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S u m m a r y .  - I n  the multigroup, discrete-ordinates approximations to the linear transport equa- 
tion, the integration over the directional variable is replaced by a numerical quadrature rule, 
involving a weighted sum over junctional values at selected directions, with the energy de- 
pendence discretized by replacing the cross section data by weighted averages over each energy 
interval. The stability, consistency, and convergence rely ]undamentally on the conditions 
that the maximum fluctuations in the total cross section---and in the expected number o/ 
secondary particles arising #ore each energy level--tend to zero as the energy mesh becomes 
finer, and as the number o/ angular nodes becomes in/inite. Our a/nalysis is based on using 
a natural NystrSm method o] extending the discrete-ordinates, multigroup approximates to 
all values o / the  angular and energy variables. S~ech an extension enables us to employ gen- 
eralizations o/ the collectively compact operator'approximation theory o/ P. M. Anselone to 
deduce stability and convergence o] the approximates. 

l .  - I n t r o d u c t i o n .  

The s teady-state ,  energy-dependent ,  l inear t ranspor t  equat ion is an  integro- 
differential  equation, whose dependent  variable describes the distr ibution of particles 
in a reactor  medium with respect  to position, direction, and energy. The integrM 
operator  describes the  generation of particles possessing any of the velocities f rom 
a veloci ty  range by  means of scat ter ing from other  velocities and by  product ion by  
fission. The differential  operator  describes the  s treaming of particles with an ar- 
b i t r a ry  veloci ty  and the  loss of such part icles through absorption and scuttel~ing 
into other  velocities. Som~ce terms and boundary  conditions corresponding to in- 
coming directions may  be present ,  along with an initial  distr ibution of particles, 
in case t ime-dependent  t ranspor t  is considered. 

~u l t ig roup ,  discrete-ordinates approximations arise when we replace the  exact  
t ranspor t  model by  un app rox im a te  one b y  first definining average values of the 
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problem data over given energy intervals; and secondly, by  replacing the integral 
operator by  a numerical (quudrature) operator, thereby obtaining a system of partial 
differential equations to be solved for the approximate solution at the quadi'ature 
points and on each energy in terval  This discretization process introduces three 
fundamental sources of errors: First, the individual energies of the particles within 
an energy interval or group are uncertain (i.e., a particle is known to be within a 
group but  its energy is unknown); second, the particles are constrained to interact 
with a single cross-section value (i.e., the group-averaged cross-section); third, much 
information is potentially lost concerning the streaming of neutral particles in media 
where absorption is dominant due to the need for many discrete directions to ac- 
curately describe a very anisotropic flux. l~-evertheless, multigroup, discrete-ordinates 
approximations are most widely used for approximating the energy distribution of 
particles in a system modeled by  linear transport. 

Although there is a vast amount of practical experience in using such approxi- 
mations, the supporting mathematical theory has been developed within the last 
six years at least as far as steady state multidimensional transport is concerned. 
For discrete-ordinates approximations for monoenergetic models, we refer the reader 
to the Introduction in [8], where contributions to slab transport are also outlined. 
For multidimensional settings (in the spatial variable), the basic convergence question 
for monoenergetic discrete-ordinates approximations was settled by  lgELSOZ~ and 
VICTOEu in [8] (two dimensions) and by VIOTOEY in [14] (three-dimensions). The 

convergence question for steady state multigronp (with the spatial and angular 
Valiables undiscretized) has been investigated by  lqELSO~ and VICTOEu and VIC~OEY, 
in [9, 15] for slab transport, and by VICTOEY in [16] for snbmultiplying multidimen- 
sional transport. For time-dependent transport, the inherent accuracy of the 
multigToup approximates were obtained by BELLEZ~I-~O~A~TE and BrJso~I [3] for 
slab media and by YA~G M x ~ z E u  and ZEu G U A ~ G ~  [17] for multidimensional 
media. I t  is appropriate to remark at this point that  a convergence analysis for the 
fully diseretized, monoenergetie slab transport equation was done by  J. PITI~s 
EAZ~A and 1~. SCoT~ [10] under the assumption of isotropie scattering. Finally, 

E. AL~ES [1], using finite element techniques, investigated the convergence question 
for the multig~'oup approximates, but  somewhat restrictive conditions on the be- 
havior of the cross-section data were imposed. 

The ~n~lysis in this work seeks to demonstrate that  the multigroup discrete- 
ordinates approximations are well-defined and converge to the exact transport solu- 
tion in any suberitieal setting. This requirement basically necessitates that  our 
analysis employs techniques different from those ~sed in [3, 9, 16, 17]. We shM1, 
for the most part, focus on transport in two-dimensional Cartesian geometry. 
A lffystrSm technique of defining the multigroup discrete-ordinates approximates 
to ~11 values of the phase space variables enables us to use the collectively compact 
operator approximation theory of P. 35. ANSELONE [2] to study convergence in a 
functional analytic setting. 
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In Section 2, we introduce notation and assumptions concerning the t ransport  
problem in a two-dimensional medium. The multigroup, discrete-ordinates model 
is formulated in Section 3, and the convergence proof is given in Section 4. More 
precisely, consistency and convergence of our approximations are shown under the 
conditions that  the maximum fluctuations in the total cross-section, and in the ex- 
pected number of secondary particIes from each energy level, tend to zero as the 
energy mesh becomes finer. 

2. - Regularity properties of  transport solutions. 

2.1. The two-dimensional linear transport eguation: notation. 

Let / '  be a closed, bounded convex region in R ~, with ~/~ denoting ~ piecewise 
Cl-boundary, containing a finite number of (one-dimensional) exposed ]aces [11, 
pp. 162-3]. The direction cosines with respect to the xl and x2 axes willbe denoted 
by [21 and [22 respectively. The stationary, energy-dependent linear transport equa- 
tion in two-dimensional (rectangular) geometry for the angular flux W is: 

(2.1) 

with 

[2.V~T(x, t2, E) + a(x, [2, E)T(x,  [2, F,) = q(x, [2, E) + 

E~0t 

§  f ' 

T(x,[2, E ) = h ( x , [ 2 ,  E) ,  x e ~ I ' ,  [2.n~< 0,  E e [Era, E~) .  

Here, 

(i) x represents a spatial element of /~; 

(ii) [2 represents an element (/21, [2~) of D2:-- - {!/21, [22): [28 + [2~<1}, with 
[[2]~ = [2,~ + [28; 

(iii) V~ denotes the gradient with respect to the spatial variables; 

(iv) n~ is the outward normal at x e ~I'. 

(For values of x ~ ~F for which n~ is not well-defined, the above boundary condition 
is taken to apply to those [2 for which {(xl + t[21, x~ + t[2~): t >  0} n/%v~ 0, where 
1% indicates the interior of F); 

(v) E denotes the energy variable, an element of [Era, E~), with E m and E~ 
representing, respectively, the minimum and maximum energy attainable 
by a particle; 
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(vi) ~(x, 9 ,  E) is the total cross-section; 

(vii) p(x, 9', E', 9, E) is the transfer kernel, which describes the expected 
distribution of particles emerging froin scattering" events, fissions, etc. ; 

(viii) q(x, 9, E) is the distributed source density; 

(ix) h(x, 9, E) represents boundary sources. 

We assume that  the region/7 is subdivided into a finite number of convex sub- 
regions, each with a boundary having properties similar to those of ~/~ itself. This 
requirement means that  those subregions, lying wholly within the interior of / '  
are polygonal due to the requirement of convexity. In our discussion, we let 
denote phase space given by / ' •  ~ • E~). The transport equation in integral 
form becomes: 

(2.2) T(x, 9, E) = MQT(x, 9, E) + ~(x, 9,  E) 

where ~(x, s~, E), the uncollided angular flux from internal and boundary sources, 
is given by 

(2.3) ~(x, 9,  E) = Mq(x, 9,  E) + u(x, 9,  E),  
d(x,o)/l~l 

0 

The quantity d(x, 9) measures the distance of x from the exterior of F in the direc- 
tion -- Q, i.e. 

(2.4) d(x, Q) = inf {t > O: x- -  t lQl- l~ t Jg} .  

The operators M and Q are given respectively by 

(2.5) 

and 

c~(~,o) /Io  I t 

M,(x, Q, E)=~ f / ( x -  tQ, Q, E)exp {-- fa(x-  rQ, Q, E)dr} dt 
0 0 

(2.6) Q/(x, ~2, . ~ , )  - -  

~932 

Z.~l I D z 

The behavior of d(x, s I as a function of (x, D) plays a ftmdamentM role in 
determining the regularity properties of W. The fol!owing lemma describes this 
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behavior and its simple, bu t  tedious proof, uses fundamenta l  properties of convex 
sets (cf. Theorem 6.1, p. 45, of [11]). The details are omitted. 

L E N A 2 . 1 .  - The  quanti ty  d(x, $2)/1521(-~ ~ /or ]$21 = O) is continuous as an 
extended real-valued /unct ion in  (x, $ 2 ) e l ~ •  D ~ except at those points  x e ~F and 

$2 ~ D ~ suoh that either 

(i) $2 = 0; 

o r  

(ii) $2va 0 and (x--sI$21-~$2} is contained in  a one-dimensional exposed /ace 

o / 2 " / o r  every s such that O <~ s < ~ , / o r  some ~ > O. 

We are able to conclude tha t  the (( singular directions )) are precisely the extreme 

directions of /~  and of ~ ,  i : 1, 2, ..., 9% where ~ is the number  of subregions of 2" 
(cf. p. 162 of [11]). We define 

(2.7) B :=  U ~(r,)  u =(r )  u {$2 = o} 

where ~(F~)-~ {$2e/)2:l$21 > 0 and I$2]-152 is an extreme direction of 1"~}. We 
observe from the symmetry  assumptions in the thi rd  spatial variable tha t  H is the 
union of a finite number  of diameters of D 2 because of the finite number  of extreme 
directions associated with each 2"~. 

2.2. Descript ion o / two-d imens iona l  media.  

~Such of the material  in this subsection was mot ivated by  the work of ]K. Bo~Y- 
s ~ w I c z  and 17. K ] ~ v s z x ~ s ~  [4]. In  describing the geometry and the intersection 
of the characteristics of the streaming te rm with interfaces and their  boundaries, 
we shall for the most par t  assume tha t  [/2[ > 0 since /2 ---- 0 is associated with par- 
ticles which cannot exit  f rom the medium. This assumption is used, in particular, 
to s tudy  the regular i ty of the  optical distance given later in (2.28). 

The boundary  ~/~ of / '  consists of the segments (the one-dimensional exposed 
faces), ~Fo,j, ] = 1 ,2 ,  ..., ~o along with a curvilinear portion denoted as ~ro,o, 
Indeed 

(2.8) ~ r =  U ~ro,~U ~ro,o. 
J = l  

For each ~2",, i = 1, 2, ..., ~ ,  we have the following representation, 

(2.9) ~r, = U {~r,,,: card (~r,,,) > 1} u U ~rg,, u ~r~,o, 
J~Zi teK(O 
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where 

(a) L~ denotes the set of indices of all neighborhood domains adjacent to 2"~; 

(b) ~P~,j : =  0P~ n r~; 

(v) K(i)  is ~ subset of 1~ 2, ..., ~o (the indices of the boundary segments in 31") 
consisting of those indices j E {1, 2, . . . ,  ~o} for which 

card (~/'0,~ n 0_r~) > 1; 

(d) ~/'o,~ indicates u prototype boundary segment which is common to both 
~/'~ and ~F; 

(e) 02"~., is the curvilinear portion of the boundary of O/'~ which is common 
also to ~T'. 

The nomenclature in the preceding paragraph allows us to represent the bound- 
ary of a subregion/'~ in terms of those segments lying in the interior, and that  por- 
tion of its boundary lying on ~/' itself. These two portions of 3/', are denoted us 
01'[ and 0/'~ ~ respectively, and we write 

(2.]_0) oT', = o_PI u or~ 

with 

(2.11) or~ = U {Or, y card (at,,,) > 1} 
~eZ~ 

(2.z2) or,. = U or~,, u o r  L . 
~eK(i) 

In Appendix A, we discuss an example which illustrates the notation introduced 
in this subsection. I t  is obvious that  

T b ~ , i ~  - -  ~bt, ~ 

where n~,j is the outward normal vector to the segment 0/'~,r occurring in (2.9) 
and (2.11). 

The next few paragraphs are devoted to describing precisely the intersection of 
the ray ~(x, ~),  define4 as 

(2.13) ~(x, ~ )  : =  { x ; e  R, :  x' = x -  s i 9 ] - I 9 ,  s e [0, ~ ) ,  0 r • e 2)~},  

with the medium /'. Such a ray will pass through the boundaries of subregions, 
or vertices thereof, or even coincide with segments of subregion boundaries. 
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The set of all vertices of the subregion boundaries, 3/'~,, i : 1, 2, ..., 9%, will be 
denoted by  W. We also define the (( honeycomb ~) o f / ' ,  Go, to be the set 

9l 

(2.14) Go= U 3./", u 31". 

