
R a n d o m  R e l a x e d  Dir ich le t  P r o b l e m s  (*). 

mcm~L~ B ~ z x ~ o  

Summary. - We investigate sequences oJ Relaxed Diriehlet Problems o/ the ]orm: 

-- A% + #~ nh= 0 

where tth are random Borel measures belonging to a suitable class .AL o. By means o] a varia- 
tional approach, necessary and suJJieient conditions ]or the convergence in probability oJ the 
sequence % toward the solution o] a deterministic Relaxed Diriehlet Problem are given. Some 
applications to Dirichlet problems in random perturbated domains and to a SchrSdinger 
eguation with random singular potentials are considered. 

O. - Introduct ion .  

In  this paper  we provide a general  f ramework to s tudy both  the classical Diriehlet  
problem in domains with randomly distr ibuted small holes and the  s ta t ionary 
SchrSdinger equat ion with rapidly oscillating random potentials.  

More precisely, given a bounded open region D of R ~, d > 2 ,  and a funct ion 
] e L2(D), we deal with problems of the  form 

--  A u = J in D~,.,2V 
(0.1) r e H~(D~:F) 

where /~ is a random subset of D, and of the  form 

[ - - A u + q ( x ) u = ]  in D 
(0.2) l u e ~ ( D )  

where q is a random potent ial .  
Problems (0.1) and (0.2) can be considered as par t icular  cases of the  so called 

relaxed Dirichlet  problems (see [5], [8], [20], [21], [22]) formally wri t ten  as 

]" - - A u - l - # u = ]  in  D 
(O.3) / u = 0 on ~D 

(*) Entrata in Redazione il 25 febbraio 1987. 
Indirizzo delt'A.: S.I.S.S.A., Strada Costier~ 11, 34014 Trieste, Italia. 
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where # is a non negat ive  Borel  measure  on D, which m u s t  vanish  on sets of (har- 

monic) capac i ty  zero, bu t  m a y  assume the  va lue  + c~ on some subset  of posi t ive 

capaci ty .  
Following [20] we denote  b y  ~go the  c]ass of all Borel  measure  of this type .  
P rob Iem (0.1) can be  wr i t t en  in the  fo rm (0.3) b y  t ak ing  /~ = ooF, where  ooF 

is the Borel  measure  on D defined as 

0 if cap (B C~_~) = 0 

oo~.(B) = + oo if cap (B (3 2~) :/= 0 .  

Problem (0.2) can be written in the form (0.3) by taking 

~(B) =fq(x) dx. 
B 

I n  this pape r  we give a var ia t ionM me thod  for inves t iga t ing  sequences of prob-  

lems of the  fo rm (0.3), where  # are r a n d o m  measures  of the  class ~ 0 .  
The basic tool in our analysis  will be  the  var ia t iona l  # -capac i ty  defined as 

J9 B 

for every  # ~ 24o and  for every  Borel  set  B _c D. 
The  probabil is t ic  p rob lem we shall  consider can be  r igorously s t a t ed  as follows. 

Le t  (f2, Z, P) be  a probabi l is t ie  space. We consider a sequence (2/ID of r a n d o m  

measures ,  i.e. of measurab le  maps  be tween  (s~, 2 )  and  J~0, endowed wi th  the  
min ima l  ~-algebra ~g(~%) for which the  maps  C(.,  K) are measurab le  for every  

compac t  subset  K of D. 
The p rob lem is to ana lyze  the  a s y m p t o t i c  behaviour ,  as h -+ co, of the  solutions 

U~ of the  r a n d o m  relaxed Dir iehlet  problems 

{ - - A U T ~ + M I ~ U ~ = f  in D 

Uh--- 0 on 8 D .  

We find necessary and  sufficient conditions on (M~)for the  convergence in p robab i l i ty  
of the  sequence (U~) toward  the  solution of a determinis t ic  re laxed Dirichlet  p rob lem 

of the  fo rm 

in D 

where u is a sui table Radon  measure  of the  class J~o: These conditions are given in 

t e rms  of the  a sympto t i c  behav iour  ef the  expecta t ions  of the  r a n d o m  var iables  
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C(2/Ih, B) and of the covariances of the random variables C(M~, A) and C(Mh, B) 
for disjoint subsets A and B of D. 

When these conditions are satisfied, we obtain also a meaningful characterization 
of the l imit  measure ~. In  fact~ in this cas% the expectations of the capacities 
C(M~, B) converge weakly (in the sense of [26]) to a countably subadditive increasing 
set function e(B) (which turns out to be equal to C(v, B)) and v is the least measure 
such tha t  v > e .  This generalizes a result proved in [6]. 

As a first application of our results we consider the asymptot ic  behaviour of a 
sequence of Dirichlet problems 

(0.5) CT~ e g~(29\I '~)  

in which the  random sets /~h have the form 

h 

(0.6) /~h= m (x~@ r~K) 
i = 1  

~h  where ( ~)1-<<i<~ is a family of independent  identically distributed random variables 
in D with distribution law fl given by 

fi(B) =fh(x) dx (h e 15~(D)) , 
B 

K is an arbi t rary compact subset contained in the uni t  ball and (rh) is a sequence of 
positive real numbers such tha t  

lira hr~-~ = l< -t- co. 
h--> r 

We prove tha t  in this case the solutions U~ of the random equation (0.5) converge 
in probabili ty to the  solution U of the deterministic equation (0.4) with ~ = efi~ 
where e = 1C(K, Ra), and 

C(K, R e) = min { flDu] 2 dx; u e HI(Re), u > l  q.e. on K } .  
Re 

Problems of this kind have been investigated in [4], [32], [38], [40], by Brownian 
motion methods and in [36], [37] by Green function methods. Recently the fluc- 
tuat ions around the solution of the l imit  problem have been investigated in [29]. 

The eorrisponding deterministic case has been studied in [30] by an orthogona] 
projection method, and in [31], [35] by a capacitary method. Other results on this 
argument  can be found in [34], [13], [14], [15], [16]. lVIoreover, similar problems 
on Riemannian manifolds have been studied in [9, Chapter IX], [10], [11]. 
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The second appl icat ion of our abs t r ac t  t heo rem concerns the  a sympto t i c  behaviour  

of a sequence of s t a t iona ry  Schrhdinger equat ions wi th  r a n d o m  potent ia l s  of the  fo rm 

-- A U~ § q~ U~ = ] in D 

Uh ~ H~(D ) 

where q~ is g iven b y  

f ]oh i f  x ~ 2~a J 
q~(x) 

0 ogherwise 

2'~ are the  sets defined in (0.6) wi th  K equal  to the  closed un i t  ball,  and  (kh) is a 
sequence of real  numbers .  

~Ve prove  tha t ,  in dimension d - - -3 ,  if limoo~/k~r~= @ 0% then  the  solutions U~ 

of the  r a n d o m  equat ions  converge to the  solution of the  determinis t ic  equat ion  (0.4), 

wi th  v = el? , where e = 1C(B1, Ra). 
Problems  of this k ind  have  been studied in the  determinis t ic  ease in [2], [3] 

and  [7]. 

I would like to t h a n k  Prof.  G. DA~ MAS0, for suggesting me  this  research work,  
wi th  the  precious aid of his advice.  

l .  - Notat ion and preliminaries.  

Troughout  the  pape r  we denote  b y  D a fixed bounded  open subset  of R ~ wi th  

d > 2 .  Moreover,  we denote  b y  qL the  fami ly  of all open sets U _c D and b y  J5 the  

f ami ly  of all  compac t  sets K c D. 
Le t  us recall  some well-known definitions which will be  of ten used in the  sequel. 

DEFINITION 1.t .  - For  every  compac t  set  K c N; we define the  capac i ty  of K 

respect  to D b y  

D 

The definition is ex tended  to the  sets U e qL b y  

o ( u ,  D) = sup (C(K); K _c U, K e :~} 

and to a r b i t r a r y  sets E _c D b y  

c(B,  D) = inf {C(U) ; g D E, g c % } .  
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When  no confusion can arise, we will s imply  wri te  C(E) ins tead of C(E, D). 
Let  E be any  subset  of D. When  a p rope r ty  _P(x) is satisfied for all x ~ E except  

for a subset  h r c E such t h a t  C(Z r) ~ 0, then  we say t h a t  P(x) holds quasi every-  

where  on E (q.e. on E). 
A set A _c D is said to be  quasi open (resp. quasi closed, quasi compact) in D if for 

every  e ~  0 there  exists  an  open (resp. closed~ compact)  set  U c_D such t h a t  
C(A zJ U ) ~  e~ where A denotes  the  symmet r i c  difference (the topological notions 

are in the  re la t ive  topology of D). 
We  say t h a t  a funct ion  ]: .O -> R is quasi continuous in D if for every  e ~ 0 there  

exists a set E c D such t h a t  C(D -- E) ~ ~ and  the  res t r ic t ion of ] to ~ is continuous.  

