Periodic Solutions of a Contirol Problem
Via Marginal Maps (*).

JACK W. MACKI - PAoLo NISTRI - PIETRO ZECCA

Summary. — We investigate the existence of periodic solutions to the control problem
(1) %= f{t, o, u)+9g@), xecR*, ueR",
with g and f periodic in t with period 1. We form the associated quantities-

s(t, ®) = sup (&, f(t, @, w)) , i, ®) = inf (@, (¢, @, w))
ueR uew

where (+,*) denotes the inner product in R* and Q is a nonemply compact set in Rr. If

uy(t, ®), u(t, x) denote the (in general multivalued) controls for which s(t, x), i(t,z) are
respectively altained, then we can form the family of marginal problems

@) Feilt) 5 f(t 3w, ) + (1— AD) 00 /(1. @, wilh, 2)) + gt), A(-) e L=([0, 11,0, 1) -

We give sufficient conditions for the ewistence of a periodic solution of cerlain marginal

problems, stated in terms of lim inf and lim sup of s(t, x)/|x|* and i(t, »)/|z|2. Finally we
jz]—> {]—>c0

state the relationship between the periodic solutions of the marginal problems ond those of the
original problem (1).

Introduction.

In this paper we give conditions for the existence of periodic solutions to the
time-dependent control problem (1). In order to get the result we, first, associate
to (1) a family of multivalued problems (2). Then we prove the existence of peri-
odic solutions for (2) giving conditions formulated in terms of the asymptotic be-
haviour of certain maps corresponding to the choice of controls #(-) as the margi-
nal maps of the scalar product (w, f(t, #, u)). The convexity assumption on the
multivalued map f(¢, , £2), with u(f) € 2 c R, allows us to deduce the existence
of periodic solutions to (1). '

(*) Entrata in Redagzione il 17 dicembre 1987.

Indirizzo degli AA.: J. W. MAck1: Department of Mathematies, University of Alberta,
Edmonton, Alberta, Canada T6G 2G1; P. Nistr1 - P. Zrcca: Dipartimento di Sistemi ed
Informatica, Facolta di Ingegneria, Universitd di Firenze, via 8. Marta 3, 50139 Firenze, Italy.

The second and third author were partially supported by the research project M.P.IL.
(409,) « Teoria del controllo dei sistemi dinamici ».



384 JAOK W, MACKI - PAoLO NISTRI - PIETRO ZECCA: Periodic solutions

In [5] we gave sufficient conditions for the existence of periodic solutions to
differential inelusions of the form [# — A(t)2] e F'(f, z). However those conditions
in fact ensure that for any measurable selection z(xz,t) € F(t, ), there is a periodic
solution of [# — A(Z, #)] = 2{x,?). This type of result is useful for modelling prob-
lems with discontinuities, but not for modelling control problems. The same com-
ments apply to the results of Nistri in [6], where he modelled optimal control prob-
lems. The approach in [5] is suitable for showing the existence of periodic solution
in the presence of discontinuities or in the case of optimal periodic control prob-
lems, but it is not appropriate when we are leoking for the existence of a control
law which produces a periodic solution.

Finally, we give a loeal coercive-type eondition for the stability of such periodic
solutions.

1. — Existence of periodic solutions.

We congider the following control process

1) &= f(t, %, u) + 9(), O<i<1.
We assume
i) f:[0,11xR*"x 2 — Rr, £ a nonempty compact set in Rw», satisfies the
Carathéodory condition, that is ¢ f(t, #, ) is measurable, (z, 4) — f({, @, 4) is
continuous.
) 17 @ w)|<a()w] + b(t), Vo € R, Vu € 2, ae. in [0,1]; a(+), b(+) € L*([0, 1], R,);
iii) ge Li([0, 1], R7).
) w(+)e U= {u(-) e L>([0, 1], R")|u(t) € 2 a.e. in [0,1]}.
v) 1@, 2, 2) is a compact, convex set for all x € R* and for a.a. 1€ [0, 1].
In what follows the functions f, g, &, b, u, are extended to R by 1-periodicity.
For all z< R» and almost all i€ [0, 1] we define s(f, ) = sup (x, f(t, %, w)) and
UE
i(t, @) = inf (x, f(t, %, u)), where (-,-) denotes the scalar product in R". We denote

by u, = u{t, #) and wu; = u(t, #) the set of values of the control variable u such
that

S(ty m) = (xy f(t7 @y 7’%)) 3 'é(ty (L‘) = (wy f(tr @y uz)) .

