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Summary. - We investigate the existence of periodic solutions to the control problem 

(i) ~ = f ( t , x , u ) + g ( t ) ,  x e R  ~, u e R  '~, 

with g and f periodic in t with period 1. We form the associated quantities 

s(t, x) = sup (x, ](t, x, u)),  i(t, x) = inf (x, ](t, x, u)) 
u e ~  ueD 

where ( . , . )  denotes the inner product in R n and [2 is a nonempty compact set in R n. I f  
us(t, x), ut(t, x) denote the (in general multivalued) controls for which s(t, x), i(t, x) are 
respectively attained, then we can form the family of marginal problems 

(2) ~e2( t ) -d -5] ( t , x ,u~( t , x ) )~§  ~(.) eL~([0,  1], [0, 1]). 

We give sufficient conditions ]or the existence o/ a periodic solution of certain marginal 
l~roblems, stated in terms of lim inf and lim sup of s(t, x)/lx[ 2 and i(t, x)/]x] ~. Einally we 

state the relationship between the periodic solutions of the marginal problems and those of the 
original problem (1). 

Introduction. 

I n  this paper  we give conditions for the  existence of periodic solutions to the 
t ime-dependent  control p rob lem (1). I n  order to get  the  result  we, first, associate 
to (1) a family  of mul t ivMued problems (2). Then we prove  the  existence of peri- 

odic solutions for (2) giving conditions formula ted  in te rms  of the  asympto t i c  be- 
hav iour  of certain maps  corresponding to the  choice of controls u(-)  as the  margi-  

nal maps  of the  scalar p roduc t  (x, ](t, x, u)).  The convexi ty  assumpt ion  on the  
mul t ivMued m a p  ](t, x ,  ~2), with u ( t ) e  ~2 c R m, Mlows us to  deduce the  existence 
of periodic solutions to (1). 
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In  [5] we gave sufficient conditions for the existence of periodic solutions to 
differential inclusions of the form [2 - -A( t )x ]  ~ ( t ,  x). However those conditions 
in fact  ensure tha t  for any measurable selection z(x~ t) ~ F(t ,  x), there is a periodic 
solution of [2 - -A( t ,  x)] -~ z(x, t ) .  This type  of result is useful for modelling prob- 
lems with discontinuities~ but  not  for modelling control problems. The same com- 
ments ~pply to the results of Nistri in [6]~ where he modelled optimal control prob- 
lems. The approach in [5] is suitable for showing the existence of periodic solution 
in the presence of discontinuities or ia the case of optimal periodic control prob- 
lems, but  i t  is not  appropriate when we are looking for the existence of a control 
law which produces a periodic solution. 

Finally~ we give ~ local coercive-type condition for the stability of such periodic 
solutions. 

l .  - Existence of periodic solutions. 

We consider the following control process 

(:) ~ = ?(t, z, u) + g(t) ,  o < t < : .  

We assume 

i) ]:[O, 1 ] • 2 1 5  n, D ~ nonempty  compact set in R ~, satisfies the 
Carath6odory condition, tha t  is t ~-~ ](t, x, u) is measurable, (x, u) ~-. ](t, x, u) is 
continuous. 

ii) [](t, x, r <~ a(t)ix I + b(t), Vx e R ~, Vu e ~2, a.e. in [0, 1]; a(.),  b ( . ) e  Zl([0, 1], R+); 

iii) g e LI([0, 1], R~). 

iv) u( .)  e u =  (~(.) e L~([0, 1], R~)lu(t) e ~ a.e. m [0, 1]}. 

v) ](t, x, ~2) is a compact, convex set for all x e R"  and for a.a. t e [0, 1]. 

In  what  follows the functions ]~ g, a~ b, u, are extended to R by 1-periodicity. 
For  all x ~ R ~ and almost all t e [0~ 1] we define s(t~ x) : sup (x, ](t~ x~ u)) and 

u~.Q 

i(t, x) ~ in f  (x, ](t~ x~ u)), where ( . , . )  denotes the scalar product in R ~. We denote 
UE~Q 

by u~-~ u~(t, x) and u~ ~ u~(t~ x) the set of values of the control variable u such 

that 

s(t, x) = (x, i(t, x, ~0)  , i(t, x) = (x, ](t, x, u~)) . 