All the line segments within the set Go when extended yield a finite collection of 
lines in two-dimensional Euclidean space R ~. The direction cosines of these extended 
lines constitute the singular directions along with I~9] = 0. We let G~ be the inter- 
section of these lines with / '  itself. We have Go c G~. 

Our analysis will make crucial use of the intersection of the line ~(x, ~) ,  with the 
sets Go and G~. The set of all points from Go crossed by ~(x, ~2) is denoted by  
W,(x, ~)  : 

(2.15) W,(x, Q) = Go n a(x, Q) . 

With any element w r W~(x, [2), we associate the set of integer pairs, 

iV(w) = /  ( i ' J ) '  i - - - - { 1 , 2 , . . . , ~ } ,  j e l l :  card (3/ '~a)>1 , w e  3/~,jn/~- 
(2.16) [ (i,j)o, ie{1,2 , . . . ,9%},  j e K ( i ) : w e ~ l ' o a  , c a r d ( 3 / ~ a ) > l  

where (.,.)o indicates the parameters of a boundary segment. 
The singular directions can be characterized as follows 

(2.17) 

where 

(2.18) 

and 

(2.19) 

~ = ~ u _ ~  

171 : =  { Q e D ~ :  l ~ l - ~ . n , , ~ =  o for some i e  {1,2, ..., ~ } , j g Z ~ ,  

card (~/'~a) > 1, n~,,. the outward unit normal to 3r~,j}, 

H~: = { ~ e  ~ : l ~ l - l ~ . n L = o  for some (i, j)o, i e {1, ..., ~}, 

i e K ( i ) ,  n ~ the outward unit normal to 3/'~j} u {~9: [~9] 0} 0 , ~  , ~ . 

For the example in Appendix A, the singular directions can be characterized by 

~ =  {(~, 0): I~t<1} u {(0, v): I ~ 1 < 1 }  �9 

Fina l ly ,  for each [2 ~ / 7  and x ~ G1, we define the fol lowing set of integer pairs 
(i, j)  to be the set 

(2.20) M(x, ~9) : =  {(i, ~): card (a/'~,, 5 a(x,/2)) > 1, i > 1 ,  IQI = 1} u 

u {(i, j)o: card (~/~L n ~(~, ~))  > 1, [Qi = 1}.  
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2.3. Properties o/ the operators M and Q. 

The following discussion in the  main body  of Section 2 provides general results 
for  the  operators M and Q defined b y  (2.5) and (2.6). As 1% B. KELLOGG in [6] points 
oat~ t ranspor t  solutions s~affer f rom basically three  types of discontinuities: boundary 
singularities~ shadow singularities, and vertex singularities. In general,  boundary  
singularities refer  to the  fact  t h a t  the  der ivat ive  of the  angular  flux possesses a 
logari thmic singulari ty on the  boundary  o f /~  or of an interface.  Ver tex  singularities 
account  for  the  discontinuit ies in the  first (spatial) part ials  in the  inter ior  of the  
m e d i a n  or subregions. Because of the propagat ion of discontinuities along char- 
acteristics due to the  first order hyperbol ic  na ture  of the  s treaming te rm,  shadow 
singularities are due to  the  discontinuities in the  cross-sections across common bound- 
aries, or l inear  extensions, thereof .  We now proceed to  precisely define the  topology 
of the  funct ion spaces where t ranspor t  solutions can be expec ted  to lie. 

Our basic conditions on the  cross-section data  are as follows: 

ASSt~I)TlOl~ A. - ~or all (x, /2) ~ I ' x D  "~, and almost every E e [Em~ E~) ,  the total 
cross-section is positive and bounded away/re in  zero, with lower bound denoted by a m. 
The restrivtion o/the/oIlowing mapping to each ~ x 1) ~ (~o the interior o//'~): 

(x, /2) -~ a(x, /2, .) 

is a continuous, L=[Em~E~)-valued mapping which has a continuous extension to 
I~t XD ~. We let a~ :~-  sup fin(x,/2, ")[IL~[~m,E~ ). 

(z,~) 

ASSV~eTIO~ B. - The trans/er kernel p(x,  /2', .E', /2, E) is nonnegative and satis/ies 
the /ollowing additional assumptions: 

(i) the mapping 

(2.21) /2 , /29  -+ f p(x ,  /2', . , /2, E) dE (x, 
E m 

is a L~EEm ~ E~)-valued mapping~ continuous on each I~ • 1) ~ • D ~, i -~ 1, ..., ~ ;  

(if) given e > O, there exists a ~ > 0 such that whenever Ix -- XoI ~ + [I2 -- /2ol2< 0~ 

~ Xo ~ f ' t  ~ 

E ~  

(2.22) f Ip(x, /2', ., /2, ",/2o, E)Id ] 
E m 

uni/ormly /or /2~ e D ~. 
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(iii) it  we define p(x, [2', E' ,  E) _~ 0 whenever F~ or F~' is greater than F ~ ,  or 
whenever E or lP ~ is less than Er, , then, for each (xo~ [20)~ I~ X D2, 

unilormly ]or [2' e D ~. 

I~E~AI~KS. - ~or item (i), we note that 

(2.24) 

E~ 

fp(x, [2', E', Q, E)dE 
E m 

yields the expected number o] particles in direction [2 resulting ]rom a collision o] a 
o] a particle at x with direction [2' and energy E'.  The supremum over E '  yields the 
max imum expected number o] particles with direction [2 which result ]rom a collision 
at x ot a particle with incipient direction [2', and (i) guarantees this be finite. Items (if) 
and (iii) are technical assumptions and are satistied ]or any reasonable data; in parti- 
cular, the conditions on the total scattering cross-section data imposed by Belleni-~orante 
and Busoni in [3] satisty these hypotheses. 

At this point,  we are able to make some rudimentary  observations about the 
mapping properties of M and Q. We introduce the function spaces needed in our 
analysis: 

~o:= {t(x, [2, ~):  (x~ [d) --> t(x~ [2, .) is continuous as m LI [ Em, / ~ ) - v a l u e d  
mapping of F x  D 2, except possibly for x lying along some exposed face of _F, or the 
linear extension of an exposed face of s o me / ~  and [2 parallel to such a face, such tha t  

E~ 

[" oo}; 
(~,~) d 

~m 

~ ' : = { t ( x , [ 2 ,  E):  (x, [2) --> t(x, [2, " ) is continuous from each / ~ x D  2 to 
E l [ E r a , / ~ )  and has a continuous extension to /~ X D2}. 

Both ~o and ~P are equipped with the following norm, 

(2.25) ]ltli = sup | It(x, [2, 
/ 11  

E) [ dE , 
(x ,~)  J 

under which they  are clearly Banach spaces. At times, we shall write IIt]le~ or []]llz~ 
to indicate which space is being considered. 

The assumptions on a and p, in conjunction with the results of Lemma 2.1, 
imply tha t  M is a bounded linear operator from ~ to ~0 and tha t  Q is a bounded 
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linear operator from ~0 to ~ .  The following representation of M shows that  M 
has the asserted properties: 

4U~,a)/t -e I 

d?(~,~)/[~l o 

where d~(d +) is the distance from x to the first (last) boundary point of subregion i 
in direction T2, with d~ = d + = 0 if the ray from x in direction -- Q does not en- 
counter subregion i. The d~ will have continuity properties similgr to those of d 
because each subregion is convex and has a boundary with properties similar to those 
of 3/~. Furthermore, a is uniformly continuous in each F~•  2 as a mapping with 
range in L~[Em, E~), and g is uniformly continuous in each _F~ • with range in 
L~[Em, E~), where H~ is an arbitrary closed subset of D 2, whose distance from H 
is ~. As 9 e / / n e e d  not be considered for continuity properties of Mg, it follows 
tha t  Mg is continuous for (x, 9) e F• for any ~ > 0. By exploiting the positivity 
of a on /~•  D~, it  is easily seen that  HMII < a~ ~, thereby proving that  M is a bounded 
linear operator from ~P to ~0. Assumption B and the integrability of ( 1 -  I9'I~) - t  
over D ~ implies that Q_ is a bounded linear mapping of ~o to ~P. 

Thus the operator MQ is ~ bounded linear mapping of ~ointo itself. If  we require 
h(x, 9, _E) to be continuous for x e ~/' and /2 e U ~_(x), with range in Z~[Em, E~), 

xeOY' 

where ~_(x) represents the set of ingoing directions at x e ~F, and ~_(x) its closure, 
we then see that  ~ e ~o- 

A precise description of the regularity properties of Mr, ] e ~ ,  is governed by the 
analytic properties of the optical distance between the two points x and x', 
e(x, x', 9, E), given by 

(2.27) e(x, x', 9 ,  E) := f a (x - -  sl9[-~9, ~,  E) ds. 
0 

We recall the optical distanos between ~ point x and the boundary ~F along the 
direction - -19]-~9 is 

(2.2s) e(~, 9, E ) : =  e(x, �9 - g(~, 9)191-~9, 9, ~ ) .  

As is easily seen ~(x,/2, .) is a mapping from /~•  ~ to L~[Em, E~). 
~or a complete description of the continuity and differentiability properties of 

~(x, x' , /2, E), and of M], / e  ~P, we shall need the following notation. Let xr, be 
o 

a point on the boundary of F~, and assume for the moment that  xr, e F. As we 
know from the results on the underlying properties of /~ itself, there is a j e Z, for 
which m n e ~F~,~. Let additionally / e ~P and define ]~,~(xn, ~2, .), i = {1, 2, ..., ~}, 
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a L, ,  to be the l imit  (in Z~[Em, E~)) ,  given by 

(2.29) f i , ~ ( x r , ,  ~, ") = lim](x~,/2, .) 
~.--> ~ o  

x~-~x~,e~/",,~ x~eF~, ie{~,2,...,o~}; 

similarly, for xr ~ aFo,~, 

(2.30) ~ ]o,~xr~, tg, ") --l ira ](x~, ~, .) 

where x, eF~, x~--->xr,r j e K ( i ) ,  x~e}Go. The same definition applies, of 
course, to functions continuous on each /'~ x D  2, i e {1, 2, ..., ~},  with continuous 
extensions to the boundary  of each /~ and having range in Z~[Em, E~).  Yor any  
positive number  V, the set //(~) is the set consisting of those [ 2 e / /  for which 
[~t>~] and D~ is the annulus {~: V < [ ~ [ < I } .  

The regulari ty properties of M], ] ~ @P, will be bet ter  described by  the following 
Banach space ~ ,  a closed subspace of ~o under  the supremllm norm such tha t  the 
elements of ~ satisfy the following seven conditions: 

1) ] is continuous at  all xel~ the interior of the set _P~, and  at  ~ge/ /~,  
~ > 0 ,  i - -=1 ,2 , . . . ,~ ;  

2) ] is continuous at  all x i = 1, 2, ..., ~ ;  

3) ] is continuous at  all x e/~, n G~, [2 e/ / (V ) such tha t  card (W,(x, ~2)) < cr 
i = 1, 2, ..., ~ .  

o 

~) ~or xeF~  and /2eH(~)  with card (W~(x,[2))-= c~, ] is discontinuons in 
general, bu t  has one-sided limits in Z~[E~ , / ~ )  in the following sense: Le t  n~ be a 
normal  to the  ray o~(x, [2) whose second component in selected positive if nonzero; 
otherwise, whose first component is selected positive. Let  x +, x~, ~9 +, and [2~ be 
sequences tending to x and ~9 respectively and characterized by 

+ x + x + ~ ['~ x . ~ x ,  ( , , --  x ) . % > O ,  

G-+x,  (~:-x).n~<0, xjeP,,  
~+ -> Q, ~9+.n~ > o, 

~ --> Q ,  Q~-% < O. 

Then l im l im ](x +, [2 +, 
n - - ~  OO m - - +  r 

we define 

�9 ) and l im limf(x~, f)~, .) are to exist in LI[Em, E~)  and 

J+(x, Q, .) : =  l im l im J(x+~, [2+~, .) 
f t - -~  oO fft---~ O0 

/-(x, sg, �9 ) : =  lira lira f(x~, 9~, .) .  
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The following i terat ive limits are hypothesized to exist  in Z~[Em, E~)  and are equal 
to ]+ and f-  respectively,  i.e. 