We denote  b y  H~(D) the  Sobolev space of all funct ions in Z2(D) whose first weak  

der iva t ives  belong to Z~(D), an4  b y  H~(D) the  closure of Co(D ) in H~(D). 
For  every  x e R ~ ~nd every  r ~ 0 we denote  b y  

B (x) = {y  lY - -  x[ < r) 

the  open ball  centered a t  x wi th  radius r. 

By  the  symbol  ]B~(x)] we mean  the  Lebesgue measure  of the  ball.  
denote  the  bal l  of radius r centered a t  the  origin. 

I~et u e Hi(D).  I t  is well-known t h a t  the  l imi t  

i f  l i m -  u(y) dy 
r- o IB,(x) l  

/~r(x) 

exists  and  is finite for quasi every  x ~ D. 

In  t h e  sequel we a lways  require t h a t  for every  x ~ D 

By  B~ we 

f iI vm2onf ~ U(y) d y < u ( w ) • l i m  s u p '  1 ,, u(y) d y ,  
~-~o [~r(X)l 

BrCx) ~r(~) 

Thus, the  pointwise value u(x) is de te rmined  quasi everywhere  in D, and  the  func- 

t ion u is quasi cont inuous in D. 

I t  can be shown t h a t  

D 

for every  subset  E of D. 

For  these proper t ies  of the  capac i ty  and  of the  funct ion of Hi(D) see [28]. We 
denote  b y  :~ the  s-field of all  Borel  subsets of D. A nonnegat ive  countable  addi t ive  

set  funct ion  defined on ~ and  wi th  value in [0 7 -~ c~] is cMled a Borel measure 
on D. A Borel  measure  which assigns finite value to every  compac t  subset  of D is 
called ~adon measure. 
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t n  our pape r  we deal wi th  a pecul iar  class of Bore1 measures~ defined as follows: 

DEF]:NITION 1.2. -- d4~* is the  class of all Borel  measures  # on D such t h a t :  

~) # ( B ) =  0 for every  B e 5~ wi th  C(B)= 0; 

b) #(B) = inf  {/~(A): A quasi open~ B _c A} for every  B ~ ~g. 

An easy example  of measure  belonging to ~ *  is the  following: 

where ] ~ N~o~(D). More generally,  every  Radon  measure  # on D which satisfies a) 

belongs to v~5*. 
We r e m a r k  t h a t  the measures  belonging to 2%* are not  required to be  regular  

nor  a-finite. For  is tance,  the  measures  in t roduced in the  Definit ion below belong 

to the  class ~ *  (see [17], R e m a r k  3.3). 

D~FINImI0~ 1.3. - Fo r  every  quasi closed set  F of D we denote  b y  oov the  Borel  

measure  defined b y  

0 if 0(~ ~c~ B )  = 0 

c~v(B) = q- ~ if C(2~ ~ B) V= 0 

for every  B ~ ;~. 
Other  examples  are  given in [21]. 
Now, we give the  definit ion of the  var ia t iona l  # -capac i ty  associated wi th  a n y  

measure  # ~ d%*. This will be  the  basic tool in our invest igat ion.  

DEFINITION 1.4. -- Le t  # a v~*. For  every  B ~ ~ we define the  # -capac i ty  of 

B as:  

D B 

When  no confusion can arise, we will s imply  wri te  C(/~, B) ins tead of C(#, B, D). 
Since the  func t iona l  is lower semieont inuous in the  weak  topology of H~(D), 

the  m i n i m u m  is achieved.  

I ~ E N ~ K  1.1. -- ! t  is easy to see t h a t  if /~ is the  measure  c ~  of the  Definit ion 1.3 

wi th  /~ quasi closed in D~ then  C(/~, B) = C(B ~ ~) for every  B E :g. 
The ma in  proper t ies  of the  # -capac i ty  cal~ be  summar ized  in the  nex t  Proposit ion.  
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PRoPOSI~IO~ 1.1. - ~or every # ~ ~6" the set ]unction C(#,. ) satisfies the ]ollowing 

properties: 

a) r  = 0; 

b) i] B~, B2~ :5 and B~c_B2, then C(#, B~)<~C(tt , B2); 

c) i] (B~) is an increasing sequence in :5 and U Bh = B, then 
h e w  

o(#, B) = sup r B~); 
h e n  

d) i] (Ba) is a :sequence in :5 and B c_ U B~, then 
h e n  

r B ) <  ~Nr B~) ; 

e) C(~, B 1 u  B~) q- C(#, B I ~  B~)<C(I~, B1) -~ C(~, B2) ]or every BI,  B2e r 

]) C(~, B)<~ C(B) ]or every B E :5; 

g) C ( # , B ) < # ( B )  ]or every B e  :5; 

h) C(#, K) = inf {C(#, U); K _c U, U ~ ~b} ]or every K ~ J~; 

i) C(/~, B) = sup {C(~, K) ;  K _c B, K ~ J~} ]or every B e :5. 

For  a proof we refer  to ([17], Theorem 2.9 - Theorem 3.5 - Theorem 3.7). 
The previous propert ies  ~llow to show an  explicit  formula to reconstruct  a 

measure # ~ 3(,* f rom the  corresponding #-capaci ty  (see [17], Theorem 4.5). 

TEE0~E:~ 1.1. -- Let # ~ d(~*. Then ]or every B ~ :5 we have 

#(B)  = l im ~ C(#, B n R~) 
h - +  co  i e Z  a 

where R e denotes the cube: 
h 

i..q 
.~=1 2 ~ J 

]or every h ~ N and ]or every i = (il, ..., i s) ~ Z ~. 

In  our paper  we are in teres ted in studing a class of equations formally wr i t ten  as 

(1.1) 

(1,2) 

Au -~- #u  .~- ] in D 

u = g on 3D 

where g e H~(D), } e Z~(D) and # e ~*. 
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Following [20] we shall call the  equa t ion  (1.1) a re laxed Dirichlet  p rob lem in D. 

I n  order to give an appropr ia te  sense to the  equat ion  (1.1), we need the  following 
definitions. 

DEFINITION 1 . 5 .  - -  A funct ion u ~ H~oc(D ) (3 L~oc(D , ~) is said to be a local weak 
solution of the  equat ion  (1.1) if 

f Du Dv dx § f uv d# = f l dx 
D 1) 1) 

for every  v ~ H ~ ( D ) ~  L~(#, D) wi th  compac t  suppor t  in D. 

DEFINITION 1.6. -- A local weak  solution of (1.1) is said to sat isfy the  bounda ry  
condit ion (1.2) if, in addi t ion,  u - - g e  H~(D). 

The non t r iv ia l  relat ionships be tween  the  definitions above  and  the  definitions 
in the  sense of dis t r ibut ions are discussed extens ively  in [21]. 

I~Emkg~: 1.2. - I t  can be p roven  (see [20]) t h a t  i f  g ~ Hi(D) is given in such a 

way  t h a t  the re  exists some co E H i ( D ) n  s #) wi th  c o -  g e HI(D), t hen  there  
exists a unique weak  solution of p rob lem (1.1)-(1.2), this  solution belongs to H~(D) n 

(3 Z~(D, l~) and  coincides wi th  the  unique m i n i m u m  poin t  of the  funct ional  

1) 1) D 

on the  set  {v: v ~ Hi(D),  v -- g e H~(D)}. 

I n  wha t  follows we give two examples  of re laxed Dirichlet  problems which will 

be essential  in the  appl icat ions of our ma in  theorems.  

EXAMPLE 1.1. -- Dirichlet problems in domains with holes. 

Le t  K e J~. L e t  oo~ be the  measure  in t roduced  in Definit ion 1.3. I f  # : co~ 

and  g : 0 t hen  the  p rob lem (1.1)-(1.2) becomes 

- -  A u  § ~ K u =  ] in  D 
(1.3) 

. u = 0 o n  ~ D .  

I t  can be seen in [21] t h a t  a funct ion  u ~ H~oo(D ) ch JS~oo(D , #) is a local weak solution 
of equat ion  (1.3) if and  only if U]D\K is a solution in the  usual  sense of t h e  bounda ry  
value  p rob lem:  

- - A u = l  in D \ K  

u e HIo(D\K)  

and  u l K =  0 q.e. on K.  
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E X A m ~  1.2. - SchrOdinger equation. 