We note tha t  (t~ x) ~-~ s(t~ x)~ (t~ x) r-~ i(t~ x) ~re measurable in t and continuous in x; 
(t~ x) e-~ u~(t~ x)~ (t~ x) r-~ u~(t~ x) are t-measurable, x-upper semicolltinuous~ mul~ival- 
ued maps with compact values~ (see [1]~ Th. 6~ pa t .  53). Thus the two maps 

(t, x) ~ ](t, x, u,(t, x)) = L(t, x) and if, x) ~ ](t, x, u,(t, x)) = t~(t, x) 
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are t -measurable ,  x -upper  semieo~t inuous  mul t iva lued  maps,  wi th  compac t  values.  
L e t  us co~sider now the  maps  ~ ( . ) ,  a~(.), fi~(.), fi~(.)~ Ll([O, 1], R)  defined by :  

~f(t) ----- l i ra  inf  s(t, x) ~( t )  = l i ra  snp s(t, x) 

fi~(t) ~-- lira inf  i(t, x) i(t, x) l~l~o ]xl~ , fl~(t) = l i m s u p  - -  . 
I ~ l ~  Ixl ~ 

:Noting tha~ t he  two maps  ]~:, ], h ave  compac t  values  and  ~6 ]~ : co ]~ and  ~-6 ]~ = 
= co 1~, we fo rm  the  marg ina l  differeat iM inclusion 

(2) e ~(t) co 1~(t, x) + ( 1 -  ~(t)) co t,(t, x) + g(t) 

for  f ixed b u t  a r b i t r a r y  A(.) ~ Z~([O, 1]' [0, 1]). The  r ight  side of this inclusion is a 
t -measurable ,  x -upper  semicont inuous  mul t ivMued  map  wi th  convex,  compac t  val- 
ues. 

W e  observe t h a t  unde r  our  assumptions ,  for  each  compac t  set Q c R",  t he re  
exist  y~(-) and  y~(.) e ZI([O, 1], R+) such t h a t  

I]~(t,x)l<r,(t), xeQ,  a.e. in [ 0 , 1 ] ;  

[]i(t, X)] < •i(t) , X • Q ,  a.e. in [0, 1] .  

Final ly ,  we assume t h a t  a t  least  one of the  following holds:  

(A 4 )  

o r  

(n - )  

1 

f ai(t) at > 0 , 
0 

1 

f ~ ( t )  at < o . 
0 

T n ~ o ~ . ~  1. - I] assumptions (i)-(iv) and either (A 4 )  or (A- - )  holds, then (2) 
has a 1-periodic solution ]or any ,t(. ) satis]ying, respectively 

(+) 

o r  

(--) 

1 

f[~(t)~(t) § i1 ~ t o . ())  ~(t)]  at > 
0 

1 

f[~(t)~(t) + (1-  ~(t)) ~.(t)] at < o 
0 

(unaer (A +)), 

(unaer (A--)). 
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PlcooF. - We write L ~ = Z~([0, 1], R ~) and AC = AC([O, 1], R~). For a fixed 
2(.) ~ L~([0~ 1], [0, 1]) let gz: L ~ -+2 ~ be the map defined by 

~,.[x](t) = {y(t) e x(t) co f.(t, x(t)) + ( 1 -  x(t)) co i,(t, x(t)), y ( . )  e ~ } .  

From our assumptions on f and the definitions of co ]~, co ]~ we see tha t  for any 
such 4('), g~ is a u.s.c, mult ifunction with convex closed values (see [3]). 3{oreover, 
gz: AC  --~ 2 ~, and the composition of gz with the compact imbedding i of AC i~to 
/5~ is compact (that is, g,  oi maps any  bounded set into a relatively compact set). 
For  simplicity we will write gz ia place of gzoi. 

