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Summary. - This paper considers the optimal quadratic cost problem (regulator problem) ]or a 
class o] abstract di/ferential equations with unbounded operators wtdch, under the same uni]ied 
#amework, model in particular (~ concrete )~ boundary control problems ]or partial di]/eren. 
tial equations de]ined on a bounded open domain o /any  dimension, including: second order 
hyperbolic scalar equations with control in the Dirichlet oq" in the Neumann boundary con- 
ditions; ]irst order hyperbolic systems with boundary control; and Euler-Bernoulli (plate) 
equations with (]or instance) control(s) in the Dirichlet and~or Neumann boundary condi- 
tions. The observation operator in the quadratic cost Junctional is assumed to be non-smoothing 
(in particular, it may be the identity operator), a case which introduces technical di]ficulties 
due to the low regularity o] the solutions. The paper studies existence and uniqueness o] the 
resulting algebraic (operator) ~iccati equation, as well as the relationship between exact con- 
trollability and the property that the Riccati operator be an isomorphism, a distinctive ]eature 
o] the dynamics in question (emphatically not true /or, say, parabolic boundary control prob- 
lems). This isomorphism allows one to introduce a <~ dual ~) t~ieeati equation, corresponding 
to a ~ dual ~) optimal control problem. Properties between the original and the ~ dual ~ problem 
are also investigated. 

1. - Introduction, dynamical model, quadratic cost problems and corresponding Ric- 
cati equations. 

A main  a im of the  present  paper  is to s tudy  the  infinite horizon quadrat ic  cost 
p rob l em - -cu l m i na t i ng  with an analysis of the  corresponding Algebraic l~iccati 

(operator) Equa t ion  (A.R.E.)---for classes of (linear) hyperbol ic  and Euler-Bernoulli  
par t ia l  differential equations with nonhomogeneous (control) act ion exercised on 

the  boundary  of the  bounded  open spat ial  domain.  I t  is mean t  to encompass,  in 
par t icular ,  the  following typica l  s i tuations:  

(i) the  case of second order hyperbol ic  scalar equations with Dirichlet or 
N e u m a n n  boundary  control;  
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(ii) the case of Euler-Bernoulli equations, with controls in the Dirichlet and 
Nenmann B.C. ; 

(iii) the case of first order hyperbolic systems. 

Thus, one feature of our study is that  it provides a common unifying operator theor- 
etic @amework, which is capable to include, in particular, all three cases (i), (ii), 
and (iii). This is achieved by means of an abstract operator dynamical model on 
which we shall impose some conditions, which--in fact--are distinctive properties 
enjoyed by the hyperbolic dynamics (i), and (iii), as well as by the Euler-Bernoulll 
dynamics (ii). 

1.1. Abstract dynamical model (which covers cases (i), (ii), and (iii) as illustrated in 
Appendix 2). 

We shall introduce the relevant abstract dynamical model, which Appendix 2 
will then show how to specialize in order to cover all three cases (i), (ii) and (iii) 
above. 

Let U (control space) and Y (state space) be two separable IIflbert spaces with 
inner products <, } and (~) and corresponding norm [[ and ]1 l], respectively. 

Throughout this paper we are concerned with the following abstract dy- 
namics on :g: 

(1.1) 

t (a) y(t) --~ exp [At]yo-~ (Lu)(t), Yo e Y 
, t 

l (b) (Lu)(t) ---- A fexp  IX(t-- v)]A=lBu(~ld'c 
O 

(o) B e  ~(~y; [2(A*)]') so that  A - , B e  ~(v; y) 

formally corresponding to the equation 

(d) ~) =- Ay -[- Bu on [~(A*)]' 

y(O) = Yo ~ Y 

Here, A is the infinitesimal generator of a strongly continuous (s.c.) semigroup on Y 
denoted for simplicity by exp [At], t>0 .  (Without loss of generality for the problem 
here considered, we take 0 ~ ~(A), the resolvent set of A, for otherwise we replace 

t 

(!.lc) with (A + )+I)fexp [A(t-- ~:)]B().0, A)Bu(T)d% ~o~ e(A)) �9 In (1.1e-d), [~(A)]'  
0 

and [~(A*)]' are the dual spaces of 2(A) and ~(A*) with respect to the topology of Y. 
Throughout this paper~ model (1.1) will be studied under the following standing 
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hypothesis (H.1): for any 0 < T < ~ ,  there exists c~> 0 such that 

T 

(1.2a) fIB* exp [A*t]xl~dt<er]lx]l 2 , x e ~(A*) 
0 

(H.1) so that  the operator B* exp [A*t] admits a continuous extension~de- 

noted henceforth by the same symbol (1)--satisfying 

(1.2b) B* exp [A* t]: continuous I r -+ I~(0, T; U).  

/tere B*, the dual of B, satisfies B * e  s U) after identifying [~(A*)]" with 
~(A). As documented in Appendix 2, assumption (It.l) ~ (1.2) always holds true 
for second order scalar hyperbolic equations as in (i) above, or for first order hyper- 
bolic systems as in (iii), or Euler-Bernoulli equations as in (ii) and in these cases 
represents, in fact, a sharp trace theory result (not obtainable from interior regularity 
plus use of trace theory), [L.1], [L-L-T.1], [L-T.2], [1~.1], [K.1], [C-L.1], [L-T.8]. 
In the sequel, we shall indicate by Lot the operator L in (1.1b) when viewed as acting 
from the space Z~(0, T; U) to I~(0, T; Iz). The adjoint L* T of LOT 

(l.3a) 

is given by 

(1.3b) 

(LorU, V)Ld0,T; r)~ (u, * "LoTV)Ld0,T; V) 

T 

(L*rv)( t )  = B*fexp [A *( r  - -  t)] v ( r )  d r .  
t 

Assumption (tK1) ~- (1.2) [as remarked, a trace regularity result for eases (i)-(iii)] 
has the following important implications on the regularity of the dynamics of pro- 
blem (1.1) [interior regularity for cases (i)-(ii)]: 

i(1.4) L0,: continuous L,(0, T; U) -+ 0([0, T]; I z) 

and 

(1.5) * " LoT. continuous LI(O, T; ~) ~ L2(O, T; U) 

as is shown in Appendix 1, following [L-T.1-2], [L-T.9]. 

1.2. Quadratic cost problems and Riecati equations. 

With model (1.1)-(1.2) we associate a quadratic functional over an infinite horizon 

(1.6) 

oo 

Jc.(u, y) -~-f(Ry(t), y(t)) 4- [u(t)p dt 
0 

(1) This will not be repeated. 
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and pose the corresponding optimal control  problem (regulator problem):  given 

Yo ~ Y, 

(1.7) 
/ Minimize Jc~(u, y) over all u e L2(0, co; U), where y is the  solu- 

O.C.P.(oo) 1 .t ion of (1.1a) due to u .  

The main aim of ~he present  paper  is to provide a ra ther  complete s tudy of the 
O.C.P.(c~) which culminates with the  issues of existence and uniqueness of the cor- 
responding Algebraic l~iccati Equa t ion  

(1.8) P A  4- A* 1 ) 4- R = PB* B* P 

(in a sense to be made  precise later), which arises in the  pointwise feedback form of 

the optimal pair  u~ Yo), Y~ Yo) of O.C.P.(c~) given by  

u~ Yo) = -- BB*-PY~ t, Yo), a.e. in 0 < t <  co.  

In  addition, we shall s tudy a number  of properties of the solution operator  P.  The 
entire theory  on the O.C.P.(c~) which we shall present will rest  on the following 

minimal hypothesis  on the ~< observation ~> operator  R (and nothing more):  

(1.9) (H.2)  R e g ( :g ) ,  R = R * )  0 .  

Thus, R may  be, in particular,  the  ident i ty  on Y. 
In  order to  s tudy the O.C.P . (~)  and (1.8), we shall find useful to present  re levant  

results for the  corresponding quadrat ic  cost problem over a preassigned finite horizon 

T < c~: given Yo ~ Z, 

(1.10) O.C.P.(T) 

where 

(1.11) 

Minimize J~(u, y) over all u e L~(0, T;  U), where y is the solu- 

t ion of (1.1a) due to u 

T 

J~(u, y) =f (Ry( t ) ,  y(t)) @ [u(t)12dt 
0 

under the same assumptions ( H . ! ) - -  (1.2) for the dynamics and (I-I .2)~ (1.9) for 

the observat ion operator  R. 

1.3. Literature and orientation. 

The main difficulties of the problems under s tudy are related to the underlying 
dynumics---in part icular  to the  low regulari ty of bo th  open loop and optimal closed 
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loop solutions of l~iceati operators; etc. This requires the introduction of new ap- 
proaches, as it will be documented below. The present article is a successor paper 
to the following prior work in the area of boundary control problems for hyperbolic 
and Euler-Bernoulli type dynamics which we find convenient to group into the fol- 
lowing three categories. 

(i) Constructive study ]rom an optimal control problem to the corresponding 
Riccati equation: paper [L-T.3J for second order scalar hyperbolic partial differential 
equations with Dirichlet boundary control, both cases T < co and T---- co; and 
the companion paper [C-L.I] for first order hyperbolic systems, case T < oc. Both 
works use throughout an abstract functional analytic model of the hyperbolic 
dynamics. 

(ii) Direct study ]rom a Riccati equation to the corresponding optimal control 
problem: paper [DaP-L-T.1] for the abstract model (1.1) subject to assumption 
(It.l) = (1.2) in the case T < c~. 

(iii) Direct study in IF.2] in the case where T < c~ and where A is a group gen- 
erator o] the (Dual) Di]]erentiat Rieeati equation in the unknown Q~(t), formally ob- 
tained by setting QT(t) = P~l(t) starting from the Differential Riccati equation in 
the unknown P~(t)--whose solution however is precisely the unsettled issue--which 
corresponds to model (1.1) subject to assumption (H.1). 

Moreover, the following considerations apply to the foregoing references. 

Case T < c~. - An assumption of (( s smoothness ~) on the observation operator 
0~<R<R*~ ~(Y) was needed in references [L-T.3], [C-L.1], in order to claim that  
the correspondingly constructed candidate of the Riccati operator be, in fact, 
bona fide solution of the corresponding Differential l~iccati Equation {hence of the 
corresponding so called (( first )) Riccati Integral Equation, which involves the original 
semi group), ttere, the oper.~tor B*PT(t) is unbounded (an essential feature and 
difficulty of the problem) but has dense domain. Examples of such (( e smoothness )) 
include, in particular the following eases: 

1) R = diag [R~, R2], with R ~ - ~ e  ~(Y), Y -~ L~(~9), e >  0 arbitrary, and R~-~ 0 
for the wave equation with Dirichlct boundary control and cost functional which 
penalizes only the position; here J denotes the Laplacian with zero Dirichlet boundary 
conditions, see [L-T.3]; 

2) RA-~e  fi(Y), Y---- [L~(~9)] "~, e > 0 arbitrary, for first order hyperbolic sys- 
tems, see [C-L.1]. 

However, no claim of uniqueness of the Riccati solution was made in such 
generality. On the other hand, in the absence of such (( s smoothness ~) for R, i.e. 
for R subject only to assumption (It.2) = (1.9) and in particular for R = identity, 
references [L-T.3] and [C-L.1] provide the sought after (( pointwise feedback synthesis 
relation ~> of the optimal p~ir through an explicitly constructed operator (the can- 
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didate of the Riceati operator), which is then shown to satisfy only the so called 
<~ second ~> Ricc~ti Integral  Equat ion,  which involves the evolution operator of the 
optimal feedback dynamics. Similar results are then re-proved in [F.2] via a <~ dual ~> 
problem in the sense of (iii) above in the special but  important  e~se tha t  A be a 
generator of a s.c. group on Y. ~n contrast,  reference [DaP-L-T.1] does provide, 
via a direct method,  existence and uniqueness for the Differential (or << first ~> Inte- 
gral) Riccati Equation,  as well as bonndedness of the operator B*P~(t), provided 
however t ha t  a stronger assumption is made on the smoothness of the observation R 
in addition to the standing assumption ( H . 1 ) =  (1.2): namely tha t  

(1.12) R exp [At]B: continuous U-->L~(0, Y; Y).  

(This assumption is ia particular satisfied e.g. when: R~X~+~sC_(Y), 8 > 0  and 
RA e C(Y) for the w~ve equation and first order hyperbolic systems, respectively, 
mentioned ~bove.) 

3By contrast, reference [P-S.I] assumes, in place of (1.12), a condition which, 
in particular, implies the following one: 

(1.13) C exp [At]B: continuous U-->L2(0, T; Y) 

with C bounded output  operator, whereby in the notat ion of the present paper 
then R = C*C. Condition (I.13) is stronger th~n (1.i2) on two gTounds: (i) it 

requires 2~2 rather than JL~; (if) with C smoothing, the operator /~ ~ C*C which 

arises fl'om (IA3) is smoothing <~ twice as much )> as the operator R allowed in (1.12). 

Hypothesis (i.!3) gTaetly simplifies the analysis of the l~iccati equation, as 

described in [DaP-L-T.I~ l~emark pp. 4445]: indeed, direct use of the Schwarz 

inequality on the Riccati operator formula gives at once that B*P~(t) is a bounded 

operator, and thus a major difficulty of the problem with B unbounded versus B 
bounded disappears. 

Reference [S.1] considers only the problem with T < co with output  operator 
possibly unbotmded, but  no results are given on the (true) ~iccati  equation in terms 
of the original semigroup exp [At]. ~eference [S.1] gives ouly (i) the synthesis of 
the optimM control and (ii) the ]~iccati Integral  equation involving the evolution 
operator, not  the original semigroup, in line with the earlier t rea tment  of [L-T.3] 
and [C-L.1]. (However, as raentioned before, [L-T.3] [C-L.1] provide also the (true) 
differential Riceati equation under an additional <~ e smoothness ~ for R.) The case 
T = co is not considered in [S.1]. 

Case ~ ~- c~. - Despite the lack of a Differential (or <~ first ~> Integral) l~iccati 
Equat ion for the finite horizon problem T < oo lamented above in the case where R 
is only subject to assumption (E.2)-~ (1.9), reference [L-T.3, Sect. 5] successfully 
c~rries out--precisely in this case--a rather complete s tudy of the infinite horizon 
problem Ir = ~ as applied to second order sc~l~r hyperbolic equations with Dirichlet 
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boundary control. This study culminates with a statement of existence and 
uniqueness for the corresponding Algebraic Riccati Equation, as well as a statement 
of (( pointwise feedback synthesis relation ~ for the optimal pair. 

The emphasis in the present article is on the case T ~ oo: here we provide a 
rather comprehensive study under the unifying abstract approach of model (1.1) 
subject to assumption (H.1) ~ (1.2)7 with paramount concern that  the observation 
operator R fulfills the sole hypothesis (H.2) : (] .9) that  0•R ~ R* ~ ~(I/), and no 
other smoothness. While our study recovers the concrete situation of second ordel ~ 
equations with Diriehlet boundary control as in [L-T.2, Sect. 5], it also encompasses 
other hyperbolic dynamics and Euler.Bernoulli type equations, as documented in 
Appendix 2. All this despite the absence, us in [L-T.3], [F.2], of a Differential l~ic- 
cati Equation theory for the finite time problem T < oo. Thus, our approach to the 
problem T---- oo given in sections 4 and 5 must by necessity differ from the usual 
or classical one~ in that  the Algebraic tMccati Equation is not recovered as a limit 
on the Differential l~iccati Equation for [0, T], as T~oo, see e.g. lB.1] (the latter 
being not available yet~ as least for/~ subject only to (H.2) ~-- (1.9)). l~ather~ as in 
[L-T.3~ Sect. 5], our approach will be crucially based on (( trace regularity ~ properties 
of the dynamics~ expressed by assumption (H.1) = (1.2). 

Conceptually~ the present peper may be divided into three parts ~s follows. 
First, sections 2.1 through 2.4 study the original optimal control problem 

O.C.P.(oo) when T =  oo and culminate with the statements of existence and 
uniqueness of the Algebraic l~iccati Equation, with solution P~o given as a strong 
limit of the corresponding finite time problem as T~oo. Moreover~ under exact 
controllability assumption of the pair (A*, R~), such o p e r a t o r / ~  turns out to be an 
isomorphism on I z. (This result is in sharp contrast with, say, the same optimal con- 
trol problem O.C.1 ~. (o o) for parabolic equations with Dirichlet boundary control~ where 
the l~iccati Differential and Algebraic operators are, in fact~ smooting and compact 
operators, see e.g. [L-T.5], [L.-T.12]). With P~ isomorphism, the operator Q~ defined 
by Q o o - / ) ~ e  ~(:Y) is a solution of a new (dual) l~iccati Algebraic Equation; this, 
in fact, corresponds to a dual problem~ whose dynamics however requires the as- 
sumption that  A be a generator of a s.c. group, a special but important case. Said 
duality turns out to be described by the correspondence: (A, B, R [or Ri,/~*~]} 
of the original problem to (--A*, R~, BB* [or B*, B]} of the dual problcm~ see 
Tables 2.1-2.2 below in section 2.5. Thus sections 2.1 through 2.4 may be viewed 
as belonging to the ~bove category (i) and represents the generalization of the treat- 
ment of [L-T.3, sect. 5] to the first order abstract model (1.1) subject to hypothesis 
(H.1) = (1.2). 

Second~ sections 2.5 and 2.6 study, following an idea of [-F.2], the dual l~iccati 
equation (when A is a group generator) by means of the direct method, which recon- 
structs the corresponding optimal control problem via Dynamic Programming. This 
may be viewed as belonging to the above categories (ii) and (iii). I t  the~ turns out 
that  the dual Algebraic Riccati Equation admits as a solution the operator ~ 
which is obtained as a strong limit of the corresponding finite time dual problem 
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aS T~c~. Under assumption of exact controllability of the pair {--A, B} (equiv- 
alently, of the pair {A, B}),  such operator ~r is ehe unique solution of the dual 
Algebraic Igiccati Equation and, moreover, Q~ is an isomorphism on Y. The question 
arises therefore as to whether or when the analysis of the original problem and the 
analysis of the dual problem (< merge >>; more precisely, as to whether or when we 
have that  Q~ = (~r i.e. Q~ = P2o ~. This is the object of section 2.7. In general the 
answer is ia the negative (counter example 2.1 in subsection 2.7). Indeed, the very 
identification of Poo with Q2o ~ requires that  Po~ be an isomorphism on :g. I t  is most 
gratifying therefore that  the identification P ~ = Q ~ ,  or Q ~ = Q ~ ,  holds true 

Original dynamics 

~t = Ay + Bu 

Dual dynamics (A group generator) 

= -- A*z  § R�89 

O+'iginal OPC( c~) 

ffll~+y<0il ~ + lu(t)l~ dt 
O 

Starting from finite time problem on 
[0, T], under Finite Cost Condition for 
Original OCP( c~) 

! 
[ 

as Tt 

i 
[ 3Pr = lim PT(0) (strongly) s.t. P~ sat- 

isfies original ARE (2.16) 
I 

I{A*,R+} exaetly~___ }{A,R+} 
controllable --+ :-_ detectable 

' " P~o unique 
I I solution __ 

P~ isomorphism 
on Y and 
Q+ --- P 2  

E -+I 

Dual OCP( co) 

co  

flB* z(t)l ~ § iI~(OP dt 
0 

l Starting from finite time problem [0, T], 
under Finite Cost Condition for dual 
OOP( co) 

3 ~  = lira QT(0) 
isfies dual ARE 

as T~ 

(strongly) s.t. ~ sat-] 
(2.23) 

l + 
{-~*,B*} l 
deteetabIe ] 

t ~ unique 
solution 

-+I exactly ] 
controllable 

I (~  isomorphism i 
on Y .......... 

O: = O= ~hen {A*, ~+} and {-- ~, B} ]+___ 
exactly controllable / 
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(when A is a group generator) provided that both pairs ( - -A ,  B} (equivalently, 
(A, B}) and (A*, R~} are exactly controllable on some [0, T]~ T < oo; i.e. precisely 
the conditions under which P~ and 0~ are both isomorphisms on I7. As to the 
exact controllability problem, we remark that the results needed here have become 
available very recently for both second order hyperbolic equations (with constant 
coefficients) and Euler-Bernoulli type equations: see [L-T.4] and, without geo- 
metrical conditions on $2 (except for smoothness of ~f2), [L.2], [H.1], [T.2] in case 
of generalized wave equations with Dirichlet boundary control, and [L.2], [L-T.7], 
[L-T.8] for the Euler-Bernouih equations considered in Appendix 2; also [L-T.13] 
and [L-T.II]. 

