\right)$ with Q a q-degree monic polynomial. We can easily verify Q does divide P in $H(D)[Y]$. Indeed, for each $x \in D$ if we write

$$
P_{x}(Y)=\prod_{j=1}^{t}\left(Y-\alpha_{j}\right) \quad \text { with }\left|\alpha_{j}\right| \leqslant\left|\alpha_{j+1}\right|
$$

we obviously have $Q_{x}=\prod_{j=1}^{q}\left(Y-\alpha_{j}\right)$, hence Q_{x} divides P_{x} in $K[\Psi]$. In considering the Euclidean division of P by Q in $H(D)[Y]$ the remainder R does verify $R_{x}=0$ whenever $x \in D$ hence $R=0$.

Let $P(Y)=T(Y) Q(Y)$ in $H(D)[Y]$. Then T_{x} has eactly $t-a$ zeroes in $A\left(r^{\prime}(x)\right.$, $\left.r^{\prime \prime}(x)\right)$ whenever $x \in D$, so in writing $F(Y)=T(Y)[Q(Y) G(Y)]$ we have the Hensel factorization for $F(X)$ in $\mathfrak{Q}_{a, t}^{-}\left(r^{\prime}, r^{\prime \prime}\right)$.

Immediately we also have the Hensel Factorization in $\mathfrak{R}_{q, t}\left(r^{\prime}, r^{\prime \prime}\right)$ for Laurent series $F(Y)$ in the form $\sum_{s=-h}^{h} \xi_{s} \Psi^{s}(n>0)$, in considering $\bar{F}(Y)=Y^{n} F(Y)$.

At last in the general case, let $F(Y)=\sum_{-\infty}^{+\infty} \xi_{s} Y^{s}$. By definition we have

$$
\lim _{m \rightarrow \infty}\left\|F-F_{m}\right\| \|_{r^{\prime}}=0 \quad \text { with } \quad F_{m}=\sum_{s=-m}^{m} \xi_{s} Y^{s}
$$

We have just proved the Hensel Factorization exists for each F_{m}, so it holds for F by Proposition B.

Notation. - Let $a \in K, \varrho_{1}, \varrho_{2} \in \boldsymbol{R}_{+}$. We will denote by $\Gamma\left(a, \varrho_{1}, \varrho_{2}\right)$ the set $\{x \in K$: $\left.\varrho_{1}<|x-a|<\varrho_{a}\right\}$.

Lemma 8. - Let D be a closed bounded subset of K that contains a disk (d(0, δ). Let r be a bounded function from D to \boldsymbol{R}_{+}such that $\lim _{x \rightarrow 0} r(x)=0$.

For each $\varrho \in] 0, \delta\left[\right.$, let $D_{\varrho}=D \backslash a^{-}(0, \varrho)$, let ro be the restriction of r in D_{ϱ}, and let a_{ϱ} be the lower bound of r in $\Gamma(0, \varrho, \delta)$.

We suppose $a_{e}>0$ whenever $\varrho>0$.
Let $G=\sum_{s=0}^{\infty} b_{s} Y^{s}$ be a Taylor series that lies in $\mathfrak{T}\left(D_{\varrho}, r_{\varrho}\right)$ whenever $\varrho>0$. Let G_{m} be a sequence of $\mathfrak{I}(D, r)$ that converges to G in $\mathfrak{I}\left(D_{\varrho}, r_{\varrho}\right)$ whenever $\varrho>0$. Then $G \in \mathscr{I}(D, r)$ and G_{m} converges to G in $\mathfrak{T}(D, r)$.