We define zl = A C R  {x(.)]x(0) = x(1)}, and ~ :  A -->Z ~ by ~): x(.) --> dx/dt(. ). 
Clearly ~) is a linear Fredholm operator of index zero with 

Ker  (~) = A n {x(.)lx(t ) = - - e a r  n on [0, 1]}, 

1 

0 
1 

I f  P :  L ~ -+ L~ denotes the projection operator defined by P :  y(t) -+y(t)-- fy(s)d~,  
we consider the system o 

0 e ( I - -  P){gz(x~ + x*) + g} 

x*e  ~)-~r{g~(z~ + x*) + g} 

where 

x = ( I -  P ) x  4:- P x  = x~ + x* 

for all x ~ L  ~. Clearly the operator ( ( I - -  P)gz( ' ) ,  O-lPgx( ' ) ) :  AC -+2 xv is u.s.e. 
and compact, with closed, convex values, for any  4. Therefore we can use the the- 
ory of the topological degree for such operators (see [2], [4]). 

We consider the homotopy 

I c e  (i--r){9~.(x~§ x*) § g}, 

This homotopy is called admissible if there exists an open bounded set q~c AC 
such tha t  {x]x is a solution of (H,) for some # E [0, 1]} n i r  = 0. If  we can show 
tha t  (a) (Hz) is admissible, and (b) dog ( ( I - -P)gA,  t n  Ker(ID), 0) ~= 0 for some 
fixed ~(-) e L~([0, !], [0, 1]), then we can conclude tha t  for this 4(. ) the inclusion (2) 
has a periodic solution, since topological degree associated with each of (Ho), (H1), 
(2) will be the same. 

Assume for definiteness tha t  (A ~ )  holds. We begin by proving the admissibil- 
i ty  of (Hz). Assume the contrary, t ha t  is, t ha t  there exist sequences {#~}~N c (0, 1] 
(the case /~ = 0 will be considered later), and {x,}n~N with max  [x~(t) ] --> -}- co and 

t~[O,1] 
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x~(0) ~ x~(1) (observe  t h a t  by  vh ' tue  of hypothes i s  (ii)) o a f  the  bounded~ess  of 
{x.}~N ia  C implies the  bou~dedness  of {x,}~ N in AC with  ~}~(t) ----tt~[X(t)y~,,(t) d- 
-t- (1 - -  ~(t))y~,~(t) -4- g(t)] a.e. in [0, 1], for  some selections y~,~(t) e co ]~(t, x,(t)) and  
y~,~(t) e co ]~(t, x~(t)), for  n e N. I t  is easy  to  see t h a t  ra in  [x~(t)l -+ d- c~ as n -> -[- oo 
(see [5]), and  also t~Eo,1] 

#~f" (x,(t), ~(t)y~,~(t) ~- (1 - -  ~(t))yi, n(t ) + g(t)) dt 
Ix~(t) t ~ 

0 

= 0  

for  all n large enough  to  gua ran tee  min  Ix . ( t ) t>0.  Since (x~(t), y~,,(t))= s(t, x~(t)) 
and  (x~(t), y,,~(t))= i(t, x~(t)), we get :  [o,1~ 

1 
~(~) s(t, x~(t)) + ~1 - z(t)) i(t, xo(t)) § 

] x ~ ( t ) l  ~ ' t ~ , , ( t ) I  ~ Ix.(t)l~ ] 
0 

dr= O. 

Hence  

1 

0 

l i m i n f  s(t, x,(t)) ~- (1 - -  ) . ( t ) ) l im in i  ~ . ( ~  ] dr> I n( )L ~ q t ,  

1 

>~ f(2(t)e~(t) + (1- 2(t))fldt))d t 
0 

so if ~(.) is such t h a t  this las t  express ion is g rea te r  t h a n  zero we will ge t  a cont ra-  
dict ion.  

I n  the  case # = 0 ,  we have  x * = P x = O  which implies x ~ e e R  ~. Assume 
t h a t  t he re  exists  a sequence {c~}~N r R ~ such t h a t  [c~ t --> ~ co sat isfying (H0). Then  
we would  have  

1 

f(~(t)z~,~(t) + (~- ~(t))z~,~(t) ~- g(t)) dt -~ 0 
0 

f o r  s o m e  Zs,n(t)  ~ e o  ]8(t, (~n), a ]~d z i ,n ( t )  e e o  ] i ( t ,  on), a n d  

1 

0 

dt -~ 0. 