We conclude by pointing out that it may be easier to compute (numerically) 
the solution Q~ of the Dual Algebraic Rieeati Equation and then invert it (nu- 
merically) to obtain P ~  ~- Q~I as desired (under the appropriate assumption men- 
tioned above) rather than to compute (numerically) the solution P~ of the original 
Algebraic Riccati Equation. This may be so since the dual ARE is far simpler to 
treat than the original ARE. 

The accompanying diagram schematically depicts ~ few main points of the original 
and dual problem, and their merging at the level of establishing that  Q~-~ 0~. 
For a full treatment, we refer to the subsequent sections. 

2. - S t a t e m e n t  o f  m a i n  resul ts .  

To help orient the reader, we shall state in this section the main highlights of the 
results of the present paper, with the understanding that further properties and 
claims--which we omit here--will be found in the full technical treatment of the 
subsequent sections 3-8. 

2.1 Case T <  oo. Theorem 2.1 

In  section 3 we shall study the O.C.P.(T) and present results which include the 
following 

THEORE~ 2.1. - Consider the O.C.P.(T) in (1.10) for the dynamics (1.1) under the 
standing assumption (H.1) ~ (1.2) for the dynamics and (H.2) ~ (1.9) for the ob- 
servation operator R. Then: 

(i) there is a unique solution pair of functions HOT--~ UO~(t, 0; Y0) and y~----- 
-~ y~(t, 0; Yo), O < t < T ,  of the O.C.P.(T)~ which satisfy 

(2.4) u~ T; Y); yOT e C([0, r ] ;  ]~); 

(ii) u ~ and yO are related by 

(2.2) u~(., o; yo) -- - z~R{y~(. ,  o; yo)} 
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and explicitly given by  

I (a) -- u~ O; Yo) : (L*TR[I ~- LoTL*rR]-~[exp [A'JyoJ}(t) (2.3) 
i t (b) y~ 0; Yo) = ([f + Z o ~ r  R]-~ [exp [A. ]Yo]} (t) e C([0, T]; r)  

where, writing simply L for LoT, we have 

(2A) [I + LL*R]  -~ = I - -  L[ I  + L*RL] -~L*R  e ~(L~(O, T; [Y)); 

(iii) there exists un operator Pz( t )e  ~(Z), given explicitly by 

T 

P.~(t)x = j  exp [ A * @ -  t ) ] R ~ ( %  t )xd~ 
t 

where 

(2.1) Oz(t , S)X = yO(t, S; X) 

which satisfies the following property 

P~(t): continuous :Y ~ C([0, T]; Y) . (2.2) 

Moreover 

(2.3) (iv) 

(2.4) (v) 

(2.5) (vi) 

(2.6) 

u~ 0; Yo) ~- -- B*Pz(t)Y~ t, 0; Yo) a.e. in [0, T] 

T 

(P.At)x, z) =f(Ry~ t; x), yo(~, t; ~)d~ + 
t 

T 

+f<u~.(~, t; x), 
t 

Pz(t) = P*( t )>0,  0 < t < T .  

(P~:(O)x, x) = jo = j~(uOz(., 0; x), y~(-, 0; x)) 

u~ t; z)> dr, x, z e Iz 

[] 

2.2. The vase T ~ ~- c~. Theorem 2.2 Algebraic Riecati Equation: existence. 

I a  section 4, we shall begin our s tudy os the O.C.P.(c~). To this end, a neeessury 
assumption to be made at  the outset is, us usual [13.1]: 

[ ~ini te  Cost Condition: For euch initial condition Yo e 17, there exists 
(2.7) (H.3) some ~eL~(0,  ~ ;  U) such thu t  if ~ is the corresponding solution 

of (1.1) due to ~, then  J(~,  77)< c~. 

RE~A~K 2.1. - I t  is a highly non-trivial issue to verify assumption (H.3) : (1.3) 
in the case of hyperbolic 4ynamics or plate problems. In  the case of secon4 or4er 
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hyperbolic scalar equations with Dirichlet boundary Control (ease (i)), the answer 
is fully satisfactory: when r differential elliptic operator has eonstantcoetiieients, 
these equations are always exactly controllable by means of L~(0, s L2(/'))-eontrols, 
U -~ J52(F), in their natural state space ~ =  Z~(~) • for all T > some uni- 
versal time To > 0 (for which good estimates can be given), without any geometrical 
conditions on the spatial domain Q (except for minimal smoothness of ~.Q ~ / ' ) ;  
see recent results [L.2], [L.3], [T.2], the latter ulso for non constant coefilcien~s; 
see also the first result in this space in [L-TA] as a corollary of the more 4emanding 
uniform stabilization problem. As a consequence, the Finite Cost Condition (H.3) 
is a-]ortiori satis]ied for second order scalav equations with constant coefficients on 
arbitrary f2, ~nd ~ rather complete theory for the O.C.1).(co) is then available under 
the sole minimal assumption ( H . 2 ) :  (1.9) on ~.  Similavly, exact boundary con- 
trollability in the natural space of regularity was recently prove4 in [L-T.6] (under 
some geometrical conditions ,an f2) for multidimensional plate-like equations with 
boun4avy control only in the Dirichlet boundavy conditions an4 homogeneous I~eu- 
mann boundavy conditions; or else [L-T.8] wi~h no geometrical conditions when 
both controls are active. See Appendix 2, C). Here again the Finite Cost Condi- 

tion (tI.3) is satisfied. [] 

The results of section 4 will show, in particular, the following 

Tm~ORE~ 2.2. - Consider the O.C.l~ in (1.7) for the dynamics (1.1) under 
the standing assumptions (H .1 )=  (1.2) for the dynamics ( t I . 2 )~  (1.9) for the ob- 
servation operator/~, and (H.3) ~ (2.7) on the l~inite Cost Condition. Then: 

(i) there exists a unique solution pair of functions uoo --  uo  (t, O; Y0) and 
yO_~ yO(t ' 0; Y0) of the O.C.P.(co) which satisfy 

(2.8) u~ co; u); R~y~ co; ~); y~ C[O, to]; ~)  

lor ~ny To < co; 

(ii) there exists an operator P~oe s given explicitly by 

(2.9) P ~ x  --~ limPT(O)x, x~  Y 

satisfying 

(2.10) P o o :  P * > 0 ,  J~, --~ lira J(u~,(-, 0; x), y~(., O; x)) 

(2.11) (Px, x) = j o  = j~ (uo( . ,  o; x), yo(., o; x)) = 

: l imJ~  = l i m g ( u ~ ( . ,  O; x), y~(., O; X)) 
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and the relation 

(2.12) 
~o 

0 

exp [.4* to]P~q)~(to)x, x ~ Y 

where to is aa  arbi trary point 0 < to < ~ and q)~(t)x = y~  0; x) defines a s.c. 
semigroup on :Y which is uniformly stable: 

]]q)oo(t) l lc(r)<Cexp[--~t] ,  a > O ,  t>O if R > 0 .  

Thus for ~he broad class of problems where exp [At] is uniformly bounded on t~>0 
a n d ~ ( t ) x - + 0  ~s t--> zc c~, then  we can t~ke to = oo in (2.12), ~hereby obtaining 
a def ining formula for P~.  

(iii) Moreover, for Yo ~ I7 

(2.13) u~(t ,  0; Yo) = -- B*PooY~ O; Yo) ~.e. in t e  [0, oo]; 

(2.14) (iv) 
dqP~(t)x 

dt 
- -  [A - -  B B *  P~]q)~( t )x  , 

x ~ 2 ( A 2 ) ,  A ~  = A -- BB*Po~ = the infinitesimal generator of q)oo( ) ; 

(v) P~  has the following regularity 

(2.15a) 

(2.15b) 

[so t ha t  if yoe ~(A~), then y~ 0i Yo) e C([0, T]; ~(A~)) and u~  0; Yo) e C([0, T]; 
Z~(U)])] and moreover satisfies the _AAgebraie Riccati Equat ion 

(2.16) (Pcox, Az)  + (PooAx, z) + (Rx, z) = (B*Poox, B*Pooz> 

for all x, z e ~(A) ; or else for all x, z ~ ~ ( A ~ ) .  [] 

2.3. Case T = ~ .  Theorem 2.3. Algebraie Riveati  Equation:  uniqueness. 

For  uniqueness~ in addition to the preceding hypotheses, we shall need the fol- 
lowing hypothesis (which is automatical ly satisfied if /~ > 0). 



P. FL• - I.  LASIEOKs - l~. TRIGGIA-NI: Algebraiv Riecati equations, ere. 319 

Let  K :  I r o ~ (K)  -~ I r be a (linear), densely defined operator satisfying the fol- 

lowing two conditions: 

(~.4) 

(i) llK*x]I2<C[IB*xl ~-~ IlxII2], for all x e ~(B*) c Y 

(ii) the s.c. semigroup exp [Azt  ] on I r, with generator 

(2.17) A K ~- A ~- KR~ 

[as guaranteed by virtue of Lemma 5.1 with 1I = KRi] is uniformly 
stable: there are M~, k > 0 such tha t  

IIexp [AKt]IIU(y)<<.M~ exp[--  kt], t > O .  

l~E~hl~K 2.2a). - For  /~ > 0, we choose K ~ -  o~R -�89 with constant o suffi- 
ciently large and assumption (HA) is automatically satisfied. 

b) Assumption (i) above in (H.4) implies tha t  A - ~ K e  s by virtue of as- 
sumption (1.1e): A - ~ B e s  Iz). [] 

T~EOI~E~ 2.3. -- Consider the O.C.P.(oo) in (1.6) under the standing assumptions 
(H.1) = (1.2) for the dynamics; (It.2)----(1.9) for the operator R;  ( H . 3 ) =  (2.7) 
for the Finite Cost Condition; and (HA) = (2.17) on the existence of the operator K.  
Then, the Algebraic Riecati Equat ion (2.16) admits a unique solution P e s such 
tha t  P ----/)*~>0 and B*P ~ s :Y). This solution is given by the operator P~  
of Theorem 2.2. [] 

2.4. Theorem 2.4. Isomorphism o] P~(t), P~  ang exact eon$rolIability of {A*, ~ } .  
Dual Algebraiv Rieeati Bquation. 

The dynamical  system 2(0 ---- A*z(t) ~- Rtg(t), z(O) -~ 0 (in short, the pair 
{A*,Rt}) is called exactly controllable on :~ over [0, T], 0 <  T <  oo with 
g e L2(O, I'; X) in case the tota l i ty  of all solutions points z(T) fills all of IT as g 
runs over all of L2(0, T; 17); see Definition 6.1. With  this definition we have 

TttEOnE~ 2.4. - Consider the O.C.P.(T) in (1.10) and O.C.P.(oo) in (1.7) under 
the standing assumptions ( H . 1 ) =  (1.2) on the dynamics~ ( H . 2 ) =  (1.9) on the 
operator R and, in the case of T = ~ ,  of (H.3) ---- (2.7) on the Finite Cost Condition. 
Then: 

(i) Case T < oo. The operator P~(0), [resp. P~(t)] guaranteed by  Theorem 2.1, 
is an isomorphism on IZ [at some t ime 0 < t < T] if and only if the pair {A*, R~} 
is exactly controllable on [0, T], [resp. on [0, T - -  t]], whereby Ps(r) is an isomor- 
phism for s -  r~> T. 
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(ii) Case T = co. The operator P~ guaranteed by Theorem 2.2 is an iso- 
morphism on Y, provided the pair (A*, R~} is exactly controllable on some [0, T], 
T < c ~ .  

Then setting Q ~ - - P ~ e  s we have that  Q~ satisfies the following Dual 
Algebraic Riccati Equation 

(2.1s) (DARE) 

(AQ~x, z) -~ (Q~A*x, z) Jr (RQcox, Q~oz) - <B'x,  B'z> : O 

Q| s ~ ( A 2 ) ) n  ~(~(A*); ~ ( A ) ) ,  

x, z e ~(A*) c ~(B*) c 

A~-~  A -  BB*_P~ 

Equation (2.18) will be henceforth referred to as Dual Algebraic Riccati Equation 
(DARE) with respect to the (original) Algebraic Riccati Equation (2.16). i compari- 
son between (2.i8) and (2.16) reveals the following correspondence: 

TABL~ 2.1. Correspondence between Original and Dua~ ARE. 

Original ARE (2.16) A R [or R�89 R*�89 B P~ 

Dual ABE (2.18) -- A* BB* B B* R~ Q~ 

Thus, to the original dynamics (1.1) and to its corresponding (infinite horizon) 
control problem (1.7), there corresponds the dual dynamics and its corresponding 
control problem indicated below: 

TiBL~ 2.2. Original and dual problem. 

Original Problem Dual Problem 

dynamics (1.1): dynamics: 

= A y - ~ B u  on Y ~=- -A*z- l - /~v  on Y 

cost (1.7): cost: 
oo  c o  

](Ry(t), y(t)) -t- lu(t)t 2 dt ]iB* z(t)[ 2 ~- llv(t) l] 2 dt 
0 0 

From the correspondence of Table 2.2 we see plainly that  the DARE (2.18) is 
associated to the dynamics 2 ~ - - A * z ~ - R ~ v ,  whose well-posedness however re- 
quires the additional assumption that - - A *  (equivalently, - -A)  be the generator of 
a s.c. semigroup on Y; i.e. that A* (equivalently, A)  be the generator of a s.c. group 
on Y. As a consequence of this assumption and of hypothesis (H.1), it will be shown 
at the beginning of section 7 that  B*z is a well defined element of L~(0, T; U) for 
each T > 0. 
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A fur ther  analysis and discussion of the dual problem is carried out  in the  nex t  
subsections 2.5 through 2.7, under  the standing assumption tha t  A be a s.c. group 

generator.  

2.5. Case T < oo. Dual DiJjerential Riccati Equation when A is a group generator. 
Theorem 2.5: existence and uniqueness 

Orientation Jor subsections 2.5 through 2.7. The development  of subsections 2.1 
through 2.4 originates with the control problems O.C.P.(T) = (1.10) and O.C.P.(oo) 
= (1.7) for the dynamics (1.1) and leads to the  existence of the operator  P ~ x  
= l~P~,(O)x ,  x ~ ~,  (2.9), which is the unique solution of the original AlOE (2.16), 

under  the  hypotheses  (H.1) through (It.4). 3~oreover, it  shows in Theorem 2.4 
that ,  at least when the pair {A*, R~} is exact ly  controllable on some [0, T], T < 0% 
then  the  operator  Poo is an isomorphism on I~ and the operator Qoo -~ P ~ ,  wit  P~ 
defined by  (2.9), is a solution of the DA]%E (2.18). I t  should be noted tha t  in sub- 
section 2.1, as well as in [L-T.3], there  is no claim however tha t  for R nonregular 
(e.g. /~ = Ident i ty) ,  the  operator P~(t) satisfies a Differential l%iecati Equat ion  (2); 
indeed~ the  proofs in sections 3-4 (and in [L-T.3]) show tha t  the A RE for P~ is not 
derived as a limit process, as in classical or s tandard approaches, on Differential 
l~iccati Equations.  

In  the remaining par t  of our present development,  we shall instead follow in 
the general direct approach on /~iecati Equat ions (in the sense specified e.g. 
[I)a P-L-T.1]) and the idea of [F.2]~ by  which we shall invert  the line of argument  
followed so f a r  and carry out  our fur ther  investigation through the reversed pro- 
cedure outlined below. 

1) We shall first consider, as a start ing point~ the Dual  Differential l~iccati 
Equat ion  

(2.~9) 

d 
-~ (Q~(t)x, z) 

Q~(T) = 0 

= (QT(t)x. X ' z )  + (X*~, Q~(t)z) + 

@ (RQz(t)x, QT(t)z) - -  <B* x, B'z>  

x, z e ~ ( A  *) 

(see Tables 2.1-2.2 above) and s tudy d i rec t ly - - th rough  a well established argu- 
ment  [DaP.1]--exis tenee and uniqueness of (2.19). As noted below Table 2.2 at  
the end of subsection 2.4, this will require, by  necessity, the standing assumption 
tha t  A be the  infinitesimal generator of a s.c. group exp [At] on Y. Thus sub- 
sections 2.5 through 2.8 will be restricted to apply only to this special bu t  impor tant  
ease. If  QT(t), O < t < T ,  is the solution of (2.19)7 then  Dynamic  Programming will 
allow us to recover the associated optimal control problem: given Zo~ I7, 

(2) Instead, for R e.g. like A -e, s > 0 ~rbitrary, Pz:(t) does satisfy a Differential Ricc~ti 
Equation, see [L-T.3]. 
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Minimize  

(2.20) 
T 

J~(v, z) = f  lB*z(t) l ~ + I[v(t)ll ~ dt 
9 

over  all v ~ L ~ ( 0 ,  T ;  Iz), where  z is the  solut ion:  

(2.21a) z(*) = exp [-- A* t]Zo § [-- A*(t- z)]Rtv(~)d~ 
0 

of t he  dua l  p r o b l e m  

(2.21b) 2 = - -  A*z + R�89 

see Tab l e  2.2. All this  is, in essence,  T h e o r e m  2.5 below.  

2) l~ext~ we shall  consider  t he  cor responding  infini te  hor izon  duM p r o b l e m :  
g i v e n  zo c i 7 

(2.22) 

min imize  

c~ 

J~(v, z) = f  lB*z(t)i 2 + [Iv(t)i] ~ dt 
0 

over  all v ~ L2(O, ~ ;  ~'), where  z is t he  solut ion (2.21) due to  v .  

U n d e r  t he  finite cost  a s s u m p t i o n  for  (2.22), we shall  p r o v e  the  exis tence  of an  oper-  
a to r  Q~oX -~ l ~  Qz(O)x, x E ~, solut ion  of t he  D A R E  

(2.23) (AQ.x, z) + (Q~A*x, z) + (RQoox, Qooz)- <B'x, B'z> = 0 Vx, z e 2 (A*) ,  

w h e r e b y  the  dua l  Algebra ic  ICiccati ope r a to r  Qoo is o b t a i n e d  as a l imi t  process  on 
the  dua l  Di f fe ren t ia l  l~iccati  ope ra to r s  Qr ( ) ,  unl ike  t h e  or iginal  a lgebra ic  R i cca t i  

o p e r a t o r  Poo wi th  r e spec t  to  the  or iginal  PT( ) .  D y n a m i c  P r o g r a m m i n g  will  t h e n  

aga in  al low us to  r ecove r  t he  co r re spond ing  o p t i m a l  con t ro l  p r o b l e m  (2.22) asso- 
c ia ted  w i th  (2.23). U n d e r  t h e  add i t i ona l  a s s u m p t i o n  t h a t  the  pa i r  { - - A ,  B} is 
exac t l y  cont ro l lab le  on some  [0, T], T < oo (equ iva len t ly ,  t h a t  t he  pa i r  {A, B} is 

exac t l y  con t ro l l ab le  on [0, I ' ]  since A is a gene ra to r  of a s.c. g roup  (8)), we  shall  

(3) Henceforth, we shall freely use that,  with A s.c. group generator, then {-- A, B} is 
exactly controllable in [0, T] if and only if so is {A, B} (i.e. the total i ty  of all sohttion points 
y(T) of (1.1) with Y0 = 0 fills all of Y as u runs over all of L2(0, F; U)). The proof of this 
equivalence will be given at the beginning of section 7, in Lemma 7.0 (ii). 
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further prove that Qoo is the unique solution of the DARE (2.23) (in a suitably spe- 
cified class) and that, moreover, Qr is an isomorphism on 17. All this is, in essence, 
the content of Theorem 2.6 below. 