Let  q e JL~oc(D) with q> 0. I f  #(B) =fq(x)  d~ then  the problem (1.1)-(1.2) becomes 

-- A~ + q(x)u -- ] in D 

e H~(D). 

We shall also s tudy the following relaxed Dirichlet problem: 

[ -du+(#-l-~.m)u=J i n  D 
(1.4) / u = 0 on ~D 

where ~ u e ~ * ,  JeLl(D), m denotes the Lebesgue measure on R d and A>0. 
In  view of Remark  1.2 we can define a family of operators from L~(D) i n t o / ~ ( D )  

which are called resolvent operators. 

DEFINITION 1.7. -- For every ~> 0 and for every # ~ ~{~*., the resolvent operator 2~ 
is the mapping which associates with every J e Z2(D) the unique weak solution 
u e H~(D) n L~(D, #) _c/~(D) of the problem (1.4). 

R E ~ K  1.3. - R~ is a linear continuous operator between Z~(D) and Z~(D) 
(see [5], Definition 2.3). 

2.  - 7 - c o n v e r g e n c e .  

In  this section we introduce a variational notion of convergence for sequences 
(#~,) in Jt{~* which will be useful to s tudy  the perturbations of the relaxed Diriehlet 
problem (1.2)-(1.3). 

Wi th  every /~ ~ ~6" we associate the following functional  i ~  defined on Z~(D) 

+ ~  

i f  ~ e a~.(D) 

Since # ( B ) =  0 for every B ~ ~B with C(B)= O, the functional  i ~  is lower semi- 
continuous in /5~(D). 

The following definition of pconvergence for sequences of measures (#h) belonging 
to ot6* is given in terms of the / ' -convergence  of the corresponding functionMs i~v~. 
For  the definition of T-convergence and its applications to the s tudy  of perturbation 
problems in calculus of variations, we refer to [2], [23], [24], [25]. 
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DEFINITION 2.1. -- Le t  (#~) be a sequence in 35* and let # e 35*; we say tha t  (#h) 
y-converges to # ii the  following conditions are satisfied: 

a) for every u ~ H~(D) and for every sequence (uh) in H~o(D) converging to u 
in Z2(D) we have:  

/~(u)  <~lim i n f / ~ ( u h )  ; 
h - + r  

b) for every u ~ H~(D), there exists a sequence (u~) in H~(D) converging to u 
in L~(D) such tha t :  

/~(u)  ~>lim sup/~z~.(ua) . 
h--> co  

I~E~A~K 2.1. -- There exists a unique metrizable topology on 35* which induces 
the y-convergence, which will be called the  topology of y-convergence. All topological 
notions we shall consider on 350 ~ are relative to this  topology, with respect to which 
35, is compact  ([17], ~ e m a r k  5.~). 

A relevant  aspect of Definition 1.7 for our purpose is contained in the  following 
Proposition (see [5], Theorem 2.1). 

P~oPosI~IO~ 2.t .  - Let (#~) be a sequence o] measures in 35* and let # E 35*. 
Given 2 ~ 0 ,  let R ~  be a sequence o] resolvent operators associated with the meas- 
ures #h and R~ the resolvent operator associated with ~. The ]ollowing statements are 
equivalent: 

a) (#~) y-converges to t~. 

b) (R~) converges to R~ strongly in Z~(D). 

The following Proposition states the relationships between the y-convergence 
of a sequence of measures (#l~) and  the behaviour of the  corrisponding/t-capacities, 
(see [17], Theorem 6.3 and  Theorem 5.9). 

P~0P0SITION 2.2. - .Let (#~,) a sequence in dd~, and # E .~(~*. 
to # in 35* if and only i f  the inequalities 

a) C(#, U)..<liminf C(#~, U) 
It--> r 

and 

b) C(#, K)>~lim sup C(/4, K) 
h ~ c ~  

hold for every K ~ J5 and ]or every U ~ ~lL. 

Then (#~) y-converges 

I ~ E m K  2.2. - In  view of Proposit ion 2.2 a sub-base for the  topology induced 
by  y-convergence on 35* is given by  the  set of the form {/~ e d(,,: C(/~, U) > t} and 
{ / ~ b * :  C ( # , K ) < s }  with  t , s ~ R  +, U ~ %  and K e J S .  
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We denote by :B(J&o*) the Borel a-field of dt(~* endowed with the  topology of 
y-convergence. 

PI~OPOSITIOI~ 2.3. - ~B(~*) is the smallest a-field in J~* for which the functions 
C(., U) from ~(~* into R are measurable for every U ~ r (respectively the functions 
C(', K) are measurable for every K e 35). 

PlCOOF. - Denote by Z~ the smallest a-field in r for which all functions C(., U)~ 
U e ~l,~ are measurable, and by Z~ the smallest a-field in 2~* for which all functions 
C(., K), K c 35, are measurable. 

First ,  let us show tha t  2:1 ~ Z~. I t  is enough to prove tha t  

a) any  function C(,, K), K e  JS, is Z~-measurable; 

and 

b) any  function C(., U), Ue~IL, is Z2-measurable. 

Le t  us prove a). For  every K e 35, consider the  decreasing sequence of open set: 

U~ = {x ~ D: d(x, K) < l /h} .  

We remark  tha t  Uh"~K. By (h) of Proposition 1.1 we have 

C(#, K) ---- inf C(#, U~) 
h e n  

for every # e dt(~*, which proves a). 
Assertion b) can be proved in the  same way, by  choosing, for every U ~ ~ ,  an 

increasing sequence (K~) in 35 such tha t  K~S U and by using Proposition 1.1, (i). 
The proof of the Proposition is complete ii we show tha t  :B(d~*)----X1. The 

inclusion Zl_C ~B(~*) is trivial because C(., U), U EqL is lower semicontinuous on 
~{~* by Proposition 2.2 (a). In  order to show tha t  ~B(Jt(~*)_c X1, we have only to 
observe t ha t  the sub-base for the topology of the y-convergence given in Remark  2.2 
is contained in Z1 (because 2:1----- ~ )  and tha t  d6* admits  a countable basis for 
the  open sets. [] 

The next  Corollary follows directly from th.e previous proposition. 

C0~0LL)~Y 2.1. - Let (f2, X~ P) be a measure space. Let M be a function from f2 
into dt~*. The following statements are equivalent: 

a) M is Z - -  ~B(3b*) measurable; 

b) C(M(.)~ U) is Z-measurable for every U~ elL; 

c) C(M(.),  K) is X-measurable for every K e  35. 
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We need also some result  about  the measurabi l i ty  of the function C(., B) for 
every B e 55. Le t  us denote by :~(Ji(~*) the  a-algebra of all subset of ~(~* which are 
universally measurable with respect to 55(zt(~*) (i.e. Q-measurable for every proba- 
bi l i ty m e a s u r e  Q on  

PRoPosImIo~ 2.4. - •or every B e 55 the ]unction C(., B) is ~(~*)-measurable. 

P~ooF. - Le t  Q be a probabil i ty measure on 55(~(~*). For  every B ~ r L) J~ we set 

, (B) : ~" C(tt , B) dQ. 

By properties (h), (i) and  (e) of C(#,.) in Proposition 1.1 we have tha t :  

(2.1) . (K)  = inf { . ( y ) ;  v ~_ K, V e %} 

for every K e J~, 

(2.2) , (U) : sup {,(K); K_C U, K e  J~) 

for every U e elL, and 

(2.3) , ( K , U  Ks) + , (KI(~ K~)<,(K1) + -(Ks) 

for every K1 1 Ks ~ J~. 
We can extend the definition of g by  

(2.4) ,(B) = inf {,(U); Y ~_ B, U e elL} 

for every B 6 55. We infer from (2.1)I (2.2)I (2.3)I (2.4) t h a t  ~ is a Choquet capacity 
on B (see [27], Theorem 1.5). Applying the  eapacitabily Theorem (see [12]) we get 

(2.5) ~(B) = sup {~(K) ; K _c B, K e J~} 

for every B e 5~. ~ow~ fix B e 55. By (2A) i t  follows t h a t  for every s > 0 there 
exists U e r163 U ~_ B such tha t  

(2.6) o~(B) + el2 > o~(U) . 