[2.31) lira lira f(a~, ~ ,  
?Fr  r ~ - - >  o o  

(2.32) 

") lira h m  ]~x~, Y2~, .) : 

= lim lira f(x.+~, .627~, ") = f+(% D, .); 
~---> o o  ~ - - >  c o  

lira lira ](x +, Y2 +, .) = lira lira ](x~, .(2 +, .) ~- 

= lira l im ](x~., ~+, �9 ) = ]-(x, t2, �9 ) . 
~.--> o o  ~ - - - >  o o  

5) An element  ] has an extension to the boundary  of/~,  defined in the  manner  
below. I~et x~efi~,  Y2eTI~, and x~--->xr, Then,:  denoting this extension as ]~,~, 

o 

(2.33) ] ~ , ~ ( X r , , Y 2 , ' ) : = l i m ] ( x ~ , ~ 2 , ' ) ,  ~2~I I~ ,  x ~ i  xr ,~ ~]',,j, 
r  c o  

with the l imit  existing in ~L~[iEm, J ~ )  and ] so extended is continuous at  s~ch 
(xr,,/2). The extended funct ion has the  following regulari ty properties:  

(a) For  xr ,~ ~]'i,~ and /2 ~H(~)  for which card (W~(x, [2 ) )<  c% 

o 

(2.34) ]~,/xr~, ~2, .) : =  lira ](x~, f2, . ) ,  x~ ~ 2"~, 
~---> CO 

with the l imit  existing in JLl[/~m, 1 ~ )  and ]~,~ is continuous a t  such points in ~T~,~, 
t9 

(b) ]?or x e  ~/~,,~., ~ e / / (~ )  with card (W~(x, t2)) = c~ and a(x , /2)  n ~ V =  0, 
]~,~ is discontinuous at  such points bu t  possesses one-sided limits in JLl[/Em, Es~ ) in 
the  sense described in condition (4). The quanti t ies ]+~ and 1~ are defined anulogously 
to ]+ and ] -  in (2.31) and (2.32) respectively.  The sequence of points x + and x~- 
themselves can lie on ~JP,,~ and the limits are precisely the  limiting values of ],,~. 
at  points in (5a). 

(c) Let  ~(Xr, ,/2) n ~/~,,j:/: O, with cardinali ty exceeding nni ty;  moreover,  
let  n~,j be a normal  to a(xr, , Y2) pointing outward f rom/ '~ ,  As in (4), let  x +~, x , -  Y2 +~, 
and tP/, be  sequences converging to Xr, and /2 with the  following proper ty :  

z+ 

> 0 .  

~9~ ~ f2,  t2~'n~,j < O. 
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Then l im fi,~(Xff~ ~(~m, ) and l im lira ](x +, 0 + �9 . .~,  .) are to exist  in L~[Em, E~)  and 
m---> o o  q~---> r  ~---> ~ 

]+i,~(xr,, .(2, ") : :  l im ]r .Q:, ") , 
q~--> o o  

~.~(xr,, D, " ) : =  l im lim](x~ +, .(2+, ") .  
m - - >  o o  ~ - - >  o o  

The following i tera t ive  l imits are hypothesized to exist  in Z ~ [ E m , / ~ )  and are equal 
to .f+~,j and ]~.~ respectively,  namely,  

(2.35) lira l im](x~,  f27~, ") : lira lira ](x +, ~ ,  .) = 
~7't-'-~-oO ~--->r m-. .~-r  n..-o-r 

= lira lira f(x +,/2~ +, �9 ) ---- lira l im ](x +, 97~, ") = ],,+~(xn, Y2, . ) ,  
r q'/t---r ~b.-.~-O0 m . - - ~ o o  

(2.36) lira l im ](x~,/2 +, .) ---- lira l im ](x~, zg~, �9 ) = 
~ - - - ) . o o  ~ t - o - oo  ~t,.->oo m - - - > c o  

--~ l im lira ](x~, 9 +, .) =/r  $2, �9 ) , 
n--+ r m - . r  

The following compat ibi l i ty  relat ion is to hold 

K~(x~, ,  t2, �9 ) = g d x ~ ,  s �9 ) .  

6) Similar hypotheses  are imposed for the  extension of ] up to the  boundary  
of F itself. Fo r  example,  in (50), we define for xr, e ~F~.~ 

(s.37) i , +  i ( /0,~(xr,,/2, �9 ) : =  lira/o,~,xr~, ~7~, ") = l im l im ](x~, ~7~, ") 
m---> r  ~)~--> o o  ~t--~- o o  

with M1 limits assumed to  exist  in L~[Em, E~) .  Moreover, 

(2.38) i (  �9 ~ (  + ]o,~,xr,~ f2, " ) : =  h m  ]0,r, Xr~, D~, . ) .  
~ - - >  o o  

The following i tera t ive  sequences possess limits in Z~[Em, E~)  and are eqttal to 
]~.~(xr~, f2, �9 ), namely  

(2.39) lira l im ](x +, f2~, .) ---- l im l im [(x~,/2 +, �9 ) : 
n - - > o o  ~ - - > c ~  ~ - - - > o o  ~ - - > r  

i / : l im lira J(x~, D +, .) = ]o.~,xr,, .(2, . ) .  

7) ~im](x, tf2, .), I/2] = 1, exists in LI[E,1, E~)  for bo th  ] and extensions to 

the boundary  of each / ' i .  

Wi th  the nota t ion ased in the  definition of ~1, we are be t t e r  able to discuss the 
smoothness of p and p(x,  x'~ ~2~ �9 ) in Appendix B. The mapping propert ies  of M 
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are influenced by  the  regular i ty  of the  optical  thickness and are summarized in 
Lemma  2.2, p rove4  in Appendix  C. In  part icular ,  conditions (4) an4 (Sb, c) account  
for the  shadow singularities al lu4ed to e~riier. 

L E ~  2.2. - Under Assumptions A and B, M is a continuous linear mapping 
o] ~ to ~ .  

Our comments  concerning the  operator  Q are summarized in Lemma 2.3: 

L E n A  2.3. - Under Assumptions A and B, Q is a continuous linear mapping of 

We wish to show tha t  M Q  is an eventua l ly  compact  l inear mapping of ~ to itself. 
The compactness propert ies  of MQ will re ly  crucially on the  following abs t rac t  version 
of the  Arzela-Ascoli character izat ion of compact  sets in spaces of continuous rune- 
t ion  [5, p. !37J, which we s ta te  for convenience:  

Tm~oBE~ 2.1. - .Let ~s be a compact metric space and 0 a Banach space with norm 
denoted by I I -  I]0' .Let ~79(~) be the Banach space of ]unctions continuous on ~ with 
range in ~ ,  equipped with a norm specified ]or an element ] by []][I : =  m~x 1]](x)l/V: 

I n  order that a subset ~ or ~79(~) be relatively compact, necessary and su]]icient condi- 
tions are that ~ be equicontinuous and that, for each x e ~ the set (~(x)} o] all ](x), 
such that f e ~ be relatively compact in O. 

In  applying this theorem~ we le t  ~ = F •  2 and 0 = L~[Em~ E~). F ro m  the  
results of Lemmas  2.2 and 2.3, we can 4educe tha t  Q M  is a continuous l inear map- 
ping os ~e into itself. In  applying Theorem 2.1 to  prove complete cont inui ty  of (QM)~, 
we must  have criteria for re la t ively  compact  sets in ZP-s spaces. Such cri- 
ter ia  are provide4 by  the  FrSchet-Kolmogorov Theorem [13], s ta ted here  for com- 

pac t  subsets of Le(R), R = (-- co, co): 

TKEO~F_~ 2.2 (Fr4ehet-Kolmogorov).  - .Let R denote the real line and ~ ,  the a-ring 
oJ Baire subsets o] R, with m~:(B) = fdt  the ordinary Zebesgue measure of B. Then 

a subset g~ of JLe(R~ gO:, m~); l~<p < 0% is relatively compact i] and only i] it satisJies 
the conditions: 

(a) sup I , '= .  sup{fl/(t)r,dt}~,~< ~ ;  
f~R I~R 

R 

(b) l im fl](t + 8) --  f(s)[~ds = 0 uni/ormly /or / e S~; 
t-->O . 

R 

(e) l im f If(s)l'd~' -- 0 uni]ormly for f e ~. 

~ .  - We shall consider junctions in El[Era, E~) to be in LI(R) by de]ining them 
to be identically zero outside [Era, E~). There/ore~ we must only verily the first two cri- 
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teria oJ the ~'rechet-Kolmogorov theorem in order to show that {QM](xo, Qo, ")lI]lI~< 1} 
is relatively compact whenever E~  < co. The prooJ o/the Jollowing theorem is similar 
to the prooj o/ Theorem 4.1 provided in Section 4. 

Tn:EO~E~ 2.3. - The mapping (QM) 2 is a oompletely continuous mapping o] ~e 
into itsel]. 

I~E~RK. -- To extend the analysis to include the ease E~  = c~, we need only 
augment part (iii) o] Assumption B by the Jollowing condition on p(x, Y2', E', Y2, E):  

For any (xo, [2o) e F •  2, 
c o  

l im supl|p(Xo,~2',.,~2o, E)dl~ -~0. (2.40) 

This assumption mere ly  implies tha t  the max imum (over energy) expected num- 

ber of particles, shunted  to energies greater  than  /~o having direction /20, becomes 
smaller with increasing No: By  defining p(x, [2', E', [2, E) -~ 0 for :E or E '  less 
t han  Era, we see tha t  the  th i rd  requirement  of Theorem 2.2 is met  for showing 
compactness of Q M  when /~----  ~ .  

L E n A  2.4. - The operator MQ is an eventually compact linear operator mapping ~1 
into itselJ. 

P R O O F .  - We note  t ha t  ( M Q ) s =  M(QM)~Q and the  assertion follows. 
Our nex t  assumption is concerned with solving (2.2) in ~1: 

ASS~PTION C. - The problem de]ined by (2.2) is suberitieal, i.e. 

(2.41) ItMQIIs~ < 1 ,  

where ItMQ[],~ denotes the spectral radius o] MQ de/ined to be 

lint I[(MQ),~i] 'l,~ . 
n---> o o  

F r o m  the  conditions imposed on the  boundary  data  h(x, ~2, E) in this section-- 
and f rom the  propert ies  of the  optical  distance as outl ined in Appendix  B--we can 
easily deduce t ha t  the funct ion 

(2.42) 
a(z.9) 

0 

is a-priori an e lement  of ~o which can be extended to possess the cont inui ty  features 
ascribed to ~1: This extension relies on the propert ies of d(x, ~2) described ~n Lern- 
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ma 2.1. The details are left to the interested reader. Therefore ~, as defined in (2.3) 
resides in ~1 and (2.2) will have a unique nonnegative solution T by virtue of As- 
sumption C. 

In order to study the regularity featttres of 9-V~(x~ 9,  .), we first observe 
that  for any g e ~s, Mg wilt have a derivative with respect to x in direction 19[-~9 
which is a continuous mapping of each F~ • to Z~[Em, E~) for any (~0 > 0. Indeed, 
for s va 0~ the difference quotients 

s- , [m~(x + s lPi - ,9 ,  9 ,  ~)  - Mg(x, 9,  E)] 

will have this proper~y~ the conditions on ~ in Assumption A enables us to show: 

(2.~3) lira max M,(:_~,x 
s-->0 (z,~)e/'~ x//~ 0 

and, likewise for u(x, 9 ,  E) 

+ slpF~.e, 9, E) - Mg(x, 9, E) 
S 

g(x, 9, E) ~(x, 9,  E)Mg(x ,  ~2, E) 

191 + 191 
~ 0  

LqE m, E~01) 

(2.44) lim max u(x + s[Pi-~9, ~,  E) - -  u(x, 9 ,  E) 
s-+0 (~,9)~F~ • S ~ -  

+ ~(x, 9 ,  E)u(x, 9 ,  E) ~ --  0 

o 
i 1 �9 (with s such that. x + sip I- ~ e l ,  whenever x~  ~/~). 

Under the conditions, then~ imposed on the total and scattering cross-section 
data in Assumptions A and B respectively, we can conclude that  ~(x, ~ . ) : =  
~.V.T(x~ 9,  .) is a continuous mapping of each /~• to Z~[Em,E~) which is 
precisely equal to 

(2.45) QT(x ,  9 ,  �9 ) + q(x, 9 ,  �9 ) -- a(x, 9 ,  �9 ) T(x ,  9 ,  �9 ) .  

From (2.45)~ we note that  ~(x, 9~ .) can be extended to be a function in ~ since 
the functions in (2A5) lie in ~ :  We summarize: 

Tm~0~E~ 2.4. - Suppose the total and scattering cross-section data satisfy Assump-  
tions A7 B and C above. Moreover~ let q c ~" and the boundary data be continuous 
- -w i th  range in LI[Em, E~)- - ]or  x e ~F and 9 e [J E_(x), where g_(x) is the set o] 

x~61" 

ingoing directions at x and Y_(x) its closure. Them there exists e~ ]unction T(x ,  9 ,  �9 ) e ~ ,  
with 9 .  V~iP(x, 9 ,  �9 ) e ~1, which satisfies equation (2.1) and the accompanying boundary 
conditions in the sense that 

E ~  

(2.46) lim max  ]- I~(x~ ~2, E) - -  h(xr~ ~ ,  E ) Id E  -~ 0 
x-->xr .Qe~-(xr) ~D~ J 
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3. - The  multigroup,~ d i scre te -ord lnates  a p p r o x i m a t i o n .  