The  a rgumen t  above  shows t h a t  this is impossible if 

1 

f (~(t)~(t) ~- (1- -  ~(t))fl~(t))dt > O . 
0 
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Therefore, there exists a ball B(0, r) in C([0, !], R") containing in its interior all 
the solutions of ( H i  for # ~ [0, i] .  The hypotheses on )~ imply the exixtence of a 
ball B(0, R ) c  AC with the same property. 

Finally we prove tha t  dog ( ( I - -  P)9~., B(0, B~) (~ Ker (~), 0) ve 0, where R~ > R. 
In  fuet, let us consider the homotopy 

~ ( / - -  P)  {g~(c] ) ~- g} ~- (1--  ~) ~], ~ e [0, 1 ] .  

It is easy to see, using for example (A ~ ) ,  tha t  this is an admissible homotopy 
in B(O, B~).~ Ker ~ ,  when )~(. ) satisfies the conditions of our Theorem. This con- 
cludes the proof under (A ~ ) .  

Under (/1--) we can give a dual argument  to show tha t  there exists ~ 1-periodic 
solution of (2) if ~(.) is such tha t  

1 

f (x(t) + ( 1 -  fl (t)) dt < o . 
0 

In this case the homotopy is: 

v ( I  - -  P )  {9~(e1 ) ~- g} - -  ( i - -  u) cI , ~ e [0, ! ] .  [ ]  

l ~ r  l .  - Note tha t  under (A + ) ,  the condition (+ )  is satisfied for 2(t) : i ;  
dually, trader (A--) ,  the condition (--) is satisfie]d for )~(t) = 0. For  each of these 
cases the marginal equation (2) reduces to the (( relaxed controls ;> equation asso- 
ciated with (l). In  general, if 2(t)~ {0, 1} a.e. on [0, 1], then (2) can be written 
a . e .  a S  

z c o  f(t, ;.(t) u (t, + ( 1 -  ;,(t)) u (t, + g(t). 

1 

I%E~AJ~K 2. - Since ~,(t)>~$~(t) a.e. in [0, i] we see tha t  if f~(t)dt<o then 
t 0 

f(2(t) ~(t) 4- ( i - -  2~(t))/~(t)) d t<  0 for any  }~(.)e L~([O, 1], [0, 1]). Moreover, since 
0 1 

~(t)>fl~(t) a.e. in [0, 1], if f~.(t)dtmo the~ f(2(t)c4(t)-~ (1- -2( t ) )~( t ) )d t>O.  
0 0 

Therefore, we cannot weake~ the hypotheses (A-~-) and (A--) .  This implies 
tha t  among the functions ~(.) for which the system (2) has a 1-periodic solution 
there is alwa, ys one solution with either }~(t): 1 or ,~(t)~ 0 a.e. in [0, 1]. 

1%E~}~ 3. - In [6] one of us (l%istri) used the following assumptions: 

1 i 

j ~(t) dt < 0 or j fli(t) dt > O, 
0 0 
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f(t, x, ~) : {](t, x, u), u ~ /2}  c o n v e x  a.e. in [0, 1], for  x e R ~. U n d e r  these  a s sump-  
t ions  he  p r o v e d  t h a t  (1) has  a 1-per iodic  solu t ion  for  any con t ro l  func t ion  u ~ U. 
O b s e r v e  t h a t  our  condi t ions  (A @) and  ( A - - )  in T h e o r e m  1 i m p l y  t h a t  e i ther  

1 1 

f ~(t) at > o or f fl,(t) dt < O. 
0 0 

1 1 

REM_A~K 4. - N o t e  t h a t  if ]'~(t)dt<O and ffl~(t)dt>O, t h e n  since ~(t)>fl,(t) a.e. 
1 1 0 0 

i a  [0, 1], f~ ( t )d t  : ffl~(t)dt = 0 and o~( t ) :  fl~(t) a.e. in [0, 1]. There fo re  in th is  
1 0 0 

c~se fo(~(t)o~(t)-F (1-- ,~(t))f l{(t))dt  = 0 for  a n y  ~(.)  and  our  a p p r o a c h  fails. 

