Algebraic Riccati Equations
with Non-smoothing Observation Arising in Hyperbolic
and Euler-Bernoulli Boundary Control Preblems (*).

F. FLANDOILII - 1. LASIECKA - R. TRIGGIANI

Summary. — This paper considers the optimal quadratic cost problem (regulator problem) for a
class of absiract differential equations with unbounded operators which, under the same unified
framework, model in particular « concrete » boundary control problems for partial differen-
tial equations defined on a bounded open domain of any dimension, including: second order
hyperbolic scalar equations with control in the Dirichlet or in the Newmann boundary con-
ditions; first order hyperbolic systems with boundary control; and Buler-Bernoulli (plate)
equations with (for instance) conirol(s) in the Dirichlet and/or Neumann boundary condi-
tions. The observation operator in the quadratic cost functional is assumed to be non-smoothing
(in particular, it may be the identity operator), o case which introduces technical difficulties
due to the low regularity of the solutions. The paper studies existence and uniqueness of the
resulting algebraic (operator) Riccali equation, as well as the relationship between exact con-
trollability and the property that the Riccati operator be an isomorphism, a distinctive feature
of the dynamics in question (emphatically not true for, say, parabolic boundary control prob-
lems). This isomorphism allows one to introduce a « dual» Riccati equation, corresponding
to a « dual » optimal control problem. Properties between the original and the « dual » problem
are also investigated.

1. - Introduction, dynamical model, quadratic cost problems and corresponding Ric-
cati equations.

A main aim of the present paper is to study the infinite horizon quadratic cost
problem—culminating with an analysis of the corresponding Algebraic Riceati
(operator) Equation (A.R.E.)—for classes of (linear) hyperbolic and Euler-Bernoulli
partial differential equations with nonhomogeneous (control) action exercised on
the boundary of the bounded open spatial domain. It is meant to encompass, in
particular, the following typical situations:

(i) the case of second order hyperbolic scalar equations with Dirichlet or
Neumann boundary control;

(*) Entrata in Redazione il 17 novembre 1987. See [L-T.14].
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(ii) the case of Euler-Bernoulli equations, with controls in the Dirichlet and
Neumann B.C.;

(iii) the case of first order hyperbolic systems.

Thus, one feature of our study is that it provides a common unifying operator theor-
etic framework, which is capable to include, in particular, all three cases (i), (ii),
and (iii). This is achieved by means of an abstract operator dynamical model on
which we shall impose some conditions, which—in fact—are distinctive properties
enjoyed by the hyperbolic dynamics (i), and (iii), as well as by the Euler-Bernoulli
dynamies (ii).

1.1. Abstract dynamical model (which covers cases (i), (ii), and (ili) as ilustrated in
Appendiz 2). '

We shall infroduce the relevant abstract dynamical model, which Appendix 2
will then show how to specialize in order to cover all three cases (i), (ii) and (iii)
above.

Let U (control space) and Y (state space) be two separable Hilbert spaces with
inner products {,> and (,) and corresponding norm || and | |, respectively.

Throughout this paper we are concerned with the following abstract dy-
namics on Y:

i (@) y(t) = exp [Aflyo+ (Lu)(t), @€Y
(1.1) ; ‘
l ®) (Lu)i) — A f oxp [A(t — 7)] A~LBu(z) dv
90
() Bet(U; [D(4%)]) so that A-1BeL(U; ¥)

formally ecorresponding to the equation

{ @y = Ay-+ Bu on [F(A¥)]
L y(0) =y X
Here, A is the infinitesimal generator of a strongly continuous (s.c.) semigroup on ¥

denoted for simplicity by exp [4¢], ¢>0. (Without loss of generality for the problem
here considered, we take 0 € o(4), the resolvent set of A, for otherwise we replace

(1.16) with (A + 2,1) fexp [A(t— ¥)]R(k, A) Bu(z)dr, J€ o(4)). In (L1l¢-d), [Z(4)]
0

and [2(A*)] are the dual spaces of Z(4) and P(A*) with respect to the topology of Y.
Throughout this paper, model (1.1) will be studied under the following standing
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hypothesis (H.1): for any 0 << T < oo, there exists ¢, > 0 such that
T

(1.24) f |B* exp [A*flaftdi<or)w]?, @e D(A¥)
0

(H.1) so that the operator B* exp [A*f] admits a continuous extension—de-

| noted henceforth by the same symbol (*)—satisfying

(1.2b) B* exp [A*1]: continuous Y — L0, T; U).

Here B*, the dual of B, satisfies B* € £(Z(4%*), U) after identifying [9(4*)]" with
2(A). As documented in Appendix 2, assumption (H.1) = (1.2) always holds true
for second order scalar hyperbolic equations as in (i) above, or for first order hyper-
bolic systems as in (iii), or Euler-Bernoulli equations as in (ii) and in these cases
represents, in fact, a sharp trace theory result (not obtainable from interior regularity
plus use of trace theory), [L1], [L-L-T.1], [L-T.2], [R.1], [K.1], [C-L.1], [L-T.8].
In the sequel, we shall indieate by L, the operator L in (1.1d) when viewed as acting
from the space L,(0, T; U) to Ly(0, T'; ¥Y). The adjoint L, of Ly,

(1.3a) (Lozty ©)g,.0,7: 1) = (% L:)I‘T,U)LZ(O,T; v)
is given by

T
(1.3b) (L%,0)(t) = B* f exp [A*(v — t)]o(7)dv .

i

Assumption (H.1) = (1.2) [as remarked, a #race regularity result for cases (i)-(iii)]
has the following important implications on the regularity of the dynamics of pro-
blem (1.1) [interior regularity for cases (i)-(ii)]:

i(1.4) Lyy: continuous Ly(0, T; U) — C([0, T'; Y)
and
(1.5) Lyt continuous I;(0, T; ¥) — Ly(0, T; U)

ay is shown in Appendix 1, following [L-T.1-2], [L-T.9).

1.2. Quadratic cost problems and Riccali equations.

With model (1.1)-(1.2) we associate a quadratic functional over an infinite horizon

(1.6) Tolty 9) = [ (Ry(®), y(®) + o) dt
0

(*) This will not be repeated.
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and pose the corresponding optimal control problem (regulator problem): given
Y €Y,

Minimize J(u, y) over all u € Ly(0, co; U), where y is the solu-
1.7y 0O.L.P.(oc0)
| tion of (1.1a) due to .

The main aim of the present paper is to provide a rather complete study of the
0.C.P.(c0) which culminates with the issues of existence and uniqueness of the cor-
responding Algebraic Riceati Equation

(1.8) PA+ A*P 4 R = PB*B*P

(in a sense to be made precise later), which arises in the pointwise feedback form of
the optimal pair «°({, ¥e), ¥°(, ys) of O.C.P.(c0) given by

w0t yo) = — BB*Py°t, o), a.e. in 0<ioo.

In addition, we shall study a number of properties of the solution operator P. The
entire theory on the O.C.P.(co) which we shall present will rest on the following
minimal hypothesis on the « observation » operator B (and nothing more):

(1.9) (H.2) Ref(Y), R=FR*>0.

Thus, B may be, in particular, the identity on Y.

In order to study the 0.C.P.(co) and (1.8), we shall find useful to present relevant
results for the corresponding quadratic cost problem over a preassigned finite horizon
T << oo: given y,e Y,

Minimize Jy(u,y) over all ue L,(0, T; U), where y is the solu-

(L10) O.C.PAT) Y ion of (1.1a) due to w

where
T

(111) Tr(uy y) = | (By(), y(1) + [u@®)

under the same assumptions (H.1) == (1.2) for the dynamics and (H.2) == (1.9) for
the observation operator F.