~[oreover~ by (2.5) we also get t ha t  for every s > 0 there exists a X e J~1 K _c B 
such tha t :  

(2.7) , ( B ) -  e/2 < ~(K).  
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B y  (2.6) and (2.7) we get  t ha t  for every  e > 0 

(2.8) f [C(~, U) -- C(/~, K)] dQ < o 

Since C(.,  K) < C(., B ) <  C(., U), (2.8) gives the  measurabi l i ty  of C(., B) respect  
to the  a-field of all subsets Q-measurable. Finally,  the  assertion follows noting t h a t  
Q is an a rb i t ra ry  probabi l i ty  measure on $(Ji(~*). [] 

At the  end of this Section we recall  some prob~bilistic notions which we use in 
the  sequel. 

By  ff(Jt(~*) we mean  the  sp~ee of all probabi l i ty  measures defined on :~(~(~*), i.e. 
an e lement  Q e ff(Jt~*) is a non negative countably  addit ive set ~unction defined on 

w i t h  = 1.  

We recM1 the  concept  of the  weak convergence for a sequence (Q~) of m easu re s  
belonging to  ~(2~o* ). 

DnFI~I~0~ 2.2. - We say tha t  a sequence (Q~) of measures in ~ ( s  converges 
weakly to a measure Q in ff(Jt(~*) if 

lim f i = f i 

for every  continuous funct ion ]: ~ * - >  R. 

Similar problems of weak convergence of measures on spaces endowed with 
topology re la ted  to F-convergence have been studied in [18] and [19]. 

The two results t ha t  we give in the  following hold for a generic compact  metr ic  
space. For  the  proofs we refer  respect ively to [1], Theorem 4.5.1 and to [39], Theo- 
rem 6.4. 

PROPOSImIO:N 2.5. - Let (Qh) be a sequence o] probability measures in ~(~*o) and 
let Q ~ '$(~(~*). The ]ollowing statement are equivalent: 

a) (Qh) converges weakly to Q in ff(~(~*). 

b) lim f ido = f i do 

]or every ]unction ]: J~*-> R such that 

Q(# e Ji(~*: ] is continuous a t /~}- - -1 .  

PRoPosImIO~ 2.6. - ~or every sequence (Qh) o] measures in ~(~*) there exists a 
sub-sequence (Qh~) weakly convergent in ~(~{~*). 
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We conclude wi th  some definitions: 

D ~ F ~ I T I 0 ~  2.3. - For  every  :g(dg~*)-measurable funct ion X we denote  b y  Eo[X ] 
the expectation of X in the  p robab i l i t y  space (3~*, ~g(2s Q), defined b y  

E d x ]  = f x(t~) a@(~). 

~D]~FINITION 2.~. -- For every X, ~/~ ~D2(J~, ~(d~*o) , Q) vce dellote by CovQ [X, Y] 
the covariance of X and Y in the probability space ( ~ ,  ~(~}~*), Q) defined by 

GovQ[X, Y ] = E d X Y ]  --  E d X ] E d Y ] .  

The var iance  of X is defined b y  VarQ [X] = Cov e [X, X].  

3. - The main result. 

I n  this section we p rove  the  ma in  resul t  of this paper :  a necessary and  sufficient 
condit ion for the  convergence of a sequence (Qa) of measures  on ~1~* of the  class 
ff(d~*) to a measure  & e  ff(Jl{~*) of the  fo rm 

0 i f v 6 g  

(3.1) &(g) = 1 if v e g 

for every  g a ~ ( ~ * ) ,  where  ~ is s finite Bore1 measure  on D of the  class ~ o  ~. This 

condit ion is expressed in t e r m s  of the  a sympto t i c  behaviour ,  as h - +  c~, of the  
funct ions  C(.,  B), B e :g, considered as a r a n d o m  var iables  on the  p robab i l i ty  spaces 

We  begin wi th  some definitions. Le t  (Qh) be  a sequence in ff(~*).  First ,  for 
every  U e qJ5, we define: 

a~(U) - -  lira inf/~q~[C(-, U)] 
h--> co 

and 

a"(U) = lira sup EQ~[C(., U)] 
h " ~  co 

where No. ~ denotes  the  expec ta t ion  in the  p robab i l i ty  space ( ~ * ,  ~g(~tb*), Qh). 
Nex t  we consider the  inner  regular izat ions r and  e"  of ~' and  ~" defined for 

every  U e qJo by :  

(3.2) ~'(~)  = sup {~'(v); v e % ,  F e  u} 
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~nd 

(3.3) a"_(U) = sup {s V e q L ,  V c  U}. 

Then, we ex tend  the  definitions of a'_ and ~"_ to the  a rb i t ra ry  Borel  sets B c D by  

(3.4) ~'_(B) = in] {~'_(U) ; U e r U ~_ B} 

and 

(3.5) a"_(B) = inf {~"_( U); U e ~U,, U ~_ B} 

for every  B e 55. 
Finally,  we denote  by  ~' and C the  least superaddit ive set functions on :5 greater  

t ~r  t than  or equal to a_ and _ respectively.  
We are now in a posit ion to s ta te  our main result. 

TttEOI~E~ 3.1. - Let (Qh) be a sequence o] measures on J~* o] the class f f(~*).  

Assume that 

i) #(B) = C(B) < -[- ~ ]or every B e 55 

and denote by v(B) the common value o] v'(B) and C(B) /or every B ~ 55. 

Suppose in addition that 

ii) there exist a constant e ~ 0, an increasing continuous ]unction 

~: R •  -+ R 

with ~(0, O) -~ 0 and a Radon measure fi on :5 such that 

l im sup [CovQ~ [C(., U), C(., V)]l<~(diam U, diam V)p(U)fi(V) 
h - +  co 

]or every pair U, V ~ ell such that U (~ V = 0 with diam U < e, diam V < e. 
Then 

a) ~ is a finite Borel measure on :5 o/ the class d~* ; 

b) (Qh) converges weakly to the probability measure (~ defined by 

0 i f ~ g  

]or every 8 ~ 55(d4~*); 

c) c~'_(B) - :  ~ ( B )  -~ C(v, B) /or every B ~ :5. 
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RE~CA~I~ 3.1. -- L e t  ~ :  q s  be  an increasing set  funct ion defined b y  

~ ( u )  = E ~ [ c ( . ,  u)] 

and  le t  ~: ~ I L - + R  be an  increasing set  funct ion defined b y  

~(u )  = c(v, u ) .  

Then  the  condit ion c) of Theorem 3.1 is equivMent  to say t h a t  (zch) converges weakly  
to ~ in the  sense of [26] (with respect  to the  pMr (qL, 3~)). 

For  the  proof  of Theorem 3.1 we need some pre l iminary  results. We begin wi th  a 
genera l  probabi l is t ie  L e m m a .  

IJet (~Q, X, P)  be  a p robab i l i ty  space. The  symbols  E[X]  and  Var  [X] will denote  

respec t ive ly  ~he expec ta t ion  and  the  var iance  of the  r a n d o m  var iab le  X wi th  respect  
to the  me~sure  P.  

LE~:lVIA 3.1. - Consider a sequence (Xa) o] non negative random variables on 

(~9, Z,  P) .  

Suppose that 

i) X ~  L~(Q, P) ]or every h e N. 

if) X~ converges to X /or P-almost every co ~ .(2. 

iii) l im Var  [X~] --~ 0. 
h~oo 

Then, there exists a constant Xo such that X(co)---- Xo ]or P-almost every co ~ ~2. 

Pl~OOF. - Ghoose a non nega t ive  sequence s~ such t h a t  

Set 

lira s~ =: 0 and l im 
h--> oo h--+ co ~ 

Vat  [X,,] _ 0 .  

Var [X,~] 
t h - -  2 

8h 

Then  the re  exists  a subsequence of t~, still denoted  b y  t~, such that 
Consider the  sets 

h e n  

B y  Chebychev ' s  inequa l i ty  we have  P ( B ~ ) <  t~ for every  h and  b y  Borel-Cantel l i ' s  

L e m m a  i t  follows t h a t  

P ( l im  sup B~) = 0 .  
h--+ oo 
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Consequently,  if ~o~, w~ are two e lements  in ~ \ l i m s u p  Bh, we obta in  

Ix~(co~) - x~(co~)I < 2e~ 

for h large enough. Passing to the  l imit ,  as h - ~ o %  we get  the  proof  of the  

~ssertion. [] 

In  the  nex t  L e m m a  we prove  a resul t  concerning increasing set functions,  i.e. 
funct ions a: 5 3 - ~ R  such t h a t  a ( A ) < g ( B )  whenever  A,  B e 5 3  and Ac_B.  Firs t  

we need some e l e m e n t a r y  definitions. 