For  the  discrete-ordinates approximation,  we choose a set of directions, ~9~i, 
i ---- 1, 2, ..., 2g~, and quadra ture  weights w~i, such t h a t  

(3.1) f l im ~ ~(~mif(~mi) : 

rn--> oo i = l  

D ~ 
f - 

for any  ] continuous on D 2; the points D e H are not  chosen as quadrature  points and 

(3.2) ~ {[wmd: min I~--tPo] < ~}-+0 
�9 t ~ O  

as (e, m) -~ (0, co) uniformly in ~90 e / )2 .  The principle of uniform bov_ndedness [12, 
p. 48] enables us to  deduce tha t  

(3.3) sup Iw~ < co.  
m 

The following lemmas are easily shown (cf. [8, 9. 358]): 

I ~ A  3.1. - Under the assumption that the quadrature process converges for every 
continuous function, then to every open subset @ c D 2, there corresponds a number no 

such that for all n>no,  ~ contains at least one ~2~i. 

IJ]~_~A 3.2. - ~or quadrature formulas with nonnegative weights, (3.1) implies (3.2). 
To adequate ly  describe the mnlt igrou 9 approximations to  the  boundary  value 

problem (2.1), in conjunct ion with the  discrete-ordinates approximations,  we par t i t ion  
[Era, E~)  into G~ subintervals I ~ =  .E ~ " g [ g-l,/~g), g = 1, 2, ..., G~, such tha t  E r a =  
= E o < E~ < < / ~  = E ~ .  As is well known, the  mult igroup eqllations provide 

�9 "* 47 n 

approximat ions  }P~(x, SP), g-----1, ..., G~, to the exact  angular  flux in tegra ted  over 
each energy in terva l  I~, g = 1, ..., G~. The determining equations for the multi-  
group, discrete-ordinates approximations are:  

(3.4) 

with 

G n  2~m 

g ' = l  5 = 1  

g = 1 ,  ..., G. , i = 1 ,  ..., ~ , 

(3.5) T:l,g(x) 
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and 

(3.6) 9. . )  =fq(x ,  ~,~, ~) dE .  q~(x, 

n X The group-average4 cross-section data  a~(x, 9 )  and p , , (  , ~9', ~9) are given re- 
spect ively for each g in te rms of a re]erence flux To(x,  E)  by  

(3.7) 

(3.s) 

with  

(3.9) 

n~g 

d E  ~ " n 03 

T~.~(x) 

and g, g' -= 1, ...~ G~, 
We refer  the reader  to [9, Section H I ]  for a detai led discussion of the  basic 

cri teria used in selecting a reference flux and of the  methods  actual ly  used for ob- 
ta ining it. Also, the  fundamenta l  conditions imposed on the reference flax To(x, E) 
necessary for our convergence analysis can be found in the  above reference. In  ad- 
dition, we assume tha t  the  m~pping x --~ To(X, �9 ) is a continuous L~[/E~, E~) -va lue4  

n ~  mapping  f rom each P~, j ----- 1, ..., ~ .  Such an assumption implies t h a t  a~( , tg) is 
continuous on each/~j  X D ~ and bonnded above and below by  ~ and a m respectively.  

At this poin~ we define P ~T ,  T e  ~ ,  to be the G~-tul31e given by,  

(3.~o) P J ( x ,  /2) == { f~ ( x ,  /2, E)dE,  . . . , f~(x,  /2, E)dE} . 
Gr~ 

We no~e tha t  formal ly  

where ~l,~(x,/2, E),  E e 1~, solves 

( 3  ~1~ S~.V~T~(x,/2, E) -~- ~'~ ~ ~ ,~.~, .Q, E) -- 

" g ' = l  j = t  ; " " T ~ , g ' ( X )  "" 

�9 ~(~z~/2(2,~.  E"~, d E  '~ 

• 
with boundary condition 

I n  o (3.12) T,:(x, oO, E) = h(x,/2,  E ) ,  x ~ ~ r ,  /2 + S - ( x ) ,  E + g 
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Equations (3.11) and (3.12) formally allow us to extend the multigronp, discrete 
ordinates approximations to be functions with common domain / ' •215  J~ ) .  
The task before us now is to ascertain solvability of (3.11) and (3.12) in ~ .  With 
such a result, we can s tudy the convergence question in a functional-analytic set- 
ting and exploit the collectively compact operator approximation theory developed 
by P. ~ .  Anselone [2]. 

Solving (3.11) and (3.12) leads to the integral equation for T~: 

p n (3.13) T~(x, ~2,/~) = M~Q~ .T~(x, ~, E) -F M~q(x, [2, E) -~ u.(x, f2, .E) , 

where M~ and Q . . P .  are given respectively by 

(3.1~) 

and 

M./(x, 9,  E) = 

= f ] ( x -  ,.(2, Y2, JE)exp {-- f a : ( x -  r~, [2)dr} dt, 
0 0 

(x, ~2, E) e T ' X D  ~ XI~, 

(3.~5) 

g ' = l  5 

To(X, E') } 

with (P.])~(x, ~ )  denoting the gth component of P~](x, ~) evaluated at ~2 = ~ j ,  

j -~  1, ..., s The contribution from boundary sources is given by 

(3.16) un(x, f2, E) -~ 
a(~.~)/]aI 

0 

(x, if2, E) ~ T ' X D ~ X I ~  . 

As a remark, we note that  for each n, M.  defined in (3.14) is a continuous linear 
mapping from ~P to ~1 and the mapping Q~.P., defined by (3.15) for every m 
and n, is continuous with domain ~1 and range in ~e. The proofs of these results 
consist of trivial modifications of the proofs of Lemmas 2.2 and 2.3 by using the 
piecewise continuity of the Ll[Er,, E~)-valued mapping, x --> ~o(X, E). The approxi- 
mate uncollided flux M.q + u. with u. defined in (3.16), is an element of ~1, 
since us itself is in ~1 due to the pieeewise continuity of {a~(x, ~9), g = 1, 2, ..., G~}. 
The solution T:(x,  ~9, E) to (3.13) has the same regularity properties described for 
T(x,/2, E) in Theorem 2.4. 

We now turn to addressing the convergence properties of M .  and Q,.~P~. We 
refer the reader to [8, Section IV] for a discussion of the approximation theory by 
Anselone [2] needed in our analysis. 



2~8 H. D. VICTORu jr. - E. J. ALLE~: On the convergence: etc. 

4.  - T h e  c o n v e r g e n c e  a n a l y s i s .  

Let ~ be the approximations to T which result from diseretizing the angular 
variable only~ and let q~:= M~q q- u.~, where u~ is given for each n by (3.16). 
Moreover, let the approximate scattering operator Q,, be defined analogously to Q 
in (2.6), with the integral over Y2' replaced by quadrature expressions with nodes 
{ ~ ,  i = 1, 2, ..., N~}. :By a careful manipulation of the integral equations (2.2) 
and (3.13) for T and T~ respectively, we can obtain the following error estimate 
for T -  T:  : 

(4.1) 

where 

(4.2) 

§ 

+ 

+ 

jr 

+ 

Q~,~P~?cl,dQ,,,- Q,,,. P,~)ff~ q- Q~n~ P,,(M,, - M)Q.~(M-- yIzL) Q ~  q- 

Q.~P, , (MQ~P,~M- MnQ~.P~M~)(Q~tff.~ - QT) -}- 

Q,,,~P~(MQ~.P~)(M- M,~)QT q- Q, , . ,P ,dM-.M~)QMQT 4- 

From these equations, we must show that given s > 0 there are integers mo 

and no such that [~--~i]r <e for all m>mo and ~no. Toward this end, we 

must establish the convergence of }F~ to ~ in ~1, a task which entails the pointwise 
convergence of Q~ to Q and the collective compactness of {(Q~M) 2, r e> l}  (el. 
Section V of [8]). Under the assumption that  all operators are uniformly bounded 
with respect to m and n, we see that  the convergence properties of Q,~ will establish 
error estimates for terms 8, 9 and ]0 in (4.2).)Ioreover, from the m~fitigro1r approxi- 
mations to the quantity T~, we need to investigate the pointwise convergence of M~ 
to M~ the convergence of Q ~ P ~  to Q~ for each m, and the collective compactness 
of (Q~,,P.M~) 2 in order to show that  [i(l-- (Q~P~M~)~)-~I] is uniformly bounded. 
With such results~ we may be able to derive e~Tor estimates for the second and third 
terms in the expression for T - -  T~ (in (4.1)) and in the remainder of terms in (4.2). 
In all, our analysis requires showing the pointwise convergence of Q~, to Q and of M~ 
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to M, along with proving the collective compactness of {(Q.,M~) ~, re>l ,  n~>l} 
(the proof of collective compactness of {(Q~M)~: m>~l} is precisely the same). 
The latter statement in the preceding sentence results from combining Proposi- 
tion 1.8 in [2, p. 8] with the following result. 

LE~WA ~.1. - Under the condition that: 

(4.3) 
~!Bt 

r 

~o := ma~ sup / / I , (~ ,  ~', E,, ~, ~)<~, ~,, E , ) -  
~' ~'e~,l d 

- -  p(x, ~2', E", .(2, E)~(x, [2', E") To(X, E") ~G,(x) dE"ldE -->0 

as n--> oo unilormly ]or all x,[2, S 2 ' e l ~ x l ) ~ x D  ~, lIQ~-Q,~P~ll ~ O a s  ~--> oo 
uni]ormly ]or all m. 

:P~oor. - ~ow 

(4.4) 

2: w~p(x ,  [2~, E', ~2, E)~(x, [2~, E')J(x, D,~, E')dE'  --  

�9 E m  ~ m  

- -  L , ' = ~  ~'~ E " '  To(X, E") ~,, 
~'~, 

I~, ~!lJl Gn 

(~.n) J P'=~ ~ ~o,,. p(x, ~2,~, ~,', f2, E)(~(x, ~2.~, E') / (x,  ~,~r ~ ' ) dE ' - -  

~'G,(x) t(x, ~ ,  E') dZ' dE = 

= m a x  ~=~ w~ /(x, f2m. E') p(x, E2~, E', .(2, E ) ~ ( x ,  ~2~ ,  E')  - -  
(z,~) d la'=l 

~rrt /~g, 
E") 

Z~', .E~ 

rl : {f,-, 1 < m~x 2: I'~,,,,I .o,,., E')I p(x, ~,.,, E', ~, E),~(~, ~,.,, E') -- 
(x ,9)  d Ig'=l i=1  

~m I~, 

~G,(x) dE" dE' dE< 
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(x,I~) g'=l i=1 
I~, Era 

- - i f ( x ,  t ) . , ,  E", .Q, E)a(x ,  ~ ,~,  E")dE" dEdE'  if]IleaL, 
\i=~ 

and the  assertion of the  lemma follows. 
To show the  strong or pointwise convergence of Q~ as m -+ 0% we shall need 

a resul t  on the  strong or pointwise convergence of the quadra ture  rules (3.1) in ~e.  
The proof of the  following lemma depends on approximat ing  a~ a rb i t ra ry  ] e ~e 
by  a sequence of functions whose value at  each (x, .(2) e F x D ~ is an e lement  of the 
dense set of bounded  continuous functions on [/{m, E~) .  This is accomplished by  
first extending the L ~ funct ion ](x, 9 ,  �9 ), for each (x, ~9), to be identical ly zero outside 
[E m , / ~ )  and convolving the  ex tended  funct ion with a mollifier in the energy va.ria.ble. 
The details are lef t  to  the in teres ted  reader.  

L E n A  4.2. - Pot  ] ~ ~ ,  the quantity 

(4.5) supll Z ~f(:~,, 9 ~ ,  . ) -  ](~, 9,  .)(1 - lm0--~d9 -~0 
:~ep II ~ = 1 ~[E m, ~ )  

D2 ~ 8  T~ - ->  c o  . 

This l emma enables us to prove the  nex t  result.  

PlCOI~OSITIOI~ 4.1. -- ~or each m, Q.,~ is a bounded linear operator /tom ~ to ~P, 
and the sequence Q~ converges strongly (i.e. pointwise) in ~ to Q as m -+ ~ .  

l ~ o o F .  - Tha t  each ( ~  is a bounded l inear  map f rom ~ to  ~e follows f rom As- 
sumptions A and B concerning p and a. Because bo th  Q and Q~ have ranges in ~P, 
i t  suffices to show strong convergence whenever  the  spatial  domain is restr ic ted to 
a T'~, i = 1 , 2 , . . . , ~ .  