1.3. Literature and orientation.

The main difficulties of the problems under study are related to the underlying
dynamics—in particular to the low regularity of both open loop and optimal closed
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loop solutions of Riceati operators; etc. This requires the introduetion of new ap-
proaches, as it will be documented below. The present article is a sucecessor paper
to the following prior work in the area of boundary control problems for hyperbolic
and Euler-Bernoulli type dynamies which we find convenient to group info the fol-
lowing three categories.

(i) Constructive study from an optimal control problem to the corresponding
Riccati equation: paper [L-T.3] for second order scalar hyperbolic partial differential
equations with Dirichlet boundary control. both cases T << oo and 7 = oo; and
the companion paper [C-L.1] for first order hyperbolic systems, case T << co. Both
works use throughout an abstract functional analytic model of the hyperbolic
dynamics.

(ii) Direct study from a Riccati equation to the corresponding optimal conirol
problem: paper [DaP-L-T.1] for the abstract model (1.1) subject to assumption
(H.1) = (1.2) in the case T < co.

(iii) Direct study in [F.2] in the case where T < co and where A is a group gen-
erator of the (Dual) Differential Riccati equation in the unknown Qu(t), formally ob-
tained by setting Q.(f) = P,(t) starting from the Differential Riccati equation in
the unknown P.(f)—whose solution however is precisely the unsettled issue-—which
corresponds to model (1.1) subject to assumption (H.1).

Moreover, the following considerations apply to the foregoing references.

Case T << co. — An assumption of « ¢ smoothness » on the observation operator
0<RB<R*e£(Y) was needed in references [L-T.3], [C-L.1], in order to claim that
the correspondingly constructed candidate of the Riceati operator be, in fact, a
bona fide solution. of the corresponding Differential Riccati Equation (hence of the
corresponding so called « first » Riceati Integral Equation, which involves the original
semi group). Mere, the operator B*P,(t) is unbounded (an essential feature and
difficulty of the problem) but has dense domain. Examples of such « e smoothness »
include, in particular the following cases:

1) R = diag [R,, R,], with B, A—¢e L(Y), Y = L,(Q), ¢ > 0 arbitrary, and Ry= 0
for the wave equation with Dirichlet boundary control and cost funectional which
penalizes only the position; here A denotes the Laplacian with zero Dirichlet boundary
conditions, see [L-T.3];

2) RA—e (YY), Y = [L(2)]", ¢ > 0 arbitrary, for first order hyperbolic sys-
tems, see [C-L.1].

However, no claim of uniqueness of the Riccati solution was made in such
generality. On the other hand, in the absence of such « ¢ smoothness » for R, i.e.
for B subject only to assnmption (H.2) = (1.9) and in particular for R = identity,
references [1-T.3] and [C-L.1] provide the sought after « pointwise feedback synthesis
relation » of the optimal pair through an explicitly constructed operator (the can-
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didate of the Riccati operator), which is then shown to satisfy only the so called
« second » Riccati Integral Hquation, whiech involves the ewvolution operator of the
optimal feedback dynamies. Similar results are then re-proved in [F.2] via a «dual »
problem in the sense of (ili) above in the special but important case that 4 be a
generator of a s.c. group on Y. In contrast, reference [DaP-L-T.1] does provide,
via & direct method, existence and uniqueness for the Differential (or « first » Inte-
gral) Riceati Equation, as well as boundedness of the operator B* P(f), provided
however that a stronger assumption is made on the smoothness of the observation R
in addition to the standing assumption (H.1) = (1.2): namely that

(1.12) R exp [At]B: continuous U — 1,0, Y; ¥).

(This assumption is in particular satisfied e.g. when: R, A**°e£(Y), ¢> 0 and
RA € L(Y) for the wave equation and first order hyperbolic sysfems, respectively,
mentioned above.)

By contrast, reference [P-8.1] assumes, in place of (1.12), a condition which,
in particular, implies the following one:

(1.13) O exp [4¢]B: continuous U —L,(0, 7'; ¥)

with ¢ bounded output operator, whereby in the notation of the present paper
then R = 0*C. Condition (1.13) is stronger than (1.12) on two grounds: (i) if
requires I, rather than Z;; (i) with ¢ smoothing, the operator E == C*C which
arises from (1.13) iz smoothing « twice as much » as the operator R allowed in (1.12).

Hypothesis (1.13) graetly simplifies the analysis of the Riceati equation, as
described in [DaP-L-T.1, Remark pp. 44-45]: indeed, direct use of the Schwarz
inequality on the Riceabi operator formula gives at once that B*P(?) is a bounded
operator, and thus a major difficulty of the problem with B unbounded versus B
bounded disappears.

Reference [S.1] considers only the problem with T < co with output operator
possibly unbounded, but ne results are given on the (true) Riccati equation in terms
of the original semigroup exp [4?]. Reference [S.1] gives only (i) the synthesis of
the optimal control and (ii) the Riccati Integral equation involving the evolution
operator, not the original semigroup, in line with the earlier treatment of [L-T.3]
and [C-L.1]. (However, as mentioned before, [L-T.3] [C-L.1] provide also the (true)
differential Riccati equation under an additional « ¢ smoothness » for R.) The case
T = oo is not considered in [S.1].

Case T = co. — Despite the lack of a Differential (or «first» Integral) Riccati
Equsation for the finite horizon problem T' < oo lamented above in the case where
is only subject to assumption (H.2) = (1.9), reference [L-T.3, Sect. 5] successfully
carries out—precisely in this case—a rather complete study of the infinite horizon
problem T = oo as applied to second order scalar hyperbolic equations with Dirichlet
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boundary control. This study culminates with a statement of existence and
uniqueness for the corresponding Algebraic Riecati Equation, as well as a statement
of «pointwise feedback synthesis relation » for the optimal pair.

The emphagis in the present article is on the case T = oo: here we provide a
rather comprehensive study under the unifying abstract approach of model (1.1)
subject to assumption (H.1) = (1.2), with paramount concern that the observation
operator R fulfills the sole hypothesis (H.2) = (1.9) that 0 <R = R* e £(Y), and no
other smoothness. While our study recovers the concrete situation of second order
equations with Dirichlet boundary control as in [L-T.2, Sect. 5], it also encompasses
other hyperbolic dynamics and Euler-Bernoulli type equations, as documented in
Appendix 2. All this despite the absence, as in [L-T.3], [F.2], of a Differential Ric-
cati Equation theory for the finite time problem 7' << co. Thus, our approach to the
problem 7 = oo given in sections 4 and 5 must by necessity differ from the usual
or classical one, in that the Algebraic Riceati Equation is nof recovered as a limit
on the Differential Riccati Equation for [0, T], as T}co, see e.g. [B.1] (the latter
being not available yet, as least for B subject only to (H.2) = (1.9)). Rather, as in
[L-T.3, Sect. 5], our approach will be crucially based on «trace regularity » properties
of the dynamics, expressed by assumption (H.1) = (1.2).

Conceptually, the present peper may be divided into three parts as follows.