3) Finally, it remains to connect the operator Q~o 1 provided by Theorem 2.6 
when {A, B} is exactly controllable on [0, T] with the operator Poo provided by (2.9). 
More precisely, the question arises as to whether or when we have P o o -  Q~o 1. In 
general, this is not true, as shown in Example 2.1 below. Indeed, the very identi- 
tification of Poo with ~ o  1 requires that Poo be an isomorphism on 17 and this--as we 
have seen in Theorem 2.4 (ii)--holds true in turn provided the pair {_4*,/~t} is exactly 
controllable on some [0, T], T < ~ .  I t  is therefore most gratifying that the identi- 
fication P~o-----Q~o 1, (hence Qoo= ~)~, with Qco defined in Theorem 2.4 (ii)), holds 
true when A is a s.c. group generator, provided both pairs {-- A, B} (equivalently; 
{A, B}) and {A*, Ri}  are exactly controllable on some [O, T], T < 0% the conditions 
under which both Po~ and Q:o are isomorphisms. This is Theorem 2.7 below. 

In conclusion, in subsections 2.5 through 2.6 we shall proceed from Dual Riccati 
Equations to the associated Optimal Control Problems, while in subsections 2.1 
through 2.4 we proceeded from the original Optimal Control Problems to the asso- 
ciated Original Riceati Equations; then in subsection 2.7 we shall connect these 
two procedures. [] 

In section 7 we shall study equation (2.19) and problem (2.20) for the dynamics 
(2.21). Our main results are given by the following: 

Tn-E0~n~ 2.5 (T ~ co). Let A generate a s.c. group on 17 and consider eq. (2.19) 
under the standing assumptions ( H . 1 ) =  (1.2) on the dynamics, (It.2)----(1.9) on 
the observation operator. Then on (2.19): 

(i) there exists Qz(.)e  ~ ( Y ;  C([o, T]; ~Y)) such that Qz(t) = QT(t)*~>0, Vte 
e [O, T], (Qz(t)x, z) is continuously differentiable in t for each x and z in ~(A*), 
and QT(') satisfies the Dual Differential Riceati Equation (2.19); 

(ii) the Dual Differential Riccati Equation (2.19) admits a unique solution, 
given by Qz( ' ) ,  in the class of operators Q( . )e  ~(Y; C([0, T]; Y)) such that (Q(t)x, z) 
is differentiable in t for each x, z ~ ~(A*); equivalently, Qz(. ) is the unique solution 
in Z ( Y ;  C([0, T]; 17)) of the integral Riccati Equation 

(2.24) 
T 

z) =f<B* exp  [ -  A * ( s -  t)3x, B* exp  [ - -  •* ( ,  - t ) ]z> as - 
t 

T 

-f(RQ~(s) exp [-- A*(s  --  t)]x, Q~(s) exp [ -  A*(s  --  t ) ]zds  Vx, z ~ Y ;  
t 

o = rOt(t, O; %) and (iii) there exists a unique solution pair of functions vr 
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z ~  z~(t, O; Zo) , O < t < 5 ,  of problem (2.20), which satisfy 

~ +  c([o, 5]; ~ ) ,  ~~ c([0, T]; ~ ) .  

Moreover, the pair (v ~ z ~ is characterized by the pointwise feedback formula 

(3.35) 

We finally have 

(2.26) 

s~ = -  R + g ~ ( t ) 4 ( t )  , o < t < T .  

(QT(0) Zo, Zo) = J 'v ~ 

Fur ther  results on (2.19) and (2.20) can be found in section 7. 

2.6. Case 5 - ~  ~ .  Dual Algebra@ Riccati Equation when A is a group generator. 
Theorem 2.6: existence and uniqueness. 

In  section 8 we shall s tudy the dual infinite horizon problem (2.22) and its cor- 
responding D A ~ E  (2.23) for the dynamics (2.21). Here, our main results are col- 
lected in the following: 

Tm~onE~ 2.6 (5 : oo). Let  A generate a s.c. group on Y and consider eq. (2.23) 
under the standing assumptions ( H . 1 ) =  (1.2) on the dynamics und ( H . 2 ) ~  (1.9) 
on the observation operator. Assume further the finite Cost Condition on pro- 
blem (2.22) : 

I for each zo e Y, there exists v + L~(0, ~ ;  Y) such tha t  J~o(v, z) < c~, where (2.27) 
z is the solution of (2.21) due to v 

Then on (2.23): 

there exists an operator Q~oe s ~ o o ~ - ~ * > 0 ,  given by 

(2.28) (i) QooX = limQT(0)x, ~; e Y 
T~oo 

such tha t  

(ii) ~oo satisfies the dual A ~ E  (2.23); 

on (2.22) : 

o o (iii) there exists a unique solution pair of functions v~ = %o(t, O, Zo) and 
z ~ ~ z~ O, Zo) of the problem (2.22), which satisfy 

v ~ 2 ( o ,  ~;  ~5) ~ o([o, 5]; ~) ,  v s >  o, B*~~ 2;  ~)~ 

~++ c([o, 5]; ~ ) ,  v 5 >  o. 
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(voo, z ~  is character ized b y  the pointwise feedback formula Moreover, the  pair o 

vo(t) = -  R + ~ z ~  t > 0 .  (2.29) 

We  finally have 

(2.30) .0) o = J~(v~,  z ~  

(iv) If, in addition, the  pair { - -A ,  B} (equivalently, the pair {A, B}) is 
exactly controllable over some interval [0, T] (i.e. the to ta l i ty  of all solution points 
y(T) of (1.1) with Yo= 0 fills all of I/ as u runs over all of /)~(0, T;  U)), then the 
DAI~E (2.23) admits a unique solution, given by  ( ~ ,  in the class of all Q e g(Y) 

such that  @ = @* > 0. 

(v) The pair { - -A ,  B} (equivalently, the pair {A, B}) is exactly control- 
lable on some [0, T] if and only if QT(0) is an isomorphism on Y, in which case ( ~  

is an isomorphism on I7 as well. [] 

For  the  assumption on exact controllability of {A, B} we refer to Remark  2.1. 

Rv,~_~K 2.3. - In  the s ta tement  of Theorem 2.6 we have used the symbol ~o~ 
in place of Qoo, in order to distinguish between the operator given as the  limit of 
QT(0), and the operator Qoo given by  Theorem 2.4 as Qoo = P ~  with P ~  defined 
by  (2.9). As mentioned in the Orientation in section 2.5, this distinction is not  
artificial, unless suitable assumptions are imposed. This issue is discussed in sub- 

section 2.7. 

2.7. The identiJieation oJ Pr with ~ 1 ;  i.e. oJ Q~ with ~ ,  when A is a group gener- 
ator. Counterexample and Theorem 2.7. 

Wi th  reference to Remark  2.3, the following example shows that  if P ~  exists 
and Qoo exists and is an isomorphism, we cannot conclude in general tha t  ~2o 1 = Poo. 

]~XA~a~I~I~ 2.1. - Let  R = 0, B s g(U, Y), -- A* stable, and {A, B} exact ly con- 
trollable over some interval [0, T]. Then P ~ =  0, since P T ( 0 ) =  0, V T >  0 (see 
Theorem 2.1, (iii)). On the other hand, the finite cost condition (2.27) is fulfilled, and 

since 

c~ 

z) =f<B* exp [ -  A* B* exp [-- A*t]z> t, 
0 

T 

(Q~(0)x, z) = / (B*  exp [-- A* t]x, B* exp [-- A* t] z)dt 
0 

(from (2.24)). 
Finally, ( ~  is an isomorphism, by  Theorem 2.6 par t  (v). Then 0~2ol V: Poo. [] 
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However, as mentioned in the Orientation in subsection 2.5 the important  prop- 
er ty P ~ =  Q~, (i.e. Qoo = Qoo~ with Q~o defined in Theorem 2.4 (ii) and Qo~ defined 
in (2.28)) holds true under the assumptions which guarantee tha t  both Poo and ~ 
are isomorphisms on Y. 

TtLEOREM 2.7. -- Le t  A generate a s.c. group oI~ Y. If both pairs {A, B} and 

( l * ,  R~} are exactly controllable over some interval [0, T], then 

(i) P~----O~, ,  i.e. Oo~ coincides with the operator Qoo defined in Theorem 2.4; 

(u~, yO) and z ~ of the original and dual Vco, (ii) the optimal solutions pairs 0 0 
problems~ given by  Theorem 2.2 and Theorem 2.6 respectively, are related by:  

0 o , voo(t, 0; zo) ~-- R~y~(t, 0; Q~zo) �9 u~tt, O; Yo) ~ -- B*z~(t, O; P~Yo) ~ 

Note tha t ,  under these assumptions, P~  and Qoo are well defined (for, in particular, 
the finite cost conditions ( t t . 3 ) ~  (2.7) and (2.27) are satisfied) and are the unique 
solutions of (2.16) and (2.23), respectively. 

3. - The case T < ~ .  Proof of Theorem 2.1. 

3.1. Proof of parts (i) and (ii) o/ Theorem 2.1. 

Part (i). - We have already noted in (1.4) the regularity property of the oper- 
ator Loz. Using this, we see tha t  the functional J~(u, y(u)) is continuous on 
L,(0, T; U); since J r  is, moreover, strictly convex, it  follows by standard optimiza- 
tion theory tha t  there exists a unique solution pair uO ~ uO(., 0 ; Y0), yO _= yO(., 0 ; Yo) 
of the optimal control problem O.C.P.(T). ~oreover,  by  (1.1), (1.4) the optimal 

pair satisfies for YoeY: 

(3.oa) o c([0, T]; u~ ", 0; yo ~ ~ L2(O, T; U); R~yr(. , 0; Yo) e 

(3.0b) r 0 yOT(t ; 0; Y0) = exp [At]yo-F tLOTUT(', 0; yo}(t) 

Part (ii). - The Lagrangean of the O.C.P.(T) is 

1 ; FUJI2 Lf(u,y,p)  ~ L~<o,T;~)n- (Ry, y)z~(o,'~:y)} -? (P,Y--  exp[A*']yo Lo~U)z~(o,~r) 

YT,PT) ~ YT,PT 0 with p ~ L~(0~ T; Y). The optimali ty conditions 2f~(u ~ o o ~ f ( u  o, o o) _ 

yield, respectively 

LoTRYT -- LoTPT ; hence q~o _ _ * o . 
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If  we eliminate u~ between (1.1a) and (3.1), we obtain 

(3.2) 

(3.2b) 

as elements of L~(0, T; Y) and L~(O, T; U) respectively, where we have to show the 
existence and boundedness of the  inverse operator. In  fact~ a simple argument  as 
in [L-T.3~ below (2.8e)] shows tha t  

(3.2v) [~ + LL*R] -~ = I - -  L [ I  + L*RL] -~L*R  e ~(L~(O, r ) ;  IT) 

(we drop for simplicity the  subindex (~ 0T ~)), well defined and bounded in L~(0~ T; Y), 
since R is self-adjoint nonnegative definite. 

3.2. Proof of part (iii) of Theorem 2.1. 

Step 1. - In  order to assert the existence of the operator PT(t), we shall introduce 
an evolution operator to describe the  dynamics of the  feedback system. Hence- 
forth, we take s, 0 <s < T, as the new initial t ime of our optimal control problem 
with corresponding initial condition y~ e T at t ime s; i.e. we consider the optimal 
control problem over the t ime interval [s, T] rather than over [0, T]. We shall 
denote the corresponding optimal solution pair by  u~ �9 , s; y~) and yO(., s; YA. The 
same Lagrange multiplier argument of par t  (ii), once applied to the new problem, 
gives then 

(3.3a) 

(3.3b) 

(3.3e) 

u ~  ", s ; Ys) , o -- = LszR{yT(',  s; y~)} 

-- u~ s; y~) = {L*TR[I q- L~TL*TR]-I[exp [A(.--  s)]y~]}(t) ~ L2(0, T; U) 

y~(t, s; y~) = {[I + z ~ * ~  R]-l[exp [ A ( . -  s)]y~]}(t) e C([s, Z]; y) 

where (compare with (1.1a)) 

(3.4a) 
t 

(L~Tu)(t) -=- A f c x p  [ A ( t -  ~)]A-1Bu(v)dv , 
8 

u e L~(s, T; U) 

:continuous L~(s, T; U) ~ C([s, T]; Y), see (1.4) 

(3.5) 
[ (L~Tv)(t) 8~t<~ T 

(L~Tv)(t) = I 
I 0 O ~ t ~ s  

:continuous Ll(s, T; Y) ~ L~(s, T; U), see (1.5). 
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~re next  define an operator ~z(t, s)e ~(Y), O<~s<~t<T, by  setting 

(3.6) r s)x = y~(t, s; x) : {[I + Ls~L*~R]-l[exp [A(.--  s)]x]}(t) e C([s, T]; Y) 

see (3.30). 

Step 2. - The next  Lemma collects relevant properties of ~5~(t, s) and shows, 
in particular, tha t  ~5r(t ~ s) is an evolution operator. 

_GE~L~ 3.1. - For  the operator Cr(t, s) defined by  (3.6) as aa  operator ia s 
the following properties hold true:  

a) CbT(t, t ) :  I ( identity on :Y), 0 < t < Y ;  

b) #T(t, v) ---- q)~(t, s)~)~(s, z) (transition), O < z < s < t < T ;  

c) for each fixed s 

s)e C(E , T]; 

(strong continuity in the first variable); 

d) there is a constant CT such that  

][r s)i]c(r)<C~, uniformly in O<s<t<T;  

e) for each fixed t, 0 < ~ < T :  

~ ( t ,  - )~  Ze(~;  C([0, T]; I7)) 

(strong continuity in the second variable). 

P~OOF OF JbE~2~ 3.1. - Par ts  a) and b) are obvious. Par t  c) was noted explicitly 
in (3.6). Par t  e) follows in the  usual way  (e.g. []3.1]) from par t  e) combined with 
par t  d). To prove par t  d)~ we first note tha t  

(3.7a) [!I s -~ * * -~ . , 1[I~+ L~TR-LsT] [I~(~,(O,T;~))< 1 -LsT/~-~s/, ][ s U))>! hence 

uniformly in s a [0, TJ. :Next, by  using these bounds, the version of (3.2c) cor- 
responding to the initial t ime (( s )> gives 

(3.'7b) [[ + y))< const  

uniformly in s ~ [0~/~]. Then (3.2b) yields by  virtue os (3.7b) 
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uniformly in s e [O, T]. Finally, combining (3.8) and the regularity (3.4) for Z,~, 
yields par t  d) as desired. 

Step 3. - We now define an operator LOT(t) e ~e(IZ) by setting 

T 

= [ e x p  [A*(~-- t)]Rr t )xd~ ,  O < t < T .  (3.9) Lo~(t)x 

By virtue of lemma 3.1 d), we plainly obtain LOT(')~ ~(~ ;  Z~(O, T; I7)); moreover, 
by adding and subtracting, use of Lemma 3.1, and the Lebesgue dominated theorem 
[H-P.1, p. 83] we can show that ,  in fact, 

(3.iO) LOT(') e ~ ( r ;  C([0, T]; r ) )  

Par t  (iii) of Theorem 2.1 is proved. [] 

3.3. Loroo] o] parts (iv), (v), (vi) o] Theorem 2.1. 

Loart (iv). - By (3.3a), (3.6), (3.5) we obtain 

(3.11) ~ ( t ,  s ;  x)  = - L % / ~ r  s ) x  = 

T 

= - B * f e x p  [ A * ( ~ - -  t ) ] R ~ ( ~ ,  s ) x d ~  e s  T ;  U) 
t 

where the above expression is well defined for all s, a.e. in t e [s, T]. (See also Lem- 
ma  3.1 and proper ty  (3.5)). I f  we now take s = O in (3.11) for almost every t, we 
obtain the desired pointwise relation 

T 

(3.12) u~ O; x) = -- B*fexp [A*(T-- t)]R~)z(v, O)#d~ 
t 

T 

= - B*fexp [A*(~-- t)]R~(~, t)~(t, oIx~v = 
$ 

= - B*LOzCt)~Ct, O)x = - B*Lo~(t)y~ O; ~) 

by Lemma 3.1 a), (3.9), and (3.6). 

Loart (v). - The equation of the  optimal dynamics 

(3.13) y~ t; x) --= exp [A(v-- t)]x + (L, ru~(.  , $; x)}(~) 
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can be explicitly re-written by (3.6), (3.4) and (3.12) as 

(3.14) exp [ A ( v -  ~)]z = qiz('t', t)z + Afexp [A(v-- a)]A-~BB*Pz(a)q)z(a, t)zda 
t 

1~ext, from (3.9) 

(3.15) 
T 

(_p.(t)x, ~) =f(_n~(T, t)~, exp [A(~-- t)]z) av 
t 

Substi tuting exp [A@-- t )z ]  from (3.14) into (3.15) yields 

(3.16) 

T 

(_p~(t)x, z) =f (R ~(v ,  t)x, ~(~ ,  t)z) ~ + I~(T) 
t 

..+ =j ,I., 4~ E-<.- +.<., ,)..r .. 
t 

(changing the order of integration (~)) 

T / '  

t a 

c,)]nq~(v, t) x dr B*P~(cr) r t) z) d(r 

(using @z(v, a)Oz(a, t) -= q~T(v, t) and (3.9)) 

(3.1s) 
T 
r. 

=j  (B*P~(~)~(~, t)x, B* P~(~) +~(~, t)z) a~ 
t 

Thus, (3.16), (3.17)give 

(3.18) 
T 

(P~(t)x, z) =f(_~+~(~, t)., +~(~, t)z) a~ + 
t 

T 

t 

(4) This step of change in the order of integration can be rigorously justified by 
using a regularization and approximation argument as in [L-T.3], [C-L.1]. ~ore precisely, 
B*Pz(t) q~z(t, O) = limB*P~(t) ~ ( t ,  0), where 2% qSn correspond to (1.11) with R = R~ and 

where range of /7~ ~ ~(A*). 
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which by  vir tue of (3.6) and (3.12) produces 

T T 

(3.10) (P~(t)x, ~) =f(~voT(% t; x), voT(~, t; ~))a~ +f<~o(~, t; ~), ~o(~, t; ~)> dz 
t $ 

Part (vi). - :By specializing (3.19) with x----z we obtain 

(3.20) P*(t) = P~(t) > 0 t e [0, T] 

(3.21) (Pp(O)x, x) = JO T = JT(u~ , 0; x), yO( , 0; x)) 

Theorem 2.1 is fully proved. [] 

4. - The  case T = ~ .  Pro o f  o f  Theorem 2.2.  Algebraic  Riccat i  equat ion:  exis tence .  

Throughout  this section, extension b y  zero beyond T of the function fp will be 
denoted by  ]~. Thus: 7T(t) =--]T(t), O < t < T ,  while 7~(t)~_ 0, t >  T. 

4.1. Proo] o /par t s  (i) and (ii) o/ Theorem 2.2. 

Par t  (i). - B y  virtue of the finite cost condi t ion--assumption (H.3)-- i t  follows 
by  s tandard optimization theory tha t  the optimal control problem O.C.P.(c~) ad- 

o u ~  �9 0; Y0), yO = yO(. ,  0;y0)" By  (1.1), (1.4) the  mits a unique solution pair uoo--- 
optimal pair satisfies for Yo e Y 

(4.0a) o L2(0, o0; U); Uoo(., o; yo) e m y ~  ., 0; yo)e L2(0, ~ ;  :r). 

�9 y~  To]; ~)  for any 0 < T 0 <  oo. 

and 

(4.05) vO(t, 0; Yo) = exp [At]yo + {Lu~ ", 0; Yo)} (t) e C([0, To]; 17) 

Part (ii). - To obtain the  operator P~o we need a preliminary Lemma, which is 
an additional proper ty  of #T( ,  ) defined in (3.6): 

L E ~  4.1. - For  the operator ~b~(, ) defined in (3.6) we have 

(4.1) #~.-~(a, O) ---- #T(t + (r, t) on I r, O<t<T, O<(r<T-- t 

PROOF. - The equation of the optimal dynamics is 

(4:.2) r  s)x = e x p  [A( t  - -  s)]x + { L ~ , u ~  -, s ;  x)}(t)  = 

= exp [A(t--  s )]x--  {LsrL*szRqbr(. , s)x}(t) 



332 F. FLANDOLI - I. LASIEOKA - ~ .  TI~IGGIANI: Algebraic Rieeati effuations, etc. 

obtained via (3.3a) and (3.6). F ro m  (4.2) with s = 0 and t = a and with T replaced 
by  T -  t we obtain 

(4.3) exp [Aa]x = q~z-~(a, O)x + 

+ Afexp [A(~-- 
0 

T - - t  

z)]A-1B(B* f exp [A*(T - t)JRq)T-t(r~ O) dr) dT 
T 

using (3.4), (3.5), (1.3b). Similarly f rom (4.2) with s and t replaced by  t and t + a 
respectively, we obtain 

(4.4) exp [A(t + a -  t)]x --- Cz(t + a, t)x + 

t + a  T 

+ A f e x p [ A ( t  + a - -  T)]A-iB(B*fexp[A*(o~ - 
t 

Sett ing ~ -  t = fl in the external  integral in (4.4) and then  ~ -  t = r ia  the internal  
integral  in (4.4) yields 

(4.5) exp [As]x  = r + ~, t)x + 

c~ T - - t  

o 
fi)]ROT(t + r, t)xdr) d~. 