Let  ] e C~ be fixed and suppose K is an upper  bound for 

(~.6) f fp(~, 9', ~', 9, m~(~, 9', B')lt(~, 9', E')I dBl dE 

~.~ E,~ = lip(x, 9 ' , . ,  9 ,  �9 )G(x, 9% .)/(x,  9% ")ltL,([E~,E~))~ 

(with ([Bin, E~) )  ~ denot ing the  Cartesian product  of [Era, E~)  with itself). As in [8, 
p. 360], condit ion (3.2) implies tha t  for given e > 0 there  exists a positive so and mo 
such t ha t  m > too, 

J'[w .i. 9 ~ f / } <  s /6K (4.7) ~ t '  ~ ' "  rain ( t D . , - -  tPl)  < so, �9 
�9 t ~ O  
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(Furthermore,  we can assume s, < max  {1, s/241K} without  loss of generali ty where l 
denotes the number  of rays generated by  the singular directions). Text ,  let  
F(x , /2 ' ,  T2,., �9 ) be a function,  continuous on/ '~ • 2) * • D ~ with range in J51([E m , / ~ ) )  2, 
which agrees with p(x,  ~ ' , . ,  Q, �9 )a(x, ~ ' ,  �9 )](x, ~ ' ,  -) as a function in Zl([iEm, E~)) ~ 
for values of ~ '  such tha t  ~ '  e//~~ which also has its Z~([E~, E~))~-norm bounded 
by  K.  The existence of such an extension is assv_red by a result of E. Micheal [7, 
p. 802 (Theorem 7.1)]. From Assumptions A and B, concerning" a and p respectively, 
we can see t ha t  the following family of functions of ~ ' ,  parametrized by  (x, ~ ) e  
e I '~ X D 2, 

~m 

will satisfy the compactness criteria of the abstract  Arzela-Ascoli Theorem (Theo- 
rem 2.1). In  particular,  for fixed ~ ' ,  we can apply the Fr6chet-Kolmogorov Theorem 
(Theorem 2.2) to show tha t  {g (~ ' , . ,  x, f2)} is relat ively compact in Z~[:Em, :E~). 
Hence the  above family is relatively compact in the Banaeh space of functions, con 
t inuous on D 2 with range in I,~[Em, :E~), equipped with norm 

sup | Ih(9, ~)j  dE 
# e . D  2 J 

E m 

for an arbi t rary  element h. s  1.7 of [2, p. 7] used in conjunction with Lem- 
ma &2, shows tha t  the quadrature l imit  (3.1) is uniform on this family. Therefore, 
for m sufficiently large, we have 

- ~ w,~f(x, ~ ,  ~9, .E', B) dE' d~ + 

~m m {~':mi~>~01P-'-t#~l<~,#'o eT/} 
| 

-p (x ,  9', ~', ~, ~)~(x, ~', ~')](x, ~', ~')}(~ - 1~'l,)-�89 d~, d~'[d~ + 
I 

4- l~ =~ 

~m "m min  [s - -  t~2~ < s~ ~2~ e I I}dE' l  dE < s 

This completes the proof. 

P~oPosi~io~ 4.2. - The sequence o] operators M .  converges to M pointwise, i.e. 
M~ / --> M], ] e ~ ' ,  under the condition that g~ --> 0 as n --> c~, where g.  is de]ined by 

(~.9) z ~ : =  max [sup {f~(x,  ~ )  - ~(x, ~ ,  ~)t: (x, ~, ~) e r x ~  ~ x z~}] .  
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P~O0F. - To show t he  s t rong  convergence ,  we m u s t  p rove  t h a t  g iven  

a n d  ] e G e  the re  is an  No (possibly depend ing  on e a n d  ]) such t h a t  

(~.to) 

-E!l~ 

sup | IMj(x, /2, E) -- M/(x, /2, E ) I d E  < 
(x,.O)e/"x D ~ J 

.E m 

s > O  

for  al l  n ~ No:  This  t a s k  enta i l s  ob ta in ing  e s t ima tes  of 

.e!13~ 

f lM4(x, #2, E) - M](x, .o, E ) I a E  
21nt 

whenever  (x,/2) lies in those subsets of F x D 2 occurring in the descril3tion of con- 
ditions 1-7 defining ~1. 

We first t r ea t  the  cases when 
c) 

(i) x~.['~, i---- 1 , 2 , 3 ~ . . . , ~ ,  [ 2 e l I ,  f l > 0 ;  
o .% 

(ii) x e / ' ~ \ 1  ~ rh G~ ~ [2 e D~ a n d  

(iii) xeI~,rh G~, 9 e l l , ,  card (W~(z, 9 ) )  < o% i = 1, 2, ..., ~ .  

W e  wri te  

(4.:[1) f lMt(x, 9, E) -- M.t(x, 9, .E)I dE = 

= ~_, ] (x  - -  t / 2 , / 2 ,  N)  e x p  - -  , ~ ( x  - -  r / 2 , / 2 ,  E )  d r  - -  
g = l  

I n _ 0 t 0 y 

0 

oxp 

X~or (x, ~) in  t h e  t h r ee  subse ts  of . / " x D  ~ depic ted ,  we can  e s t i m a t e  

(4.12) sup f iM](x, /2, E) -- M~](x, /2, E)[ d E <  
(~,~) 

~ m  
d(~,~) t 

~ [ { f  < Z ]f(x- t t /21-1/2, /2 ,E)i  exp - , ; ( x - r t / 2 p / 2 , / 2 ,  
g = l  

~ o o 

0 
g(e,~9)  

~162 {I } < ~: l l ( ~ - t l g l - 1 9 , / 2 ,  E ) l e ~ p  - G,.I/21-~dr �9 
g = l ~  

I'~ 0 0 

E) t/2t-ldr} - 
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a(x,~) 
"Iexp{v-I f z~dr}--I I/2t-ldtdE< 

0 d(~,~9) 

o o 

253 

Hence, for (x,/2) residing in the three subsets of F •  ~ just described, 

(4.13) sup IMd( ,/2, --  E) <    .ll]ll t -exp ( U - ~ ( d i a m / ~ ) ) / ~ )  - -  11 
(~,~) d 

~m 

In obtaining these estimates, we have made special use of the fact that both a(x,/2, �9 ) 
and a~(x,/2) are evaluated at the same point of the segment ~(x,/2) throughout the 
integration defining M and M~, and that ~(x,/2) does not rim along interfgces for 
the values of (x,/2) considered. Moreover, ior those vMues of (x, ~)  for which 
x e  ~/ ' ,c  / % and card (W}x,/2)) < c~--and for those (x,/2) with x e  ~1~ and /2eH~ 
or /2~//(U) such that  l < c a r d ( W } x , / 2 ) ) ~  oo--the same analysis will produce 
similar estimates as (4.13). 

The latter observations in the preceding paragraphs, in conjunction with the 
analysis producing (4.13), Mlow us to derive estimates for 

ii ( M -  M.) l (x , /2 ,  

for (x,/2) depicted in the subsets of 4, 5b, 5c, and 6 in the definition of C1: We take 
sequences x +, xj,  ~+,/2~ tending to (x,/2), respectively which lie in the subsets of 
/~• just analyzed. For example, for (x,/2) lying in the subset depicted in (4), 
we take sequences x +, x j , /2+ , /2~  lying in that  subset of /~•  described in condi- 
tion (3) of ~1; for (x,/2) lying in the subsets of 5b and be, we take sequences lying in 
those subsets of / ' •  described in the preceding paragraph. For all three pairs 
of sequences described, W}x~,/2~) has cardinMity finite for each of the pairs (x +,/2~) 
taken, since F and F~, i s  {1, ..., ~} are convex and the number of singular direc- 
tions (of unit length) is finite. 

Since ( M - - M . ) ]  e ~1 for each n, this means that  the various iterated limits 
indicated in conditions 4, 5b, and 50 exist as functions in El[Era, E~). By continuity 
of the Z~-norms, we see that  these limits satisfy inequality (4.13). As a consequenc% 
we obtain that  [ (M--  M.)/]• (from condition (4)) and [ (M--  M~)]]~}x,/2) 
(as in 5b and be) s~tisfy (4.13). A similar resorting suffices to prove (4.13) for those 
subsets of / ' •  in 5e and 6. 
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For  the  subsets o f /~•  in 4 or 5b, we es t imate  the  jump in (M-- M.)](x, Q, .) by 

(4.14) ( Ilim (M-- M:)?(x~ +, 9,/~) -- lira (M-- M.)/(x;, ~9, ~)ldE = 
E m 

E~j~ 

0 

0 

{('/,,~) eM'(m,~): lira (~t:,.#' (~;-- ,*)/(l]~;-~ll)) >~o} 
~-~= (s; ~-slOl-'Oeon.t} 

0 s 

--exp {-- f ((7~)i,,(x~ T[.Q[-l~, A(~, .~)[AQ[-l ~'gIJ i~~[-l ds] dV , 
o 

where ]~,j, a~,~ and ( g)~,~ are defined in (2.29). 
with x~--> x, we have 

(4.15) 

~ o 
For  ~ e  8Pg,~, and x-~eP, x-j~ G1, 

~m 

0 s 

0 

~nd ~ ~ with ao,~ (a~)o,~ given by (2.30). The expressions (4.14) and (4.15) have the 
upper bound 

2 ~ l l 7 1 I ~ l e x p  ( tT-~(d iam/- ' )Z. )  - -  1 ] .  

The strong or pointwise convergence of M~ to M is reflected in the  behavior  
of M/(x, ~ , ' )  and of M~/(x, #2, .) for  values of ~2 near  zero. More precisely, we 
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can observe t h a t  the  analysis for Lemma 2.2 shows tha t  the  operators M and M~ 
per se approach expressions involving Dirac measures as In[ -+ 0. The task  before 
us now is to  show tha t  these expressions become arbi t rar i ly  small as ~ -+ oo when 

act ing on each ] e ~ .  
Toward  this end, we consider those values of (x, 9 ) e F x D  ~ for which ]9 ]<~ .  

The pa ramete r  ~o in the  following discussion is defined to be the  m ax im u m  ~ which 

guarantees  for given s > 0, 

t t  

| It(x, 9, ~) -- ](xo, 9, E ) I a ~ <  (4.16) m~x 
~ D  ~ J 

(~.~7) ess sup ([~(~, ~,  ~ ) -  ~(Xo, ~,  E)I: 9 ~ D~, ~ ~ [ /~ ,  ~ ) }  <~ 

for  lx-xol<~a, X, XoeF~, i -~1 ,2 , . . . ,~ ,  w e  first consider those x e / ~  whose 
distance f rom ~F is greater  than,  or equal to, no. For  this case, our es t imate  will 
take  into account  those x ~ ~ whose distance f rom points in G1 is at  least  ao and those 
points in /~ within ao of G1. Secondly, we consider t ha t  subset of F consisting of 
points whose distance f rom ~F is at  most  a0- For  these values of x, we have the  

following three  sets: 

(b) {(x, 9): (ao/~)lPi<d(x, 9)<no, 19l<V}; 
(o) {~, 9): d(~, 9)>80,191<n}.  

To obtain our est imates  for the  case when x e l  ~ dist (x, G~)~>0o~ [91<V, we 
first write 

(a.ls) IMf(x, 9 ,  ~)  --  M. f ( x ,  9,  E)I = IMf(x, 9 ,  E) --  Mr(x, o, ~) + 

+ Ml(x, O, El --Mn](x, O, F~) + Mnt(x, O, El--Mnt(% 9, Ell = 
t 

0 0 

�9 [ ] ( x -  t l~l- '~,  ~, ~) 
[~((~ ~ ~ 9, ~)  - ~ i (x ,  o, ~)] I~1 -~ et - 

0 

-~ M./(x, O, E) exp{-- .I c~(x--r]9'-~9' O)[9]-~dr}-[- Mf(x, O, E)--M~/(x, O,E) -- 
d(m,~) 0 t 

0 0 

[f(~ - t l~ l - '~ ,  9,  E) 
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Our estimates become: 

2~!o~ 
c a  

| lMi(x, r2, E) -- Moi(x, r2, E) ldE <.< (4.19) 
J 

~., <~,~lll]l~-Eexz~ (-- a m ( 9 o / 2 f l )  - -  exp (-- aml/21 -~ d iem/ ' ) ]  + 

+ : ~ , ~ E z  - exp ( -  ~maolUlOl)] �9 

o.<,.<~0,~ ~ 3 I ~ = ~ - J ~ - - ~  - ~ ,  x), ~) ~(~, o, 
Bm s~0l /~!0t 

-~m Nnt 

�9 { m~x m~x il~(x - t l / 2 i - ~ , / 2 ,  E) - ~(~, o, ~ ) l i~ [~ , .~ ) l f ] l [~ -  + 

§ ~ max m~x ll/(x - * 1 ~ 1 - ~ , / 2 ,  ") - t(x, o, �9 )il~'[~..,.~)}. 