Proof. - We first prove that $G(Y) \in H(D)[Y]$. Suppose $b_{i} \notin H(D)$ for some $l \in N$. Either b_{l} has a pole at 0 , or it has an essential singularity at 0 . In all cases, by classical results, for every $\varrho>0$, there exist ϱ_{1}, ϱ_{2} with $0<\varrho_{1}<\varrho_{2}<\varrho$ such that $v\left(b_{l}, \mu\right)$ is in the form $A+t \mu$ for $\mu \in\left[-\log \varrho_{2},-\log \varrho_{1}\right]$, with $t \in \boldsymbol{Z}, t<0$ and

$$
\begin{equation*}
v\left(b_{l}(x)\right)=v\left(b_{l}, v(x)\right) \tag{1}
\end{equation*}
$$

Let a_{ϱ} be the lower bound of r in $\Gamma\left(0, \varrho_{1}, \varrho_{2}\right)$. Let $\eta=p^{-v\left(b_{l},-\log \varrho_{2}\right)}$, and let $\varepsilon=\eta\left(a_{\varrho}\right)^{l}$. There does exist $n \in \boldsymbol{N}$ such that $\left\|G_{n}-G\right\|_{r_{e_{1}}}>\varepsilon$. Let $G_{n}=\sum_{s=0}^{\infty} b_{s, m} \Psi^{s}$. Then $\left|b_{l, m}(x)-b_{l}(x)\right| a_{0}^{i}<\varepsilon$ for all $x \in D_{Q_{1}}$ hence $\left|b_{l, m}(x)-b_{l}(x)\right|<\eta$ for all $x \in \Gamma(0$, $\left.\varrho_{1}, \varrho_{2}\right)$.

Then (1) shows that $v\left(b_{l, m}(x)-b_{l}(x)\right)>v\left(b_{l}(x)\right)$ hence $v\left(b_{l, m}(x)\right)=v\left(b_{l}(x)\right)=$ $=A+t v(x)$, when $x \in \Gamma\left(0, \varrho_{1}, \varrho_{2}\right)$, thereby

$$
v\left(b_{2, m}, \mu\right)=A+t \mu \quad \text { for } \mu \in\left[-\log \varrho_{2},-\log \varrho_{1}\right]
$$

But $b_{l, m} \in H(D)$, bence $b_{l, m} \in H\left(d\left(0, \varrho_{2}\right)\right)$ hence the function $\mu \rightarrow v\left(b_{l, m}, \mu\right)$ cannot be $A+t \mu$ with $t<0$. So we see that $b_{s} \in H(D)$ whenever $s \in N$.

In the same way we can prove now that $\lim _{s \rightarrow \infty}\left\|b_{s} Y^{s}\right\|_{r}=0$. Let $\left.\varrho_{1} \in\right] 0, \delta[$ and set $\lambda=a_{\ell_{1}}$, and let $\left.\varrho_{0} \in\right] 0, \varrho_{1}\left[\right.$ be such that $r(x)<a$ for $|x| \leqslant \varrho_{0}$. Let $\varepsilon>0$ and let $N \in \boldsymbol{N}$ be such that $\left|b_{s}(x)\right| r(x)^{s} \leqslant \varepsilon$ whenever $x \in D_{\varrho_{0}}$, whenever $s \geqslant N$. Then $\left|b_{s}(x)\right| \lambda^{s} \leqslant \varepsilon$ whenever $x \in \Gamma\left(0, \varrho_{1}, \delta\right)$ hence

$$
\left\|b_{s}\right\|_{\Gamma\left(0, e_{1}, \delta\right)} \lambda^{s} \leqslant \varepsilon
$$

On the other hand, since $d\left(0, \varrho_{0}\right) \subset d(0, \delta) \subset D$ and $b_{s} \in H(D)$ we have $\left\|b_{s}\right\|_{d\left(0, \varrho_{0}\right)} \leqslant$ $\leqslant\left\|b_{s}\right\|_{d(0, \delta)}=\left\|b_{s}\right\|_{\Gamma\left(0, e_{1}, \delta\right)}$. Thus for every $s \geqslant N$ when $x \in d\left(0, \varrho_{0}\right)$ we have

$$
\left|b_{s}(x)\right|(x)^{s} \leqslant\left\|b_{s}\right\|_{d\left(0, e_{0}\right)} \lambda^{s} \leqslant\left\|b_{s}\right\|_{\Gamma\left(0, e_{1}, \delta\right)} \lambda^{s} \leqslant \varepsilon
$$