DnFI~mmio~s 3.1. - A subset  ~ of ~ is said to be  dense if for every  pa i r  

U, V e q L  such t h a t  U c  V, there  exists a set  W e  if) such t h a t  U c  W e  W c  V. 

L E ~ X  3.2. - Let zt: ff~-~ R be any increasing set Junction. Then the set 

ID : { W e  % :  W c  D, a(W) ---- a(W)} 

is dense in  qL. 

Pl~OOr. - The L e m m a  is an  immedia te  consequence of Proposi t ion 4.7 of [26]. 

For  the  readers  convenience we repea t  here  the  proof  in our par t icu lar  case. 
Le t  U, V be in qL such t h a t  U e V. By Uryshon ' s  L e m m a  there  exists  a funct ion 

I e C~(V) such t h a t  0 < ](x) < 1 for every  x e V and  ] ---- 1 on U. For  every  t e ]0,1[  ---- T 
we consider the  open set :  

u ,  = {x e v :  1(x) > t}.  

L e t  g: T - ~  R be the  funct ion defined in the  following way  

g(t) = o~(Ut). 

Then  g is a decreasing funct ion and  for every  t e T we have  

inf g(s)>~(Ut)>oc(U~)>sup g(s) . 
s < t  s > t  

Since the  funct ion g has  a t  mos t  a countable  set of d iscont inui ty  points  in T, there  
exists t e T  such t h a t  ~(Ut) = ~(Ut) and  this proves  the  L e m m a .  [] 

In  the  following we give sufficient conditions in order to have  t h a t  a p robabi l i ty  
measure  Q e ~ ( ~ * )  be  equal  to the  measure  & defined in (3.1). The conditions are 

given in t e rms  of t h e  funct ions C(., B), B e 5~, considered as r andom var iables  oll 
Q). 



150 MICHE~ BALZA~O: _Random relaxed Dirichlet problems 

LE~m~A 3.3. - Let Q be a probability measure on ~b* o] the class r ). De]ine 
~(U) = E~[C(-, U)] ]or every U ~ r and 

~ ( B ) = i n f { ~ ( U ) ;  U~_B, U ~ % }  

]or every B ~ 55. Assume  that: 

(i) There exists a Radon measure fl~ ou 5~ such that fl~> ~ on o3; 

(ii) There exist a constant e > O, a Radon measure fi2 on 55 and an increasing 

continuous ]unction ~: R •  R with ~(0, O) such tha t  

(3.6) !CovQ [C(., U), C(., V)] I < ~(diam U, diam V)fl2(U)fl~(V) 

]or every pair  U~ V ~ c]L such that U (~ V =  O~ with diam U < e  and 

dium V < s. 

Let v be the least superadditive set ]unction on o3 such that v > ~  on 55. Then v 

is a measure on 55 o] the elas ~L* and 

Q=a~. 

PROOF. - The funct ion cr is countab ly  subaddit ive on qL (hence on o3) by  the  
countable  subaddi t iv i ty  el  C(#, .) (Proposit ion 1.1, (d)). Therefore  ~ is a measure 
by  Lemm~ 4.1 of [17]. We observe t h a t  the  measure ~ is in 2L* because it  is a 
l ~ d o n  measure and ~(B) ---- 0 whenever  C(B) = 0 by  Proposi t ion 1.1~ (f). By  proper- 
ties (h) and (i) of Proposi t ion 1.1 we can ex tend  the  relat ion (3.6) to each pair  of 
disjoint sets A, B ~ 55 ~nd check t h a t  

zt(B) = EQ[C(., B)] 

for every  B ~ 55. 
Le t  us denote  by  z(.,  B) the  random variable on the  probabi l i ty  space (Jt(2~, 

$ ( ~ * ) ,  Q) defined by  

z(#, B) = #(B) 

for every  B ~ 55. 
By  Theorem 1.1 we have tha t  

z(.~ B) - - U m  ~r B ~ RD 
h--~ co  i 

for every  B e 55, where R~ denotes the  cube defined in Theorem 1.1. We apply now 
Lemma  3.1 to show tha t  z( . ,  B) is a co~tstant r andom variable. Therefore,  we have 
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only to prove that :  

lim Var~ [ ~ C(., B n R~)] = 0 .  
h---~ c~ i eZ  a 

Now, let us fix B ~  with ]~_r For every h e N ,  we have 

(3.7) ~ VarQ [C(., B n R~)] = ~ {Er B (~ R~) ~] -- (Er B (~ R~)])2}< 
i~Z  a i~Z 

< ~ E~[C(., B ~  R~) ]< 2 C ( B n  ., 
i e Z  a i~Z a 

< sup C(B (~ RI) ~ ot(B ~ RI) < s~fi~(B) 
i eZa i e g  a 

where we have set 

s~ = sup C(B n R ~ ) .  
i~Zd 

We observe that  s~ -+ 0, as h --> 0% because the dimension d is greater than or 
equal to 2 and 1~ is compact in D. On the other hand, by hypotheses there exists 
hoeN such that,  for every h>ho, 

(3.s) CovQ [c(., B c~ R~), r B c~ R~)] < 
i j e z a  

~< ~ ~(diam (B r R~), diam (B r R~))fi2(B r R~)fl2(B (~ R~)<~ 
i , j e Z a  

i v~j 

<~(diam n ~ d i a m R  ~ ~ fl2(Bn n~)fl~(~ B n R~) ~<~(diam R~,~ diam Ro)[fl2(B)]2 . 
i ,  i~Za 

By (3.7), (3.8) and by hypothesis we get: 

lim VarQ [ C( c~ 
h--> co  i e Z  

, B n R~)] + ~ Oovo [0(.,  B r R~), C(., B r R~)]}< 
i ,  j~Za 

~< lim {shill(B) ~- ~(4iam R ~ 4iam R~ 2} = O . 
h--> oo 

Therefore Lemma 3.2 implies that  for every Borel set z(., B) is a constant random 
variable. Now, let us compute the expectation of z(., B). Since the sequence 
( 5 C(B a RI))h~N is increasing, we get 
" i  ~ Z ~ 

EQ[z(., B)] = lira E~[ 5 C(., B n Ri)] = lim ~. ~(B r RI) = u(B) 
h-->oo Li~Za h-->co i e Z  a 

for every B ~ ~,  where the last equality is proved in [17], Lemma 4.2. 
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Hence for every  B ~ ~g there  exists ~ subset ~ oi ~ *  with Q ( ~  : 1) such t h a t  
z(#, B ) =  r(B) for every  # e ~{~. Le t  ~ be a countable  dense set in ~ and let  
us consider 

& = N & ~ .  
U~D 

We obta in  t ha t  z(#, U ) =  ~(U) for every  # ~= d{~ and Q ( ~ t ) :  1. This implies 
tha t  z(#, .)  is a Radon  measure on ~g for every  # ~ ~ ,  and since z(#,. ) coincides 
wi th  ~ on a dense set ~D in 9h, we can deduce t h a t  z(#~ B) = ~(B) for every  B ~ 
and for every  /~ ~ Jtt. This concludes the  proof of the  Lemma.  [] 

PROOF OF Tm~o~E3{ 3.1. - The set funct ion e,r is subaddit ive on 9L~ being the  
upper  l imit  of a sequence of snbaddit ive set functions on 9h. Therefore  its inner  
regularizat ion ~"_ is countab ly  subaddit ive on ~ by  Theorem 5.6 of [26]. I t  is now 
easy to see tha t  e"_ is cotmtably subaddit ive on ~Z, so t h a t  ~" is a measure by  Lem- 
ma ~.1 of [17]. lVioreover, ~ " ( B ) =  0 whenever  C(B)= 0 by  Proposi t ion 1.1 (J). 

This proves assert ion (a). 
Since ff(~{~*) is sequential ly compact  space and v' and ~" do not  change by  passing 

to a subsequence, in order  to prove (b) we can assume th a t  (QJ converges weakly 
to a probabi l i ty  meastrre Q ~ ff(ogo*) and we have only to prove t h a t  Q = &. 