Comparison between (4.2) and (4.5) shows tha t  both  q3~,_~((~, O)x and Oz(t -{- (6 t)x 
satisfy the same equation~ say (4.5). Bu t  then  the difference 

(4.6) z(z, t) - q~(t + ~, t ) z -  q%_~(z, o)x ~ c([o,  2 -  t]; :g) (in ~) 

satisfies [I  +LOTL~TR]Z(. , t) = 0. B y  (3.2o) we deduce tha t  z(a, t) is the  zero ele- 
ment  in L~(0, T - -  t; Y) and by  (4.6) in C([0, T - -  t]; IT). [] 

We can now introduce the  operator  Pr and s tudy some of its prel iminary 
properties.  

Z~.m~.~ 4.2. - We have  

a) the  (self-adjoint) operator  P T ( ' ) > 0  converges strongly on Y to a (self- 
adjoint) operator  P~o>0 as T~c~; i.e. 

(4.7) 
T 

Po~x = lira PT(0)x = l i m ~ e x p  [A*-c]Rq):.(% 0)x d~: 
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b) /)~,_~(0) = / )~( t )  0 < t <  T 

c) Pr in a) can likewise be defined by  

T 

(4.8) /)cox = l i ra / )z( t )x  = lira [ e x p  [A*(z - -  t)]Rq)z(v, t )x  d~ 

independent ly  of t, O < t < T. 

d) For  x z Y 

(a.9) j o  _ j~(~o( .  ; x), yO(.; x)) =flu~ x)l~+ (Ry~ x), y~ x)) at = (/)c.x, x) 
0 

e) In  the nota t ion introduced in the opening paragraph of section 4, we have 

(4.10a) 40 -+ ~o in ~ ( o ,  ~ ;  u) 

(4.10b) / ~ z - + R ~ ? ] ~  in L2(O, oo; l/) 

for a suitable subsequenee T~ 0% 4 ~ = 4~ 0; x), 0 0 . u ~ = U o o ( . , 0 i x )  etc.;  i.e. the  
optimai  pair  on [0, T] for the O.C.P.(T) converges to the optimal pair on [0, oo] for 
the O.C.P.(c~): strongly in Z2.. 

]) For  each fixed t~ we have 

(4.11) y~ 0; x) -+ y~  x) in Y, uniformly on bounded t-intervals as T~ c% t < T.  

P~ooF. - / ) a r t  a). By opt imal i ty  of u ~ yO and (3.21) we obtain a uniform bound 
in T for x~X~ 

(4.12) (/)z(O)x, x) --  J~(uO(' ,  O; x), yO(" 0 ; x ) ) < J ~ ( u ~  �9 0 ;x ) ,  0 , , Y A ' ,  0; x)) < ~ .  

This, combined with the  monotonic i ty  of the self-adjoint non-negative operator 
/)~(O), implies tha t  the limit in (4.7) exists and defines a self-adjoint non-negative 
operator  /)~ e s 

/)art b). - This is a direct consequence of the definition (3.9) of/)~(t)  combined 
with Lemma 4.1. 

/)art c). - This follows by  taking the limit in Pa r t  b) as T~ c~. 

/)art d. - First~ from 

T 

(4.13) = J z ( u z ,  Yz) Y~ < Joo(u~o, yO) < oo 
0 
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we see that  the extended functions (4~} and {~i#o} are contained in a fixed 
ball of L2(0, oc; U) and L2(0, c~; Y), respectively. Hence, we can extract sub- 
sequences 

(4.14a) z~ ~ --> some z~, weakly in 1~2(0, c~; U) 

(4.14b) R ~  ~ -~ some R~7, weakly in L2(0, ~ ;  :Y). 

:Next, we shall prove that  the above limits are connected by the underlying dy- 
namics; i.e. for any 0 < To < c~ 

(4.15) R ~ ( t )  = R~- exp [At]yo + R t ( L ~ ) ( t ) e  C([O, To]; Y) 

Indeed, with s  To, Lo~U~ LOT(Z~ converges weakly to Z~ in L~(0, T; Y) by 
(4.14a) and (1.4), while 

~ 0  ~ ) ~ o  = R~ exp [At] Vo + R~{Lo~U~} (t), 0 < t < ro < 

converges weakly to R~# in L~(0, T; Y). By uniqueness of the weak limit, we ob- 
tain the identity in (4.15), first in L~(0, To; :Y) and then in C([0, To]; :Y). 

Finally, passing to the limit in (4.12) yields 

(4.16) , o Jc~(u~,(', 0 ; x), yO( . ,  ~P~x,  x)<goo : 0 O; x)) < 

by (4.7), left. On the other hand, the well-kaown lower semicontinuity of the qua- 
dratic cost J~  resulting from the weak convergence (4.10), ([E-T.1, p. 11]), completed 
with (4.15) gives the inequality in 

(PT(0)x, x) = JT(u ~  yO) = j~(~zo, ~o)>j~(~ ,  ~) 

(where u ~ = u~ ., 0; x)) etc. ~ = ~7(', 0; x), from which taking the limit via (4.7) 

yields 

(4.17) ( P ~ x ,  x)>Jr y)>J~u~o,~ , o y O ) .  

Thus, (4.16), (4.17) give 

---- ~- Joo(uoo, yO) (4.18) (Px, x) J~(z~, ~) o 

and part d) is proved. 

Part  e). - The identity in (4.18) together with the uniqueness of the optimal 
pair (already noted at the opening paragraph of subsection 4.1) yields 

(4.19) z~ = u ~ in -L2(O, oo; U);  ~ = yO in -L2(O, oo; Y ) .  
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Thus, (4.14) becomes 

- o weakly in Z~(O, c~; U) 

(4.20) R�89 ~ --> R�89 weakly in L~(0, oo; Y) .  

But  the established convergence j o  _+ j o  provides norm convergence 

~o 2 �89 2 ~ R � 8 9  o 2 

This, combined with weak convergence, yields strong convergence (4.10), as desired. 

_Part 1). - For each t fixed, (4.10) implies (LoTu~ -+ (Lozu~ in :Y by the 
continuity (1.4) of Zop, uniformly on bounded t-intervals and (4.11) follows then  
by  virtue of the optimal dynamics. Lemma 4.2 is proved. [] 

We next  define the operator qi~(t) e s by  setting 

(4.21) r x = yO (t, 0; x) ,  x e Y .  

We then have 

CO~O]~LARY 4.3. - In  the notat ion introduced in the opening paragraph of sec- 
t ion 4, we have: 

(4.22) a) R�89 O)x -+ R�89 )x i n L , ( 0 ,  oo;:Y),  x e  Y;  

b) for each fixed t > 0: 

(4.23) ~z(t, 0)x -+ q~(t)x,  x e Y, uniformly on bounded t-intervals as T~c% with 
t < T .  

~) ~oo(t) is a strongly continuous semigroup on Y; moreover if R > 0 then 
there are constants c, ~ > 0 such tha t  

( 4 . 2 4 )  ll~(t)l[~(r)<eexp[- (~t], t>~o; 

d) the operator _P~ defined on Y by (4.7) or (4.8) satisfies the relation 

to 

- - ] exp  [A*~]RqS~@)xd-r § exp [A*to]_P~q~(to)x x e _P~x Y 

0 

where to is an arbi trary point 0 < to < oo. 
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P~00F. - The convergence properties a), b) are nothing but  restatements of prop- 
erties (4.10)~ (4.11) of Lemma 4.2. 

Part v). - By (4.21) and (4.Ob), we see tha t  ~bc~(t) is strongly continuous on :g. 
The semigroup property  of O~(t) follows from the evolution properties of C z ( ' , ' ) :  
Indeed, with x e Y 

(4.26) Oz(t -+- % 0)x = ~bz(t -~ 3, ~:)qiz(z, 0)x (by Lemma 3.1b) 

---= q~T_~(t, 0)q~z(v, 0)z (by Lemma 4.1) 

= ~ _ J t ,  o)[q~z(~, O ) x -  ~oo(3)x] + q~r_~(t, o)r 

Taking the limit in (4.26) we obtain by virtue of (4.23) 

q)~(t + T)x = O~(t)q~(v)z 

as desired, since for t fixed we have tha t  q~z_~(t, 0) is uniformly bounded in T in s 
by  the principle of uniform bounde4ucss, moreover, if R > 0~ then (4.0a) implies 
q~oo(t)x e Z2(0, cr Y) for all x e Y and a well-known result [D.1] yields (4.24) 

Part d. - From (4.7) and Lemma 3.1 b) we compute with to arbitrary, 0<to < T: 

(4.27) Pc~x = I im [ / e x p  [A*3]Rq~T(,, § 

T 

+ exp [X*to]]exp [X*(r--  to)IRes(3, to)r 0)~ 43] = 
to 

go 

= f e x p  [A* 3].R~o(3) x d3 + exp [A* t,] l im PT(to) q~z(to, O) x .  
o T~oo 

For  the first term in (4.27) we have used (4.23) and the Lebesgue dominated theorem 
(or else (4.22)), while for the second term in (4.27) we have recalled (3.9). On the 
other hand 

(4.2s) t im/%(to) qs~(to, O)x = 

: lira {Pz(to)[q~T(to, O ) x -  qi~(to)X] + Pz(to)q~co(to)x} = P~q~(to)x  

by  (4.23), the uniform boundedness of PT(t0) for to fixed, and (4.8). Thus (4.27) 
and (4.28) yield (4.25). Corollary 4.3 is proved. [] 
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4.2. Proo] o] part (iii) of Theorem 2.2. 

THEO~]~ 4.4. -- With  Pr and Or defined by (4.7) and (4.21) respectively, we have 

(4.29) 

0 ~ u~c(t, 0; x) = B * P ~ y ~  0; x) 

= -- B*_PcoO~(t)x 

where 

(4.30) 

x e Y ,  a.e. in 0 < t < c ~  

(4.34) I1T (.) = L~t,[OT(" , 0)x] 

In  view of the regularity (1.5) of L't~ and of the convergence (4.23), we conclude tha t  

4 

lira 11:.(" ) = L*to[Or �9 ) x] = B*[exp  [A*(~ -- t)] O~o(~) x dr  (4.35) 
Tt~ t 

J 

the limit being taken in the Lo(0, to; U)-sense. As for I2~ we have from (4.33), 
Lemma 3.1 b), and (3.9) 

T 

(4.36) I~r(t) = B* exp [A*(to-- t)] texp [A*(v -- to)] O~(% to) Jr(to, O) x d v  
to 

= B* exp [A*(to-- t)]PT(to)OT(to, O)x .  

Finally, invoking assumption (It.l)--~ (1.2) and (4.28), we take the limit in the 
Lo(to, T; U)-sense in (4.36) to get 

(4.37) l im I~r(t) : B* exp [A*(to --  t)JP~Oco(to)xo 

for some t < to< T. Thus, by (4.32) and (1.3b), we can write 

(4.31) -- u~ 0; x) -~ B*-PT(t)OT(t, O)X = Ilz(t) + IoT(t) 

to 

(4.32) I~(t) = B*fexp [A*(~- t)] O~(T, 0)x dv 
t 

T 

(4.33) Ion(t) = B*fexp [A*(~-  t)] O~(r, 0 ) x ~  
to 

P~OOF. - Recalling (3.12) ~nd (3.9) we have 

B*PcoOoo(t): continuous Y -+ Lo(0, c~; Y) 
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I~eturning ~o (4.31), we use (4.35), (4.37) on its right~ and (4.10a) on its left. The 
result is 

to 

- -  u:(t ,  O; x ) -~  -- B * [ / e x p  [A*(v-- t )]qS~(~)xdv -~ exp [A*(to--t)],pcoqS~(to)x] 
t 

t0 

( a =  v - ~ )  = - B*[fexp [A*a]Ooo(a)~da + exp [A*(to--t)]'pooOoo(to--t)] ~bco(t)~ 
t 

(by (4.25)) = -  B*.pc~)~(t)x a.e. in t. [] 

4 . 3 . . p r o o / o / p a r t  (iv), (v) of Theorem 2.2. 

-part (iv)~ DEFI:NI~0~ 4.1. -- Henceforth,  we let A~ (F defined on Y) infinitesimal 
generator  of the s.c. semigroup asserted by  Corollary 4.3 c), i.e. 

Thus 

~boo(t) = exp [A~t]. 

dt 

We show in this section t ha t  the  operator  "poo satisfies the Algebraic Riceati  Equat ion.  
A first step in this direction consists in establishing some regular i ty  properties of the  

operator  B * P ~ .  

L ] ~  4.5. - With  .P~ defined by  (4.7) we have" 

(4.41} Y ~ ~(B*-poo) ~ ~(AF) �9 

Thus~ ~(B*'poo) is dense in Y (5). More preeisely~ for x ~ 9(Av) we have  

~o 

(4.42) B*-P~ox : B * A * - l [ e x p  [A*to]RqS~(to)X - R -fexp [A*T]R~)~(T)AFxdT] -~- 
0 

+ B* exp [A*to]'p~O~(to)X e U,  

where, by  ~ st~nding assumption, B*A*-~e  s U) and where 

(4.43) B* exp [_4* t].pooqSoo(t)x e L~(O, T; U),  x e ~(AF) 

(5) No silniiar claim on ~(B*PT(t)) w~s made in section 3 for a non regular ~ satisfying 
only (H.2) = (1.9); an t~ e smoothness ~) w~s needed in [L'T.3], [C-L.I]. 
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so tha t  to in (4.42) can be chosen (depending on x) so tha t  the last term in (4.42) 
is well defined in U (the measure of the set of ~ll such to's contained in [0, T] is 
equal to T), 

PEOOF. -- Note first tha t  for any t~ and any x e ~(Av)  we have after integration 
by parts 

(4.44) 
0 0 

0 

e U  

ull terms being well defined on U, since by a standing assumption B * A * - l e  s  U). 
Next we show (4.43). Let  x e ~(AF) and integrate by parts 

(4.45) B* exp [A* t]P~qho~(t)x = 

-~ B* exp [A*t]P=f~=(v)Avxav + B* 
0 

exp [A*t ]P~e  L2(0, T; U) .  

Indeed, a fo r t io r i  from t~ssumption ( H . 1 ) =  (1.2) we have 

(4.46) 

while 

B* exp [A*t]P~x e L~(O, T; U) 

t 

B* exp [A* t]Po~fr 
0 

ZdO, T; U) 

as it  follows from Lemma 3.1 of [L-T.3] with F( t ) -~  B* exp [A' t ]  (which is legal 
by  assumption (It.l)).  Thus (4.46)-(4.47) prove (4.45). 

Finally, recalling (4.25) and using (4.44)-(4.45), we have for x e ~(A~): 

(4.48) 
to 

B* P ~ x  = B*fexp [A* 3]nO~(,)x & + B* exp [A* to] P~qD~(to)X ~ U 
0 

provided to is chosen (depending on x) so tha t  the left hand side of (4.45) is well 
defined as an element of U. [] 

We next  provide information on Av. 
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L E ~  4.6. - For  x e Y and t~>0 

dqS~(t)x 
(4.49) dt 

Thus, by  (4.39)-(4.40): 

- -  [A - -  BB*Poo]q)oo(t)x ~ [~(A*) ] ' .  

where the second te rm on the right of (4.52), being equ_al to (A-~BB*P~qSoo(t)x,  A ' z ) ,  

is well defined a.e. in t by  the standing assnmption A - ~ B  ~ g(U; Y), coupled with 
(4.30). We nex t  solve (4.51) for (exp [At]x,  z), replace here z b y  A * z  and sub- 
s t i tute  into (4.52) thereby  obtaining (4.49). [] 

Par t  (v). - Fu r the r  regular i ty  properties of P ~  are given next.  

LE~vfAr 4.7. - Wi th  Pr and Av defined by  (4.7) and (4.39), we have 

b) A~*P~ e ~(~(d); ~). 

P~ooF. - We shall use once more relation (4.25) for P o o :  

Par t  a). - For  x ~ ~(Av) we ~pply A* to both  sides of (4.25). 

to 

(4.53) A * P ~ x  = A * f e x p  [A*v]R~c~(T)xd~  @ A *  exp [A*to]PooqS~(to)x. 
0 

= (exp  [At]~, X*~) - -  (BB*Poo,Voo (t)~, ~) - -  

t 

0 

(4.50a) [ A - -  BB*_Po:]q~o(t)x = Avr  = q)~o(t)A~x e Y ,  x ~ 2 ( A ~ )  t >  0 

(4.50b) [A --  B B *  Poo]x = A r x  , x ~ ~ (AF)  

P~OOF. - l~ecMling the optimM dynamics (4.0b) and the optimal  control in (4.29), 
w e  have 

(4.51) (r  z) = 
t 

0 

We nex t  differentiate (4.51) in t with x e Y and z ~ ~(A*) 

(4.52) 3 
\ at ' ]  
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But, integrating by parts, we obtain for any to 

(4.54) A*fexp [A* v] R ~ ( r )  x d~ 
0 

~o 

exp [A*to]Rq~(to)X- R x - - f c x p  [A*v]Rq~(r)Ayxd~: e ~ . 
0 

As to the second term on the right of (4.53), we have again after integration by 
parts in to: 

(4.55) 
T 

f A* exp [A* to] P~r dto = 
0 

T 

= exp [A* r ]  Po.+=(Z) x - P = x  - f e x p  [A* to] P=  +=(to) A~x dto e :Y. 
0 

Thus, afortiori  integrating (4.53) in the variable to over the interval [0, T] and using 
(4.54)-(4.55), leads to 

(4.56) T(A* P . x )  ~ :Y 

and the desired conclusion of part a) follows via the closed graph theorem (or direct 
estimates based on the identity obtained through the procedure described above). 

Part b). - By duality, it suffices to show 

(4.57) P=A~e C(](; [~(A)]'). 

To this end, we take x e Y, z e ~(A), and compute via (4.25) 

~a 

0 

As to the first term on the right of (4.58), we obtain after integration by parts 
via (4.40) 

~o 

0 

to 

0 

-~ well-defined. 
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As to  the  second t e r m  on the  r igh t  of (4.58)~ aga in  a f t e r  i n t eg ra t ion  b y  pa r t s  v ia  (g.40) 

Y 

(4.6o) i(exp [X*~o?R+~(to)A~', ~) d~o = (e~p [ A * ~ ] R ~ + ( f ) x - -  Rx, ~) - 

T 

- -  ~(exp [A* to] R~oo(to) x, Az )  dt = well- defined. 
0 

Thns~ a fortiori~ inSegrat ing (4.58) in ~he va r i ab le  to over  [0, T]  and  us ing  (4.59)-(4.60), 

leads to  

T( .P~A~x,  z) == wel l -def ined ,  x ~ :g ,  z + 2 ( A ) .  

Thus  Pc~Ae: : g - +  [ 2 ( A ) ] '  and  conclus ion  b) follows. [] 

A m o r e  prec ise  vers ion  of L e m m a  4.7 which  howeve r  uses L e m m a  4 .7 - - fo l lows  

nex t .  

L ~ A  ~.8. - W i t h  P ~  def ined b y  (4.7) we h a v e  

(4.61c~) --  A*Poox : ~ x  + P ~ A ~ x  e Y ,  x e ~ ( A s )  

(4.62b) * @ I:, 2 ( A )  --  A r P ~ x  = I~x P ~ A z  ~ z 

PICOOF. - F r o m  (4.25) 

Q 

(4.63) (e~p [X * to]P~r z) . 
0 

~u di f ferent ia te  (4.63) in to wi th  x ~ 2(A~,) arid z ~ ~ ( A ) :  

0 = (exp [A*to]Rr z) + (exp [A*to~%q)~(to)x,  Az )  -;- 

T a k i n g  to ..... 0 yields 

(6.64) 0 - -  (Rx, z) + ( P ~ ,  Az) + (~X~,~', z), 

-5 (exp IX* t o ] t ) ~ ( t o ) A ~ x ,  z ) .  