Of course, by hypothesis when $x \in D_{e_{0}}$ we also have $\left|b_{s}(x)\right| r(x)^{s} \leqslant \varepsilon$, hence finally

$$
\left\|b_{s} Y^{\varepsilon}\right\|^{r} \leqslant \varepsilon \quad \text { for } s \geqslant N .
$$

That finishes to prove $G(Y) \in \mathfrak{T}(D, r)$.
Lemma 9. - Let D be an open bounded closed infraconnected subset of K with no T-filter and let r be a bounded function from D into \boldsymbol{R}_{+}. Let $n \in \boldsymbol{N}$ and let $\boldsymbol{F}(\boldsymbol{Y})=$ $=\sum_{s=0}^{\infty} \xi_{s} \Psi^{s} \in \mathfrak{T}_{n}(D, r)$. Assume there is some $i \leqslant n-1$ such that $\xi_{i} \neq 0$, and let $\alpha_{1}, \ldots, \alpha_{q}$ be the points in D such that $\xi_{0}\left(\alpha_{j}\right)=\ldots=\xi_{n-1}\left(\alpha_{j}\right)=0$ whenever $j=1, \ldots, q$. For each $\varrho>0$, let $D_{\varrho}=D \backslash \bigcup_{i=1}^{Q} d^{-}\left(\alpha_{i}, \varrho\right) ;$ there exists $a_{\varrho}>0$ such that $r(x) \geqslant a_{\varrho}$ whenever
$x \in D_{\varrho}$.

Proof. - By hypothesis $N^{\dagger}\left(F_{x}, r(x)\right)=n$ whenever $x \in D$, hence by Lemma 5

$$
r(x) \geqslant \max _{0 \leqslant i \leqslant n-1}\left|\frac{\xi_{i}(x)}{\xi_{n}(x)}\right|^{1 /(n-i)} .
$$

Since D is open with no T-filter, there does exist $h<n$ such that ξ_{h} is quasiinvertible. Let $\beta_{1}, \ldots, \beta_{t}$ be the zeroes of ξ_{r} in D_{ρ}.

For each j there is $l(j)$ such that $\xi_{l(j)}\left(\beta_{j}\right) \neq 0$ hence there exists $\left.\left.\varrho^{\prime} \in\right] 0, \varrho\right]$ such that $\left|\xi_{l(j)}(x)\right|$ has a lower bound $\theta_{j}>0$ in $d^{-}\left(\beta_{j}, \varrho^{\prime}\right)$.

Let $D^{\prime}=D_{Q} \backslash \bigcup_{i=1}^{i} d_{-}\left(\beta_{j}, \varrho^{\prime}\right)$. Then ξ_{n} is invertible in $H\left(D^{\prime}\right)$; hence there exists $\lambda>0$ such that $\left|\xi_{n}(x)\right| \geqslant \lambda$ whenever $x \in D$. Thus in D^{\prime} we have

$$
r(x) \geqslant\left(\left.\frac{\xi_{n}(x)}{\xi_{n}(x)} \right\rvert\,\right)^{1 /(n-h)} \geqslant\left(\frac{\lambda}{b}\right)^{1 /(n-h)}
$$

then in each $d^{-}\left(\beta_{j}, \varrho^{\prime}\right)$ we have

$$
r(x) \geqslant\left|\frac{\xi_{(j)}(x)}{\xi_{n}(x)}\right|^{1 /(n-l(j))} \geqslant\left(\frac{\theta_{j}}{b}\right)^{1 /(n-l(\hat{l}))} .
$$

Let $\theta=\min _{1 \leqslant i / \lambda t}\left(\theta_{i} / b\right)^{1 /(n-l(j))}$, then we can take $a_{o}=\min \left((\lambda / b)^{1 /(n-n)}, \theta(\right.$.
Lemma 10. - Let D be a elosed bounded infraconnected subset of K, and let $\alpha_{1}, \ldots, \alpha_{q} \in D$. Let $\varrho \in \boldsymbol{R}_{+}$and let $D_{q}=D \backslash\left(\bigcup_{i=1}^{q} d-\left(\alpha_{i}, \varrho\right)\right)$.