We note that (i, x) — s(t, ®), {f, #) i~ i(¢, 2) are measurable in ¢ and continuous in x;
{t, @) > u,lt, ), (@, @) — u;(f, #) are t-measurable, s-upper semicontinuous, multival-
ued maps with compact values, (see [1], Th. 6, pag. 53). Thus the two maps

i, %) — f(tﬁ @y sty m)) = f:(t, ®) and (¢ %) = f(ta @y %s(t m)) = f, @)
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are i-measurable, z-upper semicontinuous multivalued maps, with compact values.
Let us consider now the raaps oti(+), as(*), f*), Bs(*) € L([0, 11, R) defined by:

.. 8w . s(t, @)
es{f) = lim int os(t) = 1im sup
A =S jalres 2]}
NS 1 (7)) . i(t, )
(8) = lim inf =~ o(8) = lim sup
é oo [@* d lel>oo |2[°

Noting that the two maps f, f; have compact values and @b f, = co f, and €0 f; =
= ¢o0 f,, we form the marginal differential inclusjon

(2) @ € 4(1) co fi(t, @) + (1— A(0)) co filt, #) + (1)

for fixed but arbitrary A(-)e L™([0,1], [0,1]). The right side of this inclusion is a
f-measurable, x-upper semicontinuous multivalued map with convex, compact val-
ues.
We observe that under our assumptions, for each compact set @ c R», there
exist y,(+) and y,(-)e LY([0, 1], R,) such that
filty 2)|<ys(t), x€Q, ae in[0,1];

[t 2)|<yi), x€Q, ae in [0,1].

Finally, we assume that at least one of the following holds:

1

(4 +) foci(t)dt>0,
0

or

(4—) fﬁs(t)dt< 0.
0

THEOREM 1. — If assumptions (i)-(iv) end either (A ) or (A —) holds, then (2)
has a 1-periodic solution for any A(-) satisfying, respectively

1
(+) f [A@)ault) - (1— M) Bul)] @ >0 (under (A+)),
0

oy
(—) [ + (1= 20) 0] @ <0 (under (4-).

0
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ProoF. - We write L' = L*([0, 1], R*) and AC = AC([0,1], R"). For a fixed
A(+)e L=([0, 11, [0,1]) let Gi: L* - 2" be the map defined by

Silw](t) = {y() € A(t) co £,(t, #(t)) + (1— A(F)) co fu(t, #(2)), y(-) € L%} .

From our assumptions on f and the definitions of co f,, cof; we see that for any
such A(+), 8z is a u.s.c. multifunction with convex closed values (see [3]). Moreover,
G;: AC — 2%, and the composition of G, with the compact imbedding ¢ of AC into
It is compact (that is, Gro¢ maps any bounded set into a relatively compact set).
For simpliciby we will write G, in place of Giod.

We define 4 = A0N {&(*)|w(0) = »(1)}, and D: 4 — L* by D:a(-) — dw/di(-).
Clearly D is a linear Fredholm operator of index zero with

Ker (D) = AN {a(-)|x(t) =ce R* on [0,1]},

1
Tm (D) = {y(-)eLl:fy(t)dt: o}.
0
1
If P: 1t -> L' denotes the projection operator defined by P:y(t) —y(f) — f y(s) ds,
we consider the system 0

{0 € (I — P){Su(w, + o*) + g}
w* e DLPGalz, + #*) 4 g}
where

%= (I— Pl + Py = m + o*

for all we L' Clearly the operator ((I — P)Gi(+), DPGi(+)): AC -2 is u.s.c.
and eompact, with closed, convex values, for any A. Therefore we can use the the-
ory of the topological degree for such operators (see [2], [4]).