;v + 2(AF),  z c~ 2 ( A ) .  

Using  the  a-pr ior i  r egu la r i t y  of L e m m a  ,1.7, we can  e x t e n d  the  above  inner  p r o d u c t s  
b y  con t inu i t y  to all of z ~ ~ wi th  x c 2 (A~)  ; and  to  all of x ~ Y wi th  z ~ ~ ( A ) .  This  

leads to  (4o61) and  (4.62)~ respec t ive ly .  
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COROLLARY 4 . 9 .  Wi th  _P~ defined by  (4.7), we have:  

(4.65) <B'Pc:x, B*.Pooz> -~ well-defined for x, z e ~ ( A ) ,  

Thus (recall also L e m m a  4.5) 

(4.66) B*P+e  E(~(A);  U) (3 ~(~(Ay);  U) 

P~ooF. - For  x e ~(AF), using (4.50b) 

(PooA~x, z) = (Poo[A- BB* t)=Jx, z) = (P=Ax, z) -- <B* P~x,  B*/~=z> 

or else: 

x e Y and z e ~(A)  ~ b y  L e m m a  4.7 b) applied to (4.67b). 

The second t e r m  on the  r ight  of (4.67a) is well defined for 

or else: 

Thus,  conclusion (4.65) follows i more  precisely 

IlAxl! liAzlI, x, z e ~ ( A )  

KB*'P~176 B*P+z>i<~ CT IIAFxliI[A~zlI , x,z+~(AF). 

We fiaally obta in  the  u l t imate  goal of our analysis in this section. 

THEOI~:E~ 4.10. - The operator  Poo defined b y  (4.7) satisfies the  following Algebraic 

l~iccati Equat ion .  

(4.68) (Poox, Az) + (P~Ax,  z) + (Rx, z) -~ <B*.Poox, B*~Pooz> 

for all x ,z e 2 ( A )  ; or else for all x, z e ~(A~) 

PnooF. - We combine L e m m a  4.8 and Corollary 4.9. [] 

x e I /  

x e N(A) ~nd z e I~ 

and z e N(AF),  by  L e m m a  4.7 a) applied to (4.67b). 

or else for z, z e ~ (Ar )  

i~ 

(4.67a) -- <B* P~x,  B* Pooz> = (t)~Avx, z) -- (P~Ax,  z) 

(4.67b) = (x, A * P ~ z ) -  (x, A'*-Po~ z ) .  

The first t e r m  on the  r ight  of (4.67a) is well defined for 

x e ~(AF) and z e Y .  
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5. - The case T ---- ~ .  Proof of  Theorem 2.3. Algebraic Riccati equation: uniqueness. 

In order to prove the  uniqueness of Theorem 2.3, we need two prel iminary 

:Lemmas. 

~:B~2~ 5.1. - Consider the dynamics (1.1) under  the standing assumption 

(H.1) : (1.2). L e t / / :  Y ~ ~ ( H )  -> Y be an operator  satisfying 

(5.1) [llI*xit~ < C[IB*x]~ ~ [Ix][~], Vx e ~(B*)  c Y 

so tha t  A - 1 I I e  ~(Y), as remarked in section 2.3, Remark  2.2 b. 

Then:  

a) the  per turbed  closed operator  

(5.2) A?7 = A* + / 7 *  

generates a s.c. semigroup exp [A*t] on Y, t~>0. 

b) Moreover, the  operator  B* exp [A*t] admits a continuous ex tens ion- -denoted  

by  the same symbol (~)--such tha t  

(a) B* exp [ A ' t ] :  continuous Y --~ L~(O, T; Y), T <  c~ 

(5.3) r 

(b) (IB* exp [A*t]xl2dt<C~]lx][ ~, x e  Y, 0. 

0 

P~ooF. - Consider the integral equat ion 

$ 

- -  exp [A* t]x + f'exp [A*(t -- ~)]//*w(~) dv ,  x e Y (5.4a) ~ ( $ )  

0 

in the :Y-valued unknown w(t) : w(t, 0; x), formally corresponding to the problem 

(5.4b) ~b -~ (A* + H*)w , w(O) ~ x 

Define the operator  ~ by  setting 

t 

~- (exp  [A*(t -- T)]H* f(~)dT,  x ~ Y .  (5.5) (~/)(t) e x p  [A* tJx 
0 

(8) This will not be repeated. 
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We claim that  ~ is well-defined as an operator L~(O, T; ~(B*)) -+ itself, where 

(5.6) I lzl[~(~.)---[B*zl~+ ][zl[ ~ , z 6  ~ ( B * ) c : Y .  

Indeed, the term exp[A*t]x is in L~(O, T; ~(B*)) by the ~standing assumption 
(It.l) -~ (1.2). As to the integral term in (5,5), setting v = f~ -- ]~ e Z~(0, to; ~(B*)), 
we compute for ~[~--  ~]~ : ~'v, via (5.5); Schwarz iaequality and a change in 
the order of integration: 

t to  to ' 

0 0 0 

t t 

<tof fls* e~p [X*(~-- ~)]rz*,,(~)l,,~ et 
O 0  

~o t o - ~  

0 0 

to t 

= toffls* e~p Ea*(t- ,)ln*~(,)l'* ~, = 
0 

(extending 

tion (5.1)) 

to--~" to 

f to f and usi~g ~rst 
0 0 

assumption (H .1 )=  (1.2) and then assump- 

(5.7) 
~o to 

<tOe, of Hg*v(~)l]~a~ <toCtoCf lB*v('c)[ ~ + []v(~)lf~ar - tOCtoGHVl[~(o,t,;~(~.)) 
0 0 

where Or. a~d C are the constants in (1.2) and (5.1), respectively. Thus, using (5.7), 
(5.5) and (5.1) 

(5.8) 
to 

0 

where C l t =  r IIexp[A*t]k(y)<Mt., o < t < t . .  Taking to sufficiently small 
so that  toOOu0< 1, we get that ~ is a contraction on L~(0, to; ~(B*)). Hence, 
the integral equation (5.4a) has a unique solution w(t)= w(t, 0; x) such that  
B*w(t, 0; x) e L~(0, to; U), x e Y. Indeed, using this result and the convolution theo- 
rem on the integral (5An) via (5.1), we can improve the regularity of this solution 
to read w(t, 0; x ) e  C([0, to]; X), x eY.  For any preassigned T <  c~ ,we can then 
repeat the preceding procedure ~ finite number of time as, say ia [Da P-L-T.1] and 
conclude that  problem (5.4) admits ~ unique global solution 

w(t, 0; x ) e  ~([0, T]; Y) such that  B*w(t, O; x ) e  Z~(0, T; U) 
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for any �9 ~ ~z, Xoreover, one verifies t ha t  w(t, ~) satisfies the semi-group property. 
Hence, we can write w(t, 0; o0)~q(t)z ,  with ~q(t) a s.c. semigroup on Y. Then, 
finally, w(t, 0; x ) =  exp [A~t]z by []. Both parts a) and b) are proved. [] 

LE~IA 5.2. - As in Lemma 5.1, consider the dynamics (1.1) under the standing 
assumption ( H . 1 ) =  (1.2) and let H be an operator satisfying assumption (5.1). 
Thus, Lemm~ 5.1 guarantees tha t  exp [A't] is a s.c. semi-gToup on Iz. Assume in 
addition tha t  ]Y is such tha t  the semi-group exp [A*t] is uniformly stable on Iz; 
i.e. there are M, ~ > 0 such tha t  

(5.9) ![exp [A*t]ll~(r)<<M exp [-- ~t],  t > O .  

Then, conclusion (5.3b) of Lemma 5.1 can be strengthened ~s follows 

(5.10) f IB* exp [(A?~ + d )  t]z]~ dt < C~ilz II ~ , 
o 

for all m e Y 

for all s > 0  s.t. - - ~ + e < O  

P~oor .  - We already know tha t  (5.3b) holds true for any T < oo. Thus, we com- 
pute  using the semi-group property and (5.3b). 

(5.11) f'~* [A*t]zpdt i~-, exp 

T 

2T 

=fiB* exp [A~(t- T)] exp [A~T]xl2dt = 
T 

T 

-- fiB* exp [A~ a] exp [A* T]z]'  da < C~ Ilexp [A* 5] zH ~ . 
0 

Generally, using (5.9) 

nT 

(5.12) f IB* exp [A~t]wl ~ dt < r II exp [A~(~-  1) T]wJj~< r M exp [-- 2~(n -- 1) 53 jim. 
(n-~)T 

Thus, choosing 5 large enough so tha t  exp [ - -2~T]  < 1, we have for Ilxll < 1 :  

(5.13) 

c o  

f iB* 

0 

~T 

exp[A~t]xl2dt=~=l ~ f ]B*exp[A*t]xl2dt< 
(~-I)T 

o o  

~ = 1  

M 
1 - -  exp [-- 2~T] 

which shows (5.10) for s----O. The proof for s >  O is exactly the same since 
- - ~ + e < O .  [] 
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The main result of the present section is Theorem 2.3~ which we reformulate here 

a s  

Tm~Ol~E~r 5.3. - Consider the optimal control problem O.C.P.(oo) (1.6) for the 
dynamics (1.1) subject to the following standing assumptions: 

(g.1) ~-- (1.2) for the dynamics 

(H.2)---- (1.9) for the observation operator R 

(H.3)--~ (2.7) for the Finite Cost Condition. 

Then~ section 4 yields that  the operator P~o defined by (4.7) is a solution of the 
Algebraic Riccati Equation (4.68) with properties specified in that  section, in parti- 
cular in (4.66) and Theorem 4.10. 

Assume, in addition, ( H . 4 ) =  (2.17); i.e. let K: Y~ ~ ( K ) - +  :Y be a (linear) 
operator satisfying the following two conditions: 

(5.~4) i) IlK*xlI~<C[iB*x?ll + I]xll~], for all xe~(B*)c  :~; 

ii) the s.c. semi-group exp [AT:t] generated by the operator 

(5.15) AK = A -{- K R i  

(as guaranteed by Lemma 5.1 with H = KR~) is uniformly stable; i.e. there are M~, 
k > 0 such that 

(5.16) Ilexp[Agt]l/C(y)<M~exp[-- 7ct], t > 0 .  

Then the solution to the A.R.E. (4.68) for x, z e ~(As)  is unique within the class of 
linear seif-adjoint operators P e a ( Y )  such that B * P e  ~(~(AF); 17), ~ condition 
satisfied by the solution operator 20~ in (4.7), in view of Lemma 4.7. 

P~oos. - Let t)1 e ~(:Y) be another self-adjoint solution with B*-Pl e C(2(A~);17). 
Following standard grguments given e.g. in [B.I~ pp. 272-273], in order to show 
that in fact -Pl=-P~, it suffices that, under the present assumptions~ the semigroup 
~5~(t) of Corollary 4.3e) is uniformly stable: 

l I~(~) l l : ( r )<Vexp[-  ~t], t > 0 ,  ~ > 0 ;  

equivalently [D.1] that 

(5.17) 
oo 

fll~r oo for an x~ 17. 
0 
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I t  then suffices to prove (5.17). To this end, recalling Lemma 4.6, (4.49), we have 
for x e Iz 

(5.1sa) d ~ ( t ) x  
dt 

- -  (A ~- KRr - -  D R � 8 9  - -  BB*P~r 

on [~(A*)]'. Using Lemma 5.1 a), we write the integral version of (5.18a) 

t 

o~(t)~ = exp [A~t]x--fexp [ A s ( t -  ~)]KR�89 
0 

t 

- - fexp  [A~(t -- "c)] BB* P ~ (  ~) m d'~ 
0 

By assumption (5.16), we have 

oo 

(5.19) f l[exp [Axt]xtl ~dt<~ Cllxll ~ , x e :g 
0 

To estimate the last two terms on the right of (5.18b), we employ Lemmas 5.1 and 5.2 
with H - =  KRt ,  I I * =  t~tJK*, whose legitimacy is guaranteed by assttmptioa (5.14) 
on K*. The conclusion (5.10) of Lemma 5.2 specialized to the present case is 

co 

(5.20 flB*exp[(A~ + d)tJxpdt<o~lTxl ~, xe :g 
0 

for all s > O  s . y . - - k + e < 0 .  

This~ combined with assumptions (5.14) and (5.16) yields likewise 

oo 

(5.21) jI]K*exp[(A* + d)t]mll'dt<C,j[xll 2, wm:Y 
0 

for all e > 0  s.t. - - k + e < 0  

To complete the proof of Theorem 5.3 we must show that 

(5.22) 

t 

(Zx, g)(t ) :--fexp [A~:(t-- 7:)]Bg(v) dr 
0 

t 

( . ~  r =fexp [.a~(t- ~)]K/(-~),~ 
0 

L~(O, ~ ;  U) 

: continuous 

J~(O, ~ ;  :g) 

~Z,~(O, ~ ;  ~') 
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or, equivalently~ that 

(5.23) 

(L*i.V)(t) =fB* exp [A*(~-- t)] v(~) a~ 
t 

co  

t 

Here, the expression for L* B is obtained from 

: continuous L~(0, oo; I 7) 

/ L~(0, ~ ;  U) 

I .~(0, oo; 17). 

oo r  t 

0 0 0 

0 0 0 

0 7 0 

and similarly for L~K. 
To show (5.23a) we compute with ~ > 0: 

f Il(L~ )I1 (5.25) v)(t z d t =  *exp z--t)]v(w)dT t =  

0 0 t 

= exp [-- e(T - -  t)]B* exp [(A* + sI)(T -- t)]v(~) 

0 t 

c o  co  

(by Schwarz ineq.) < f ( f e x p [ - - 2 e ( ~ - - t ) ] d ~ ) .  
0 t 

r  

t 

0 t 
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( c h a n g e  o rde~  of  1 f f 
integrat ion) = 2-~ lIB* exp [(A* + 

0 0 

zI ) (~  - t)]v(T)I1 ~ ~t d~ 

(~ - -  t = a) 
2s 

0 0 

exp [(A* -~ sI)a]V(~')lI~dadT: 

0 0 

(5.26) 

r 

0 

where in going from (5.25) to (5.26) we have taken s > 0 sufficiently small and 
used (5.20). A similar computat ion gives 

(5.~7) 

co 

0 

using now (5.21). Thus, (5.26)-(5.27) prove (5.23a-b), as desired. [] 

6. - Proof  of  Theorem 2.4. Isomorphism of -PT(t), 0 < t <  T and of P~o, and exact  
controllabil i ty o f  the pair {A*, R~}. 

DEFINITIO~ 6.1. -- The dynamical  system of Y 

(6.0) 2(t) : A * z(t) ~- R~ g(t) , z(O ) : 0 

in short, the pair (A*, Rt) is exact ly controllable on the space Y over the t ime in- 
terval  [0, T] with controls g ~ L~(O, T; :Y) in case the to ta l i ty  of all solutions points 
z(T) fills all of :Y when g runs over Z2(0, T; Y). Equivalently,  in case 

(6.1) ST: L~(0, T; Y) onto> y 

where ST is the (obviously bounded) solution operator 

T 

(6.2) STg : f e x p  [ A * ( T -  t )]Rig( t )dt .  [] 
0 
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Another equivalent formulation is (as is well known): there is CT > O such tha t  

* , llS  ll  (o,   )>c llyH rye Y. (6.3) 

But  

(6A) (S*y)(t) ---- Ri  exp [A(T -- t)]y . 

Thus, writing (6.3) explicitly, we have tha t  the pair (A*, Rt} is exactly control- 
lable in the sense of Definition 6.1 in case 

T 

(6.5) f flR - exp [At]ylle dt> C~lly]l 2 , Vy e :Y . 
0 

Having recalled the above well-known facts for problem (6.0), we now unveil a 
relationship between exact controllability on I7 over [0, T/ of the pair {A*, R~} 
and the property tha t  _P~:(t), O<t < T and/or _P~ be isomorphisms of s 

Lv . i v~  6.1. - Consider the dynamics (1.1) under the standing assumption 
(H.1) = [1.2), and let the observation operator R satisfy the standing assumption 
(H.2) ~- (1.9). 

a )  Case T < oo. - The pair {A*, Ri} is exactly controllable on IT over [0, T--t] ,  
t < T, in the sense of Definition 6.1 if and only if the operator _P~(t) e s defined 
by (3.9) is am isomorphism on Y, for some t, 0 <t  < T. 

b) Case T - ~  oo. - Assume further the Finite Cost Conditio~ (H.3) so that the 
operator _P~ e s can be defined as in (4.7). Then, if the pair {A*, R~} is exactly 
controllable on Y over some interval [0, T], T < ~ in the sense of Definition 6.1, 
then _P~ is an isomorphism on :Y. 

P~ooF. _Part a). - We first show the claimed equivalence for _PT(0). 
IJ: we return to (3.21) with u ~  u~ O; x), y ~  y~ 0; x) 

T 

= = y g ( t ) )  > e t  = 

0 

T 

= f  ll {Rt[I  + LoTL*TR]-~[ex p [A" ]xJ}(t)ll~dt 
0 

where in the last step we have used the explicit representation (3.2a). Writ ing 
throughout  /~ for L.~ we have 

(6.7a) R~[I § L L * R ]  -1 = [(I § L L * R ) R ~ ]  -1 = [R -~- + LL*R~]-I---- 

---- [R-i(I  ~- R�89189 -~ -~ [I ~ R�89189 t 
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where, a fortiori from the regularity proper ty  (1.4) of Z---a consequence of (g.1) = 
= (1.2)--we h~ve 

(6.7b) Il I ~ R~ LL* Ri]Is T; Y)) < Cr . 

Thus, using (6.7) in (6.6), 

T 

(6.8) (PT(O)x, x )>  C~f ilR~ exp [At]xlI 2 dr. 
0 

Thus, if the pair {A*, Rt} is exact ly controllable on [0, Y], then characterization 
(6.5) applies and (6.8) yields 

(6.9) (P~(O)x,x)>constT ]lx]l s , cons tT> 0 , x ~  17 

so tha t  P~z(0)~  s as desired. A similar argument  shows tha t  PT~(t)~ s 
0 < t <  T, under  exact  controllability on [0, T - - t ] .  

Only i]. Let  (6.9) be true. Using agMn (3.21) we have from (6.9) 

[6.10) 
T 

f ( R  exp [At]x, exp [At]x) dt 
0 

-~ Jz(u --= 0 ,  y = e x p  [AtJx)>JT(u ~ yO) = 

= (P~(O>x ,  ~ > > c o n s t ~  Ilxll ~ , x c Y 

and by  the characterization (6.5) we conclude tha t  {A*, R~} is exactly controllable 
on Iz over [0, T]. A similar argument  applies if PT(t)~ O < t < T, rather  than PT(0) 
is assumed an isomorphism on Y. 

Par t  b). - Pa r t  b) follows from 

( 6 . 1 ~ )  j o =  ( p ~ ,  x)>(P~(o)~,~) = J~ ~ e  r 

(see (4.9), (4.13)) and the ~ if >> direction of part.  a). 

I~EI~ARK 6.1. -- One should note that, at the level of (6.7b), the <( if )> argument  
in Lemma 6.1 a) does not  use the full strength of assumption (ILl)  ~ (1.2) of the 
dynamics (1.1)--which guarantees LoT e s T; U); C[0, T]; 17). (See (1.4))---but 
rather  the  weaker proper ty  that  ( . ) :  IoT~ s T; U); Z~(O, T; Y)). This lat ter  
proper ty  ( , )  is satisfied also b y  parabolic equations with, say, Dirichlet boundary  
control in Z~(O, T; Z2(F)), U ---- Z2(/~), Y =  Z~(~2), - - t h e  parabolic counterpart  of 
case A) in the  Appendix 2- - ,  which, however, fails to satisfy (1.4). Bu t  in the  
parabolic case, the  operator A (equivalently, A*) generates a s.c., analytic semigroup 
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on ~ - ~  L~(~) and thus, the pair {A*, R~} cannot  be exact ly  controllable on ~5~(~) 
of any finite interval  [0, T], T < c~. We conclude tha t  in the  described parabolic 
case, the corresponding operators Pz(t), 0 < t  < T  cannot  be isomorphisms on L~(z9). 
Indeed,  the  l~iccati theory  for this parabolic case shows tha t  Pz(t) (as well as Pr 
are smoothing, compact  operators on L~(tg): see e.g. [L-T.5], [L-T.12]. 