Let r be a bounded function from D io \boldsymbol{R}_{+}. For each $i=1, \ldots, q$ let $D_{e, i}=$ $=D_{e} \cup d^{-}\left(\alpha_{i}, \varrho\right)$ and let r_{i} be the restriction of r in $D_{e, i}$.

Let $F(\mathbb{Y}) \in \mathfrak{I}\left(D_{Q}, r\right)$. If for each $i=1, \ldots, q, F \in \mathfrak{I}\left(D_{Q, i}, r_{i}\right)$ then $F \in \mathfrak{I}(D, r)$.
Proof. - Let $F(\bar{Y})=\sum_{s=0}^{\infty} \xi_{s} \Psi^{s}$. For each $s \in N, \xi_{s}$ lies in $H\left(D_{\ell, i}\right)$ whenever $i=$ $=1, \ldots, q$, hence by the Mittag-Lefflerian Decomposition Theorem on the infraconnected set D_{ρ}, it is easily seen that $\xi_{s} \in H(D)$.

On the other hand we have $\lim _{s \rightarrow \infty}\left\|\xi_{s} Y_{s}\right\|_{r_{i}}=0$ whenever $i=1, \ldots, q$. Let $\varepsilon>0$; there exists $N(\varepsilon)$ such that $\left|\xi_{s}(x)\right| r(x)^{s} \leqslant \varepsilon$ whenever $x \in D_{\rho, i}$ whenever $s \geqslant N(\varepsilon)$, whenever $i=1, \ldots, q$. Hence, we clearly have $\left|\xi_{s}(x)\right| r(x)^{s} \leqslant \varepsilon$ whenever $x \in D$, whenever $s \geqslant N(\varepsilon)$ and so, Lemma 10 is proved.

Theorem 2. - Let D be an open closed bounded strongly infraconnected set with no T-filter. Let M be a finite subset of D. Let r be a bounded function from D to \boldsymbol{R}_{+}. Let $n \in \boldsymbol{N}$ and let $F(\mathbb{Y}) \in \mathfrak{T}(D, r)$ be such that $N^{+}\left(F_{x}, r(x)\right)=n$ whenever $x \in D \backslash M$. Then F has Hensel Factorization $P(Y) G(Y)$ in $\mathfrak{I}(D, r)$ with P a n-degree monio polynomial and $G(Y) \in \mathfrak{I}(D, r)$ such that $N^{+}\left(G_{x}, r(x)\right)=0$ whenever $x \in D \backslash M$.

Proof. - Let $F(Y)=\sum_{s=0}^{\infty} \xi_{s}(x) \Psi^{s}$. Without loss of generality we can assume ξ_{0} is not nul in $H(D)$. Indeed if $\xi_{0}=\ldots=\xi_{h}=0, \xi_{k+1} \neq 0$ with $h<n$, we can factorize F in the form $Y^{h} \hat{F}(Y)$ with $\hat{F}(Y)=\sum_{s=0}^{\infty} \lambda_{s} Y^{s}$ and $\lambda_{s} \neq 0$.

Let Z be the set of the points α in D such that $\xi_{0}(\alpha)=0$ and let $M^{\prime}=M \cup Z$.
For each $\varrho>0$, let $D_{e}=D \backslash\left(\bigcup_{\alpha \in M M^{\prime}} a^{-}(\alpha, \varrho)\right)$ and let r_{ϱ} be the restriction of r
D_{Q}. in D_{e}.