The precise s~me ~rguments in extending inequMity (4.13) to those (x, Q) in the 
subsets of conditions 4, 5b, 5e, ~n4 6 defining ~ for I~]~>U show tha t  (4.19) holds 

for all x~/~, dist (x, ~/')>~o, ]/21<V. 
For (x,/2) in the  two sets, 

(a) {(x,/2): a(x, 9)<(~o/~)1/21, i/2l<~}, 
(b) {(x, ~): (~oln)i~j<a(x, ~9)<~o, 1~91<~}, 

we express (M -- M~) i(x, /2, B) in the form 

(4.2o) (M-- M~) i(x,/2, ~,) = 
a(~,~) 

= f a(~--tl~i-l~,~,~,)exp{--fo(~--rl~l-l~,/2, E)l~l-~ar}" 
o o 

. rs(m-t,~[-,/2,~,~) 1(m,O, )]l 91_ldt - 

a(~,~) t 

- f o~(x-~i~l-~/2,~.)exp{- f~(x-r l~p~, /2) l~Pa~} �9 
o o 

. [_/(x_-Sl.C21-~/2,~,g) i(~,o, ~!11/21-~e, + 

+ a(x,i), 2) a~(x, o) l(x, o, 2) + 
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d(z,~9) 

o a(z,~) 

{ f } 
o 

The last two terms on the right hand side of (4.20) can be expressed as: 

d(z,~) 

](x, o, :El a:(x,O) exp{- f~;(x-t,.oi-~,~)i~l-'at}- 
o d(z,~) 

{ f } ,~(x, o, E)exp - -  ~ ( x -  t [ ~ l - ' . . ~  , ..'9, E ) j ~ l - ' d t  = 
o 
a(z,~9) 

- ~ ( x ,  o )  e x p  - (~(x-tl.c2]-~, ~ 9 ) [ ~ 2 l - ~ d t  

o 
d(z,~) 

o 
a(z ,~)  

�9 exp {-- 

](x, O,E) 
a(x, 0 ,~ )  

f (~(x - tIl21-'~, ~, E) - ~(~ - t l ~ l - ~ ,  ~))1~1 -~ ~t}, 
o 

with 

( 4 . s l )  

xI~: o-(~ - t i~ l - '~,  ~, ~) - o;(x - t l ~ l - ' . e ,  ~ )>o }  ; 
a(z,~') 

~ ( x , o , ~ )  e x p  _ ~(x_tl.Ql_~c~,9, E)l~i_~d t +1(x,O,E). 
~Vx, O) 

o d(~,sp) 

o 

o 

with 

x {I~1<~} P "  ~ ~ -  x ~.%( tf2[-'9, Q)--a(x--tlQi-'~,,f'2, F,)>O } 

where [x, x'](,) for two points x and x' i n / '  denotes the directed segment with i~_it, iM 
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point x and terminal  point x'. For  those points in (a), we obtain from (4.20) and (4.21) 

(~.22) j l (m- -m . ) ] (%~ ,Z ) td~ ,<  
~m E~t 

o<t<0o I~!~<~ G(x - -  tD, D, E) G(x, O, 
~m 

-§ ~1!/i1~- max max IIc~(x-ty2, .c2, E) --c~(x, O, E)I!~[~.~ , )  § 

+ ~ i  ~ max m~x ][/(x- t.c2, ~9, ~ ) - / ( %  0, ~ ) ] i v [ ~ . ~ ) +  

§ 2<~r#lllltr § ~,;,*ils'llr - exp ( -  Z~ao/,7)); 

For  those points in (b), we obtain 

(4.23) f I(M-- M~) l (x ,  P~, E ) l d z <  

~ ml~x m&x[ f ](x--t,DQ,-I~,~(~,E ) f(x,O,E) ] 
o<t<aol~l<vL G(x--t lDI-1Q, Q, z )  G(x, 0, E) IdE -}- 

2~ m 

+ ~,r.~lls<l]~,. max max ]lo(x - -  tl.C2 P.C2, ~,  E)  - -  ~(x, O, El I1~:~,~,~) § 

+ ~ G ~  max max Iff(x- tiQI-~9 , .e, ~9) --t(x, O, ~)IIv[~m,~)+ 
o<t<~o jOl<n 

§ <a~llSI[,. e~p {- <~,,,ao/~}. 

From the inequalities (4.13), (4.19), (4.22) and (4.23), we see tha t ,  with ~0, U at  
our disposal, we can make 

smaller than  any  preassigned positive number  for sufficiently large values of n. We 
conclude tha t  l imoosu p N M ] -  Mn ]N ~1 = 0 and the proof of Proposition 4.2 is complete. 

We refer the reader to [9, 15, 16] for a r~ther thorough interpretut ion of the quan- 
tities :F, an4 g~ defined in (4.3) and (4.9) respectively. Each represents the Inaxi- 
mum of the  fluctuations or variations of the tota l  and scuttering cross-sections a 
and p over the  energy intervals,  {I~: g = 1, 2, ..., G~}. Also, an analysis similar 
to t ha t  for showing the strong convergence of M~ to M will show the convergence 
of u~(x, ~ ,  �9 ) (defined in (3.16)) to u(x, ~)  in ~ .  We now turn  to proving the col- 
lective compactness of {(Q~M~)2: m ~ l ,  n~>l}. 

mm~oRE~ 4.1. - There exist sequences {T~} aria {R~.} el bounaea linear operators 
on ~P such that (Q.~/I~)2= T ~ +  R.,~ where { T ~ :  m > ! , n > ~ l }  is collectively eom- 

'R pact and ], .~]1 "-~ 0 as m -+ c~ uni]ormly in n. 
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P~oo~. - Le t  i8 denote the uni t  ball in ~e, and let ] ~ e .  
(Q~MD~](x, t~, E) as 

Arm ~m 

d = l  i = 1  

where 

(4.25) 

We express 

~n G~ f r t~, ~) = ~ ~ p(x, ~(2~, E', ~, E)a(x, ~ ,  E'). 
g=l g'=l 

~(~,~0/[~d t 

o 0 

f p(x -- tD~, D,~, E", D~,  E') ~(x -- tD~, ~2~, E"). 
I~, 

S 

0 0 

�9 ] (x  - -  t D ~  - -  sD,~+, Dm~, E") dE" & dE'  g t .  

As in the proof of Theorem i in [8], we define the family of operators(R~n: r e > l ,  n > l }  
acting on ~P to correspond to t ha t  portion of the sum (4.24) over indices i and j 
such tha t  the  two-dimensional vectors $9~, Y2~.~, and the origin are collinear~ for each 
fixed m and n, and T~. to correspond to the remaining pairs of indices. F rom (3.2) 
and (3.3), we can deduce tha t  IIR~,,l[ ->0 as n --> co uni/ormly in n by  using the basic 
properties of quadrature sets. 

In  order to  show tha t  the family (T~.: m>~l,n>~l} is collectively compact, 
we must ,  according to Theorems 2.1 and 2.2, show tha t  

(i) {T.~/, f e  !B, m, n~>l} is equicontinuous and 

(ii) for fixed (xo, Y2o)eI~• ~, i e  {1, ..., 0V}, (T.~./(Xo, Qo, "): ] e ~ ,  re, n>1} 
is relat ively compact in L~[Em, Es~ ). 

For proving equicontinui ty of the family {T~]:  ]~!8, m , n ~ l }  on each 
F, x D  ~, i E (1, 2, ..., ~t}, we select an s > 0 and find a 8 > 0 independent  of ] ~ ~ ,  
of m, of n, and of subregion /"4 so tha t  

whenever Ix--Xo]2q - 1 E 2 - / 2 o 1 ~  2. The proof follows the proced~'e discussed in  
Theorem 1 of [8] w i th  straightforward generalizations. We first f ind ~n mo and ~o 
such that 

Y2eD 2 i 



260 ~ ,  D ,  V I O T 0 t ~ Y  jr. - E. J. 2~LLEN: 0'~b the vor~vvrgenee~ etc. 

with 

(4.:r~) 

and. 

(4.28) 

E ~  

'~fm dE 
( z , ~ , 9 " )  LmfEm , E!ijt ) 

Nm 

m ~ l  i = 1 

Secondly~ for m>me~ let S~ be the set of index pairs (i, j) such that ~.. and ~=; 

are not  eollinear bu t  satisfy: 

(a) There exists t such that 

(b) There exists t such tha t  

J~Z,. t~2 i, 1~9,,~- <-eo ~ 
i fi  

(If m < m ~  assame S,, ~o be em p ty  se~ wi thout  loss of generali ty) .  Thirdly,  iet  Sm 
denote the  pairs (i, j) of indices which are not  in S~ bu t  such t h a t  e i ther  ~9~; and f2~ 

are not  collinear. Then we es t imate  

Ufi)eSm 
, e A ~  G, j ,~ (Zo ,  f20, .)~/ d- ~ + m a x  :1 e~/,n(x, s ") -- il~ [sm,~)  " 

�9 ( i , i ) e S ~  

The proof thaws 

( < 3 0 )  m a x  I;jG,; ~ (x ,  ~(4 ~ ) - -  @~,~o,(~,'o, D-o, .)]r~,~E,~,~) -~ o 
(zj)e8~ 

as (x, D) --> (xo~ ~2o) uni formly in m~ n~ ] ~ ~3, and subregion /'/~ i e {1~ 2, ...~ 9~}, 
follows the  same approach in [8]: Use is made of the  uniform cont inui ty  of 

E!I)~ 

o, zp') ., o ,  E)dEa(x, ~2', ") ~ L| Eml) 

El l t  

with respect  ~o z ~ C~, ; ~ {1, 2~ ..., ~}~ and $2, D ~ ~ D  2. 3[oreover the uniform 

cont inui ty  of (x, 9)  -+a~(x, ~) ,  g -- 1, . . . ,  G~,, x e i ' ~ ,  f2c-D ~, with {a~(x, f)), 
g --  1, ...~ G~} considered as a step funct ion in L=[Em, E~) ,  is also used. (This prop- 

e r ty  follows f rom the  uniform cont inui ty  of 

'x, 9 )  -+ ~(x, 9 ) ,  .) e L=[E~,  E~)  
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on every  / ' , •  We also utilize (2.23) and the fact  t ha t  /2,~,/2~eII-~. for some 
go with (i, ~)~ S~. From Lemma 2.1, we have tha t  d(x,/2)/I/21 is uni formly con- 
t inuous for (x, [2)eF• and this guarantees  the uniform convergence of the 
limits of in tegrat ion to zero when the arguments  of th  e in tegrand lie in adjacent  
subregions. 

We now turn to showing tha t  the  family 

{T,~n/(Xo, 9o, .), t e ~ ,  m, n > l }  

for 

Xoe/'~, i e { 1 , . . . , ~ } ,  f2eD~ 

is re la t ively  compact  in L*[Em, E~). From Assumption A and (2.21) of Assumption 
B, we have t ha t  

(4.31) 

E ~  E!m 

sup fiT~nl(Xo,/2o, E)tdE<a~a~n~ m~x (p(x,/2' ,E',/2, E)a.E I 
5s!B m (~,D,Y2') I/m LOO[.~m, E~D~)' 

the reby  showing the u n i f o r m  boundedness of the family  {T,~](Xo,/2o, "), 

f ~ ! ~ ,  m, n>~l}, with Xo ~ / ~ ,  i ~ {1, ..., ~},  and / 2 c o d  ~. Assumption A and (2.21) 
an4 (2.23) can be fur ther  uti l ized to produce the following est imates 

(4.32) 

Therefore,  

(4.33) 

f IT,~,,!(Xo,/2o, 
.E. m 

§ r) - T~.f(Xo,/2~ ~)r dE<  

B!Dt 

~< a~  aa~X~llf][ r max  fp(Xo,/2',E',E',/2o, E) dE I 
(xo,Qo,~2') , Lm[.Bm, B~)" 

~ -~'m 

"maxIl f . . e . .  'P(X~176176 /2',E',/2o, E)]dE LOO[Bm,B~f f [ )  . 

E m 

E ~  

limf~o 1T~n1(Xo, /2o, Z § ~ ) -  T~d(~o, /20, E)la~ = o 

uniformly for ] ~ !~, and in n and m. 
Finally,  we remark  tha t  if E ~  = ~ ,  we can show tha t  

l im ;]T~nf(xo, /20, E)[dE = 0 
E, o--~ eo 
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uni formly  in i ~ !~ and in m and n. F ro m  (2.40)~ we see t h a t  

(4.34) [T~,~f(Xo, p.o, ~)jdE< 

and the  r ight  hand  side approaches zero uniformly for ] ~ !~ and in m and n. The 
proof of Theorem 4.1 is complete.  

The resul t  of Theorem 4.1, in conjunct ion with Proposi t ion 4.1, enables us to  
conclude tha t  the  fami ly  {] I - -  (Q,~P~M~)~]-% m>~ me, n >  no} is uni formly bounded 
because of the  suberi t ically assumption C, with me and no sufficiently large. The 
t r e a tmen t  in [8] by  ~elson and Victory can be generalized in a s t rMghtforward man- 
ner  to  show tha t  the  fami ly  {(Q~M) ~, r e > l }  is a per tu rba t ion  of a collectively 
compact  sequence of operators acting on ~P. As a consequence an analysis simi- 
lar to t ha t  of Theorem 2 of [8] shows t h a t  Q ~ k ~ - +  QW and hence W~-+ W as 
m -+ oo. F r o m  (4.2), [ ] Q ~ T ~ -  Q~P~T%[] -+ 0 as m~ n -+ 0% and the  convergence 
of T ~  to T is immedia te  f rom (4.1). We summarize:  

T m ~ o ~  4.2. - Let the original transport problem (2.1) be subcritieal, i.e. let 

]]MQ[]~ < 1. Then, under Assumptions A and ]3 concerning the problem data a and p 
respectively, the approximations kP~ converge to ~ as m~ n -~ oo under the conditions 
that both 2fn and Z.~ converge to zero as n - +  c~. 