First, sections 2.1 through 2.4 study the original optimal control problem
0.0.P.(c0) when 7 = oo and culminate with the statements of existence and
uniqueness of the Algebraic Riccati Equation, with solution P, given as a strong
limit of the corresponding finite time problem as T4oco. Moreover, under exach
controllability assumption of the pair {4*, R*}, such operator P, turns out to be an
isomorphism on Y. (This result is in sharp contrast with, say, the same optimal con-
trol problem O.C.P.(cc) for parabolic equations with Dirichlet boundary control, where
the Riccati Differential and Algebraic operators are, in fact, smooting and compact
operators, see e.g. [L-T.5], [L-T.12]). With P, isomorphism, the operator @, defined
by Q.. =P e L(Y) is a solution of a new (dual) Riccati Algebraic Equation; this,
in fact, corresponds to a dual problem, whose dynamics however requires the as-
sumption that 4 be a generator of a s.c. group, a special but important case. Said
duality turns out to be deseribed by the correspondence: {4, B, R [or R} R*}
of the original problem to {— A* R} BB* [or B*, B]} of the dual problem, see
Tables 2.1-2.2 below in section 2.5. Thus sections 2.1 through 2.4 may be viewed
as belonging to the above category (i) and represents the generalization of the treat-
ment of [L-T.3, sect. 5] to the first order abstract model (1.1) subject to hypothesis
(H.1) = (1.2).

Second, sections 2.5 and 2.6 study, following an idea of [F.2], the dual Riccati
equation (when A is a group generator) by means of the direct method, which recon-
structs the corresponding optimal control problem via Dynamic Programming. This
may be viewed as belonging to the above categories (i) and (iii). It then turns out
that the dual Algebraic Riccati Equation admits as a solution the operator Qo
which is obtained as a strong limit of the corresponding finite time dual problem
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as T}oo. Under assumption of exact controlla.bility of the pair {— 4, B} (equiv-
alently, of the pair {4, B}), such operator ¢, is the unique solution of the dual
Algebraic Riceati Equation and, moreover, Qs is an isomorphism on Y. The question
arises therefore as to whether or when the analysis of the original problem and the
analysis of the dual problem « merge »; more precisely, as to whether or when we
have that Q= @, i.e. Q.= P='. This is the object of section 2.7. In general the
answer is in the negative (counter example 2.1 in subsection 2.7). Indeed, the very
identification of P_, with @' requires that P, be an isomorphism on Y. It is most
gratifying therefore that the identification P, = Q=1, or Qun= 0., holds true

Original dynamics Dual dynamics (A group generator)
gy = Ay + Bu d=— A%z 4+ Rty
Original OPO(o0) Dual OOP(w0)
[IB @) ? + )] at [I1B*2@) + [o(t)]* dt
0 0
Y v

Starting from finite time problem on Starting from finite time problem [0, 77,
[0, T1, under Finite Cost Condition for under Finite Cost Condition for dual
Original O0P(co) ] O0P(c0)

|

|
las Tt oo }as Thoo
| |

3P, = lim P4(0) (strongly) s.t. P, sat- 3@, = lim Q,(0) (strongly) s.t. @, sat-
isfies original ARE (2.16) isfies dual ARE (2.23)

} }
v v v V

(A% B} ezactly INE7SD) ) {— 4%, B*} | {=4, B} exactly
controllable detectable | detectable controllable

“ P_ unique @, unique

‘ solution solution

v v
P_ isomorphism | §., isomorphism
on ¥ and 1 on ¥
Qo ="Px

|

i}

| | @ = @, when {A% R#} and {— 4, B}
i exactly controllable
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(when A is a group generator) provided that both pairs {— 4, B} (equivalently,
{4, B}) and {4*, Rt} are exactly controllable on some [0, T, T < oo; i.e. precisely
the conditions under which P, and (. are both isomorphisms on Y. As to the
exact controllability problem, we remark that the results needed here have become
available very recently for both second order hyperbolic equations (with constant
coefficients) and Euler-Bernoulli type equations: see [L-T.4] and, without geo-
metrical conditions on 2 (except for smoothness of 002), [L.2], [H.1], [T.2] in case
of generalized wave equations with Dirichlet boundary control, and [1..2], [L-T.7],
[L-T.8] for the Euler-Bernoulli equations considered in Appendix 2; also [L-T.13]
and [L-T.11].

We conclude by pointing out that it may be easier to compute (numerically)
the solution Q. of the Dual Algebraic Riccati Equation. and then invert it (nu-
merically) to obtain P_ = Q7' as desired (under the appropriate assumption men-
tioned above) rather than to compute (numerically) the solution P, of the original
Algebraic Riccati Equation. This may be so since the dual ARE is far simpler to
treat than the original ARE.

The accompanying diagram schemaitically depicts a few main points of the original
and dual problem, and their merging at the level of establishing that Qo= Q.
For a full treatment, we refer to the subsequent sections.

2. — Statement of main results.

To help orient the reader, we shall state in this section the main highlights of the
results of the present paper, with the understanding that further properties and
claims—which we omit here-—will be found in the full technical treatment of the
subsequent sections 3-8.

2.1 Case T < co. Theorem 2.1

In section 3 we shall study the O.0.P.(T) and present results which include the
following

TuEOREM 2.1. — Consider the O.C.P.(T) in (1.10) for the dynamies (1.1) under the
standing assumption (H.1) = (1.2) for the dynamics and (H.2) = (1.9) for the ob-
servation operator E. Then:

(i) there is a unique solution pair of functions w) = u}(t, 0; y,) and y% =
= ya(t, 05 %), 0<i<T, of the 0.C.P.(T), which satisfy

24) up € Ly(0, T; U); gy e O(I0, T1; Y);
(i) w3 and y} are related by

(2.2) ug(*, 0; Yo) = — L(,)kTR{f’/g’('y 0; ¥o)}
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and explicitly given by

(@) — ults 05 yo) = {Liy RIL + Log Ly R [exp [A- 1y, ]} 0)

2.3)
[ (B) Yoty 05 o) = {[I + Lop L, BRI [exp [4 -1y, ]} () € O([0, T1; Y)

where, writing simply L for L,,, we have

(2.4) [ + LI*R]*=I— LI - L* RL]"L* R € £(L(0, T; Y));

(iii) there exists an operator Py(f) € £(Y), given explicitly by

T

Palt) s = J"exp [A*(v — t)]RDy(r, )2 dv
t
where

(2.1) Dty 8)o = yylt, 85 @)
which satisfies the following property
(2.2) Pyr(t): continuons ¥ — C([0, T'1; ¥) .

Moreover
(2.3) (iv)  wuglt, 0; yo) = — B*Py(t)yalt, 05 y,) ae. in [0, T1

T

@4) () (o), 2) = (Ry(z, 1; @), 93(v, & &) a7 +
i

T
+f<ug’(77 t; @), ug(z, t; 2)) dv, @, 2€ Y
¢
(2.5) (vi) Pg(t) = Pi(E)>0, 0<i<T.

(2.6) (Po(0)a, @) = T = Tp(ud(-, 0; ), 93(*, 0; @) O

2.2. The case T = -+ oco. Theorem 2.2 Algebraic Riccati Equation: existence.

In section 4, we shall begin our study of the 0.0.P.(c0). To this end, a necessary
agsumption to be made at the outset is, as usual [B.1]:

Finite Cost Condition: For each initial condition y,€ ¥, there exisfs
(2.7) (H.3) | some %€ Ly(0, co; U) such that if 7 is the corresponding solution
of (1.1) due to %, then J(#, §) << co.