We consider the homotopy
- {0 & (I —P) {8y + 2%) -+ g},

# wv*e uDP{Ss(z+ «*) + ¢}, wel0,1].

This homofopy is called admissible if there exists an open bounded set @ c AC
such that {z|z is a solution of (H,) for some g e [0,1]} N 2P = 6. If we can show
that (o) (Hy) i3 admissible, and (b) deg ((I — P)S:, @ N Ker (D), 0) # 0 for some
fixed A(-) e L™([0, 1], [0, 1]), then we can conclude that for this A(-) the inclusion (2)
has a periodic solution, since topological degree associated with each of (H,), (H,),
(2) will be the same.

Assume for definiteness that (4 --) holds. We begin by proving the admissibil-
ity of (Hy). Assume the contrary, that is, that there exist sequences {,un}neNc 0,1]
(the case g = 0 will be considered later), and {z,},.y With max [6,(8)] = + oo and
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#,(0) = »,(1) (observe that by virtue of hypothesis (ii)) on f the boundedness of
{#,}nen in C implies the boundedness of {,},.y in AC with #,(f) = p[A()y,.(t) +
+ (1= A®)Y:,a(8) 4 9()] a.e. in [0,1], for some selections y, .(f) & co fi(t, 2,(t)) and
Ysi.a(f) € €0 fi(t, (), for n e N. It is easy to see that min [#,()] — oo a8 n - - oo
(see [3]), and also e

dt =0

f (2a(t), 207 olt) + (1 — 20 9,ut) + g(1)
fin EXGIE

for all » large enough to guarantee miin [2a(8)]>0. Since (w,(2), ¥.,a(£)) = s(f, 24 (2))
and (@,(t), ¥:,4(8) = i(t, 3.(t)), we get: o1

1
stoa(®) il 2a(l) (wnu),g(t))) B
of (W) mr T e T mar )Y

Hence

n—> 0o len\t)lz f—> 0o ‘xn(t)l

1

> [(at0 + 0. — 2e) o) s

1]

1 3
O>f (Z(t) liminf M -+ (1 — A(#)) lim inf M) at>
0

so if A(-) is such that this last expression is greater than zero we will get a contra-
diction.

In the case y = 0, we have o* = Py = 0 which implies # = ¢e R=. Assume
that there exists a sequence {c,},.vC R" such that [e,| = - oo satisfying (H,). Then
we would have

1

(3000 + (L= 20)2300) + 9@) dt = 0

0

for some z,..(f) € co f.(t, ¢,), and 2, ,(t) € co }.(t, ¢,), and

1
f (A(t) M(t_)) _l_ (1 . .&(t)) (0"? 3z,w(t)) + (07” g(t))) dt=0.
0

l6a]* lea]®

The argument above shows that this is impossible if

f (Aot + (1— 2@)B.0) A >0 .
i}
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Therefore, there exists a ball B(0,#) in C([0, 1], R*) containing in its interior all
the solutions of (H,) for x e [0,1]. The hypotheses on f imply the exixtence of a
ball B(0, B)c AC with the same property.
Finally we prove that deg ((I — P)S., B(0, R,) N Ker (D), 0) 5= 0, where R, > R.
In fact, let us consider the homotopy

W(I— P){Siel) + g} + X—w)el, »e[0,1].

It is easy to see, nusing for example (4 +), that this iy an admissible homotopy
in B0, B,) N Ker D, when A(-) satisfies the conditions of our Theorem. This con-
cludes the proof under (4 ).

Under (A —) we can give a dual argument to show that there exists a 1-periodic
solution of (2) if A(-) is such that

1

(At aalt) + (1— 20) B)) dE < 0 .