I f  we consider the  m~lt igroup approximat ions  per se - -wi th  /2 und isc re t i zed- -  
we see tha t  precisely the same anMysis~ as ut i l ized in Theorem 4.1, shows t h a t  the 
fami ly  ((QM.)~: n > l }  is a per turba t ion  of a collectively compact  sequence of 
operators act ing on ~ .  Toward  this end~ we subdivide the  set / )~-•  D 2 into subsets 
S~o and S~0, for some smM1 s0, analogous to S.~ and S~ respect ively  in the por t ion  of 
the  proof to Theorem 4.1 concerned with showing eqnicont inni ty  of {(Q~M~)2: 
m > l , n > ! } .  The proof of the  collective compactness propert ies  of {(QM~)~: 
n > 1} can be carried out under  conditions weaker  than  in Assumption B concerning p. 
In  fact  (2.21) is replaced by  the  requi rements  t h a t  

(i) ~ 

D~ ~m 

is bounded above for (0:, ~2 )~ ] ' •  

(ii) given ~ > 0, there  is a 8 > 0 such tha t  

~0t 

uniformly  in (.% ~2) ~/ '~ •  i ~ {1, ..., ~} ; condit ion (2.22) is repluced by :  
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(iii) given s > 0, there  exists a (~ > 0 such tha t  whenever  Ix--  xo[ "-}- 

+ I 9 -  OoI~<~ ", X, XoeF,, i e  {1, ..., ~}, 

(a.37) 

and, finally, condition (2.23) is replaced by :  

(iv) if we define p(x, ~ ' ,  E ~, ~Q, E) ~_ O, whenever  E or J~' is greater  t han  Es~ , 
or whenever  E or E '  is less t han  Era, then  for fixed (xo, ~o)~ T ~ •  ~, 

(4.3s) lira I 
t-->0 

D a 

,E, gJI 

~ -p(Xo, 95-~', Oo, .F)[ d.E} (1 -- IO't~)--~ d O ' =  O. 

A detai led in te rpre ta t ion  of these conditions can be defined in Section I I  of [15]. 
The approximat ions  T~, defined as solutions of (3.11), (3.12) when ~ is lef t  un- 

discretized satisfy error  est imates as in (4.1) and (4.2) by  formally replacing Q~ 
by  Q and Q,~P~ by  Q,,P~. The sequence {Q~P~} converges ~niformly to  Q 
under  the  s t ipulat ion t ha t  :~ --~ 0 as n --~ ~o. We can show b y  the arguments  in 
this section: 

THEOREM 4.3. -- Under Assumptions A and C, and with the modi]ication o] As- 
sumption B outlined above, the approximations T~ converge to ~ as n -~ oo under the 
conditions that both ~ and Z~ converge to zero as n - +  pp. 

I~EM~I~K. - _From the ]act that solutions o] (3.4) and (3.5) generate solutions o] (3.11) 
and (3.12), and vice-versa, we have rigorously shown the existence o] the multigroup 
discrete-ordinates approximations {~i ,g(x) ,  g -~ 1, ..., d~, i -~ 1, ..., s in subcritical 
media at least ]or n and m suf]ieiently large. Also 

(4.39) max  max  ~ i.g(x) - -  T(x ,  Y2.,, E) dE I ~< 
x~/" Dm~ g = l  

e, P ~ / ~ ( x ,  f E) dE < max ~ 0 ) - -  T ( x , O ,  = 
( ~ , O ) e l "  x D ~ a = 1 d 

an f dE = max ~ [ ~ ( x ,  ~,/~) - T(x, ~,  Z)] < 
( x , ~ ) e P  x 1) ~ g = 1 

< max  ~ I ~ ( x , D , E ) - - T ~ ( x , D , E ) I d E =  I ] ~ - ~ l I ~ .  
x~ 
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We note  t ha t  consistency of the  mult igronp,  discrete-ordinates approxiIna- 
t ions is due to the  strong or pointwise convergence of bo th  M .  to M and of Q~ 
to Q, along wi th  the  opera tor  convergence of Q,~P~ to Q~ as n - >  co un i formly  
in m. This is guaran teed  by  requir ing :F~ and Z~ to approach zero uniformly as 
n --~ oo. These are the  same results obtained by  ~eIson and Victory [9] and Vic- 
to ry  [16] where different  analyt ical  techniques are used in a different h o r n e d  setting. 
~ o r e o v e r  the  umform boundedness of the  sequence { ( ( t - -  Q ~ P ~ ) ~ ) - ~ }  has been 
shown to hold for general  subcritical media ra ther  t han  for the  submult iplying ones 
considered in [9~ 16]. 
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Let  _P be the region in the above figure. We can easily see tha t  /;1 : {21 3, 4}, 
~ = {1,  3,  ~}, ~ = {~, s, ~}, and ~ ,  = {1,  ~, 3} .  ~ o r e o v e r :  

~r'~ = ~ro~,~ u ~Z'o',~ u ~r~,~ u d '~ , , ,  

~_r~ = ~r~,~ u ~ro~,~ u ~r~,~ u ~r~,~, 

~r~ = ~ro~:~ u ~r~,~ u ~r3,~ u ~ , ~ ,  

a_r~ = a t &  u a t &  u a_r~,~ u a_r,,~. 

:For 

i = 2 ,  

i = 3 ~  

i : 4 ,  

~z'~ = ~r~,~ u ~r~,~; 

~ r  ~ = ~ro~,~ u ~rL, ;  

~ r  ~ = ~ro~ u ~ r L ;  

~ r  ~ = ~ro~,~ u ~ro~,,; 

~ r  ~ = ~ r &  u ~ r & .  

We note tha t  

(a) 

(b) 

W =  { w ~ : i = 1 , 2 , . . . , 9 } ,  
8 

Go = U [w~, w~+d u [w~, w~] u [w~, wd u [w.  w~] u [w~, w~] 
i = l  

(where here [w~, w~+~] denotes the line segment joining w~ and w~+~), 

(e) Go = G~. 

The points of intersection of the segment tz(x,/2) with the boundaries of subregions 
are labeled pl ,  p~, and Pa (here /2  = (cos % sin ~)). For  each of these po in t s ,we  have 

/~(p~) = {(3, 2) U ( 2 , 3 ) } ,  /~"(Io2) = {(1, 2) U (2, 1 ) } ,  

Consider the  five points  labeled xl~ x~, x3~ xd~ and xa. 

M(xl, /2 = ( 0 , -  

M(xl, /2 = (0, 

M(x~,/2 = (1, 

M ( x ~ , / 2  = ( - -  1, 

M ( x ~ , / 2  = (0, 

M(x~,/2 = ( 0 , -  

~(p3)  = { ( 1 , 1 ) o } .  

Observe t ha t  

1)) = {(1, 4)0 u (~, ~)o} 

1)) = {(1, 4)0}, M ( ~ I , / 2  = ( •  o)) = 0,  

o)) = {(s, 1)o u (1,1)o} 

o)) : {(2,1)o} ,  i ( ~ , , / 2  = (0, •  = 0,  

1)) = {(3, 2)0 U (2, 2)o} 

1)) = {(3, 2)o}, M(x3,/2 = ( •  0)) = 0 ,  
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M ( . , ,  O = (--  x, 0)) = {(~, 3 ) o ~  (3, 3)o} 

M(x,, ~ = (~, 0)) = {(~, 3)o}, M(x , ,  ~ = (0, + ~ ) )  = o ,  

M(x~, ~2 = (1, o)) = ((3, 2> w (2, 3) w (~, ~) ~ <~, ~)} 

M(x~, ~ = (-- ~, 0)) = {(3, 2) ~ (2, 3)}, M ( ~ ,  O = (0, •  = 0 .  

Appendix  B 

We analyze the regular i ty of the optical thickness for .(2 e ~O~, as we wish to 
gauge the influence of boundary,  shadow, and ver tex singularities on the regulari ty 
of angular  flux. Wi thou t  loss of generali ty,  we consider the  case for [O I = 1; the 
general case follows by  simils~r arguments.  The regulari ty properties of the optical 
distance are summarized in:  

P~oPosI~IO~ B.].  - (i) The optical distance Q(x, Q, .) is continuous~ with range 
in L~[Em~ E~)  in both x and Q for all x ~  GI and Q ED2~ I~l = 1; (ii) I] x eGI~ then 
~(x, ~2, .) is continuous at x for [2 ~ II~ and /or  those [2 e I I  whenever it happens that 

card (W~<x, 9))  < oo; 

(iii) Let x ~ G~; then ]or those ~2 e I I  ]or which 

card (W.(x, 0)) = 

the optical distance is discontinuous in general, but has one-sided limits in Z| E~).  
More precisely, let n a be a normal to the ray a(x, ~ )  whose second component is selected 
positive i] nonzero; otherwise, whose first component is selected positive. Zet x + and x~ 
be two sequences tending to x e I" such that 

(~+. - x).no > o, x+~ ~ al ,  

( ~ : -  x ) . % < o ,  x; ~ G1. 

Then 

(i) ilim ! 

~(x +, ~ ,  .) - -  lira ~(x~, ~2, .)j = 

n - + ~  {s: ~--  sf2ec~/'~.#) 

((i 'J)eM(z'O):lim(n"J'(w~'-~)/(Hz;-ccI]))~~ ,n-->~ (s : z -  sOeV/"~,j} J 
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where a~,~(x, ~,  .) is defined by (2.29). I f  x ~ ~ ,  a similar formula is valid, with 
l ira ~(x +, /2, .) ~ 0 (sinee a ~ 0 outside F). Hence 

(2) l im  ~(x: , /2~ �9 ) = 

~---> oo ~ f 
---- z .  ao,~(xi ~ - -  s / 2 ,  ~2, . )  d s  

{(i,i)oe.M(x,~):lim (nio s.(,-xrD/(ll~- ~7,ll))~o}, 

given by (2.30). where x ,  ~ ~,  x ,  -+ x ~ 0I'~,~, x,, ~ G~, with aoz 

RE~AICKS. - The continuity properties of a, as hypothesized in A s s u m p t i o n  A, 
along with the definition of ~(x,/2, �9 ) in (2.28), enables us to conclude that o~ has the 
regularity features similar to those described in conditions 1-6 defining ~ :  Indeed, 
we can express the optical distance from x to the boundary ~I ~ as 

(3) q(x,~2, . ) =  ~ ~ f a(x - -  s/2, /2, . ) ds 
(~: o,(x,Q) nr~O} 

where d + and d 7. are defined following expression (2.26). (t 'or x e F t ,  we define 
d~.(x~/2) = 0 and d+(x,/2) to be the distance to ~1~). The asserted regularity of 
o~(x,/2, �9 ) is a straightforward consequence of this formula. 

I a  o rde r  to  discuss t he  spa t ia l  de r iva t ives  of ~(x, /2 ,  �9 ), especia l ly  a long in te r -  
faces,  we shal l  need  assumpt ions  on t he  spat ia l  par t ia l s  of a s imilar  to  those  hypo-  
thes i zed  for  a in  A s s u m p t i o n  A. Moreover ,  in  t he  fol lowing discussion, we shall  le t  
W(x , /2 )  deno te  t h e  v e r t i c e s  be longing  to  o~(x,/2)~ i.e. 

(4) W ( x , / 2 )  : =  W w a ( x , / 2 ) .  

Our  r e g u l a r i t y  resu l t s  on t he  spa t ia l  pa r t i a l s  of ~ are  s u m m a r i z e d  in  

P~toeoslmlOZ~ B.2. - (i) Zet  x ~ Gx, /2 ~ D  ~, I/2] = 1. Suppose, /or the moment 
W(x,  /2) = O. Then we have the following expression/or the directional derivative of ~, 
with respect to x in direction ~: 

(5) 

�9 sgn (ni.~.'/2) ai . j(w,/2,  �9 ) + 01(x,/2, �9 ) ,  

where O~(x, ~ ,  .) has the regularity features described for ~ in 1)roposi t ion ]3.1 and 
subsequenee remarks. (ii) Suppose x ~ G1, and W(x,  ~ )  # O. Then we eannot define 
values f in Z~[Em, E~) )  of ~ . V ~ ( x  ~, /2 ,  .) at such points (x, /2), but we do have one 
sided limits (in L| F,~) ). More precisely, let x +, x-~, and na be given as in (iii) of 



268 t t .  D. V i c t o r y  jr. - E. 5. AL~E~: On the convergence, etc. 