REMARK 2.1. - It is a highly non-trivial issue to verify assumption (FL.3) = (1.3)
in the case of hyperbolic dynamics or plate problems. In the case of second order
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hyperbolie scalar equations with Dirichlet boundary control (case (i)), the answer
iy fully satisfactory: when the differential elliptic operator has eonstantcoefficients,
these equations are always exactly controllable by means of Ly(0, T'; Ly(I")-controls,
U = Ly(I'), in their natural state space Y= Ly(£2;) x H-3(), for all T > some uni-
versal time T, > 0 (for which good estimates can be given), without any geometrical
conditions on the spatial domain £ (except for minimal smoothness of 002 = I');
see recent results [1.2], [1.3], [T.2], the latter also for non constant coefficients;
see also the first result in this space in [L-T.4] as a corollary of the more demanding
uniform stabilization problem. As a consequence, the Finite Cost Condition (H.3)
is a-fortiori satisfied for second order scalar equations with constant coefficients on
arbitrary 2, and a rather complete theory for the 0.C.P.(cc) is then available under
the sole minimal assumption (H.2) = (1.9) on R. Similarly, exaet boundary con-
trollability in the natural space of regularity was recently proved in [L-T.6] (under
some geometrical conditions on £2) for multidimensional plate-like equations with
boundary control only in the Dirichlet boundary conditions and homogeneous Neu-
mann boundary conditions; or else [L-T.8] with no geometrical conditions when
both controls are active. See Appendix 2, 0). Here again the Finite Cost Condi-
tion (H.3) is satisfied. [

The results of section 4 will show, in particular, the following

THEOREM 2.2. — Congider the O.C.P.(co0) in (1.7) for the dynamics (1.1) under
the standing assumptions (H.1)= (1.2) for the dynamics (H.2)= (1.9) for the ob-
servation operator R, and (H.3) = (2.7) on the Finite Cost Condition. Then:

(i) there exists a unique solution pair of funetions ug,= ug,(t, 0; y) and
y°, = y°.@, 0; y,) of the O.C.P.(co) which satisfy

2.8)  uleLy0, o0; U); Ryl eLy0, 003 X); 3o, €0[0, To]; ¥)

for any Ty << ooy

(ii) there exists an operator P, e £(Y) given explicitly by

(2.9) Pox =lim Py(0)x, xe¥
THoo
satisfying
(2.10) Po=Pi>0, Ji=1limdJ(ui(-,0;z), y2(,0;x))
Thoo

(2.11)  (Pr, @) = J% = Ju(u'(-, 05 2), °(-, 0; @) =

=lim J% = lim J (u}(-, 0; #), y%(+, 0; @))
Theo T4oo
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and the relation
fo

(2.12)  Poz = f exp [A* T RD(v)wdv - oxp [A* 4] PuBulle), we ¥
0

where #, i3 an arbitrary point 0 <{, < co and Dut)2 == y° (4, 0; x) defines a s.c.
semigroup on Y which is uniformly stable:

1D ery<Cexp[— 8], 6>0, t>0if B>0.

Thus for the broad class of problems where exp [4¢] is uniformly bounded on >0
and D (t)x— 0 as {— 4 oo, then we can take ?, = oo in (2.12), thereby obtaining
a defining formula for P.

(iliy Moreover, for y,e ¥

(2.13) Uoo(ty 05 Yo) = — B*P_y%(t, 05 9,)  awe. in i€ [0, oo];
[EAY T
(2.14)  (iv) Qg%ﬂ“ — [A — BB*P,] D)z ,

veD(A;), Ap= A— BB*P,— the infinitesimal generator of D );
(v} Py has the following regularity

(2.15a) A*Pue L(2(A,); ¥); A%3P,,eL(2(4); X)

{2.15b) B*Pye L(Z(A5); Uy N L£(2(4); U)

[s0 that if o€ D(4,), then 1°(, 0; o) € C(10, T1; D(4,)) and ul.(t, 05 yo) € O([0, T1;
L¥U)))] and moreover satisfies the Algebraic Riccati Equation
(2.168) (P, A2) 4+ (Pudm, 2) + (B, 2) = {(B*Pyx, B¥* Pyz)

for all #,2¢€ 2(4); or else for all w,2e P(4;). O

2.3. Case T = oo, Theorem 2.3. Algebraic Ricocati Equation: uniqueness.

For uniqueness, in addition to the preceding hypotheses, we shall need the fol-
lowing hypothesis (which is automatically satisfied if R > 0).
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Let K: Y2 Z(K) Y be a (linear), densely defined operator satisfying the fol-
lowing two conditions:

() |E*2|*<Cl|B*2[*+ [o]*], for all z€ 2(B*)c ¥

(ii) the s.c. semigroup exp[A.t] on Y, with generator

(2.17) Ag= A+ KR}
(H.4)
[as guaranteed by virtue of Lemma 5.1 with I/ = KR*] is uniformly
stable: there are M,, &> 0 such that
lexp [Agtlgry< M, exp[— kt], ©>0.
REMARK 2.24). — For E >0, we choose K == — ¢2R-*, with constant ¢ suffi-

ciently large and assumption (H.4) is automatically satisfied.

b) Assumption (i) above in (H.4) implies that A-*K e £(Y) by virtue of as-
sumption (1l¢): A*Bef(U; Y). O

THEOREM 2.3. — Consider the O.C.P.(c0) in (1.6) under the standing assumptions
(H.1) = (1.2) for the dynamies; (H.2)= (1.9) for the opefa.tor R; (H.3) = (2.9)
for the Finite Cost Condition; and (H.4) = (2.17) on the existence of the operator K.
Then, the Algebraic Riccati Equation (2.16) admits a unique solution P e £(¥Y) such
that P = P*>0 and B*Pe£(P(4;): Y). This solution is given by the operator Py
of Theorem 2.2. O

2.4. Theorem 2.4. Isomorphism of Pr(t), Pw and exact controllability of {A*, Ri}.
Dual Algebraic Riccati Equation.

The dynamical system 2(f) = A*2(t) 4 Rig(t), 2(0) =0 (in short, the pair
{A* R}}) is called exactly controllable on ¥ over [0,7T], 0<T < oo with
g€ L,(0, T; ¥) in case the totality of all solutions points 2(T) fills all of ¥ as g
runs over all of L,(0, T'; Y); see Definition 6.1. With this definition we have

THEOREM 2.4. ~ Consider the O.C.P.(T) in (1.10) and O.C.P.(c0) in (1.7) under
the standing assumptions (H.1) = (1.2) on the dynamics, (H.2)= (1.9) on the
operator B and, in the case of T' = oo, of {H.3) = (2.7) on the Finite Cost Condition.
Then:

(i) Case T < co. The operator Pr(0), [resp. Pr(t)] guaranteed by Theorem 2.1,
is an isomorphism on Y [at some time 0<? < T7] if and only if the pair {4% R#}
is exactly controllable on [0, T'], [resp. on [0, T — #]], whereby P,(r) is an isomor-
phism for s — r> 7.
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(ii) Case T = oo. The operator P, guaranteed by Theorem 2.2 is an iso-
morphism on Y, provided the pair {4*, R} is exactly controllable on some [0, T,
T < co,

Then setting @, = P2 e £(Y), we have that Q. satisfies the following Dual
Algebraie Rieecati Equation
(AQwty 2) + (Qod*®, 2) + (BQw, Qoo?) — {B*z, B¥2) = 0
Qwc £(2(4%); D(Ap) N L(D(4T); 2(4)),

(2.18) (DARE)
2 DA*¥)c QB Y

Ayp=A— BB*P,
Equation (2.18) will be henceforth referred to as Dual Algebraic Ricecati Equation
(DARE) with respect to the (original) Algebraic Riccati Equation (2.16). A compari-

son, between (2.18) and (2.16) reveals the following correspondence:

TABLE 2.1. Correspondence between Original and Dual ARE.

Original ARE (2.16) A B [or R R#*t] B P,
Dual ARE (2.18) — A% BB* B B* Rt Q.

Thus, to the original dynamies (1.1) and to its corresponding (infinite horizon)
control problem (1.7), there corresponds the dual dynamics and its corresponding
control problem indicated below:

TaBLE 2.2. Original and dual problem.