L ] ~ A  6.2. - In  addition to the standing hypotheses of Lemma 6.1~ assume tha t  
the pair  {A*, /~}  is exact ly  controllable on some [0, T] on ~Y, so tha t  Lemma 6.1 
guarantees t ha t  Q~ ~ P ~  ~ s Then Q~ satisfies the following Dual  Algebraic 

Riccati  equation 

(6.12) (AQ~x, z) -}- (Q~A*x, z) -~ (RQ~x, Q~z) = <B'x, B'z> 

for sll x, z ~ ~(A*) c ~(B*) c ]7. 

Pgoo~.  - Fi rs t  we show tha t  the  D A RE (6.12) holds t rue for all x, z e ~ ,  where 
is the  subspace of 17 defined by  

=- P o o 2 ( n ~ )  = {~ e ~ :  g = P~od, d ~ 2(A~)}, 

~(As)  defined in tu rn  by  (4.39) or (4.50b)~ which satisfies ~ c ~(A*),  and ~ is dense 
in I z. In  fact,  let x, y ~ ~ so ~hat 5 = P ~ x ,  ~ = P ~ z s  ~(As). Therefore, ~ 5 sat- 
isfy the  Algebraic Riccati  Equat ion  (4.68), i.e. 

(Pco.P~lx, AP~lz)  -~- (P~AP~lx ,  P~lz) ~- (Rp~lx, P~olz )  = <BSx, Bsz> 

or equivalent ly (6.12), since Q ~ =  Q * -~  p ~ l .  

Tha t  ~ is dense in :Y is obvious, since ~ = P~o~(A~) and ~(AF) is dense in Y,  
with p~l  e ~(Iz). 

Finally,  if x e ~(AF), then Lemma 4.7 a) and Lemma 4.5 give A*P~x  e ~ and 
B*P~x ~ U respectively, f rom which we deduce tha t  z = P ~ x e  ~ belongs to ~(A*) 
as well as to ~(B*),  respectively. Thus~ ~ c ~(A*) and ~ c ~(B*).  Bu t  ~(B*) 

~(A*),  since B * A * - ~  ~(IZ; U)~ by  our standing ~ssumption on the model (1.1). 
To prove tha t  Qoo satisfies the D A RE (6.12) for all x, z e ~(A*) we shall next  

show tha t  ~ is dense in ~(A*) in the ~(A*)- topology induced by  ][Z]]~(A. ) ---- ]ld*z]l 
(Recall f rom the paragraph below (lAd) tha t  without  loss of generality we are taking 
0 E ~(A), the resolvent set of A, throughout  the entire paper).  Thus let 

(6.15) (d, a)~(~.) = 0 for all d ~ ~ and for a ~ ~(A*) fixed and show tha t  a : 0 .  

In  fact  by  (6.13) we have for all x ~ ~(AF) 

(6.16) 0 ----- (A*p~ x, A*a)y-~ (A*Pc~A}IA~x, A*a)r = 

: (AFx , [A*P~A~I]*A*a)r 
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since A~ is boundedly  invertible on ](, b y  Theorem 2.2 (ii)-(iv). Moreover 
A*_P~A-~I: s by  (2.15a) on the left, and so [A*Pc~A~I]*A*ae ~. Then (6.16) 
implies [A*.PcoA-~I]*A*a-~ A*~-~Pc~a ~-0 and since A* and Poo are boundedly 
invertible, we conclude t ha t  a - ~  0, as desired in (6.15). Final ly let x, z e ~(A*).  
B y  the  density of ~ in ~(A*), there  are x~,z,  e 2  such tha t  A*x,-->A*x, 
A*z~,-->A*z in the Y-norm. Then (6.14) can be re-wri t ten for x~, z. as 

(6.17) (A*x, ,  QocA*-~A*z~) ~- (QooA*-~A*x~, A*z,) + 

-~ (RQooA*-~A*x., QooA*-IA*z~) = <B*A*-IA*x~, B*A*-~A*z.> x, ,  z~e 

with B*A-xe ~(Y) by  our standing assumption on the model  (1.1). Taking the  
limit in (6.17) yields (6.12) for all x, y e 2 (A*)  as desired. [] 

7. - Case T < ~ .  Proof  of  Theorem 2.5. Dual differential Riecati equation when A 

is a group generator. 

7.0 P ~ E L ~ C A R ~ S . -  B*Z~L~(O, T; U) and equivalence of exact controllability 
o/{A, B} an~ of {--A, B}, ~ e n  A i~ a group generato~ 

For  later  purposes, it  is convenient  to s tudy the following optimal control pro- 
blem, which includes (2.20) when G = 0: given z0 e Y, minimize 

(7.1a) 

T 

J~,Av, z) = f  lB*z(t)[~ + llv(t)i]=dt + ( ~z(~), ~(T)) 
0 

over all v ~ J5~(0, T;  :Y), where z is the solution of (2.21) due to v. 

Here  we assume: 

(7.1b) G e  ~(Y),  G ---- G * > 0 .  

The differential Riceati  Equa t ion  corresponding to (7.1) is 

d (Q(t)x, z) = (Q(t)x, A'z) -~ (A*x~ Q(t)z) -- <B*x~ B'z}  ~- 

(7.2) -~ (RQ(t)x, Q(t)z) , x, z e ~(A*) 

Q(~) = 

We formally re-write (7.2) in integral form (the so-called first integral l~iccati 
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Equation) as 

(7.3) (Q(t)x, z) = (G exp [ -  A*(T -- t)]x, exp [-- A*(T -- t)]z) + 

T 

+f<B*  exp [-- A*(s -- t)]x, B* exp [-- A*(s -- t)]z}ds -- 
t 

T 

-f(RQ(s) exp [ -  x * ( s -  t)Sx, Q(s) exp [ -  A * ( s -  t)]z) as, 
t 

x ~ z ~  Y .  

The rigorous relation between (7.2) and (7.3) is discussed in Lemma 7.3 below. 
Before providing the proof of Theorem 2.5, we show the following preliminary Lemma. 

L E ~  7.0. - Assume the standing hypothesis (H.1) ~- (1.2) and, moreover thut A 
is a s.c. group generutor on 2~. 

i) For euch v e L,(0, T:~ Y), the corresponding solution z of (2.21) satisfies 
B * z e  Z2(0, T; U) 

ii) The pair {-- A, B} is exactly controllable on [0, T] by means of s T; U) 
--controls if and only if so is the pair {A, B}. 

P~ooF. - (i) With reference to the solution formul~ (2.21a) for z, from (H.1) 
(1.2) and the group property of exp [tA*] we have 

(7.5) 
T 

f [B* exp [-- A*t]x]~dt 
o 

T 

=fiB* exp [A*(~-- t)] exp [-- A*T]xi*dt< 
o 

< e~Ilexp [ -  A*~]x]l~<o'rllx]l ~ V x ~  Y ,  

for some constant CT> 0. Moreover, if geL1(0, T; Y) and weL~(0,  T; :Y), then 

(7.6) 
T t 

o o 

T T 

(from Fubini's theorem) -~ f  f<B* exp [-- A*(t--  s)]g(s), w(t)} dtds< 
0 8 

T 

(from H61der inequality <f(e;)~llg(s)lltwl~,(s~T~u)ds < 
o 

aria (7.5)) 
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I t  follows that  the operator L defined as 

t 

(Lg)(t) -~ B*~exp [-- A*(t -- s)]g(s) ds 
O 

is continuous from El(0, T; Y) to L~(0, T; U). (Notice that  this argument is es- 
sentially the same as the one in Appendix 1 for LiT ). 

Then (7.4) is a consequence of (7.5), (7.6) and (2.21a). 

if) This is essentially due to time-reversibility in the group case. Let {A, B} 
be exactly colttrollable oil [0, T], T ~ c% by means of L~(0, T; U)-controls, i.e. 

T 

let the operator W~u = Afexp (A(T--  t))A-IBu(z)dz be: L~(O, T; U) onto Y. 
0 

Then, (~s in Definition 6.1) equivalently, its adjoint W~, 

(WTU, Y ) r :  (U, W* y)L~(o.r; ~), 

given by W~y = B* exp [A*(T-- t)]y, O<<.t<.<T has continuous inverse [ ]: there is 
C~ > O such that  

T 

(7.7) !] w~y H~,(0, ~; ~) = l IB*  exp [A* ~Jyl ~ d~> O~tlY]I' �9 
O 

Then, since exp [A*t] is a group uad using (7.7) 

T 

jIB* exp [ -  A*~]y[~dv =f iB* exp [A*(T ~ ~)] exp [-- A*T]y]~d~> (7.S) 
0 

> C~llex p [ -  A* T]yIl~> C~[[yll 2 , Vy e Y 

and {-- A, B} is exactly controllable on [0, T], by means of L~(0, T; U)-controls. 
The above argument can be easily reversed from {--A, B} to {A, B}. [] 

7.1. Proo] o] parts (i) and (if) of Theorem 2.5. 

We study the integral Riceati Equation (7.3) by means of a method introduced 
by Da Prato (see for instance [D~ 1).1]), based on a contraction principle ~nd (( '~ 
priori ~> estimates. Therefore, only a sketch of the argument will be provided. In 
order to study (7.3) in the space s C([O, T]; ]()) we need the following 

L E n A  7.1. -- Let M(t) be the linear operator on ]( defined us 

(7.9a) 

(7.9b) 

T 
(. 

(~l'(t)x, z) = j  (B* exp [-- A * ( s  - -  t)]x, B* exp [-- A * ( s  - -  t ) ] z )  d s ,  x ,  z ~ Y 

t 

T - - t  

= f ( B * e x p [ - - A * r ] x , B * e x p [ - - A * r ] z } d r  ( r = s - - t ) .  
0 
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Then ~ ( ) ~  ~e(r, ~([o, ~]; r)). 

P~ooF. - B t  Schwarz inequality applied in (7.9b) followed by  (7.5), we see tha t  

M(t) e s and indeed 

(7.10) 
t (M(t)~,z)<CTI]XI[I[z][ Vx, z+ ~ ,  O<t<T 

or M(t) e s Loo(0, T; Y)). In  fact, M(t) is strongly continuous on Y: from (7.9b), 
Schw~rz inequali ty and (7.5) we obtain more precisely 

I ( M ( t ) x -  M(s)x,  z I = [ f<B* exp [-- A*r]x,  B* exp [-- A*r]z>dr <. 
T - - t  

T - - s  

<] fiB* oxpE- -4*,.]~l~a~ +(c;)+tl.ll -+o 
T - - t  

as 8 --->t 

and this, combined with (7.10) yields the conclusion. [] 

:Next, the right hand side (R.H.S.) of (7.3) defines an operator F(Q) by  means of 
the  l%ight Hand  Side of (7.3): 

(7.11) ~ . t t .S .  of (7.3) : (P(Q)x, z) x, z e :Y 

and Lemma 7.1 yields then t h a t / ' ( Q )  e s C([0, T]; :Y)). Equat ion (7.3) can then 
be rewrit ten as Q - - F ( Q ) .  Our first goal is to prove 

L E ~  7.2. - There exists a unique solution Q ( . ) e  s C([O, T]; Y)) of (7.3), 
i.e. of Q --  F(Q) such that  Q(t) = Q*(t). 

PROOF. Step 1. - (Local existence) With 0 < To < T, denote by  C([T0, T]; s 
the space C(~, C(E~o, rl; ~)) endowed with the norm 

(7.12) I[IQ(')II]T.= sup i[Q(t)]lc(y). 
To <~t<~ T 

I t  is easy to see tha t  C([To, T]; s is a Banach space. I t  is also easy to check from 
the R.H.S.  of (7.3) and Lemma 7.0 tha t  the following bounds are at tained 

(7.13a) 

(7.13b) 

(7.14) 

IIIF(Q(.))III~~ llel[ clT + c~T + ]]ml~c~TilIQ( ) l l l ~~  To) 

C1~= II]exp[-- A*']ll[o; C~,----[IIM(.)IHo<C~. 

IIJF(QI(" )) - P(Q~(" ))Jl]~o< 

< [2 I[R II C~T(T - -  To) max {liIQl(" )lil To, []IQ~(')IN To} J IlIQl(" ) - Q=(" )Ill To 
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for each Q, QI~ Q~ ~ C([To, T]; s  and C~ as in (7.10). Let  now B~(To) denote the  
closed bull in C([T,~ T]; s with radius ~ centered ut the  origin. Fix 

Then, from (7.13)-(7.14) we see tha t  there exists To e [0, T) sufficiently close to T 
such tha t  

(7.15) I" maps B,(To)  into itself 

,~.16) is a contraction on Bn(To ) with contraction constant  less, say, than �89 

The contraction principle then yields a unique solution of (7.3), i.e. of Q = Jr(Q), 

on c([ro,  ~], ~(y)) .  

Step 2. - (Q(t) non-negative definite). From (7.3) Q*(t) is a solution of (7.3) itself, 
on [To, T]; therefore, b y  uniquenes% Q(t ) -~  Q*(t). Let  us now prove tha t  Q(t) is 
non-negative definite. Let  to e [To, T] and zo e I/ be fixed. Given v e L~(t., T; :Y), 
let z(t) be defined by  

t 

(7.17) z(t) = exp [-- A*(t  --  to)] zo + j e x p  [-- A*(t  -- 8 ) ] / ~ � 8 9  ~s 
to 

(see (2.2ta)). If z ~ e ~ ( l * )  and v eHl ( to ,  I'; i~), then z(t) eC([to,  T]; 9(A*)) ,  
z(t) e C([t0, T]; Y), und ~ = - -  A * z  -? R~v. Since (Q($)x, z) is continuously dif- 
ferentiable in t ime for each ,% z ~ 9 ( A * ) ,  and (7.2) is satisfied (by direct differentiation 
in time of (7.3)), it follows that  the map t--~ (Q(t)z( t) ,z( t))  is differeatiable, and 

d / ~ . / ,  d~ (Q(~)z(~), ~(t)) = (Q(~)z(t), z(~)) + ~Q(~)z~,~), z<t)) § (p(t)z(t), ~(t)) 

[using (7.2), and the equat ion 2 -~ --  A * z  ~- R~-v after cancellation with Q(t) = Q*(t)] 

:= (RQ(t)z(t) ,  Q(t)z(t)) - <B*z(t),  B*z(t)> -~ 2 lqe (R~v(t), Q(t)z(~)) 

_ [Iv(t)[I ~ -  I B * z ( t ) p ~ - [ ! v ( t ) +  RtQ(t)z(t)II 2 �9 

Hence integrating over [to, T] and using Q(T) = G (see (7.1b)) yields 

(7.18) 
T 

(Q(to) ~o, ~o) = fiB* ~(t)l~ + ii~(t)i[ ~ ~t + (e~(T), ~(~)) - 
to T 

- f  lIv(t) + R~-Q(t) z(t)II ~ dt . 
to 
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:Next, the above equality can be extended by density to all zoe Y an4 all 
v ~ L2(to, T; Y), vi~ Lemmu 7.1. Consider now the closed loop equation 

t 

z(t) = exp [ -  x , ( t  - to)] z o - f e x p  [ -  a * ( t -  ,)]RQ(s) z(s) as .  
to 

I t  has a unique solution, denoted henceforth by z~ to; Zo), in C([to, T]; Y), because 
RQ(.) is a strongly continuous perturbation of the infinitesimal generator - - A *  
(see for instance, [B1, section 4.13]). Let  v~ to; Zo) be defined by the feedback for- 
mula v~.(t) = -- RiQ(t)z~ Then v~ C([to, T]; Y), and z ~ is the solution of (7.17) 
due to v~. From (7.18) we have 

T 

(Q(to)~o, ~o) =flB*z(t)I~+ liv(*)ll~at + (Gz(~), z(T)) 
Q 

whence (Q(to) zo, Zo) > 0, as desired. 

Step 3. - (A priori bounds). Since Q(t) is non-negative definite, from (7.3) with, 
say, [lx][ < !  we compute 

T 

I(Q(t)x, x)]< ][G]IC~r + f lB* exp [-- A*r]x[~dr 
t 

' 2 r (by (7.5)) < ] [ G h C ~ +  C T 

since R ~ R*>0 ,  where C1~ is defined in (7.11b). 

Step 4. - I t  is now standard to extend the local solution in step 1 to a global solu- 
tion Q( . ) e  C([0, T]; s of (7.3) by  means of the a priori estimate in step 3, in 
finitely many  steps. The proof of I~emma 7.1 is complete. [] 

The following Lemma relates the Differential Riccati Equat ion (7.2) to the In- 
tegral Riceati Equat ion (7.3). 

LEM~A 7.3. - The following statements are equivalent: 

(a) Q e ~(Y, C([0, r ] ;  Y)) satisfies (7.3); 

(b) Q e~(Y ,  C([0, T]; Y)) is such tha t  (Q(t)x,z} is 

tiable in t for each x and z in ~(A*), and satisfies (7.2). 

continuously differen- 

P~oog. - (a) -+ (b). This follows by direct differentiation in t ime of (7.3), which 
is justified for all x, z e ~(A*). 
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(b) -> (a). F rom the ident i ty  

] 

[(Q(s ~ h) exp [- -A*(s  ~- h - - t ) ] x ,  exp [--A*(s ~- h -- t )]z)  --  

- -  (Q(s) exp [-- A*(s --  t)]x, exp [--A*(s --  t)]z)] ~- 

1 
= ~ ([Q(s + 7~) - Q(s)] e xp  [ -  A*(s  - -  t)]x,  exp  [ - -  A*(s  - -  t)z) + 

( i [ exp[ - -A*(s  ~- h - - t ) ] x - - e x p [ - - A * ( s - - t ) ] x ]  e x p [ - - A * ( s - - t ) ] z ) - ~ -  

+ Q(s + 7~) exp  [ - -  X*(s  § h - -  t)]x,  ; [ e x p  [ - -  X*(s  § h - -  t)] z - -  exp  [ - -  X*(s  - -  t)] z] , 

along with assumption (b), we see tha t  

(Q(s) exp [ -  A*(s - t)]x, exp [-- A * ( s -  t)]z) is differeatiable in s, Yx, 

~s (Q(s) exp [-- A*(s --  t)Jx, exp [-- A*(s - -  t)J z) = 

~- ~r (Q(r) exp [-- A*(s - -  ~)]x, exp [-- A*(s - -  t)] z ) [~  

- -  (Q(s) A* exp [-- A*(s - -  t)]x, exp [-- A*(s - -  t)] z) 

(from (7.2)) - -Q(s)  e x p [ - - A * ( s - - t ) ] x , A * e x p [ - - A * ( s - - t ) ] z ) - ~  

---- (RQ(s) exp [--A*(s - - t ) ]x ,  Q(s) exp [--A*(s - - t )]  z) --  

--  (B* exp [--A*(s - - t ) ]x ,  B* exp [--A*(s - - t ) ] z } .  

z e ~(A*), and 

After integration on It, T] of this identi ty,  we finally obtain (7.3). [] 

CORO],LA~Y 7.4. - Parts  i) and ii) of Theorem 2.5 hold true. 

P~oor .  - Par t  i) follows readily from Lemmas 7.2 and 7.3, with G = 0. As to 
part ii), the uulqueness of the  solution to (7.3) in c ( y ,  C([0, T]; Y)) is claimed by 
Lemma 7.2 and this in turn  yields the uniqueness for the Differential Riccuti Equa- 
tion (7.2) via the equivMence result of Lemma 7.3. [] 

7.2. Proo] o] part (ii) o] Theorem 2.5. 

We prove the s ta tement  of part  (iii) of Theorem 2.5 for the more genera.1 optimal 
control problem (7.1) via Dinamie Programming. 

Let  z0 ~ Y, v ~ L~.(0, T; Y), and let z(t) be the corresponding solution of (2.21a). 
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l~epeating the argument used. in step 2 of the proof of Lemma 7.2, we find 

(7.19) 

T 

(Q(O)zo, zo) = Jz,r z ) - l i lY ( t )  + R~Q(t)z(t)ll~c~t 
0 

o denotes the unique solution in (which corresponds to (7.18)); moreover, if zz 
C([0, T]; I7) of the closed loop equation 

t 

(7.20) z(t) = exp [ -  A* t] z o -  f exp [--  A *(t --  s)]RQ(s) z(s ) ds 
0 

~ is defined via the feedback formula (2.25), then from (7.19) we have and v~ 

(7.21) (Q(O)zo, zo) = Jz,a(v~, z ~ = JT, e(v~ . 