W e  now consider  t he  case when  b o t h  of t he  lol lowing l imi ts  ex isk  

vi)  lira s(t, x) 
,~l-+~o IxP 

vii)  l i ra  i(t, x) 

- -  : a($) a . e .  i n  [0,  1] .  

- -  fl(t) a .e .  i n  [0,  1] .  

COgOLLAgY I. - Under assumptions (i)-(iv), (vi)-(vii) and either 

1 

(B +) f~(t) at > o, 
0 

o r  

1 

(B - )  f~(t) at < o, 
0 

(2) has a 1-periodic solution for those 4(" ) satisfying 

1 

+ (1- 0 .  

0 

PgooF .  - Suppose  we h a v e  a sequence  {x~}~Nc A C  of 1-per iodic  solut ions of (2) 
wi th  m a x  ]x~(t)[ -+ -]- o~ (hence ra in  [x~(t) l -+ + ~ as n -+ + o0). T h e n  

te [O,1]  te[O~l]  

1 

0 

+ (i - ~(t)) {(t, ~(t)) + (~,~(t), g(t))] 
Ix,~(t)l ~ Ix~(t)p j 

d t = O  

for  all n ~ N. 

On the  o the r  h a n d  i t  follows f r o m  (ii) t h a t  
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ca.n be bounded by the same function belonging to Z*([0, 1], R+) for n sufficiently 
large. Therefore, we can use Lebesgue's Dominated Convergence Theorem to obtain 

1 

f[~(t) ~.(t) + (1 -  ~(t)(t~(t)] at 
0 

~ 0 .  

So if for some A e L| 1], [0, 1]) this equali ty fails, then we can parallel the ar- 
guments in the proof of Theorem 1 to obtain the conclusion of Corollary. [] 

Observe tha t  under (B~-) (auany, (B--)) we can choose Z(t)= 1 (auany, z(t)= 0) 
a.e. in [0, 1]. 

R ~ , ~ K  5. - Consider the following perturbatio~ of (1) 

and the quantities 

and 

2 = ](t, ~, u) + g(t) + ]o(t, z) 

y,(t) = lira inf (x, ]o(t, x))  

(% Jo(t, ~)) 
72(t) = lira sup 

Theorem 1 and Corollary 1 remain true ii the following conditions are satisfied: 

(A § 

respectively 

(B + ) '  

1 1 

f(~(t)+~,(t))dt>o or (.A-)' f(#~(t)+~(t))dt<O, 
0 0 

1 i 

f (.(t) + o or (B--)' f +   (tl)dt< o. 
o 0 

THEORE~ 2. - Under assumptions o] Theorem 1 and (v), the 1-periodic solutions 
o] (2) are 1-periodic solutions to (1) corresponding to some control u( . )  ~ U. 

The proof is a consequence of a result of RoxI~  ([7], Theorem 1). [] 

2. - Stabi l i ty  o f  per iodic  so lu t ions .  

I~  the previous sectio~ we gave results o1~ the existence of a periodic solution 
of a control problem (1). l#ow we want  to impose hypotheses on the vector field 
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associated with the control problem iil order to ensure the stabili ty of such periodic 
solutions. In  the context  of differential inclusions a related result on the  exponen- 

tial stabili ty of s ta t ionary solutions was given in [8]. 

DEFInITIOn. - A periodic solution x~ = x~(t) corresponding to the  control u~ e U 
for the  system (I) is said to be locally uniformly asymptot ical ly stable if there  exist 
/~, ~ 0  such tha t  for any tl>~0, any solution x of (1) corresponding to a control u e  U 

with l!u-- u~ltLr < V and Ix(t1) -- x~(t~)[ < # satisfies Ix(t) -- x~(t)] -+ 0 as t -* -~ c~. 
Le t  us suppose tha t  the following proper ty  holds: 

(S) 3M,/~, V e R + , z eL~([0, ~ ) , R  +) 

s.to Yx, y e B(0, M), Vu, v ~ ~ ,  with [x-- Yl < # and [u--  v I < ~ we have 

(x - -  y, l(t, x, u) - -  l(t, y, v)) < - - z ( t ) <  0 a.e. in [0 ,1 ] .  lx -W 

Then we can establish the following stability result. 