Original Problem Dual Problem
dynamies (1.1): dynamies:

y= Ay + Bu on ¥ $=—A*2+ Rtvon ¥
cost (1.7): cost:

[(By@), y®) + lut)[2dt JiB*e®)|® -+ o] dt

0 0

From the correspondence of Table 2.2 we see plainly that the DARE (2.18) is
associated to the dynamics & = — A%z + Riv, whose well-posedness however re-
quires the additional assumption that — A* (equivalently, — A) be the generator of
a 8.c. semigroup on Y; i.e. that A* (equivalently, A) be the generator of a s.e. group
on Y. As a consequence of this assumption and of hypothesis (H.1), it will be shown
at the beginning of section 7 that B*z is a well defined element of L,(0, T'; U) for
each T > 0.
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A further analysis and discussion of the dual problem is carried out in the next
subsections 2.5 through 2.7, under the standing assumption that 4 be a s.c. group
generator.

2.5, Case T << co. Dual Differential Riccali Hquation when A is a group generaior.
Theorem 2.5: ewistence and uniqueness

Orientation for subsections 2.5 through 2.7. The development of subsections 2.1
through 2.4 originates with the control problems O.C.P.(T) = (1.10) and O.C.P.(c0) =
= (1.7) for the dynamies (1.1) and leads to the existence of the operator P,» =
= 1T1& Pr(0)x, z€ ¥, (2.9), which ig the unique solution of the original ARE (2.16),
under the hypotheses (H.1l) through (H.4). Moreover, it shows in Theorem 2.4
that, at least when the pair {4*, R} is exactly controllable on some [0, T'], T < oo,
then the operator P is an isomorphism on Y and the operator Q@ , = P!, wit P,
defined by (2.9), is a solution of the DARE (2.18). It should be noted that in sub-
section 2.1, as well as in [L-T.3], there is no claim however that for B nonregular
(e.g. R = Identity), the operator P.(f) satisfies a Differential Riccati Equation (2);
indeed, the proofs in sections 3-4 (and in [L-T.3]) show that the ARE for P, is not
derived as a limit process, as in classical or standard approaches, on Differential
Riccati Equations.

In the remaining part of our present development, we shall instead follow in,
the general direct approach on Riccati Bquations (in the sense specified e.g.
[Da P-L-T.1]) and the idea of [F.2], by which we shall invert the line of argument
followed so far and carry out our further investigation through the reversed pro-
cedure outlined below.

1) We shall first consider, as a starting point, the Dual Differential Riccati
Equation

& @alt)2,2) = (@alt)o, 4%2) + (4%2, Quit)e) +

(219) + (RQult)a, Qalt)2) — (B* &, B*2)

QAT) =0 x, 2 € DIA*)

(see Tables 2.1-2.2 above) and study directly—through a well established argu-
ment [DaP.1]—existence and uniqueness of (2.19). As noted below Table 2.2 at
the end of subsection 2.4, this will require, by necessity, the standing assumption
that A be the infinitesimal generator of a s.e. group exp [A¢] on Y. Thus sub-
sections 2.5 through 2.8 will be restricted to apply only to this special but important
case. If Q.(f), 0<i< T, is the solution of (2.19), then Dynamic Programming will
allow us to recover the associated optimal control problem: given z,€ Y,

(%) Instead, for R e.g. like 4~¢, ¢> 0 arbitrary, P(t) does satisfy a Differential Riccati
Equation, see [L-T.3].
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Minimize

T

(2.20) Talv,2) = [IB*e)] + o)t

1]

over all ve L,(0, T'; Y), where z is the solution:

é
(2.21a) 2(t) = exp [— A*¥t]z, ~]‘—fexp [— A*t— )] Rto(z)dr
0

of the dual problem
(2.21b) g = — A*z 4 Rtv,

see Table 2.2. All this is, in essence, Theorem 2.5 below.

2) Next, we shall consider the corresponding infinite horizon dual problem :
given z,c¢ Y

minimize

(2:22) | Julo,2) =[Bre@) + |02 at
J

over all v € L,(0, co; Y), where z is the solution (2.21) due to ».

Under the finite cost assumption for (2.22), we shall prove the existence of an oper-
ator Quwr z%}g Q-(0)w, » € Y, solution of the DARE

(2.23) (AQOO“” 2) + (Q‘ooA*ma 2) -+ (Réwmy sz) — (B*w, B*z) = 0 Vo, ze 2(4%),

whereby the dual Algebraic Riccati operator Q. is obtained as a limit process on
the dual Differential Riccati operators @,(), unlike the original algebraic Riccati
operator P, with respect to the original Pz(). Dynamic Programming will then
again allow us to recover the corresponding optimal control problem (2.22) asso-
ciated with (2.23). Under the additional assumption that the pair {— A, B} is
exactly controllable on some [0, T], T < co (equivalently, that the pair {4, B} is
exactly controllable on [0, T'] since 4 is a generator of a s.c. group (%)), we shall

(®) Henceforth, we shall freely use that, with 4 s.e. group generator, then {— 4, B} is
exactly controllable in [0, T] if and only if so is {4, B} (i.e. the totality of all solution points
y(T) of (L.1) with y;, = 0 fills all of ¥ as « runs over all of I,(0, T; U)). The proof of this
equivalence will be given at the beginning of section 7, in Lemma 7.0 (ii).
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further prove that Q. is the unique solution of the DARE (2.23) (in a suitably spe-
cified class) and that, moreover, Q. is an isomorphism on Y. All this is, in essence,
the content of Theorem 2.6 below.

3) Finally, it remains to connect the operator Q' provided by Theorem 2.6
when {4, B} is exactly controliable on [0, 7] with the operator Po provided by (2.9).
More precisely, the question arises as to whether or when we have P_ = Q7% In
general, this is not true, as shown in Example 2.1 below. Indeed, the very identi-
tification of P, with Q' requires that P, be an isomorphism on Y and this—as we
have seen in Theorem 2.4 (ii)—holds true in turn provided the pair {4*, R} is exactly
controllable on some [0, T}, T < oo. It is therefore most gratifying that the identi-
fication P, = @7}, (hence Qw=@,, with Q. defined in Theorem 2.4 (ii)), holds
true when A is a s.c. group generator, provided both pairs {— 4, B} (equivalently;
{4, B}) and {4*, R} are exactly controllable on some [0, T}, T < oo, the conditions
under which both P, and Qo are isomorphisms. This is Theorem 2.7 below.

In conclusion, in subsections 2.5 through 2.6 we shall proceed from Dual Riccati
Equations to the associated Optimal Control Problems, while in subsections 2.1
through 2.4 we proceeded from the original Optimal Control Problems to the asso-
ciated Original Riccati Equations; then in subsection 2.7 we shall connect these
two procedures. [

In section 7 we shall study equation (2.19) and problem (2.20) for the dynamics
(2.21). Our main results are given by the following:

THEOREM 2.5 (I < oo). Let A generate a s.c. group on Y and consider eq. (2.19)
under the standing assumptions (H.1) = (1.2) on the dynamics, (H.2) = (1.9) on
the obgervation operator. Then on (2.19):

(i) there exists Qr(-) € $(Y; a([o, T1; Y)) such that @,(t) = Q(#)*>0, Yie
€0, T7, (Q-(t)w,2) is continuously differentiable in t for each # and 2z in 2(4¥),
and Qr(-) satisfies the Dual Differential Riceati Equation (2.19);

(ii) the Dual Differential Riccati Equation (2.19) admits a unique solution,
given by Q.(*), in the class of operators Q(-) e ﬁ(Y; c([o, T7; Y)) such that (Q(t)=, 2)
is differentiable in ¢ for each w, 2 € 2(A*); equivalently, @.(-) is the unique solution
in (¥; C([0, T]; ¥)) of the integral Riccati Equation

T
(2.24) (), 2) :f(B* exp [— A*(s — t)]w, B* exp[— A*(s — §)]2)> ds —
11
T
—J-(RQT(S) exp [— A*(s — 1)@, Qp(s) exp [— A*(s — t)]zds Vz,2¢ Y;

¢

(iii) there exists a unique solution pair of functions o = ¥}(t, 0;2,) and
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dyp = 20(1, 0; 2,), 0<t< T, of problem (2.20), which satisty
vp e O([0, T1; ¥), 2%€0([0,T]; ¥).
Moreover, the pair (vy, 2}) is characterized by the pointwise feedback formula

(3.35) o(0) = — RiQu0)&%(0), O<i<T.
‘We finally have
(2.26) (@2(0) 2y, 20) = Jp(vh, 27) - O

Further resulfs on (2.19) and (2.20) can be found in section 7.