But (7.19) also yields 

(7.22) (Q(O) zo, Zo) < J~Av, z) vv e L~(o, T; ]~). 

o is an optimal control, and (2.26) holds. Then vz 
Conversely, if 4 is an optimal control, with corresponding optimal solutioa 

via (2.21b), then by (7.22) JT,a(4 ,~) :Jz .G(V ~ = (Q(O)zo, Zo); and, from (7.19), 

(7.23) 4(t) = -- t~q(t)~(t)  for a.e. t e  [0, T] .  

This implies that  ~ is a solution of (7.20) ia r T]; Y). From the uniqueness 
o whence 4 o via (7.23). The proof is complete. [] result for (7.20) we have ~ ---- zz, = vz 

8, - Case T = ~ .  Proof  of  Theorem 2.6 and 2.7. Dual algebraic Riccati equation 
when A is a group generator. 

ORIENTATION. - -  By section 7, there exist operators Qz(t), O < t < T ,  which satisfy 
a differential Riccati equation, in fact the dual equation (7.2) [or (7.3)], in sharp 
contrast with the situatioa for the operators Pz(t), 0 < t<  T, of the original problem, 
for which no claim was made as to whether or not they satisfy a differential (or 
integral) Riccati equation for R qwnregu~ar, say R ---- I (see section 1.3 and Orien- 
tation at the beginning of subsection 2.5). Thus, ia proceeding from the finite to 
the infinite horizon problem we are now in a more favorable situation with the 
operators Q.~(t) and the dual problem than we were in section 4 with the operators 
P~:(t) and the original problem. Hence, in this section, our line of argument follows 
along more classical lines than it was possible ia section 4. Accordingly, only the 
major highlights of our proofs will be given. 
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8.1. Precis o /parts  (i), (ii) and (iii) o] Theorem 2.6. 

Part (i). - [As Lemma 4.2a]. I t  is standard [B-l]. The increasing monotonicity 
of the optimal cost JT(v ~ z ~ with Tr162 produces, by virtue of (2.26) or (7.21), a 
monotonically increasing sequence of self-adjoint operators Qz(O) which--moreover--  
is upper bounded by  virtue of the finite cost condition (2.27) for problem (2.28). 
Hence, there exists Q~e s ( ~ :  (~*~>0 such that 

(8.1) ~ x  : l imQz(O)x,  x e Y 
T->co 

Part (ii). - We begin to prove some further properties of Qz( ) (see Lemma 4.2b 
for the analogous property for Pz(t), proved however in a different way). 

LEnA 8.1. 

(8.2) Qz(t) = Qz+~(t ~- 7) for each T >  0, t e [0, T], and v > 0 .  

PlCOOF. - Rewriting (2.24) with T § 7 in place of T and t + 7 in place of t, a~d 
then using the change of variable a = s -  7, we obtain 

T 

§ 7)x, z) =f<B* exp [-- A*(a -- t)]x, B* exp [-- A*(a -- t)] z> da (8.3) 

T 

-I(RQz+~(~ § 3) e x p  [-- A*(~ - -  t)Jx, Q~+@ § 7) exp [ -  A*(~-- t)Jz) ~ .  
t 

This equation has the unique solution Qz(t), by Theorem 2.5 (ii). Ther~ Qz+~(t § v) = 
= Q~(t). D 

The counterpart of Lemma 4.2c for Pz(t) is now 

COROLLARY 8 . 2 .  -- F o r  e a c h  t o >  0 a n d  x E  Y ,  

(8.4) Qz(t)x -+ Qcox as T -+ + ~ ,  uniformly in t ~ [0, to] 

where ~r was defined in (8.1). 

P~ooF. - The proof of part i) of Theorem 2.6 showed Qz(0) <(~r for each T > 0. 
This inquequality, along with the identity Qz( t )= Qz-t(O) given by Lemma 8.1, 
implies: 

(8.5) ~ - -  Qz(t)>O , Vr>t~>0.  

Byt  Lemma 8.1 and the monotonieity of QT(0) in T yield 

(8.6) Qz(t) = Qz-t(O)>~Qz-to(O) VT>to>~t>~O . 
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Then, from (8.5) and (8.6), we have 

(8.7) 

or, in other form, 

(8.8) 

Then 

(8.9) 

Since 

o < O ~ -  Q~(t)<Q~-  Q~_~.(o), 

Vx~ 1~. 

[Q~--QT(.)?x-~O i ,  C([0, to]; ](), V x e ~ .  

[I [ ~ -  qT(t)]xll = IIEQ~- q~(~)]+[~ - q~(t)]+~][ < oll EQ+- q~(~)]+xl[ 

for some constant c > 0 (which exists by (8.9) and the Banach-Steinhaus Theorem), 
we finally have 

[ Q ~ - Q T ( . ) ] x - + o  in 0([o, to]; 17), x ~ : r .  [] 

We can now prove that  Q~ defined by (8.1) satisfies the DARE (2.23). Indeed, 
let / ' > t o >  0, and consider equation (2.24) when 0< t< to .  Splitting the integrals 
in (2.24) over [t, to] and [to, T], we obtain 

to 

~) =]<B* exp [-- A * ( s  - -  t)]x, B* exp [-- A * ( s  - -  t)] z> ds - -  
t 

to 

- J ( R Q z ( s )  exp [ -  A*(s  - -  t)]x,  Q~(s) exp [ -  A * ( s  - -  t)]z) ds + 
t 

~- (QT(to) exp [-- A*(to - -  t)]x, exp [-- A*( to - -  t)Jz). 

:Now, Corollary 8.2 guarantees that  we can take the limit as T~ c~ in the last identity, 
to obtain 

(8.1o) (Q~x,  z) = (Qr exp [ -  A*( to - -  t)Jx,  exp [-- A*( to - -  t)]z) q- 

to 

+f<B* exp [-- A*(s  --  t)]x, B*  exp [-- A * ( s  - -  t)]z> gs - -  
t 

to 

-f(Re~ exp [-- A*( to - -  t)]x, Q~ exp [ -  A*(s  - -  ~)] z)gs .  
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Then, recalling (7.3), we see tha t  Qo~ is the unique solution of the integral l~iccati 
Equat ion (7.3) with G = Q~o. Hence ]Jemma 7.3 implies t ha t  Qr satisfies the Dif- 
ferential l%iccati Equat ion (7.2), which reduces to (2.23) for Q~ is independent of t. [] 

Part  (iii). - We first prove the following lemlna, of interest in itself, on a 
(( minimali ty )) property of the operator (~oo defined by (8.1). 

L E n A  8.3. - I ]  ~ ) ~  ~(Y) satisfies the DARE (2.23) and ~)oo = ~)*>0,  then  

(a) for each zo e 17 the feedback control ~(t) = -- Rt(2r satisfies Joo(~)< 
<(~)~zo, Zo) (in particular, ~eL2(0,  oc; Y), and J~(~) < oo); 

(b) ~)oo>Qr where Q~ is defined by  (8.1). 

PI~OOF. Part  (a). - Consider problem (7.1) with G = ~)oo, By  assumption, it  
follows tha t  ~)oo is the corresponding solution of (7.2), or (7.3). Then (7.19) can be 
rewrit ten as 

(8.11) 
T 

(c2 Zo, = ( v ) - f  + RtC2~z(t)l]~dt, 
0 

for each v a Z2(0, T; 17), where z is the solution of (2.21) due to v. When v----~, 
ident i ty  (8.11) reduces to 

T 

(8.12) (Q~zo, Zo) = J~z~(v) , whence (QcoZo, Zo)> fIB*~(t)12+ l[~(t)]l~dt, 
0 

by defmitioi~ of J T . ~  in (7.1). ~Tote tha t  ~ does not  depend on T. Then the claim of 
part  (a) follows from (8.12) as T - +  oo. 

Part  (b). - Consider problem (7.1) with G ~ 0, and denote, as in section 2.5, 
by  JT the corresponding cost functional, and by  v~ the optimal control. Then 
JT(v~ Hence, using also (2.26) and (8.12), we have 

(Q~(O)zo, Zo) = JT(V~) < JT(~) < (Q~Z~, Z~ . 

This yields Q~<Q~o as T -~ co, recalling (8.1) = (2.28). [] 

Continuing with the proof of Par t  (iii), when we take Q~----(~oo in Lemma 8.3, 
we get 

J~(v ~ < (@~ %, Zo), 
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where v~ is defined by (2.29). Thus, if we prove tha t  

(8.13) (QcoZo, Zo)<J~(v) Vv e L~(0, oo; 17), 

then v~ will be optimal control for problem (2.22), whose uniqueness is guaranteed 
by the strict convexity of J~ .  Then the proof of part  (iii) of Theorem 2.6 is com- 
plete if we prove (8.13). Let  veL~(O, oo; 17); by  definition of J r  and J ~  we have 

Jr(v) < J~(v). 
Moreover (QT(O)zo, Zo)<J~(v), from Theorem 2.5. The last two inequalities, along 

with (8.1)----(2.28), yield (8.13) ~s T - ~  oo. [] 

8.2. Proo] el parts (iv) and (v) of Theorem 2.6. 

Part (v). - The counterpart  of Lemma 6.1 a) for the dual problem is 

L E ~  8.4. - Consider the dynamics (1.1) under the standing assumption 
(H.1) = (1.2) and let A be a s.c. group generator oa 17. Then, the pair ( - - A ,  B} 
(equivalently, th  pair (A, B}, see Lemma 7.0 b)) is exactly controllable over [0, T] 
by  means of I~(0, T; U)-eontrols if and only if Qr(0) is an isomorphism on 17. 

P~ooF. - ik proof exactly as in Lemma 6.1 a) could be given (for the problem 
(2.21)-(2.22)). Here, a variation of the same idea will be indicated. 

P~OOF. Step 1. - We prove tha t :  for each zo e 17, 

(8.14) 
T 

(Qr(O)zo, Zo) <fl  B* exp [ -  A*t]zol~dt<~(Q~(O)zo, zo) , 
0 

where v is a constant  independent of Zo. To prove (8.14), denote by ]. ]T and II" [[z 
the (canonical) norms in L~(0, T; U) and ~5~(0, T; 17), respectively, and let L be the 
bounded hnear operator from L~(0, T; 17) (in fact, El(0, T; 17)) to Lp(0, T; U)) 
defined by (7.6). Moreover, denote by ~ the function in L~(O, T; U) defined as ~(t) = 
= B* exp[ - -A*t ]zo ,  see Lemma 7.0. The cost Jz in (2.20) can be rewritten as 
Jz(v) = ]L~ § V[~ § [[viii' Since I § L * L  is an isomorphism in Zp(0, T; 17) (I  = 
----identity in L~(0, T; Y)), we can define an element ~ e I~(0, T; 17) as 

= _ (~ § L * L ) - I L , ~ .  

After some manipulations we obtain 

JT(v)- JT(~) = I L ( v -  v)l~ + ] Iv-  ~ll~. 
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This impiies that  ~ = v~, and that  

(8.i5) 

Since, by definition, JT(v~)>~ ][v~H~, from (8.15) we have 

(8.i6) J~(O)< (e + 2)J~(v~.), 

where v is the norm of L between L~(0, T; Y) and L~(0, T; U). Since v~ is optimal, 
a converse of (8.16) is also true: 

(8.i7) J~(v~)  < J~,(o ) . 

If we rewrite (8.16) and (8.17) using the definition of J~(0) and (2.26), we ob- 
tain (8.14). 

Step 2. - The assumption and the characterization 

T 

fiB* exp [-- A*t]zol~dt> C~l[z0][ ~ 
9 

for exact controllability of ( - -A,  B} by means of L~(0, T; I/)-controls, (see Lem- 
ma 7.0 ii) easily imply the desired conclusions via (8.14). [] 

The counterpart of Lemma 6.1 b) is now 

C0]~OLLARY 8.5. - In addition to the hypothesis of Lemm~ 8.4 assume further 
the finite cost condition (2.27) for problem (2.22) so that  ~ is well defined by  (8.1). 
If the pair (A, B} is exactly controllable over some interval [0, T], then Q~ is an 
isomorphism. 

PROOF. - I t  is sufficient to recall that  Q~o>~Qz(O)~ and to use Lemma 8.4. [] 

Thus the claim of part (v) of Theorem 2.6 is proved. 

_Part (iv). - I t  follows from the following more general uniqueness result, along 
with Corollary 8.5. 

Tm~ORE~ 8.6. - Under the assumptions of Theorem 2.6 we have: 

(a) a solution ~ ) ~  ~(I  7) of the A.I~.E. (2.23), such that ~)~o = Q*~>~0, is equal 
to 0~ defined by  (8.1)---- (2.28) if and only if, 

(8.19) for each z0e Y ,  (Q~z~(t), z~(t))-->0 as t~oo; 
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where z~(t) o : $~(t, O; zo) is defined by  Theorem 2.6 (iii); 

(b) if 0 ~  is ~n isomorphism, then, for each zo e Y, 

z2(t)- o as 

(e) if ~ is an isomorphism (this is true, in particular, under the  control- 
lability assumption of {-- A, B} as in Corollary 8.5), then ~ is the unique solution 
of D A R E  (2.23) in the class of all Q e s such tha t  Q --  Q*~>o. 

P~OOF. Part (a). - Recall tha t  (8.11) holds true for each self-adjoint non-negative 
solution ~)~----- ~ of (2.23), and for each v e L~(O, T; It). 

Only i]. When Q ~ =  Q~ and v : v~ are used in (8.11), with v~ given by  (2.29) 
we obtain via the definition of J a , ~ :  ~ :  

T 

(@~ Zo, Zo) : f i B *  =~(t) l ~ + live(t)[]~ dt + ( ~  z~(T), z~(T)). 
o 

As T - > - ] -  c% recalling (2.30) ,we obtain (8.19), with ~)~----0~. 

I]. Conversely, assume (8.19), and let ~)~ be a solution of (2.23). 
with v : v~ we have 

T 

(Q Zo, Zo)< f lB* z (t)l + IlvL(t)li av + (q zL(T), zL(r)). 
0 

From (8.11) 

As T ~ ,  using (8.19) and (2.30), we have ~)~<Q~; then from Lemma 8.3 b) we 
obtain ~)~---- 0~:  

Part b). - From Par t  a), i.e. from (Q~z~(t), z~(t)) --> O. 

Part e). - From Par t  a) and b). [] 

R E ~ K  8.1. - B y  arguing as in the proof of Theorem 2.3 one can prove tha t :  
the uniqueness result in Theorem 8.6 v) for the  solution of the D A R E  (2.23) holds 
true if one  replaces the exact controllability assumption of the pair {-- A, B} (equi- 
valently,  of the  pair {it, B}, Lemma 7.0 ii) given there with the  following somewhat 
weaker (~ detectabil i ty ~> type  of condition: 

There exists a densely defined (not necessarily bounded) operator K:  U D 
D ~ ( K )  -+ Y such tha t  the following three conditions are fulfilled: 

(i) the operator A ~ =  A * ~ - K B *  is the generator of a s.c. semigroup 
exp [Axt ] on 17; 
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(8.20) 

(ii) the  semigroup exp [Ax t ] is uniformly stable: there  exist cx, ~ > 0 s.t .  

(iii) with A *  = A -4:- B.K* we have 

co  

JIK* exp [A' t imid<  CilxIl~ Vx e I7 [recall (5.21)] .  
0 

As to the  existence of such K,  we have:  

P~oPosITIO~ 8.7. - With  A the generator  of a s.c. group on Y, and B sat- 
isfying (tL2), let  the  pair  {A,  B}  be exact ly  controllable by  means of L~(0, T ;  U)- 
controls. Then~ there  exists an operator  K satisfying the three conditions of 
Remark  8.1. Moreover, K is given by  

(8.21) K = - P ~ B  

where Po~ is the l~iccati Algebraic operator  for the  dynamics (1.1) with respect to 
the cost (1.6) with R = I .  

P~OOF. - Exac t  controllabil i ty of {A, B} guarantees a fortiori  the finite cost 
condition for the optimal control  problem (1.1), (1.6) with /2 = I .  Then~ Theo- 
rems 2.2 and 2.3 guarantee  the  existence (and uniqueness) of the l~iceati operator/~oo 
such t h a t  A - -  B B * P =  is the generator  of a s.c. semigronp exp [ ( A -  BB*P~o)t] onY, 
which moreover  is uniformly stable here. 

Also Poe is the  unique solution of the  AlOE (2.16) with i2 -= I 

(8.22) (Poox, A z )  -~- (Pc~Ax, z) q- (x, z) = ( B * / ~ x ,  B* P~z>  , x,  z ~ ~ ( A - -  BB*-Poo) . 

Thus the choice (8.21) for K guarantees conditions (i)-(ii) of l~emark 8.1. To show 

tha t  such K satisfies also (8.20) we consider the corresponding dynamics 

(8.23) wt = (A - -  B B *  P ~ ) w  , w(O) = x e ~Y . 

Taking the Y-inner product  of (8.23) with P ~ w  yields 

(8.24) Re (wt(t), P ~ w ( t ) )  = I~e ( P ~ A w ( t ) ,  w(t)) - -  ! B * P ~ w ( t ) p  . 

Using now (8.22) with x = z = w for x ~ ~ ( A  - -  BB*Poo) gives 

2 ~e (~Aw(t), w(t)) + Ii~(t)lI2= JB*_P~(t)I 2 
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which inserted in (8.24) yields theu the right hand side of 

1 d , 1 ~ 1 i B ,  p ~ w ( t ) t  ~ 2 dt ]]P~w(t)ll"= Re (wt(t), P~w(t))  : - -  -~ l[w(t) l] - -  

Integrat ing in t and using the uniform decay of w(t) gives 

c o  

(8.24) f]B*Po~w(t)l~dt< IIxll ~-~ (Poox, x )<  (1 ~- IIP~II)]Ix]l ~ x e  ~ ( A - -  B B * P ~ ) .  
0 

The inequali ty in (8.24) is now extended by  continuity to all of x e Y and this 
proves (8.20) with K * - - - - -  B'Poe as in (8.21). [] 

8.3. Proo] of Theorem 2.7. 

I t  follows b y  combining Theorem 2.4 and Theorem 8.6 e) via uniqueness of the 
solution of the D A R E  (2.23). In  fact~ if {A*~ Rt} is exactly controllable on [0, T] 
by  L2(0~ T; Y)--controls,  then the finite cost condition (2.27) holds a fo r t io r i  t rue 
for problem (2.21)--(2.22). ~M:oreover~ Theorem 2.4 yields tha t  Q~ (defined there ~s 
P ~ )  is ~ solution of the D A R E  (2.23) for all x~ z ~ ~(A*), see (2.18). Similarly, if 
(-- A, B} (equivalently, {A, B}) is exactly controllable on [0, T] b y  L~(0, T;  U)- 
controls~ then the finite cost condition (I t .3)-~ (2.7) holds a f o r t i o r i  t rue for the  
problem (1.1), (1.6). Moreover, Theorem 8.6 e) yields tha t  ~)~o is the unique solution 
of the D A R E  (2.23) for all x, z ~ ~(A*) .  Thus Qr Q~. [] 

Part (ii). Step 1. - Let  See(t) be the Co-semigroup on Y generated by  -- A * - -  RQ.  
Let us show that  

(8.25) S~(t) --~ Pcoqs~(t)Q~o 

where Oo~(t) is the semigroup generated by  A~, defined in Theorem 2.2 (ii). 
Let  T(t) = PooqS~(t)Qr I t  can be readily checked that :  a) T(t) is a Co-semigroup 

on Y; b) the space W = {x ~ :g; Qx e 2(AF)} is invariant for T(t), i.e. T(t)(W) c W; 
c) for every x ~  W~ T( t )x  is differentiable for t > 0 ,  and 

d 
(8.26) d-t T( t )x  = P c oA g~T( t ) x .  