Propos i t ion  B.1. Then the limiting values o/ ~.V~(x~,  9 ,  .) in .L~[Em, E~)  have 
a <( lump >> at x given by (5) with W~(x, tO) replaced by W(x,  tO) -- {x}. Otherwise the 
derivative is continuous. 

I%E~AI~S. (A) The expression (5 ) /o r  o~.V.o(x, Q, .) ]ollows Item di]]erentiat- 

ing (3) in con]unction with the hypothesized smoothness o] T and the ]aet that 
o~.V~d~(x, to) --  n , .o: /n ,d . to  for appropriate (i, ]) e .Y(w) .  (B) l~or the case when 
x ~  GI, and W(x,  tO) -~ O, then we can define a-V~e(x , fP, .) ]or such x's by taking 

the limiting values, in L~(Em, E~) ,  o] the right hand side o] (5) as x~-+x,  x ~  G~. 
We can also allow x to be a vertex if  W(x,  .(-2)-- {x} ---- 0. (C) Assertions (i) and (fi) 
of Proposi t ion ]3.2 implicitly assume that c~rd (W~(x, s  c~--or that no interlace 
is a subset o] a(x, tO). I]  we allow both x and [2 to vary in assertion (ii), the behavior 

o/ the derivatives o~. V.  ~(x, tO, �9 ) can be even more complicated than previously described. 

• and tO• Indeed, i/ x ,  ~ are chose~ in a manner analogous to that expounded in condi- 

tion ~ describing ~ ,  the interative limits o] g.V~(x~ ~ ,  .) will in general be di]- 

]erent for any choice o] x~ with either o] tO~. This is discerned by examining (5). The 
pathologies in the behavior o] a.V,Q(x~ tO, �9 ) are primarily  responsible ]or the ver tex  
singularities inherent in transport solutions pointed out by 1%. ]3. Kellogg in [6]. (/)) Tot  
values o] x and tO for which tO e I I ,  ]tO] --  1, x ~ G1, M(x,  tO)V: O, then the behavior o] 

~. V~Q(x, tO, �9 ) is diverge~t as a result o] the divergence o/ the  leading terms in (5)~ since 

n,.j.tO~-+ 0 whenever tO~ is any sequence tending to such tO. 

Exm~PLn. - Consider the ]ollowing medium with constant cross-section data al 

and ap : 

f x3  

x~ 
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Let e = (cos 0a, sin 0~). 3Tote that 

(6) q(x, [2) = o,#+~ (x, ~)  + c,~( d(x, ~) - d+~ (x, [2)) 

Jor any o] the positions x~, x2, or x3: .~rom (5), we compute 

sin Oo 
(7) ~.V~o(x~, ~9) = a~ . 

s i n  (p 

cos O~ @ sin O~ 
(s) ~ - % o ( x ~ ,  ,O) = ( ~ -  ~) ~ ~ . 

Sln 99 

Jot the points x~ and x~ respectively. ~'ormulas (7) and (8) are also ]ound by direct diJ- 
]erentiation o] (6). 

I n  the direction ~ = [2/I.(21 = (cos % sin 9), the optical distance tends to increase; 
]or such a ]ormulas (7) and (8) yield a . V ~ ( x , [ 2 ) - ~  a2> O, x - ~  x~,x~. Similarly, 
Jor ~ = - Y2/IY2I, the optical distances at x~ and x2 tend to decrease, i . e .a .V .~(x ,  [2) = 

- -a2  < 0, x = x~, x~, ~inally,  the jump in the directional derivatives across the 
middle ray is precisely 

0 ~  ~_ . / s i n  ( ~ -  0~)~ /cos Oo Sins~nH = 2 ~ -  ~,~ ~ sVn~ ] (9) (~ -  ~  

unless Oa = % in which case there is no jump. 

Appendix C: Proof of Lemma 2.3. 

We have  shown tha t  M], J e ~e, is uni formly cont inuers  as a mapping f rom 
/ ' •  c F •  ~, 6 > 0, to Zl[/~m, E~) .  In  this discussion, we shall focus on showing 
t ha t  M] can be e x t e n d e r  so as to have the cont inui ty  propert ies  ascribed to  ~1: 
This will be accomplished by  a close perusal of the  formula for M], (2,5), ] c ~P, in 
the l ight of the  results on the  optical distance between x and x' in Appendix B and 
on the cont inui ty  of d(x, [2) in Lemma 2.1. We shall also make use of the following 
expressions for the  case when xr e 3/', f2 ~ ~_(xr),  [[2[>7 and for [2 r 

(1) l } l ] (x r ,  [2, E)  = 
f i ( ~ -  tI[2I-~[2, [2, E). 
o 

o 

[2 e / / ~ \ Z _ ( z r ) .  
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I f  x ~ ~ ,  then we define 

(~) M](x,  O, ~ )  : =  ](z ,  O, E) /a(z ,  O, ~ )  . 

The regulari ty results on the optical distance fundamenta l ly  determine the 
smoothness features for M], ] e ~v, since the  integrat ion defining the a t tenuat ion  
t e rm and M ]  itself takes  place over ~(~,/2). More precisely, in the  expression for M. 

(3) M] (~ , / 2 ,  .~) = 
a(~,~) t 

0 0 

the  cont inui ty  properties of the  optical distance and of ] as an element of ~ de- 
termine those of M]  at least  f o r / 2  e D~. We ma y  subst i tu te  for a~,~ and a~,~ in equa- 
tions (1) and (2), respectively,  of Appendix B the values /~,~q~,~. and ]~.~5~,~ where 
r and q~,~ are the  l imiting values of ~ given b y  

(4) ~ ( ~ ' ,  9 ,  m = l~l  -~ exp ( -  e(~, ~ ' , / 2 ,  E)I/2I-O �9 

So, M / c a n  be extended to the  boundaries  of each ff~, i = 1, 2, ..., ~ and of P itself, 
to possess the  regulari ty featm~es ascribed to ~ b y  conditions (1)-(6). 

I t  behooves us, then,  to show tha t  for (i) x , x '  ~ ,  i = 1, 2, ..., ~ ,  

M f ( x ' , / 2 ,  -) -+ f(x, o, . ) /~(~,  o, �9 ) 

as ~' -~ ~, s -> 0 with l imiting values on the bmmdary  of each /'~ (as required by  
condition 7 defining ~1); (ii) for those /2 residing in H 0 \ 3 _ ( x r )  and in the  set 
H(U) \~_ (x r )  for which card (W~(xr,/2)) < ~o, 

M](~,  ~9, .) ~ M1(~r,  /2, ") 

as $ -->o%.; (iii) for such /2 in (ii), 

Mi(~r ,  t/2, �9 ) ~ /(~r, o, �9 )/~(~r, o, �9 ) ,  

as t -> 0 ~ (iv) for those  9 for which  ~ r - -  skg1-1/2 ~ I '  ~ 0 and card (W~(~r, /2))  = ~ ,  

Mi(wr, /2 ,  .) possesses one-sided limits in JLI[Em, E~)  when sequences ( ~ , / 2 ~ )  
- - a s  described in conditions (4) and (5b) in the  definition of ~ l - - a re  taken;  (v) f o r / 2  
such tha t  card (~r--  slf21-~/2 ~ 8/') ~ 1, we have 
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(iv) for f2 for which card (x r -  slQ[-~s n ~F) = 0, s > 0, 

M(xr, t~, �9 ) --> 0. 

points are at  least  a distance ~ from ~F~ for arbitrary,  bu t  fixed, e > 0. 
a point  of the  same subset  of /'~. We proceed to est imate 

(5) 

To show (i), let  us first suppose tha t  the  point  x lies in tha t  subset  o f / '~  whose 
Let  x' be 

f iMl(x', ~, ~) --](x, o, F~)/~(x, O, ~)1 a.E = 

t ( x ' - t l~ l -~ ,  ~, E) 1(=, o, E) 
�9 ~(x'--tlQl-~t2, Q, E)It21-~dt (~(x,O,~ dE = 

fJl g(z',~) t 

= f a(x'-tl~l-~,~,E) expl-f(~(x'--rl~l-~,~,E)lE2l-~dr }. 
.73 m o o 

�9 [ l ( x ' -  tl.Ql-~O, t2, E) /(x, o, E) r o, E)] I.QI_~,~ t-/(x, 0, .E) 
[a(x'-- tlQl-~2, ~, E) a(x, o, B) -~ a(x, o, E) ~(x, o, .E) aF, = 

= f ]  f a (x ' - - t l f2 [ - l t2 , /2 ,  E ) e x p  {--fa(x'--r,zQ]-lf2, .(2, E)lf2l-Xdr }. 
B m o o 

�9 [?(x'--tI.QI-LQ, ~,  E) ](x, o, .~1] i~l_Id t -  
L~(x'- tl-Ql-~, ~, ~) ~ o, ~) 

d(~'.O) 

,(x o ){f }l ~ - ~ e x p -  G ( x ' - - t l ~ l - ~ , ~ , F , ) l ~ l - ~ d t  a ~ <  
o 

-~" m o o 

�9 ~ ( x ' - t l ~ l - ~ , ~ , ~ )  ~(~ ,o ,~  l~l_~atoE+ 
~ ( x ' -  tl~Pp~9, ~9, ~) ~(x, o, 
~!]~ d(~',,~) 

--~ f ,f(X, O, ~)/G(X,  O, E) ,  e x p  { - -  f G(~ ' - - t , .Q] - I  AQ, ~ ,  .E),~'~[-ldt}d~ -~- 
~m o 
-~!fft d(z',o) t 

+ f f a(x'--tl~l-z~,~,E) exp{--f G(x'--rlC~i-~,~,~)l~l,l~Zr}" 
�9 gm Y o 

f(x'-tlol-~o, o, ~) 1(x, 0, ~ lOl_lata~< 
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<~g~l lS ' l l  ~:=[exp ( -  ~,~/19I) - exp ( -  ~ ( x ,  [2)/191)-1 -b- 
RiOt 

-~m 
~g3~ 

-4- a ~ ( ~  -- exp (-- r mgx f f(x'-- tlt2l-l~, 9, E) 
o~<~<,.s ~(x'- vital-'[2, [2, E) 

~m 

~(x, 0, E) I 
a(x, O, E) dE.  

These inequalit ies prove assertion (i), since we can deduce 

E~0t 

(6) lira sup f IMf(~!, 9,  E ) - - i ( x ,  O, E)ta(x, O, E)IdE = O . 
x'~, ]~1-~o J 

s 

I t e m  (iii) is s t ra ightforward to show, by  utilizing formula (1), and (iii) is proven b y  
an analysis similar to tha t  for showing (i): Assertion (iv) is easily seen, b y  using the 
representat ion for Mf(xr , 9 ,  E), ~ e i lo\II_(xr) , ~nd for Mr(x, [2, E), x e Y, in (1) 
and (2) respectively,  when sequences (x~, [2~)--as in conditions (4) and (5b) in the 
definition of g~--are taken.  We can easily deduce (vi) since M(xr, t[2, " ) ~  0 for 
all t near zero becguse of the definition os d(xs, [2) in the representation of 21//I in (3) 
(cf., also, the  definition of M(xr, [2, E) in (1) when [2 ~ _ ( x r ) ,  1121~>~). 

I t  remains to show (v). We recgll the  extension o~ M / t o  xr s ~[2 and to snch [2, 
]9 t = 1, satisfying card (x s - - s [2  n ~ F ) >  1, as specified b y  condition (6) in the 
definition of ~ .  Wi th  d(xr, 9) denoting the length of the  intersection of the  ray  
x r - -  s ~  with ~F, we have the  following est imate  similar to (5): 

(,7) 
~Jt 

f lMl(x~, tp, E) - I(x., 0, ~)lr o, E)I a ~ <  
~ m  B!ff t d(zr ,O) 

< f f ~(x~--7[2, t~,~)exp{--f o(xT--r[2, t[2, E)t-ldr}" 
B m 0 0 

[ i ( ~ -  ~9, tp, E) i(x~, o, E) + t(x~, o, E)],_~a~ I(~, o, E)[ aE 
L ~  ~ ,  tP, E) r 0, E) r 0, E)] r 0,~) 

I 

<2o-~(r ( -  ~,,,~t-~) - exp ( -  r ~9)/t)] + 
g~  

N m .E!gt [ 

t " dE. 
.l~rr t 

Hence 

lira sup I IMf(xr~ t.O, E) - - f ( x r ,  O, E)ia(xr, O, E)] dE ----- O. 
t---~O J Em 
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I f  x r ha ppe ns  to  be  u po in t  on un in terf~ce Mso, t h e n  the  q u a n t i t y  

t(xr, o, 2~)/~(x~, o, B) 

should  be i n t e r p r e t e d  us the  l imi t  of vMnes  (in Z~[Em, E ~ ) )  of ~(~) 1(~, 0, .)/~(x~', 0, .) 
~s x~ ) app roaches  xr  Mong the  subregion  b o u n d a r y  which  t he  r~y  g(xr ,  ~2) in tersects .  

The  p roof  of L e m m a  2.3 is comple te .  
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