2.6. COase T' = co. Dual Algebraic Riccati Equation when A is a group generator.
Theorem 2.6: existence and unigueness.

In section 8 we shall study the dual infinite horizon problem (2.22) and its cor-
responding DARE (2.23) for the dynamies (2.21). Here, our main results are col-
lected in the following:

THEOREM 2.6 (T = oo). Let 4 generate a s.c. group on Y and consider eq. (2.23)
under the standing assumptions (H.1) = (1.2) on the dynamics and (H.2) = (1.9)
on the observation operator. Assume further the finite Cost Condition on pro-
blem (2.22):

for each & € Y, there exists v € L,(0, co; ¥) such that J(v, 2) < co, where

2.
(2.27) | # is the solution of (2.21) due to v

Then on (2.23):

~

there exists an operator §_ < £(Y), @, = Q% >0, given by

(2.28) (i) Qor =1limQu(0)z, 2 Y
Thoo

such that
(ii) Qo satisfies the dual ARE (2.23);
on (2.22):

(iii) there exists a unique solution pair of funetions v2 = 2%, 0, 2,) and
8%, = 22,(t, 0, %,) of the problem (2.22), which satisty

0%, € Ly(0, oo; ¥) N O([0, T1; ¥), VT>0, Bt a3, € Ly(0, oo; X);
twe O([0, T1; ¥), YT>0.
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Moreover, the pair (v%,,2%) is characterized by the pointwise feedback formula

o0 ? Yoo
(2.29) V%) = — RiQ2%,(), ¢>0.
‘We finally have .
(2-30) (Qoo oY) zo) = Joo(vgoy zgo) .

(iv) If, in addition, the pair {— A, B} (equivalently, the pair {4, B}) is
exactly controllable over some interval [0, T'] (i.e. the totality of all solution points
y(T) of (1.1) with y,= 0 fills all of ¥ as w runs over all of Ly(0, T; U)), then the
DARE (2.23) admits a unique solution, given by @, in the class of all @ e L(Y)
such that @ = @*>0.

(v) The pair {— 4, B} (equivalently, the pair {A B}) is exactly control-
lable on some [0, T'] if and only if @,(0) is an isomorphism on Y, in which case Qw
is an isomorphism on Y as well. O

For the assumption on exact controllability of {4, B} we refer to Remark 2.1.

REMARE 2.3. — In the statement of Theorem 2.6 we have used the symbol Qw
in place of Q, in order to distinguish between the operator given as the limit of
0-(0), and the operator Q. given by Theorem 2.4 as Q. = P! with P, defined
by (2.9). As mentioned in the Orientation in section 2.5, this distinction is not
artificial, unless suitable assumptions are imposed. This issue is discussed in sub-
section 2.7.

2.7. The identification of Pe with Q21 i.e. of Qo with Quo, when A is @ group gener-
ator. Counterexample and Theorem 2.7.

With reference to Remark 2.3, the following example shows that if P exists
and Q,, exists and is an isomorphism, we cannot conclude in general that Ql=P,..

ExAMPLE 2.1. — Let R = 0, Be £(U, Y), — A* stable, and {4, B} exactly con-
trollable over some interval [0, T]. Then Po= 0, since Pr(0)=0, VI'>0 (see
Theorem 2.1, (iii)). On the other hand, the finite cost condition (2.27) is fulfilled, and

(Oustt, 2) = f (B* exp [— A* ]z, B* exp [— A*#]2)dt
0

since
T

(Qz(0)2, 2) = f (B* exp [— A¥ ]z, B* exp [— A*f]2) dt
(1}
(from (2.24)).
Finally, Qo is an isomorphism, by Theorem 2.6 part (v). Then Q7's«P,. O
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However, as mentioned in the Orientation in subsection 2.5 the important prop-
erty Pol=@Q., (i.e. Qo= o, With Q. defined in Theorem 2.4 (i) and (., defined
in (2.28)) holds true under the assumptions which guarantee that both P and @
are isomorphisms on Y.

THEOREM 2.7, — Let A generate a s.c. group on Y. If both pairs {4, B} and
{A*, Rt} are exactly controllable over some interval [0, T'], then

() Pl=4Q,, ie. Qu coincides with the operator Q. defined in Theorem 2.4;

(ii) the optimal solutions pairs (u2,,y%) and (v2,,2%) of the original and dual
problems, given by Theorem 2.2 and Theorem 2.6 respectively, are related by:

wo,(ty 05 yo) = — B*22 (¢, 0; P9y s v%,(t, 05 2) = — Ryl (t, 0§.Qoozo) .

Note that, under these assumptions, P, and Q. are well defined (for, in particular,
the finite cost conditions (H.3) = (2.7) and (2.27) are satisfied) and are the unique
solutions of (2.16) and (2.23), respectively.

3. — The case 7 < oo. Proof of Theorem 2.1.

3.1. Proof of parts (i) and (ii) of Theorem 2.1.

Part (i). — We have already noted in (1.4) the regularity property of the oper-
ator L,r. Using this, we see that the functional Jr(w,y(u)) is continuous on
Ly(0, T; U); since Jy is, moreover, strictly convex, it follows by standard optimiza-
tion theory that there exists a unique solution pair w = u3(+, 0;¥,); ¥2= Y2(*, 05 )
of the optimal control problem O.C.P.(7). Moreover, by (1.1), (1.4) the optimal
pair satisfies for y,e¥ :

(3.0a) ul(+, 05 o) € Ly(0, T; U);  Riyy(-, 0; 9,) € C([0, T1; Y)
(3.08) y%(t; 0; y,) = exp [At]y, + {Lopun(+; 05 o} (?)

Part (ii). — The Lagrangean of the O.C.P.(T) is

Ly, p) =% {“““i(o,w;m + (By, y)La(O,T;Y)} + (p, y — exp [A* 190 — Lor)z,0,7: v)

with p € Ly(0, T; ¥). The optimality conditions &Z,(uy, ¥, p7) = LUy Yy Py) =0
yield, respectively

(3.1) ph=— RyY; ugp= Liyph; hence up=— LipRys.
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If we eliminate uJ between (1.la) and (3.1), we obtain

(3.2) yy = [ 4 Loy Lgy R [exp [4 - 1y,]
(3.2b) wy= — L R[I 4+ Lyp Lip R [exp [A-1yo]
- as elements of Ly(0, T; Y) and L,(0, T'; U) respectively, where we have to show the

existence and boundedness of the inverse operator. In fact, & simple argument as
in [L-T.3, below (2.8¢)] shows that

(3.2¢) [I + LL*R]*=I—~ L{I + L*RLII*R e £(L,(0, T); Y)

(we drop for simplicity the subindex « 07 »), well defined and bounded in L,(0, T'; Y),
since R is self-adjoint nonnegative definite.