T~__E0~E~ 3. - s the system (1) satis]y hypotheses (i)-(v), (S) and (A ~-) or (A - - )  
(resp. (B-~)  or (B--)) .  Then any periodic solution of the system, x~(.), such that 
Ix~(t)] ~ M~ Vt e [0, 1] is locally uni]ormly asymptotically (exponentially) stable. 

PR00F. - Let  x~(.) be a periodic solu$ion of (1) such ~hat [x~(t)l ~ M for all 
t e [0, 1], and let u~(') be ~he corresponding control. Le t  x(" ) be any solution cor- 
responding to  a control u( ' ) ,  such tha t  [x(t~) -- x~(t~)] < #, and lu(t) -- u~(t)] < ~], 
Yt>t~. Then we will have  Ix(t) - -  x~(t)[ < tt oa some maximal  interval  [t~, T) with 

1 4 T ) -  x~(T)l = ~ aud 

(~(t) - ~(t) ,  fit, x(t), u(t)) -/(t, :~(t), u~(t))~ < _ z(t) < o . 
Ix(t) - xAt)? 

I f  we denote d(t)-~ Ix ( t ) -  x~(t)[ 2 we have a.e. in [t~, T] 

i a(t) _ (x(t)  - x ~ ( t ) ,  ](t ,  x(t), ~(t)) - ](t,  x~(t), u~(t))) < - z ( t )  < o ,  
2 d(t) Ix(t) - x~(t)] ~ 

t 

tha t  is d/dt log d(t) ~ -- 2z(t) ~ 0 a~d finally d(t)<d(tl) exp [-- 2fz(s)ds], t~<t<~ T. 
Thus t~ 

t 

[ ;~(~)-  x~(t)[ ~ ]~/)(tl)-  :~/a(tl)[ eXp [ - -  [Z(S)~8] on  [tl,  T] .  
t~ 

If  we had T ~ 0% then  we would have 
T 

, x (t )l exp < ,  
ti 

a cor~tradiction. [] 

k 
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3. - Examples. 

ExA~n~L~ 1. - Consider the system 

2 -= h(t, x) @ u(t) b(t, x) @ g(t),  x ~ R n , 

with u(- ) measurabIe~ u(t) e [-- 1, 1], and g, b, h extended by !-periodicity from [0, 1] 
to R. Suppose 

( . )  (x, b(t, x) ) = o([xp) and (x, h(t, x)) = V(t)[xl ~ @ o([x12), as ]xl-+c~ , 

1 

uniformly for ~ E [0, 1], with fqJ(t) dt =/= O. Then Assumptions (vi) and (vii) are valid 
o 

with ~(t) = fi(t) = ~(t). Assuming h and b satisfy the Carath~odory condition and 
that Ih] arid [b I are each bounded by a linear function of Ix I with /~  coefficients, 
then the Corollary to Theorem i implies tha t  there exists a 1-periodic solution of (2) 
for any ~(.) ~ L~([0, 1], [0, 1]). Note tha t  since our problem is linear in u, 

co/~(t ,  x) = 1~(t, x) = ](t, x, us(t, x)) , co ]~(t, x) = l(t, x, u~(t, x)) . 

As remarked earlier, when 2(t)~ {0, l} a.e. then 

;4*)t,(*, x) + ( 1 .  ;~(t)) 1,(t, x) = t(t, ~, z(t) ~(t ,  x) + ( 1 -  z(t)) ~,(t, x ) ) .  