¢
In this case the homotopy is:

Wl — P){Si(e1) + g} — A—w)el, w»e[0,1]. LI

Remare 1. - Note that under (4 ), the condition (--) is satisfied for A(f) = 1;
dually, under (4 —), the condition (—) is satisfield for A(f) = 0. For each of these
cases the marginal equation (2) reduces to the «relaxed confrols» equation asso-
ciated with (1). In general, if A(t) e {0,1} a.e. on [0,1], then (2) can be written
a.e. as

& eo f(t, m, A w(t, @) + (1— A0) wilt, @) + g(t) -

1
REMARK 2. — Since o;{(t)>(,(f) a.e. in [0,1] we see that if foci(t)dt<0 then
1 0
[(M0)alt) -+ (1— A(5) Bult)) di<0 for any A(-)e L=([0,1], [0, 1]). Moreover, since
0 1 1
o,{t)>B(t) @e. in [0,1], if [B.(1)d>0 then [(A(r) (1) -+ (1— A1) Bu(t)) dt>0.
1] 0
Therefore, we cannot weaken the hypotheses (4 +) and (4 —). This implies
that among the functions A(:) for which the system (2) has a 1-periodic solution
there is always one solution with either A(f) = 1 or A(f) = 0 a.e. in [0, 1].

ReMaRK 3. — In [6] one of us (Nistri) used the following assumptions:

1 i
r

(w(tydt <0 or [pwar>o,

0 0
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f(t, @, Q) = {f(t, x, u), u € £} convex a.e. in [0,1], for x € R*. Under these assump-
tions he proved that (1) has a 1-periodic solution for any control function ue U.
Observe that our conditions (4 4) and (4 —) in Theorem 1 imply that either

fl a(t)dt >0 or flﬁi(t) at < 0.

0
REMARK 4, - Note that if Jocs( Ydi<0 and fﬂ t) dt> 0, then since «,(t)>f.(t) a
in {0, 1], f () dt == fﬁ 1) dt = 0 and o,(? ,8 (f) a.e. in [0,1]. Therefore in this
case f (l(t (1) + (1 At)) ﬁi(t)) dt = 0 for any A(-) and our approach fails.
0

We now consider the case when both of the following limits exist.

vi) lmlém‘%lf—) = a(t) a.e. in [0,1].
viy  tim 29? _ g4 e in [0,1].

|z}->oo |7

CoROLLARY 1. — Under assumptions (i)-(iv), (vi)-(vii) and either

1

(B +) foc(t)dt>0,
or ’
1
(B—) fﬁ(t)dKo,
1]

(2) has & 1-periodic solution for those A(:) satisfying
1
f (20 at) + (1— ) 1) A= 0 .
0

Proor. — Suppose we have a sequence {x,},.vC AC of 1-periodic solutions of (2)
with max |2, (t)| — + oo (hence tn[m% [@a(t)] — + o0 as n — 4 co). Then
€[o, €[0,1]

y s(t, 2a(1)) ity 2a() | (@a(1), g0)] .
HM‘) Tamp AT TR T T mar ]dt‘o

for all n e N.
On the other hand it follows from (ii) that

[s(t, @ (D)) [i(¢, z.(2))|
moE M TR
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can be bounded by the same function belonging to L*([0, 1], R,) for » sufficiently
large. Therefore, we can use Lebesgue’s Dominated Convergence Theorem to obtain

i
-

D) + (1— 20 ()] dt=o.

0

So if for some Ae L®([0, 1], [0, 1]) this equality fails, then we can parallel the ar-
guments in the proof of Theorem 1 to obtain the conclusion of Corollary. [

Observe that under (B--) (dually, (B—)) we can choose A(t) =1 (dually, A(f) = 0)
a.e. in [0, 1].

RuMARK 5. — Consider the following perturbation of (1)
& = f(t, #, u) + g(@) + fo(t, ®)
and the quantities

— lim int & foth @)
o> +o0 |2

71(75)
and

fo(t, )
v,(t) = lim sup w
lol>+eo  |@]

Theorem 1 and Corollary 1 remain true if the following conditions are satisfied:

1 1
(A Y ‘}gr(oci(t) + () dt> 0 or (4—y f (Bu(t) + ma()) dt < 0,
0 0
respectively
B4 [ () +p@)@r>0 or B=) [ (B0 + nw)a<o.
Q0 0

THEOREM 2. - Under assumptions of Theorem 1 and (v), the 1-periodic solutions
of (2) are 1-periodic solutions to (1) corresponding to some control u(-)eU.