By Lemma 9 there exists $a_{g}>0$ such that $r(x) \geqslant a_{\varrho}$ whenever $x \in D_{\rho}$. On the other hand $F(\Psi)$ belongs to $\mathfrak{I}_{n}\left(D_{e}, r_{e}\right)$ hence by Proposition Q, F has Hensel Faetorization $P(\mathbb{Y}) G(Y)$ in $\mathfrak{I}_{n}\left(D_{e}, r_{e}\right)$ (with P a n-degree monic polynomial).

If we can prove that for each $\alpha \in M^{\prime}$ we have $P(\bar{Y}) \in H(D)[Y]$ and $G(Y) \in$ $\in \mathscr{T}\left(D_{q} \cup d_{-}(\alpha, \varrho), r_{\varrho, \alpha}\right)$ (with $r_{\varrho, \alpha}$ the restriction of r in $\left.D_{e} \cup d^{-}(\alpha, \varrho)\right)$ then conclusion will follow by Lemma 10.

Thus without loss of generality we can assume M^{\prime} has only one point; then we can also assume this point is 0 .

First suppose $r(0) \neq 0$. By the hypothesis on D, all the ξ_{s} are nul or quasiinvertible in $H(D)$; by the hypothesis
(1) $\quad F_{x} \in T_{n}(r(x))$ for $x \in D \backslash M^{\prime}$, we have $\xi_{n}(x) \neq 0$ for every $x \neq 0$, hence ξ_{n} has a factorization $x^{m} \theta_{n}(x)$ with θ_{n} invertible in $H(D)$.

Also by (1) we have $\left|\xi_{s}(x)\right| r(x)^{s-n}<\left|\xi_{n}(x)\right|$ hence

$$
\begin{equation*}
\left|\xi_{s}(x)\right| a_{Q}^{s-n}<|x|^{m}\left|\theta_{n}(x)\right| \quad \text { for }|x| \leqslant \varepsilon . \tag{2}
\end{equation*}
$$

Then it clearly appears that x^{m} does divide ξ_{s}.
On the other hand, since $r(x)$ is bounded, we can easily verify x^{m} also divides $\xi_{0}, \ldots, \xi_{n-1}$ because of the inequalities

$$
\left|\xi_{i}(x)\right| r(x)^{i} \leqslant\left|\xi_{n}(x)\right| r(x)^{n} .
$$

Finally F has a factorization in the form $x^{m} \bar{F}(Y)$ with $\bar{F}(Y)=\sum_{s=0}^{\infty} \theta_{s}(x) Y^{h}$, then θ_{n} invertible in $H(D)$. So $\bar{F} \in \mathfrak{I}_{n}(D, r)$ and we are sent back to the case $M^{\prime}=\emptyset$.

Thus we can assume now $r(0)=0$.
For every $\varrho>0$, let $D_{e}=D \backslash d^{-}(0, \varrho)$ and let r_{ϱ} be the restriction of r in D_{ϱ}. Then F, considered as an element of $\mathfrak{I}\left(D_{\varrho}, r_{\varrho}\right)$, has Hensel Factorization in $\mathfrak{I}_{n}\left(D_{\varrho}, r_{\varrho}\right)$ in the form $P(Y) G(Y)$ with $P(Y) \in H\left(D_{\varrho}\right)[Y], G(Y) \in \mathfrak{E}\left(D_{\varrho}, r_{\varrho}\right)$, and this is true for every $\varrho>0$.

We can easily show that $P \in H(D)[Y]$. Indeed, since r is bounded by some A, each zero of P is so, hence $\left\|P_{x}\right\| \|^{(x)} \leqslant A^{n}$ whenever $x \in D$, hence each coefficient a_{i} of P is a bounded function in $D \backslash Z$ that lies in $H\left(D_{\varrho}\right)$ whenever $\varrho>0$. By Lemma $a_{i} \in H(D)$, hence $P \in H(D)[Y]$.