3.2. Proof of part (iii) of Theorem 2.1.

Step 1. — In order to assert the existence of the operator Py(¢), we shall introduce
an evolution operator to describe the dynamics of the feedback system. Hence-
forth, we take s, 0<<s < T, as the new initial time of our optimal control problem
with corresponding initial condition y,e T at time s; i.e. we consider the optimal
control problem over the time interval [s, T'] rather than over [0, T]. We shall
denote the corresponding optimal solution pair by u(:, s; y.) and y%(-, s; ¥,). The
same Lagrange multiplier argument of part (ii), once applied to the new problem,
gives then

(3.3a) — u%(" 85 Yy = L;kTR{yg'(" 83 ?/s)}
(330)  — ublt, 53 9) = {5 R + Ly Ly R [oxp [A(— o)]y.1}0) € L0, T5 U)

(3.3¢) Yyt 85 y,) = {[I + Ly Ly Rl [exp [A(-— s)]ys]}(t) e C([s, T1; Y)

where (compare with (1.1a))

¢
(3.40) (L,u)(t) = Afexp [A{t — )] A Bu(rydr, weLys, T; U)

:continuous Ly(s, T; U) — O([s, T']; Y), see (1.4)

, (Lig)(t)  s<t<T
(3.5) (Lip0)(@) =
0 0<is

scontinuous Ly(s, 5 Y) — Ly(s, T; U), see (1.5).
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We next define an operator @,(f, 5) € £(Y), 0<s<t< T, by setting
(3.6) Dty syw = yylt, 85 @) = {[I + Lp Ly BRI [exp [A(-— s)]a]} () € O([s, TT; Y)
see (3.3¢).

Step 2. — The next Lemma collects relevant properties of Dr{f, s) and shows,
in particular, that @{¢, s) is an evolution operator,

Levwma 3.1, —~ For the operator @.(%, s) defined by (3.6) as an operator in £(Y),
the following properties hold true:

a) Dty t) = I (identity on YV), 0<ti< T
b) Dgit, 7) = Dty 8)D(s, 7) (transition), 0<r<s<I< Ty
¢) for each fixed s

Py, 5) € £(¥; O(ls, T); Y))

(strong continuity in the first variable);

d) there is a constant Or such that
| Do, 8)[pry<Or, uniformly in 0<s<i<T;
e) for each fixed I, O <i<T:
®,(t, -y e 2(X; ([0, T]; X))
(strong continuity in the second variable).
Proor oF LeMmA 3.1. — Parts o) and b) are obvious. Part ¢) was noted explicitly

in (3.6). Part e) follows in the usual way (e.g. [B.1]) from part ¢) combined with
part d). To prove part d), we first note that

(3.7a) 1+ LjTRLaTI’E(LZ(O,T;U))>1 , hence |[I -+ LfTRLsﬂ_l”s:(Lz(o,T; U))<1

uniformly in se [0, T]. Next, by using these bounds, the version of (3.2¢) cor-
responding to the initial time «s» gives

(3.70) |+ Ly Lip BT g z,00,: v) < €ODSby
uniformly in se [0, 7). Then (3.2b) yields by virtue of (3.7b)

(3.8) Hu‘ﬁr(', 83 m)”Lg(O,T; < Op|®|
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uniformly in s e [0, T]. Finally, combining (3.8) and the regularity (3.4) for L,
yields part d) as desired.

Step 3. - We now define an operator Pr(t} € Z(Y) by setting
T
(3.9) Pty = f oxp [A*(z — )] RDy(1, hwdr, O0<i<T.
11

By virtue of lemma 3.1 d), we plainly obtain Pr(-)€ £(Y; Leo(0, T Y)); moreover,
by adding and subtracting, use of Lemma 3.1, and the Lebesgue dominated theorem
[H-P.1, p. 83] we can show that, in fact,

(3.10) Py(+) e £(X; O([0, T1; Y))

Part (iii) of Theorem 2.1 is proved. [

3.3. Proof of parts (iv), (v), (vi) of Theorem 2.1.

Part (iv). — By (3.3a), (3.6), (3.5) we obtain

(811)  ud(t, 83 @) = — LipBDy(-, 8)o =
T

= — B*fexp [A*(r — t)]RDy(T, s)xdr € Ly(s, T U)
¢

where the above expression is well defined for all s, a.e. in t € [s, T]. (See also Lem-
ma 3.1 and property (3.5)). If we now take s = 0 in (3.11) for almost every %, we
obtain the desired pointwise relation

T

(3.12) uS(t, 0; @) = — B* f exp [A*(z — )] B®q(7, 0)z dv
i
T

— — B* f exp [A%(z — £)] B Dq(7, 1) Bt 0)w dv =

i
= — B*Py(t) Dy(t, 0)x = — B* Pr(t)y2(t, 0; @)
by Lemma 3.1 a), (3.9), and (3.6).

Part (v). — The equation of the optimal dynamics

(3.13) ya(z, t; @) = exp [A(r — §)]& + {Lypug(:, t; @)} ()
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can be explicitly re-written by (3.6), (3.4) and (3.12) as

(814)  exp[A(r— )]z = Dulr, 1)z - A f oxp [A(7 — 6)] A~ BB* Py(0) By(o, 1) 2 do
¢

Next, from (3.9)
T
(3.15) (Po(t)e, 2) = f (B®y(r, ), exp [A(r — 1)]e) dr

Substituting exp [4A(z — ?)2] from (3.14) into (3.15) yields

7
{(Pr(t)m, 2) f (BDy(7, t)a, Dul7, 1)2) dv + Ip(T)
i

(3.16) .

() = J"(R@T(r, 1w, A f exp [A(7 — 6)] A~ BB* P,(0) ®y(o, t)zda) dr
2

T

(changing the order of integration )

= fT (B* f exp [A*(v — 6)]RDy(z, ) dv B* Py(c) By(o, 1) z) do

1 ¢
(using Dy(r, o) DPr(o, t) = Dyp(7, 1) and (3.9))

T
(3.18) — J"(B*Pm(a) By(o, 1)@, B* Py(0) Dr(0, 1) 2) do

t
Thus, (3.16), (3.17) give

T
(3.18)  (Py(t)a, 2) f(Rq)T 1), Do(t, t)2) dv +

¢

T
-+ [<B* Pa(x) Ba(t, )2, B* Po(z) D(z, )2 dv
H

(*) This step of change in the order of integration can be rigorously justified by
using a regularization and approximation argument as in [I.-T.3], [C-L.1]. More precisely,
B*Py(t) @p(t, 0) = lim B*Py(t) Dy, 0), where P, O correspond to (1.11) with B =— RB» and

n—>co

where range of E"e @(A%*).
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which by virtue of (3.6) and (3.12) produces

T T

(3:19)  (Palt)a, 2) = [(Byb(r, £ @), 9i(r, 15 @) dr + [<ub(z, 13 @), w(, 4 2)) dv
t 13

Part (vi). — By specializing (3.19) with # = 2z we obtain
(3.20) Pi@) = Pp(t)>0 te[0, T]
(3.21) (PT(O)wy w) =Jp= JT(“%( , 05 @), y3( , 0; 93))

Theorem 2.1 is fully proved. [

4. — The case T = co. Proof of Theorem 2.2. Algebraic Riccati equation: existence.

Throughout this section, extension by zero beyond T’ of the function f; will be
denoted by fr- Thus: fz(t) = f(t), 0<t<T, while fo(t)=0, ¢> T.

4.1, Proof of parts (i) and (ii) of Theorem 2.2.