The proof is a consequence of a result of Roxin ([7], Theorem 1). O

2. — Stability of periodic selutions.

In the previcus section we gave results on the existence of a periodic solution
of a control problem (1). Now we want to impose hypotheses on the vector field



JACK W. MACKI - PAoLO NISTRI - PIETRO ZECCA: Periodic solutions 391

associated with the confrol problem in order to ensure the stability of such periodic
solutions. In the context of differential inclusions & related result on the exponen-
tial stability of stationary solutions was given in [8].

DEFINITION. — A periodic solution », = ,(t) corresponding to the confrol u,e U
for the system (1) is said to be locally uniformly asymptotically stable if there exist
4, 71>0 such that for any ¢ >0, any golution, # of (1) eorresponding to a control ue U
with |u— #,],0 <7 and |o(t) — #,()| < p satisfies |@(f) — 2,(t)] >0 as § — +oo.

Let us suppose that the following property holds:

(8) AM, p,neR*, zeL([0, o), RY)
s.t. Vo, y e B(0, M), Yu,ve 2, with |r— y|<up and |[u— v| <% we have

(‘/I" —, (¢, @, u) — 1(t, ¥, U))
|z —y|*

< —z(t)< 0 a.e. in [0,1].

Then we can establish the following stability result.

THROREM 3. —~ Let the system (1) satisfy hypotheses (i)-(v), (8) and (4 ) or (4 —)
(resp. (B ) or (B—)). Then any periodic solution of the system, x,(:), such that
[z, ()] < M, Vt &[0, 1] is locally uniformly asymplotically (ewponentially) stadle.

Proor. — Let #,(-) be a periodic solution of (1) such that |x,(f)] < M for all
te[0,1], and let u,(-) be the corresponding control. Let x(:) be any solution cor-
responding to a control w(-), such that |o(t)— 2,(4)| << u, and |u(t) — u,(#)| <n,
¥t>t,. Then we will have |z(t) - #,(f)] < ¢ on some maximal interval [t,, T) with
[@(T)— 2, (T)] = p and

((t) — (1), 1{t, 2(8), w(®) — 12, 2,(1), wa()))
J‘/D(t) - mﬂ(t)lz

< —2(t)< 0.

If we denote d(t) = |»(t) — #,(¢)|? we have a.e. in [f, T]

a)

{
\

((t) — (1), (2, 2(1), u(®) — F(t, 2,(1), (1))
[2(t) — m,(2) ]2

< —z2f)< 0,

BO[ =

=y

t
that is d/dflog d(t) < — 2z(1) < 0 and finally d(t)<d(t;) exp [-— 2fz(s)ds], Lh<i<T.
Thus 21
i
[2(t) — 2p(0) | < lo(t) — ay(t)| exp [— [a(s)ds|  om [t, 7]
s
If we had T <oo, then we would have

T
1 = [o(T) —a,(T)] <[o(ts) — (1) exp [—[(s)ds ] < o
iy
2 contradiction. [I
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3. — Examples.

ExamprLe 1. — Consider the system
& = h{t, ®) + u(t) b(t, ») + g(t), xeR",

with w(-) measurable, u(f) € [—1, 1], and g, b, h extended by 1-periodicity from [0, 1]
to R. Suppose

(%) (&, b(t, »)) = o(l»]*) and (@, h(t, 7)) = p(t)|e]* + o([x]?), as |#]—>oo,

1
uniformly for i e [0, 1], with f @(t)dt #= 0. Then Assumptions (vi) and (vii) are valid

o
with of(f) = f(f) = ¢(f). Assuming % and b satisfy the Carathéodory condition and
that || and [b| are each bounded by a linear function of |»| with L' coefficients,
then the Corollary to Theorem 1 implies that there exists a 1-periodic solution of (2)
for any A(-)e L*({0, 1], [0,1]). Note that since our problem is linear in w,