By  Lemma  3.2 the  set 

= { ~ ] e % :  EriC(. ,  F)] = ~ d r  ~)]} 

is dense in ql,. 
Conseq,aendy, for every  U e 9 ,  the  equal i ty  C(~, U) = C(/~, U) holds for Q-almost 

all # ~ dt~ ~ Therefore,  by  Proposi t ion 2.2, 

Q{# ~ ~ * :  C(., U) is y-continuous at  #} : 1 

for every  U e 9 .  Then,  by  Proposi t ion 2.5 we have 

(3.9) l i m  E e l [C ( . ,  U)] = ]~Q[C(., U)] ---- W(U) = e;'(U) 
h ~ c ~  

for every  U e ~), and 

(3.10) l im E ~ [ C ( . ,  U) C(., V)] ---- EQ[C(., U) C(', V)] 
h--> c~ 

for every  U, V ~ ~). 
By (3.9), (3.10) by  hypothesis  (it) and by  the  propert ies  of the  #-capaci ty  (Pro- 

posit ion 1.1, (h) and (i)) we get  t h a t  

(3.11) Er U)] = ~'_(U) = r 
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for every U e r163 and  

[CovQ [C(., U), C(-, V)][<~(diam U, diam V)fl(U)fl(V) 

for every pair U, V e q L  with d i a m U < e  and d i a m V < s  such tha t  U ( ~ V =  0. 
Assertion (b) follows now from Lemma 3.3. 
Assertion (e) can be obtained from (b) and (3.11) by using (3A), (3.5) and the  

properties of C(/~,') s ta ted in Proposition 1.1, (h) and (i). [] 

REMARK 3.2. -- Conditions (i) and (ii) of Theorem 3.1 are also necessary. In  fact, 
if Q~ converges weakly to a probabil i ty measure of the form ~v (see (3.1)), where v 
is a finite Borel measure on 3~ of the class &*,  then  (3.9) and (3.10) imply tha t  there 
exists a family  ~ dense in ~lL such tha t  

(3.12) ~'(v)  = ~"(u) = r u) 

for every U e ~D and 

(3.13) lira ICov~ [C(., U), C(., V)]] -~ 0 
h->co 

for every U, V ~ ~l~ with U (~ V---- 0. By the properties of the capacities C(#,. ) 
(Proposition 1.1, (h), (i)), (3.12) implies t ha t  

(3.14) . ' ( B )  = ~:(B) = r B) 

for every B e ~5 and (3.13) implies condition (ii) of Theorem 3.1. The condition (i) 
follows now from (3.14) and from the characterization of v as the least superadditive 
set function greater than  or equal to C@,'), (see [17], Theorem 4 . 3 ) .  

4. - Dirichlet problems in domains with random small holes. 

In  this section we consider an application of our results to a Dirichlet problem 
in a domain with  small holes. In  order to simplify the computations we assume 
d~>3. 

Let  (~, Z,  P) be a probabil i ty space. We shall denote by E and by  Coy respec- 
t ively the expectation and the covariance of a random variable, with respect to 
the measure P.  

DEFINITION 4.1. -- A measurable function M:  ~ - ~ 2 ~  will be called random 
m e a 8 u r 6 .  
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We recall  t ha t  necessary and sufficient conditions for the  measurabi l i ty  of a 
funct ion M: f2 ~ JtL* axe given in Corollary 2.1. 

Ze t  M be a r andom measure.  

D:~YI~I~IO~ r - The probabi l i ty  measure in r defined by  

Q(8) = P{M-~(g)} for ~ny g e 55(35~) 

will be called the distribution law of the  r andom measure M. 

Le t  (Mh) be a sequence of random measures and M a random measure.  Le t  (Q~) 
be the  sequence of the  dis tr ibut ion laws of Mh and let  Q be the distr ibution l~w of M. 

DEFINITION 4.3. -- We say t h a t  (M~) converges in law to the  random measure M 
if and only if the  distr ibution laws Q~ converge weakly in if(Jig*) to the  ~distribution 
law Q. 

Le t  Q be the  distr ibution of r andom measure M. I t  is easy to see tha t :  

(4.~) Eo[c(. ,  V) ]=EEO(M( . ) ,  V)] for any U e %  

(4.2) Covo [C(., U) C(., V)] = 

= E[O(M(.),  u)C(M(.), V ) ] -  E[O(M(.),  U)]E[O(M('),  V)] = 

= Coy [C(M(.), V) O(M('), V)] 

for any  pair  U, V E ql). 

Le t  (M~) be a sequence of r andom measures and let  (Qa) be the  corresponding 
sequence of dis t r ibut ion laws. 

Le t  us define the  set funct ions:  

(4.3) ~'(u) = lira inf E[V(M,~(.), U)] 
h--> co 

(4.4) all(U) -~ lira sup/~[C(Mh( ' ) ,  U)] 
h--> oo 

for every  U e %b. 
In  the  sequel we will denote  b y  a '  and a"  respect ively  the  inner  regularization 

of a' and  s  as defined in (3.2) and (3.3). 
The funct ions v' and v,r will be  the  least superaddit ive set funct ion on 3~ greater  

t h a n  or equal  to r_  and a"_, respectively.  

I~n~L~RE 4.1. -- Equal i t ies  (4.1), (4.2), (4.3), (4.4) allow to reformulate  the  hy-  
potheses of Theorem 3.1 in te rms of the  expectat ions and covariances of the  r andom 
variables C(M(. ), U). By definition 4.3 the  theses of Theorem 3.1 can be refor- 
mula ted  saying t ha t  the  sequence (M~) converges in law to a r andom measure M such 
t h a t  M(~o)= v for /~ every  co ~ ~2 (i.e. to the  cons tant  r andom measure 
M =  ~). 
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R ~ m K  4.2. - It is well known that, whenever  M is a constant  random measure,  
the  convergence in law and the  convergence in probabi l i ty  toward M of the  sequence 
(Mh) of r andom measures are equivalent .  Thus, by  Remark  4.1, we can deduce tha t ,  
if the  assumptions of Theorem 3.1 hold, t hen  the  sequence (M~) converges in proba- 
bi l i ty  to the  measure ~ in ~(~*, t h a t  is, for every  s > 0 

l im P{~ e f2: dT(M~(~o), v) > s} = 0 
h ~ . o o  

where d 7 is any  metr ic  on s  which induces },-convergence (Remark 2.1). 

We wish to s tudy  the  following sequence of random relaxed Diriehlet  problems 

-- Auto+ (M~ + Am)u~= f in D 

u~--- 0 on 3D 

where ~>~0, ]e_L~(D), m denotes the  Lebesgue measure on R ~. 
Le t  v e s  and le t  / ~  be the  resolvent operator  associated with v. The nex t  

Theorem states  a relationship be tween the  previous results and the  convergence 
of the  resolvent  operators /~  associated with the  random measures Mh. 

TI:mORE~ 4.1. - .Let (M~) be a sequence o/ random measures. _Let ~' and or" be the 
]unctions de]ined in (4.3) and (4.4) and let v ~ and ~,~ be the least superadditive set ]unc- 

I l! 
tions on r greater than or equal to ~ and ~_ respectively. 

Assume that 

(i) v'(B) = v"(B) < ~ oo ]or every B e 
and denote by v(B) the common value o/ v'(B) and ~"(B) ]or every B e ~.  

Suppose, in addition, that 

(ii) there exist a constant e > O, an increasing continuous ]unction 

~: R x R  -> R 

with ~(0, O) = 0 and a Radon measure fl on :B such that: 

lira sup iCov [C(Ma(-), U) C(Mh(') ,  V)][~< $(diam U, diam V)fi(U)fl(V) 
h--> oo 

]or every pair U, V e tlL such that U A F =  0 and with d i a m U < e ,  d i a m V < s .  
Then, ]or every ~>~0, R~ converges stronghy in probability to R ~, i.e. 

l im P{o.) ~ f2: I IR~(m)[]]  - -  R~[]] l l~,c~)> ~}  = 0 
h-'-; '- o o  

for every ~ > O, and ]or any ] e Z~(D). 
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P~oo~. - B y  l~emark  ~.2 we have  t h a t  the  sequence (Ma) converges in p robab i l i ty  
to  v in 2~*. To get  the  asser t ion i t  is enough to recal l  tha t ,  b y  Proposi t ion 2.1, for 

eve ry  co ~ ~2 the  sequence of measures  (M~) y-converges to ~ if and  o n l y i f t h e  rcsolvent  

opera tors  /~2(co) converge to 2~ ~ s t rongly  in L~(D). [] 

Next ,  we wish to consider a par t icu lar  sequence (M~) of r a n d o m  measures  re la ted  
wi th  Dir ichlet  p rob lems  in domains  wi th  r a n d o m  holes. 

L e t  ~-(D) be  the  fami ly  of all closed sets conta ined  in D. 

DEFL~I~IO~ 4.4. - A funcgion/~ :  /2 - ~ ( D )  is called a random set if the  funct ion  
M:  s -> ~ *  defined b y  M(co) = oo2(~) for each co ~ ~2 is Z'-measurabl% where c~2(~) 
is the  measure  in ~ *  ~s in Definit ion 1.3. 