From Theorem 2.2 we have, for every x ~ W and y ~ ~(AF), 

(P~A~QooT(t)x, y) = (A~(t)Qo~x~ Pooy) = 

= ( ~ ( t ) Q ~ x ,  A*P~oy) -- <B*Po~( t )Q~x ,  ecoy> = 
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[from (2.!6)] 

= - ( r  P o o A y )  - -  ( R + + ( t ) Q ~ x ,  V) = 

= - ( r ( x ) x ,  A V )  - -  ( R Q J ( t ) ~ ,  v ) .  

Thus T(t)xm @(A*), and P~A~QcoT(t)x ~ - ( - - A * - - R Q , ) T ( t ) x ,  whence 

d 
d~ T(t)x ~- (-- A* -- RQ~) T(t )x ,  for every x e W 

(from (8.26)).The uniqueness of the solution of the  equation dw/dt = (-- A*--RQ~)w, 
with w ( 0 ) ~  x, yields Sr = T(t)x for every t > 0  and x e W .  But  W is dense, 
so t ha t  S~( t )= T(t)~ and (8.25) is proved. 

Step 2. - F rom Theorem 2.6 (iii) we have Sr z~(t~ 0; zo) for every zoe Y. 
l~eeM1 also tha t  q~( t )yo= y~(t~ O, yo) for every Yo~ ]~ (Theorem 2.2(ii)). Thus 
(2.9) and (8.25) yield 

vL(t , 0, Zo) = -- R+yL(t , 0; Qoozo) . 

Similarly~ the relation 

uL(t, O; Yo) = - B ' z ~  t, O; PooYo) 

follows from (2.13). The proof of Theorem 2.7 is complete. [] 

Appendix 1: Regularity of LoT and Lo*T; proof of (1.4) and (1.5). 

We shall prove the regularity of Z0~ described by (1.4) and the regularity of L* T 
described by  (1.5), us a consequence of the standing assumption ( H . 1 ) =  (1.2a), 
see [L-T.1-2]~ [L-T.9]. 

Step 1. - Let  v~.5i(0, T; Y) and u eL2(O, T; U). Then 

T 

f((Lo~u)(t), v(t)) dt 
0 

T t 

0 0 

T t 

=f f<<~),  B* exr [A*(t - ~)l ~(t)> d~ dt < 
0 0 

T t t 

0 0 0 
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(replacing t with T and using ( H . 1 ) =  (1.2a) 

T 

0 

Thus by the closed graph theorem 

(*) Lor: continuous JS,(0, T; U) ~ L~(0, T; Y) 

Step 2. - By  taking now u .  smooth, say u. eC~([O,T]; U) with u . - + u  in 
L,(0, T; U), and integrating (s by parts, we plainly improve the continuity 
in ( . )  to the continuity in (1.4). Then (1.5) follows by  duality. 

Appendix 2: Illustration of abstract model to (i) second order scalar hyperbolic equa- 
tions; (ii) plate like equations and (iii) first order hyperbolic systems. 

Throughout this Appendix, f2 is an open bounded domain in R" with sufficiently 
smooth boundary _F. 

A) Second order scalar hyperbolic equations with Dirichlet boundary control. 

Let  ~'(~, 8) be a second order, elliptic operator on f2 with symmetric coefficients 
of its principal part  (cunonica.lly -- A) and consider the following mixed problem 

w , , =  - 

Wo, w , l , = o =  wl 

= u r ;  L . ( r ) )  

in (0, T ] •  

in f2 

in (0, T] •  ~- X .  

We now discuss the connection between problem (A.1) and model (1.1) subject to 
assumption ( H . 1 ) ~  (1.2). To put  problem (A.1) into the abstract form (1.1) we 
choose [L-T.1], [L-T.2], [L-T.3], [L-L-T.1], [T.1] or [DaP-L-T.1]:  Y =  L2(f2)x 
• y = [w, w~] ; U = L,(/") ~n4 

I - - D u  
0 I 0 (formally) ; A-1Bu -~ (A.2) A = -  _ d  0 ; B u =  .~Du 0 

d being the realization of the elliptic operator d(~ ,  8) with homogeneous Dirichlet 
B.C. ; D is the (( Dirichlet ~> map defined by (for simplicity, and without  loss of gen- 
erality for the problem of the present paper we assume tha t  2~ ---- 0 is not ~n eigen- 
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value of ~r 

(A.3) 
Dv = h+-+[ -- J ( ~ '  8)h = 0 in X2 

h~-  v i]i I '  

/ ) :  continuous L~(F) -+ N(d '~-9 = g~-~(D), e > 0 

(.~.4) 

exp [At] = ~(t) .Y(t) 

= D * ~ e * ~ - i z ~ ,  with dense domain in Y 

where ~(t) is the s.c. cosine operator generated by  - - ~ '  and 5f(t)y =f~(v)ydv .  
Moreover o 

0 
(A.5) (Lu)(t) = 

t 

0 

(A.6) B* exp [A*t] l Y~ y~ [ = - -D*d*S f* ( t ) y~  + D*~*(t)y~, y -~ [yl, y~] e Y 

The Abstract Assumption (H.1) = (1.2). In  view of (A.6), then assumption (It . l )  for 
problem (A.1) means 

(A.7) D* d * ~ * ( t )  i continuous L~(/2) -+ Z~(0, T; L~(F)) 
D* d * ~ * ( t )  ] 

which holds indeed true, as proved in [L-T.2], [L-L-T.I]. In  P.D.E. ' s  terms, the 
regulari ty (A.7) means, in turn  tha t  for the following hyperbolic problems with, 
say, the  L a p l a c i a n -  d (~ ,  8) = A: 

(A.S) 

% ~ = A v  1 __ in Q t ~ f t ~ = A w  in Q 

~i<=o-~ %; %i~=o-- 0 in s and ~olt=o= 0; ~ot[~= o =  W~ in D 

~o=- 0 in 2 [ ~o= 0 in X 

with 9% e Ho~(~) and V1 e Ls(f2) we have 

8~ z 8~o 
(A.9) ~. e L2(Z) and -~v e L2(Z) 
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a sharp trace theory result (not obtainable from interior regularity, via s tandard 
trace theory):  see above references. In  the general case of ~/(~, 8), the conormal 
derivative 8/~v~ replaces the normal derivative of the Laplaeian case. 

Thus for problem (A.1) the associated cost is 

(A. lo )  

T 

f(R~w(t), w(t))~,(.) + (R~wdt), 
0 

w,(t))~-,(~) + lu(t)[~,wldt 

and assumption (H.2) = (1.9) means 0 < R I =  R* e ~(J5~(~9)) and 0<R~----/~* 
e ~(H-~(~)). 

Finite Cost Condition (It.3)---- (2.7). As explicitly poillted out il~ l~emark 2.1, 
exact controllability on the space Y =  Z~(~Q)• holds true for problem (A.1) 
with constant  coefficients, for an arbitrary domain t9 with sufficiently smooth /~ 
[L-2; L-3], IT.2], the latter reference also in the variable coefficient case. Thus, 
a fortiori, the finite cost condition (tI.3) is fulfilled in these cases. 

B) Second order scalar hyperbolic equations with s boundary control 

We consider the canonical model 

(]~.1) 

Wt, t ~ Z~W 

3w z W = u e .~,(0, 2'; .~ ,(r)) .  

Let  d o  be the (negative self-adjoint) realizatioI1 of A on L~(~) with homogeneous 
Neumann boundary  conditions. Following [T.1], [T.3], [L-T.1]~ [L-T.2] introduce the 
Neumann map (of the translated problem) s defined by 

(B.~) 

(B.3) 

where 

{(zJ 
- - 1 ) h ~ 0  in 

2r : h <:~ 8h 

iV: continuous L~(/~) -> ~ ( d  ~-~) _~ H~-Z~(t9) 

- d = -  d o - i .  

To put  problem (B.1) into the abstract form (1.1) we choose (according to recently 
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established regularity results [L-T.6]) 

( B . 4 )  Y =--- H~( /2 )  x H~-~(Y2) , y = [w, wt ]  , U = .Ld_P ) 

= 9 ( d  ~/2) x [9(~r 

(with equivalent norms, duali ty with respect to L=(.O)), where 

(B.5) 

~=i for d im/2  = l 

for /2 u sphere~ d i m / 2 > 2  

for D a parallelepiped, d i m / 2 > 2 ,  e >  0 

for general (smooth) domains /2, d i m / 2 > 2  

Following [L-T.1], [T.I], [T.3] etc., the operators A and B of model (1.1) are 

0 11 of (B.6) A = - - ~  0 ; B u  = .~r162 (formally): A - * B u  = 0 

(B.7) exp [At] = ~(t) 5e(t) 
- -  

with c#(t) the cosine operator generated by  the negative self-adjoint operator --  ~1 

and o~(t)=jYd(,)d~.  Using (B.6) and the topologies of (BA) we compute B* for 
o 

y = [y , ,u  ~ 

and 

(B.8) 

(B~t, y)r~-- (~;]Nu, y2) [9 (~-~ /2 ) ] ,  = (.~/~.z~T'tt, Y2)L~(~)= (u, LV*ze "~ Y2)s,(r) 

I 

B* I Yl --  N* ~ y ~  
I 

Moreover, by  Green second theorem [L-T.1], [T.1], [T.3] 

(B.9) N* d ]  = ]Ix.. 

Thus by  (]3.8) and (B.7) with A = -  A*: 

(B.!o) 

(B.:H) 

I 
B* exp [A* t] I yl 

t Y2 
== N* d~ [~Sz ( t )y l  - -  c~(t)y2] 

----- ~ *  ~r ~(t)  o /~- ly~  q- 5~(~) ~r 

= -TV'* .~r 1)I2F--~(t)~.e](C'-l)/2y2]-~- N * d l + ( c ' / 2 ) ~ ( t ) ~ r  

y ---- [y~, y~] e Y 
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The Abstract Assumption (H .1 )=  (1.2). Ia  view of (B.11), assumption (H.1) is 
equivalent to 

N* d(~+~)/2 c#(t) } 
(B.11) ZT*~r : continuous Z~(D) -->/~2(0, T; ~ (F ) )  

which indeed holds true, as proved in [L-T.2], [L-T.6]. By (B.9), (B.10)~ we have 
that  (B.11) is equivalent in P.D.E.'s terms to 

X 
where 

iPtt-~ diP 

iPlt=0 = iP0_~___ __ 5 ~ a - 1 y 2 ;  iPtlt= 0 ~_ i P l =  " ~ Y l  
(B.13) 

~o. 

Finite Cost Condition ( H . 3 ) :  (2.7). Here~ at present, the situation in the 
Iqeuman case (B.1) is quite different from the Dirichlet case (A.1). In  fact, exact 
controllability (or uniform stabilization) results with JL~(Z)-lqeumann controls have 
been established so far only on the space Hi(g2)x L~(Y2) (of finite (~ energy 7>) (under 
some geometrical conditions on ~9, if dim f2~>2) [C-1, C.2], [L.2], [L.7], [L-T.4], 
[L-T.13], [T.3]; or else in the larger space L~(~9)• [HI(Y2)] ' with a larger class of 
controls, see [L.2], [L-T.13]; an4 by interpolation in between. Thus, by (B.5) the 
space of exact controllability and the regularity space Y coincide for dim ~ - ~  1, 
in which case the finite cost condition is afortiori fulfilled. Thus, the case dim Q = 1 
for (B.1) is covered by the theory of the present paper. In higher dimensions, how- 
ever, the question of the finite cost condition, in particular the question of exact 
controllability oa the space Y in (B.5) with L2(X)-controls, is open at present. 

C) Plate like equations. 

Consider the canonical situation 

(o.~) 

w t t + A Z w = O  in (0, T ] • 1 6 3  a) 

wlt=o = Wo , wtlt=o = wl in Y2 b) 

w l x =  ul in (0, T ] •  c) 

~W 
~ -  = us in (0, T ] •  d).  

To put problem (0.1) into the abstract form (1.1), we shall specialize to two choices 
of spaces {U, Y}, in order to satisfy both the (trace regularity) assumption 
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(g.1) = (1.2) and the  Fini te  Cost Condition (H.3)----(2.7). Deferring the choice 
of such spaces to the end of om ~ analysis, we begin by  setting 

t 0 I 
(C.2) A---- _ . ~  0 ' 

where the operator  ~/, defined by  ~r = As],  ~ ( ~ r  H d ( . Q ) n  H~(I2), is positive 
self-ajoi~t on, s~y, Z~(tP). Thus --  ~r generates a s.c. cosine operator  (self-adjoint) 

qC(t) with S f ( t ) y  =f~(,)ydv, say in Ls(~2), t e R. Then, as in (A.4), we obtain 
0 

(~.3) e]KP[A~] = I (be(t) ~(~)i 
- ~ s p ( t )  ~( t )  " 

Next ,  we introduce [L-T.7J,[L-T.8]  the  foHowing operators (Green maps) G~ an4 Gs 
defined by :  

Gig1 "~-- h <::> (c.4) 

(C.5) ff~g~-- h <=> 

(C.6) 

ASh = 0 in .(2 

hi t  = gl in /7 

~h r :  0 in F 

A ~ h = 0  in g2 

hi:. ~- 0 in F 

dh r =: gs in F 

Gx: continuous L2(F) -* L~(~2) 

(c.7) Gs: continuous Ls(F)  ~ Ls (~ )  . 

As operator  B we take  

I u~ ] 0 
(C.8) B = (formally);  

us G~ul -~- Gsu2 

We now specify the choice of spaces U, Y in model (1.!) for problem (C.1). We 
consider two cases. 

Case 1. - ul ~-0  in (C.1 c)). Thus we consider only the control action us in the 
Neuman boundary  condition (C.1 d)). ~re  then  take  U---- U1 • Us, with U1---- {0} 
and 

(C.9) U2 : Ls(/ ') ; Y ~_ ~(.Q) • H-2(t~) --  L~(~) x [~ (d~) ] '  
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Wi th  these topologies we compute B* with 

and obtain from (C.8), (C.9): 

(G.11) B*IYl l  = G * Y 2 ; y ,  

f rom which we have using exp [A* t] : exp [ - -At ] :  

(o.14) 

where 

B*] v~ ) 
y~ 

~t~+ A ~  - 0  in Q 

wl,=o = - d - l y 2 ;  w,I,-o : Yl in t9 

8~[ ~ 0  i n I : .  

The Abstract Assumption ( H . 1 ) :  (1.2). 
(H.1) for problem (C.1) with ux ~ 0 me~ns 

(0.16) S y,}ll~.(~)xE~(~,,,,)~, = cHI{,po, ". , ~1} IIH.([2)• ~ IAvl ~ d x <  c~ II {y~ 
Z 

Indeed, condition (C.16) ~lw~ys holds true for any 0 < T < co and any ~9 with 
sufficiently s m o o t h / ~  us it follows by  transposition ~pplied to recently established 
regularity results for the problem dual to (C.1) for which we refer to [L.5], [L-T.8]. 

Finite Cost Condition (H.3) = (2.7). This follows ~ fortiori, with the  present 
choice of spaces us in (C.9) corresponding to the case ul ~ 0, from recent results 
on exact controllability established in [L.2]. 

In  view of (C.14)~ then assumption 

(c.15) 

I I 
B* exp [A*t] l Yll : G**.~( t )y l - -  G*~V(t)y ,  = e~* dE~( t )y l - -  V( t )d - ly , ] .  (G.12) 

I I Y' 

by  Green's second theorem one obtains as in [L-T.T]~ [L-T.8] 

(c.x3) a * d f  = A/It ,  ] e ~ ( d )  

and hence by  (C.12)-(C.13): 

B*exp[A*t]lY~ I 
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Explicit ly the  cost functional J for problem (0.1) with % ~ 0 is then:  

c ~  

(0.17) J(w, %) =f(Rlw(t) , w(t))z~(r)§ (Rewt(t), wt(t))n-~(n) § lu2(t)l~r 
0 

Case 2 . -  u~=--0 in (C.1 d)). 3Tow we consider control action u, only in the  
Diriehlet boundary  condition (C.1 e)). We then take U-=  U1x U~, U~= {0} and 

(0.18) U~ = L~(_P) ; I(- = [2(~r X [..~(,z~'~)] ' = H - I ( / 2 )  X V',  

(0.19) ~(~r = Hl(~2) 

(with equivalent norms) 

(0.20) 2 ( d ~ )  = v 

{ 0} (c . s l )  V = ] e m(~?):  ] Ir = N r 

Then in the  topologies of (C.18-C.20), we compute B* as in (C.10) and obtain 

,'t (C22) B* ]Yl ~ ~ ----- G; zC-~y~. 
Y2 

Recalling (C.3) and using exp (A't) = exp ( - - A  t) we obtain by (C.22) 

B*exp[A*tJ[Yll =G*[--s/~6P(t)y,+ zC-~(~)y~] = (0.23) 

= G ' d [ - -  a/-}aP(~)yl § a/-~g(*)yd 

counterpar t  of (0.12). Xow, however, we have 

(0.24) O * ~ q  = ~ A]I~ , ]e~(.~) 

see [L-T.7], [L-T.8]~ instead of (6.13). 

(0.25) 

where 

(c.26) 

B* exp EA* t] [ Yl 
I Y~ 

~t~-~ A2~v = 0 

~]t=o = ~ o~  al-gY2 
~'Jz~ 0 

~~ I ~-0 

Thus, (0.23)-(C.24) yield 

= ~ A ~ f ( ~ , V ,  o, jr 
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The Abstract Assumption (H.1) ~ (1.2). In  view of (C.25)~ then  assumption (H.1) 
for problem (C.1) with u~-----0 means 

(c.27) 

Again, condition (C.27) can be shown to always hold true for all 0 ~ T ~ c~ and 
any  ~ with sufficiently smooth F, by  transposition in results of [L.5], see [L-T.8]. 

~inite Cost Condition ( H . 3 ) =  (2.7). This follows a fortiori, with the present 
choice el spaces as in (C.18) corresponding to the case u~-~ 0, from recent results 
on exact  controllability established in [L-T.7], [L-T.8] at  least under mild geomet- 
rical conditions on f2. 

Explicitly, the cost functionM J for problem (C.1) with u~ ~-0 is then 

co 

J (w, u~) = f (_~ w(t), w(t) )c~(o~,)l, + (R2w,(t), w, Ct) )c~(z.,.)l, + lu~(t)l~.(r)dt 
0 

D) l~irst order hyperbolic systems. 

Consider the following not  necessarily symmetric or 
hyperbolic system in the unknown y(~l, ~ ,  ..., ~ ) e R  ~ 

dissipative first order 

(D.1) 

~y = ~ A~(~) ~y 
J = 0  

Y[~=o = Yo ~ [L~(/2)] m 

M(o)y(t, o) -~ u(t, o) ~ Z~(0, I% [Z~(F)] k) 

in (0, T] • ~9 

in 

in (0, T ) X P  

where A~ are smooth k •  matr ix  valued functions under the assumptions of (a) 
strict hyperbolicity and of (b) T' being non-characteristic and (c) rank M(o) : k < m; 

here k stands for the number of negative eigenvMues el A ~  ~ A j ( ) N ~ ,  

N ~ [N1, ..., N j  outward unit  normal. Here the regularity properties of the mixed 
problem (D.1) are already available form [K.1] [1~.1] and are put  in a semigroup 
framework in [C-L.1]. To put  problem (D.1) in the abstract form (1.1), we choose 
Y---- [Z,(Y2)] m, and A ~-- first order differential opera tor /v  with homogeneous bound- 
ary conditions, where 
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B - =  AD~ (formally);  A - ~ B - ~  D~ where (up to a t ranslat ion) 

(D.2) 

(D.3) 

(D.4) 

F ]  ~ - 0  in 

Dig ~ ] means  

M ] = g  in F 

/)1- continuous [L~(F)] ~ -~ [L~(9)]~ 

t 

(Zu)(t) ~- A~ exp [A(t -- ~)]D~u(T) gv 
0 

with  exp [At] the  s.c. semigroup on [L~(t9)] ~ genera ted  b y  A. 

(D.5) B*x = A ; x - l r ,  x = Ix-, x+],  dim x-  = k 

The Abstract Assumpt ion  (H.1) = (1.2). B y  (D.5), assumpt ion  (H.1) for the  mixed 

p rob lem means  the  sharp trace regularity resul t :  Y lx e/)~(0~ T;  [L~(F)]k), which indeed 
holds t rue  and  is not obta inable  f rom the  interior regular i ty  y e C([0, T];  [J52(/2)]~), 
see [K.1] and  [R.1]. 
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