€0 fS(ia w) = fs(t’ w) = f(t7 &y us(t7 ‘7")) 9 €O fi(ty 9&') = f(ta &y %i(t’ '/1")) .
As remarked earlier, when A(t) € {0, 1} a.e. then
ADFy @) 4 (L= 20) fulty ) = 1(t, @, 20 walty 2) + (1= 2()) walt, @) .

Thus for each such A(+) there exists a periodic solution of (1).
One can weaken the hypotheses in this example by replacing (%) with

%A
<
g
&
T
~——

(%) w4 o(ja*) = inf (@, b4 ub)< sup (@, h - ub) = g(t)]a]?
wel—1,11 wel—1,1]

and requiring either f e(t)dt >0 or f p(t)dt < 0. In this case aft) = @), S{t) = p(),

50 the Corollary agaln applies.
Finally, we can treat the non-isotropic case by replacing w(t), @(t) respectively
m (#%) with ¢, o/lz)), e, »/jz]). In this case,

oty =inf @(t, w), olt) = sup p(, w),

weS wes

B:(%) = inf y(t, w) , Bs(t) = sup p(t, w) ,

wes wes
where § is the unit sphere in R». Theorem 1 states that (2) has a periodic solution
if either

1 1

finf p(t,w)dt >0 or fsup p(t, w)dt< 0.

wes wes
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To examine stability, we write out the condition (8):
(@ — 9, bty ) — h{t, ) + (2 — g, w(1) b, ®) — v(1) b(t, ) <— 2(t) < 0 .
With a sufficient degree of smoothness this will be true for |» — y| and |u — v| small
if
(@ — 5, [, @*) + o, (t, 2*)]@ — ¥)) + (2 — y, (w— 0)b(t, ¥)) <— 2(1)
where J,,J, are the respective Jacobian matrices of % and b, with respect to =,
and x*, #** lie on the line in. R* between » and y. This last inequality will hold for

(v — v), (# — y) sufficiently small if there is an ¢ > 0 such that for all x in a tube
in R» containing »,(-) we have

1[0oh,; oh;
SUp  SUP  Jmax {“ [%‘ - _8;]

uel—1,1] jy—z]<e 2

w[ox;,  0ob;
(1,2) + 5 [—a—b—ﬂ + %]

3
<—-2(1)< 0
(M)} 5 () ,
where A, denotes the maximum eigenvalue of the quantity in brackets. In this
case we can, restrict [w — v| so that the term (v — y, (u — v)b(3, ¥)) is less than }e(t).
Examprk 2. — Consider the same system as in Example 1. Note that u,(t, 2) =

= — sgn (@, b(f, ©)) = — u,(t, »). Assume that

“S(t) =lim sup (CD, h(t’ 00)) T I(‘/’v’ b(ty m))i

fal->c0 |*

<0 forteSclo,1],

and that

8.8) = lim sup &2 M6 2) — |(z, b(t, 2)|

lal-> o0 |]®

< 0 forteB>8, |B]>0,

where 8¢ denotes the complement of 8 with respect to [0,1]. Then
1
[ =[pmae + [pma<o
o B Ge

since on G°, B.(t)<a.(t)<0. Thus (4 —) holds and Theorem 1 applies. Since the
system is linear in u, the marginal equation (2) again reduces to (1) when u(-) is
restricted to convex combinations of wu,(f,#) and w,(f, ). The condition (—)

1
f [A(#)oe(t) + (1— A(%)) Bo(t)]dt < 0 will be satisfied also for A = ys, the character-
4 -

istic function of 8.
The dual example requires

P —_
o = lTnlalnf (i—’-%li”f’-’-’l' >0 on 6> 8° and f, =limint (@ h) — |(2, b)| | IZW’ bl
z}—>00 |]—> 00 T

>0 on §.
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As a special case, consider the system %= @)r + u)yp(t)v 4+ g{t) with @, u, p
scalar valued. Then (v, k) = @(f)|z|?, (w, b) = y(t)|z[>. If there exists a set § with
[8¢] > 0 such that ¢(t)<— |yp()| on 8§, qo(t)< |p(t)] on. B> &, then there exists a
periodic solution. (The dual: @(t) > — [p(t)] on T2 8 and ¢(t)>[p(#)| on §).