Thus for each such 2(. ) there exists a periodic solution of (1). 
One can weaken the hypotheses in this example by replacing ( , )  with 

(**) ~p(t)lxi~+ c,(ix[~ ) = inf (x, h + ub)< sup (x, h @ ub) - - ~ ( t ) i x i ~ T  o(Ixl 2) 
u e [ - - 1 , 1 ]  ' ~ [ - -  1,1]  

I 2 

and requiring either f~(t) dt > 0 or f~o(t) dt < O. In this case e(t) = ~o(t), fl(t) = ~(t), 
o o 

so the Corollary again ~,pplies. 
Finally, we can t reat  the non-isotropie case by  replacing F(t), ~(t) respectively 

in (**) with ~(t, x/lxD, qz(t, x/ lx D. In  this ease, 

~s(t) = inf ~v(t, w),  
w S S  

fidt) = inf ~f(t, w), 
WE~ 

where S is the uni t  sphere in R ~. 
if either 

1 

inf ~(t, w) dt > 0 
sS  

0 

~(t) = sup ~(t, v3), 
w ~S' 

/L(t) = s up  ~]~(t, w ) ,  
we~q 

Theorem 1 states tha t  (2) has a periodic solution 

1 

or Isup 
j w s S  
0 

~(t, w) dt < 0 .  
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To cxa.mine stability, we write out the condition (S): 

(x --  y,  h(t, x)  - -  h(t, y)) + (x  --  y, u(t) b(t, x)  - -  v(t) b(t, y))  < - -  z(t) < O . 

With a sufficient degree of smoothness this will be t rue for I x -  Yl and I u -- v I small 
if 

(x -- y, [Jh(t, x*) + uJ~,(t, x**)](x --  y)) + (x --  y, (u --  v) b(t, y)) < - -  z(t) , 

where Jh, Jb are the respective Jacobian matrices of h and b, with respect to x ,  
and ~*, x** lie on the line in R ~ between x and y. This l~st inequali ty will hold for 
(u -- v), (x --  y) sufficiently small if there  is an e > 0 such t h a t  for all x in ~ tube  
in R ~ containing x~(.) we have 

< -  ~ z(t) < o 
~E-~,~ I~-~l<~ 2 L ~  + 7xJ § 2 L~b~. + ~ (,,~) 

where ~ denotes the max imum eigenvalue of the  quant i ty  in brackets.  In  this 
case we can restrict  I u -  v] so tha t  the  t e rm ( x -  y,  (u ~ v)b(t ,  y))  is less than  �89 

E x ~ P ] ~  2. - Consider the  s~me system as in Example  1. Note tha t  u~(t, x)  = 
= - -  sgn (x, b(t, x))  = - -  u~(t~, x).  Assume tha t  

~ ( t )  = l i m s u p  ( x ' h ( t ' x ) )  + I ( x ' b ( t ' x ) ) l  <O for $ e 8 c [ 0 , 1 ]  

and tha t  

~ ( t ) = l i m s u p ( x ' ~ ( t ' - - x ) ) - l ( x ' 5 ( ~ ' ~ ) ) f <  o ~or ~ e ~ D s o  I ~ 1 > o  
1 ~ 1 ~  I~I ~ ' ' 

where 8c denotes the complement  of 8 with respect to [0, 1]. 

1 

0 ~ ~ 

Then 

since on 25 c, f l~( t)<a~(t)<0.  Thus (A - - )  holds and Theorem 1 applies. Since the 
system is hnear  in u, the  marginal equat ion (2) again reduces to (1) when u(. ) is 
restr icted to convex combinations of ~,(t ,x) and u~(t, x).  The condition (--)  

1 

f[~(t) ~8(t) + (1--  2(t)) fl~(t)] dt < 0 will be satisfied also for 2 = gs,  the character- 
o 

istic function of 8. 
The dual example requh~es 

a i =  l i m i n f  (x, h) + [(x, b)] > 0 on ~ o  8 ' and f i g = l i m i n f  (x, h ) - - ] ( x ,  b)l> 0 on 8 
[ ~ l ~  Ixl ~ i ~ z ~  Ixl ~ " 
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As a special case, consider the system 2 = cf(t)x + u(t)y~(t)x -}- g(t) with 9, u, 
scalar valued. Then (x, h) = 9(t)lx]~ , (x, b) = ~(t)]xp. If  there exists a set 8 wi~h 
18~l> o such tha t  q~(t)<--]~(t)] oI~ 8, 9 ( t ) <  ]~v(t)l Oll 73~ 8 ., then there exists a 
periodic solution. (The dual: ~(t)>--I~p(t)[ on ~6~ 8~ and 9(t)>[~p(t)l on 8). 