I~E~L~K 4.3. -- L e t  i f :  ~ -+ ~-(D) be  a funct ion.  By  Corollary 2.1 and  b y  the  

equa l i ty  C ( c ~  B ) =  C(E N B) the  following condit ions are  equiva lent :  

a) ~ is a r a n d o m  set. 

b) C(17(.) n U) is Z -measu rab le  for every  U E % .  

e) C(2 ' ( . ) (~  K)  is X-measurable  for every  K ~ J~. 

Le t  as  t ake  a sequence (F~) of r a n d o m  sets. L e t  (M~) be the  sequence of ran-  

dom measures  so defined 

Ma(co ) ----- c~r,(~ ) for each co e ~2. 

L e t  f ~ Lz(D) and  2 >  0 be a real  pa r ame te r .  We shall consider the  weak solutions 

% of the  following Dir ichlet  p rob lems  on r a n d o m  domains  

{ -- Auh-t- Zu~= ] o n D \ F , ~  
(4.5) % ~ H ~ ( D \ . ~ ) .  

I n  view of the  example  1.1, ' se t t ing % = 0 on the  set  2~,  we have  t h a t  u~ is 

the  local weak  solution of the  re laxed Dirichlet  p rob lem 

-- Au~+ ( c ~ , , +  2m)u~= ] in D 

u,~ = 0 o n  ~ D  

where m denotes  the  Lebesgue measure  in R ~. 
We  are in te res ted  in the  behav iour  of ~he sequence u~ as h -~ zr ~ o r e  specifi- 

cMly, we will s t udy  the  convergence of the  resolvent  opera tors  / ~  associated with  
the  measures  c~2~ ~ which are re la ted  to the  resolvents  opera tors  ~ of the  Dir ichlet  
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problems (4.5) by  

R~(t)=  o on F~ 

(see example 1.1). 

To do t ha t  we consider the  distr ibution laws Qh of the  random measures M h = c~2~, 
defined by  

(4.6) Q~(~) = P { ~ ( ~ ) }  

I t  is easy to check t h a t  

and 

for an y  g E 33(&*) . 

Eo~[C(. , U)] = E[C(Fh( . ) ,  U)] for any  U e q L  

Cov~[c(.,  u), c( . ,  v)] = Coy [c(F~(.) n v), c(F,A.) n v)] 

for any  pair  U, V e ~L. 

In  this case the  functions a', ~" defined in (4.3) and (4.4), take  the  following form 

(4.7) ~'(U) = lim inf /~[C(/v~,(. ) n U)] 
t~---> c o  

(4.8) ~"(V) --~ l im sup E [C( /~ ( . )  ~ U)] 
h - +  c o  

for every  U e %.  

An interest ing case occurs when the  probabi l i ty  distr ibution of the random set 
is specified. We will assume the  following general hypotheses: 

(il) Le t  fl be  a probabi l i ty  law on D of the  form 

fl(B) =fg d~ 
B 

for every  B e ~ where g e Z~(D). 

(is) For  every  h ~ N we set 1~ = {1, ..., h) and we consider h measurable func- 
tions x~: Y2 -+ D, i e I~, such tha t  (x~)~z~ is a family  of independent  iden- 
t ically dis t r ibuted random variables with probabi l i ty  distribution ft. 

03) Le t  r~ be a sequence of s t r ic t ly  positive numbers  such t h a t  

lira r~-~h = 1 
h'--~ o o  

for some constant  1 < + c~. 
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Let  x ~ R  +. Le t  • b e  a closed set of R ~. We define the set x ~ - / ~ b y  

x ~- ~ = { y ~ R ~ :  x - -  y ~ F }  . 

The next  Lemma will be useful to ident i fy  a class of random sets. 

L]m-v~:~A 4.1. - ~or every compact set K o] R ~ the ]unction 

h 

(xj+, ..., x,,,+)-->- O~ U (x+ + F ) n  K+ from (R++> + into R 
[ .  

i -  = 1  ..I 

is upper semicontinuous in R +. 

PROOF. -- Fox" each n e N we define the set 

P . =  {xe  Ra: dist  (x, ~) < 1} .  

Set ~ ~ (xl~ .~ xa). Le t  (Zlc)k~N be a sequence in (R~) a converging to 5 in (R~) a" 
Then~ for every n e N there exists ko e N such tha t  

( ~ ) ~ §  ~_Cx+§ F~ 

for every k>ko and for every i E {17 ...~h}. 
t tenc% for every n ~ N and  for every compact  set K of R ~, we obtain 

h h 

Since: 

by  proper ty  (h) of Proposition 1.1 we get  t ha t  

which proves the  Lemma.  [] 

Le t  K be a compact  set of R a much tha t  K g B I :  For  any  h e N ~  we denote by 
K ~' the following set: 

[ : r h 
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and  by K~ the  random sets 

K~= xcl):~(x--x~)cK 

we note t ha t  K~c B (xh.) Finally,  we denote by ~h the random sets: 

h 

(4.9) Fa ---- U K~', h e N .  
~ = 1  

~EMARK 4.4. -- By Lemmu 4.1 and Remark  4.3 the sets ~ ,  are actually random 
sets in according to Definition 4.4. 

We will prove the  following theorems 

Tm~o~E~ 4.2. - Let ( ~ )  be the sequence of random sets defined in (4.9). I f  the 
general hypotheses (i~), (i~) and (ia) hold then the sequence (Qh) of distribution laws defined 
in (4.6) converges weakly to the distribution law ~ ,  defined by 

~(  ~) -~ 0 otherwise 

/or any ~ c ~(~o*), where ~ -~ eft, v ---- 1C(K, Ra), and 

R~ 

Tn:EO~EH 4.3. -- Zet (F~) be the sequence of random sets defined in (4.9). Assume 
the general hypotheses (il)~ (i~) and (i3). Then, for any f ~ Z2(D) and for every s ~ 0, 

h-~  co 

where R~(eo) is the sequence of resolvent operators associated with the random meas- 
ures c~2~ and R ~ is the resolvent operator associated with the measure ~. 

Both the theorems will be consequences of the next  Proposition 4.1. more 
specificully, Theorem 4.2 will follow by applying Theorem 3.1 and Proposition 4.1; 
while the proof of Theorem 4.3 will be obtained by Theorem 4.1 and Proposition 4.1. 

P~OPOSITIO~ 4.1. - Let (F~,) be the sequence of random sets defined in (4.9). Let 
s  s be the set functions as defined in (4.7), (4.8) respectively. Then~ if the general 
hypotheses (il), (i2) and (i8) hold~ we have: 

(tl) v'(B) = ~,"(B) = eft(B) for every B ~ ~ ; 
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(t2) there exist a constant s > O, an increasing continuous ]unction 

~: R •  ~ R 

with ~(0, O ) ~  0 and a Radon measure ill, such that 

lira sup:ICov [r n U(, r  n V)JI< ~(diam U, diam V)fl~(U)fl~(V) 
h--> co  

/or any U, V ~ cth such that U (~ V = 0 with diam U < e and diam V < s. 

For  ~he proof  of Propos i t ion  4.1 we need  some pre l iminary  results.  First~ we 

give ~ resul t  which ~llows us to es t imute  f rom below the  eupucity of the  union of a 

fami ly  of sets (E~)~z b y  means  of the  sum of cupacit ies  of the  sets E , .  

L E ~  4.2. - I~et (E,)~ I be a ]amily o] subsets o/ D and let E -~ U E, .  Assume  
i e I  

that there exist a ]inite ]amily (x,) ,~ o] points in D and two p o s i t i v e  real numbers 

r, R such that 

(i) O < r  < i ~ ;  

(ii) B~c B~(x~) c BR(x~) c_ D 

(iii) BR(x~) (~ Ba(xj) : 0 

/or i ~ I ;  

]or i, i e I ,  i ~ i .  

I,  et us set 
?,cz- 2 

= ~(E) = 4 d + l -  
R~ 

Then, i] (5 < 1 we have 

(R Vdiam E) ~ . 

c(~)> (1 - ~)~ Z c(E,,  B,(x,)) . 

P~ooF. - L e t  u ~ H~(D) be  such t h a t  

c(E) = f  lDul ~ dx 
D 

and  u > l  q.e. on E.  
I t  is well  known t h a t  u is the  unique solution of the  var ia t iona l  inequal i ty  

where  

u~K~:  f D u D ( v - - u )  dx>O for v e K ~  
D 

K~= (veH0(D); v> l  q.e. on Z}. 
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Assume t h a t  

(4.1o) u < 3  q.e. on 3BR(x,) for every  i ~ I .  