Now let us prove that $F(Y)=P(Y) G(Y)$ with $G(\bar{Y}) \in \mathcal{I}(D, r)$.
For each $m \in N$ let $F_{m}=\sum_{s=0}^{m} \xi_{s} Y^{s}$, and let $F_{m}=P G_{m}+R_{m}$ be the Euclidean Division of F_{m} by P in $H(D)[F]$. For each $\varrho>0$, by Lemma $9 r_{\varrho}$ has a lower bound $a_{0}>0$, hence we apply Lemma 2 that shows the sequence R_{m} converges to 0 and the sequence G_{m} converges to G in $\mathfrak{I}\left(D_{\varrho}, r_{\varrho}\right)$. Then Lemma 8 shows G_{m} converges to G in $\mathfrak{I}(D, r)$, and that ends the proof.

REFERENCES

[A] Y. Amice, Les nombres p-adiques, Presses Universitaires de France, Paris, 1975.
[D] B. Dwork, Lectures on p-adic Differential Equations, Springer Verlag, New York-Heidelberg-Berlin.
[$\left.\mathrm{E}_{1}\right]$ A. Escassut, Algèbres d'éléments analytiques en analyse non archimédienne, Indag. Math., 36 (1974), pp. 339-351.
[$\left.\mathbf{E}_{2}\right]$ A. Escassut, Element analytiques et filtres percés sur un ensemble infraconnexe, Ann. Mat. Pura Appl., CX (1976), pp. 335-352.
[$\left.\mathrm{E}_{3}\right]$ A. Escassut, T-filtres ensembles analytiques et transformation de Fourier p-adique, Ann. Inst. Fourier (Grenoble), 25 (1975), n. 2, pp. 45-80.
[$\left.\mathrm{E}_{4}\right]$ A. Escassut, Maximum principle for analytic elements and Lubin-Hensel's theorem in $H(D) \rrbracket Y[$, Ann. Mat. Pura Appl., CXXXV, pp. 265-278, Firenze (1984).
[$\left.\mathrm{K}_{1}\right]$ M. Krasner, Prolongement analytique dans les corps valués complets: préservation de l_{q} analyeité par la convergence uniforme et par la dérivation; théorème de Mittag-Leffler généralisé pour les élóments analytiques, C. R. Acad. Sci. Paris, 244 (1957), pp. 2570-2573.
$\left[\mathrm{K}_{2}\right]$ M. Krasner, Prolongement analytique dans les corps valués complets: démonstraiion du théorème de Mittag-Leffler; singularités au bord, C. R. Acad. Sci. Paris, 245 (1957), pp. 1285-1288.
[$\left.\mathrm{K}_{3}\right]$ M. Krasner, Prolongement analytique uniforme dans les corps valués complets, Les Tendances Géométriques en Algèbre et Théorie des Nombres, Editions du Centre National de la Recherche Scientifique, Paris, (1966), pp. 97-141.
[L] M. Lazard, Les zéros des fonctions analytiques d'une variable sur un corps valué complet, Inst. Etudes Sci. Publ. Math., n. 14, Paris, (1962), pp. 47-75.
[LU] J. Lubin, Canonical Subgroups of formal groups, Trans. Amer. Math. Soc., 251 (1979), pp. 103-127.
[M. R:] E. Motzkin - Ph. Robba, Prolongement analytique en analyse p-adique, Séminaire de Théorie des Nombres, Faculté des Sciences de Bordeaux, n. 3 (1968-69).
[R] Ph. Robba, Fonctions analytiques sur les corps valués ultramétriques complets, Prolongement analytique et algèbres de Banach ultramétriques, Soc. Math. France, Paris, (1973), pp. 109-220.
[S] M.-C. Sarmant - A. Escassut, Fonetions analytiques et produits croulants, Collectanea Mathematica, 36, fasc. 2 (1985), pp. 199-218.