Part (i). — By virtue of the finite cost condition—assumption (H.3)—it follows
by standard optimization theory that the optimal control problem O.C.P.(co) ad-
mits & unique solution pair 4% = w2 (-, 0; ¥,), ¥% = ¥%(-, 0; y,). By (1.1), (1.4) the
optimal pair satisfies for y,€ ¥

(4.0a) (-, 0; o) € Ly(0, o0; U); Ry (-, 0; o) € Ly(0, o0; Y)-

4%(*, 05 90) € ([0, Tol; ¥)  for any 0 < Ty< oo.
and

(4.00) Yeolty 05 yo) = exp [At]yo -+ {Lu,(+, 0; y,)} () € O([0, To]; T)

Part (ii). — To obtain the operator P, we need a preliminary Lemma, which is
an additional property of @,{,) defined in (3.6):

Lemma 4.1. — For the operator @,(,) defined in (3.6) we have
(4.1) Dyp_(0,0) = Dy(t + 0,8) on ¥, 0<i<T, O0<o<T — ¢
ProO¥. ~ The equation of the optimal dynamies is

4.2) Dy(ty 8)5 = exp [A(t — s)]o + {Lpud(-,s; 2)}(E) =
= exp [A(t— 8)]o — {Lyp Lz R D4+, 8)a} ()
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obtained via (3.3¢) and (3.6). From (4.2) with s = 0 and ¢t = ¢ and with 7' replaced
by T —t we obtain

(4.3) expldo]e = Dp_,(o, 0} +

o T—i
1 Afexp[A(c— r)]A—lB(B* f exp [A*(v — 1)] ROy (r, 0) dr) ar
0 T

using (3.4), (3.5), (1.3b). Similarly from (4.2) with s and ¢ replaced by ¢ and ¢ + o
respectively, we obtain

4.4) exp[A{t+ o—)]o = Dp(t + o, t)2 -+
i+o T
+ Afexpd@ + o — T)]A‘lB(B* f exp [A*(x — 7)] RDy(, t)mdoc) dr .

11 T

Setting v — ¢ = § in the external integral in (4.4) and then « — ¢ = r in the internal
integral in (4.4) yields

(4.5) exp [Aole = Dt + o, t)2 +
] T—i
+ Afexp [A(o — ﬁ)]A—IB(B* f oxp [A*(7 — B)|RBu(t + 1, )z dT) dr.
0 8

Comparison between (4.2) and (4.5) shows that both @r_,(o,0)x and Dyt + o, t)a
satisfy the same equation, say (4.5). But then the difference

(4.6) 2(0,8) = Dt + 0, 8)x — Dyr-i(0,0)x e O([0, T—t]; ¥) (in o)
satisfies [I + Ly, LipR]2(-,t) = 0. By (3.2¢) we deduce that (o, t) is the zero ele-
ment in L,(0, T — ¢; Y) and by (4.6) in O([0, T—¢]; ¥). O

We can now introduce the operator P, and study some of its preliminary
properties.

Levwma 4.2, - We have

a) the (self-adjoint) operator Pr(-)>0 converges strongly on ¥ to a (self-
adjoint) operator Po>0 as T4oo; ie.

T

(4.7) Pt = lim Py(0)e — lim [exp [4* 7] R®y(, 0) dr
Thoo Thoo s
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b) Pp-4(0) = Py(t) 0<t < T
¢) P, in a) can likewise be defined by
T

(4.8) Py = lim Pp{t)x =lim |exp [A*(z —1)]BDy(7, Y dr
Thoo Ttoo :

independently of ¢, 0<t << T.
d) For € Y

co

(4.9)  Jo%=d (U ;) Yol 5 2) =f|“‘io(t; 2)[*+ (Byo,(t; #), Yo t; 0)) dt = (Potr, @)
0

e¢) In the notation introduced in the opening paragraph of section 4, we have
(4.10a) Ay —> u, in L,(0, oo; U)
(4.100) Ry — By, in Ly(0, 005 X)
for a suitable subsequence T%}oo, &%= 4%(-, 0; ), ud = ul(-; 0; ) ete.; i.e. the

optimai pair on [0, 7] for the O.C.P.(T) converges to the optimal pair on [0, co] for
the O0.C.P.(co), strongly in L,.

f) For each fixed t, we have
(4.11) g%, 0; #) —y%(t; ) in ¥, uniformly on bounded #-intervals as T4oo, t < T.

PrOOF. — Part a). By optimality of «}., ¥% and (3.21) we obtain a uniform bound
in T for xe Y

(4.12) (PT(O)wy .’L‘) = JT(M%(', 0; z), yg‘(') 0; 90)) < Jw(ugo('7 0; ), ygo('a 0; 90)) < oo,

This, combined with the monotonicity of the self-adjoint non-negative operator
Pr(0), implies that the limit in (4.7) exists and defines a self-adjoint non-negative
operator P, e £(Y).

Part b). — This is a direct consequence of the definition (3.9) of P,(f) combined
with Lemma 4.1.

Part ¢). — This follows by taking the limit in Part b) as T co.

Part d. — Firgt, from

T

@13)  [I4@F + BV GHO12d = T (0, %) = Tg(uf, 43) < T fuley 3%) < o0
0
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we see that the extended functions {#;} and {R*#}} are contained in a fixed
ball of L0, co; U) and IL,(0, co; Y), respectively. Hence, we can extract sub-
sequences

(4.14a) %y —> some &, weakly in L,(0, co; U)

(4.14b) R — some Ri§, weakly in L,(0, co; Y).

Next, we shall prove that the above limits are connected by the underlying dy-
namics; ie. for any 0 < Ty < oo

(4.15) RY(1) = R exp [At]y, + BALa)) € O([0, To]; Y)

Indeed, with 7 > T, Lyyuy= Ly, %y converges weakly to L# in L, (0, 7; ¥) by
{(4.14a) and (1.4), while

RYj% = R exp [At]y, + BHLypid} (1), O<ti<To<T
converges weakly to Ri¢ in L,(0, T'; Y). By uniqueness of the weak limit, we ob-
tain the identity in (4.15), first in L,(0, Ty; Y) and then in C([0, T,]; ¥).
Finally, passing to the limit in (4.12) yields
(4.16) (P ooy ) < o= J o (4e("5 05 @) o (5 05 ) < o0

by (4.7), left. Oun the other hand, the well-known lower semicontinuity of the qua-
dratic cost J o resulting from the weak convergence (4.10), ([E-T.1, p. 11]), completed
with (4.15) gives the inequality in

(PT(O)“" m) = JT(’“('_;” yg’) = Joo(agW gg')>Jw(u7 7

(where wuy = ug(-, 0; »)) ete. § = §(-,0; »), from which taking the limit via (4.7)
yields
(4.17) (P ooty @) > ooy §) > J o305 Yoo) -

Thus, (4.16), {(4.17) give
(4.18) (P, @) = J ol §) = I ooy Yoo)
and part d) is proved.

Pari ¢). — The identity in (4.18) together with the uniqueness of the optimal
pair (already noted at the opening paragraph of subsection 4.1) yields

(4.19) %= ul, in Ly0, co; U); §F=192% in L0, co; ¥).
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Thus, (4.14) becomes

A —> u, weakly in Ly(0, co; U)
(4.20) i
R} — RYj, weakly in L,(0, oo; ¥).

But the established convergence J% — J° provides norm convergence
Mﬂg'“i(o,oo;v)‘f‘ ”R%?jz’”?,z(o,oo;y)“) ”ugoulzlg(o,oo;U)—l— "R%ygo”_%a(ﬂ,oo;Y) .
This, combined with weak convergence