EXAm'LE 3. - Consider the system ~ = h(t, x) -}- B(t,  x) u with u(t) ~ 1~ "~, -- 1 < 
uk(t).<<l (k-----!, . . . ,m),  B an n •  matr ix  with columns B ~), B (~), ~B (~) We as- He ,~ 

sume h and the  eJatries of B satisfy the Carathdodory Colldition and a lilzear growth 
colldition in Ix] with Z ~ coefficients. We see immediately t ha t  the k-th component 
of u~ and u~ is given by 

[u~(t, x)]~ 

SO 

= -- [u~(t, x)]~ =- sgn ~ x~ b ~ ,  
~ = 1  

~ ( t )  ~ l im inf 
I~l-+ oo 

(x, h) + ~ I(BJ, x)I 

(x, h) + ~ [(B4 ~)t 
~(t) : l ira sup - -  ~=~ 

and fib, jS~ are respectively the above expressions with + replaced by --. 
Theorem ! will apply, with 2 = %8 if there exists a set 8 c [0, 1] such tha t  

ffl ,( t)dt>O ~nd f~,(t)dt > O. (The dual: f~.(Odt<O ~nd f f l , (Odt< 0). For  example, 
8 8" S 8o 

we could require 

1 

with f p(t) dt > O. 
o 

X (B~(t, ~/, ~) = o(I~12), 

A slightly more complicated example would be 

(x, ~(t, ~)) = ~(t)l~l 2 + o([xl~), (B~Ct, ~), ~) = W~(01~i ~ + o(l~i~), 

so t ha t  

~&) = ~,(t) = 9(0 + ~ I~(t)J, 
~ = 1  

~(t) = Mt) = ~ ( t ) -  ~ Iv;(Oi �9 
i = l  

There will exist a periodic solution of (2) (hence of (1) since the system is linear in u) 
if there is a set 8 such tha t  

. q= l  ~=1  
$ 8o 
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The eolldition (S) for stability of a given periodic solution x~(.) becomes 

(x - -  y, h(t, x ) -  h(t, y) + B(t, x ) u - -  B(t, y)v)<~O 

for [u--v]  and Ix- -y]  small, in some tube in R" coI~taining x~(.). Writing 

B(t, x) u -- B(t, y) v = [B(t, x) -- B(t, y)] u + B(t, y)(u -- v) 

and assuming sufficients smoothness, we can use the mean value theorem to write 
(~) as 

n ~bi# 
(3) + ( t ,  - + 

+ ( x - - y ,  B(t, y ) (u - -v ) )  <~0. 

In the second term, the double sum ~ (x -- y)~ (~b,j[~xk)(x -- y)~ is the quadratic form 
i,/z 

( x -  y, J ~ ( x -  y)), so for fixed j this double sum is bounded between the largest 
and smallest eigenvalues ~(J) . ~o) of the symmetrized coefficient matr ix  /~max ~ "mill 

# = l~ . . . ,m .  
tween 

Because u.~(t)~ [--] ,  1], we can bound the second term in (3) be- 

V/b 

-4- { 2 max ([,~l~)ax], ]1~I.,I)} Ix-- y[~. 

I f  Amin, Am= are the smallest and largest eigenvalues of [�89 �89162 
then we need 

Am=if , x*) + ~_, max ([~)~1, [;t~=])[(t.~**)<fl(t) < 0 
j = l  

for some fl(.) e L~([0, 1], R),  for all (t, x*) in some tube about x~ and all x** in some 
sufficiently small bali B(x*, 8). Then [ u -  v[ can be restricted so as to satisfy (S). 

For  the case when B(t, x ) :  [bn(t, x), b~2(t, x)] (n : 1, m : 2) we have 

A B ( 1 )  - -  ~bl l  A B ( 2 )  - -  tb12 
~Xl ' ~x~ 

)(1) __ ~b l l  ~(2.) ~bl~ 

and our requirement is 

Ix . . . .  ~*1.<<8(\--[ ~xl  [ 
< 0 .  
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