ExaMpLE 3. ~ Congider the system & = &{t, ) + B(l, »)u with u{f)e B, — 1<
u(t)<1 (k=1,..,m), B an nXm matrix with columns B®, B®, .. kB™, We as-
sume % and the entries of B satisfy the Carathéodory condition and a linear growth
condition. in jo| with I coefficients. We see immediately that the k-th component
of %, and u; is given by

[s(ly @), = — [w:lty @)} = sgn 3, @, by
1

80

o,(t) = lim inf _
) [} 00 |2 ’

and f,, 3, are respectively the above expressions with -4 replaced by —.
Theorem 1 will apply, with A= yg if there exists a set Sc[0,1] such that
[Bift)d@t>0 and [a(t)dt > 0. (The dual: [a,(f)dt<0 and [B,(¢)d¢< 0). For example,

we could require
(@, 10,9)) = pOlol* + o), 3 (B, ), 3) = offaf)

1
with f(p(t) dt > 0. A slightly more complicated example would be
0

(377 h(i, “")) = ¢(t)|»|* + 0([90]2) 3 (Bj(ty @), 50) = yit) o] + o(|w[2) ’
so that

m

wf) = i) = pl) + T O, ) =Bt = 9)~ X [y

There will exist a periodic solution of (2) (hence of (1) since the system is linear in )
if there is a set § such that

” é @)l a>0  and J[W)+é!zpf‘(t)[]dt>o.

8
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The condition (8) for stability of a given pericdic solution x,(:) becomes
(. — y, b(t, ) — h{t, y) + B, »)u— B, y)v)<0
for |u— o] and |# — y| small, in some tube in R* containing x,(:). Writing
B(t, ) u— B(t, y)v = [B(t, #) — B(t, y)]u + B(t, y)(u— 0)

and assuming sufficients smoothness, we can use the mean value theorem to write
(S) as

m n a
B —unnte—)+3 3 Se—ng

=1i=1F=1 02y

+ (z—y, B(t, y)(u — 1)) <0.

(t, &**) (@ — y)yu,; +

In the second term, the double sum > (w — ¥), (0b;[0w:)(@ — y), is the quadratic form
ik

(#—y, Jule—y)), so for fixed j this double sum is bounded between the largest

and smallest eigenvalues A9, A9 of the symmetrized coefficient matrix

o 1[8b, . db]®
AB(7)=—[ + ]k

2 | 0w, 0%; |i, %~

j=1,..,m. Because w(t)e[—1,1], we can bound the second term in (3) be-
tween

& { 3 max (1A, 128} o — gl
i=1

If Ay Apae are the smallest and largest eigenvalues of [§(0h,[0w,) + % (0h,[0m,)],
then we need

Amax(t7 w*) + z max (Mg;xl M(?inl [(t,m**)<ﬁ(t) <0
i=1

for some f(-) € L™([0, 1], R), for all (¢, #*) in some tube about #, and all #** in some
sufficiently small ball B(«*, d). Then |« — @] can be restricted so as to satisfy (8).
For the case when B(l, 4) = [by(t, @), b1a(t, 2)] (0 = 1, m = 2) we have

abll ablz
B(1) = ——= = 12
4B(1) 5, AB(2) 5,
ob ob
a) __ 11 @ _ 12
;"min"‘ axl ) 'Zmln aml
and our requirement is
ob ob
Apax(t, %) +  max {( = =1 ) <pt)y< 0.
&%) |ar*— %< e 0y 0xy ) 13( )
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