We prove  t h a t  the  assert ion follows. Le t  us define the  funct ion 

(u-~)+  
1 - -  

I t  is easy to see t h a t  veH~(D),  v > l  q.e. on E and  v ---- 0 q.e. on ~Ba(x~) for each  
i E I .  Since (ii) holds, we have  

for any i e I .  

(4.11) 

C(E,, Ba(x~)) < f IDv[ 2 dx 

Hence ,  

f lDvl 2 dx> ie~ ~ f ]Dv[~ dx> ,ei ~ ~(~" B~(~,)). 

On the  o ther  hand~ b y  definition of v we also have  

(4.12) f [Dv] ~ dx -- (1 - -  ($1~ ]D(u-- 0)+I 2 dx< (1 ~)--------~ lDul ~ dx -- (1 - ~1----~ 
1) 2) D 

r 

B y  (4.11) and  (4.12) we obta in  the  assertion. 

Le t  us ver i fy  (4.10). For  every  i ~ I we consider the  funct ion u~ defined by  

u~(x)-=[] r~-~ ] 
x -x~ i~_2A1  , x e R  ~. 

I t  is not  difficult to check t h a t  u ~  H~oc(R d) and t h a t  

- -  Au, >~ 0 in R ~ 
(4.13) 

l ui---- 1 o n  Br(xi) 

for a n y  i e I .  Le t  us set  

(4.14) z(x) = ~, u,(x), x e R ~ . 

1 d We see t h a t  z e Hioc(R ) and  i t  satisfies the  following conditions 

(4.15) 
-- Az>O in D 

z > l  q.e. on E 

z>O on ~D.  
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By a classical comparison Theorem ([33], Chapter II ,  Theorem 6.4), we can get, 
by  (4.13) and (4.15), that 

(4.16) 

Le t  y e DBR(x~) for i ~ I fixed. 

(4.~7) 

u < z  q.e. on D .  

We wish to est imate  z(y). 

r a -2  

By (4.14) we have 

To est imate the r ight-hand side we introduce the following sets 

IVforeover, let 

k -- 0, 1, . . . .  

L:(y) = {i e I :  x~e C~(y)} 

an4 let N~(y) be the number  of elements of I~(y). Since [x~-- y[>/~ for each j ~ I ,  
i t  is easy to see t h a t  

1 Idiom Z/R] + 1 1 
(~.~s) ~Z Ix~- yl ~-~ < ,02~:~ (kR) ~-~N'~ 

where [a.] denotes the integer par t  of a. 
Le t  us est imate N~(y). Since, for k fixed~ 

U B.(x,)c {xe Rg: (k-  1)R<[x- yj<(k + 2)~} 

we have 

meas [ U B.(~) I  <cognff(k § 2 )~-  (l~ - I )  g] 
ki~i~(y ) A 

where co x is the volume of the uui t  ball. Then, using (iii), we have 

(4.19) N,~(y)< (k § 2 ) ~ -  ( k -  1)~<4~k g-1 . 

By (4.17), (4.18), (4.19), we obtain 

rd--2 [ d i a m B / ~ ] §  ~ r ~-2 /Fdiam E1 )~ 

k = l  

rd-~{  (RVdiam E)} ~ rd -2  
4 g+l ~ -  (R \ /4iam E) 2 . 
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This inequali ty,  toghether  with (4.16), shows tha t  assumption (4.10) is always 
satisfied and this completes the proof of the Lemma.  [] 

For  each subset Z _c D we define the  random set of indices: 

I~(z) = {i e I~: x~e, z }  

and the  random variable:  

(4.19) N~(Z) = number  of elements of I~(Z).  

For  each h e N, let  / ~  = (s/h) ~/~ where s is a positive real number  (we no te  
t ha t  by  (L) r h<  R~ for h large enough). For  s fixed we also consider 

I;(z) = {i + z~(z): 3i + z~, i +~ i such that [~-- ~[ < ~} 

and 

(4.20) N~(Z) = number  of elements  of I~(Z).  

The following es t imate  is crucial for our result.  

LE~V~A 4.3. - Ir  (i~) and (i~) hold then 

lira sup E[X~( U)] f 

U 

for any U e ~th, where e% is the volume o] the unit ball. 

PuooF. - F ix  U e qL. I t  is easy to check tha t  i e I~(U) if and only if 

h 

j = l  
5+~i 

Therefore, we see that 

(4.21) 
h h 

i = 1  5=1 
5 r  

By (4.21) and the assumptions (il), (i2) we obtain 

f[f ] -- i=lj=X Z~(~)~u(x) dfl(x) dfl(y) = 
5 r  D D 

i = l  i = 1  . 
5 r  D D 
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Finally~ by (5.22) we get 

lira sup 
h-+~ h 

< s lim sup [! f fl(B~(y) ~ U)] dfl(y) = 
D 

---s lira sup f [  (o~ dx] n ~  JLIB~(y)I f g(x) 
Jo 

by Lebesgue Theorem. [] 

PI%00F OF TILE PI%OPOSITION 4.1. - For any U e %L, let 

(4.2a) 

and 

(4.24) 

g(y) dy  = so)~ f g~(y) dy 
U 

We have 

(b~,) B R~(4 ~1 (3 B~(x~) = 0 

Let  us set 

! 

r , ,=  UK~,.  
.~eJh(U;0 

for i, j e Jl~(Uh) with i r ] .  

r~ -~ 
(4.26) d(U, h) = 4 ~+1 ~ (diam U) ~ . 

Choosing e ---- ~/S/Oo, where co = 4~+~1, by assumption 0a), we see t ha t  0(U, h) will 
be less than  1 for h large enough and diam U < e. 

U~ = {x c D: dist (x, U) < ~ } .  

We observe t ha t  U~_c U _c U~. 
~oreover ,  we note tha t  

(5.25) JA v~) = A( v~)\f~( v) 

is the set of all elements i e I~ which satisfy the following conditions: 

(al) x~e v ; 

(a2) B ~ y r  c U ; 

(aa) I ~ - - x ~ t > ~  for any  ] e I ~  with  i ~  i .  

Denote by  F'~ the  random set 
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Thus, by  Lemma 4.2 we obtain tha t ,  for each eo ~ $2, 

(4.27) C(iW~(co) ~ U)>C(2~(co))>(1- -  ~(U, h))~ ~ C(K~,B~(x~))> 

> ( 1 -  ~(F, h))~[2q(~)-  ~ ( U ) ] r  ~, B~)  = 

= (1-- 0(U' h))~ L h 

whenever h is sufficiently large and dium U ~ e. On the other hand, by using the 
elementary properties of the  capacity, we immediately get  tha t  

iV / U"~ 
(4.28) C(-Eh ~ U) <~ r~vC(K~, B~(x~)) -- '~'~ ~' hr ~-2~ C(K, Bg~/~) 

for every U ~ elL. 
Now we are in position to prove (t~) and (t~) ot the  Proposition 4.1. 

P]~O0~ 0 ~  ( t l ) .  - -  First ,  we observe t ha t  by  the Law of Large Numbers we have 

(4.29) l im E[N~( U~)] _ lira E[N~( U~)] 

for every U e % with ft(3 U) = 0. 
Moreover, by  (is) and (4.26) we obtain 

(4.30) l im ~(U, h) = 6(U) = -~(diam U) 2 
h--> oo 

where Co = 4a+ll. 
Next, we observe tha t  for every compact subset K g Bg 

(4.31) lim C(K,  BR) : C(K,  R ~) . 
~--> oo 

By Lemma 4.3, (4.27), (4.28), (4.29), (4.30) and (4.31) we deduce tha t  

(4.32) ." (B) < eft(B) 

for every B ~ ~B, and 

for every B e .~ with sufficiently small diameter.  

~ s f g ~ ( y )  dy] 
By (4.32) we have tha t  

for every B ~ .  

f1(B) < eft(B) 
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Therefore,  we have  only to prove t h a t  

(4.s4) ~'(B) > eft(B) 

for every  B e ~ .  Le~ us fix B ~ ~ .  Next ,  for a rb i t r a ry  ~ > 0 choose a par t i t ion  
(B~)~z of :B :such t ha t  B ,~  ~5 a.nd diam B , <  ~ for every  i e I .  Then,  by  (4.33) 
applied with s = ~, we get  

(4.35) 
.B 

Since ~ is a rb i t rary ,  (4.3~) follows f rom (4.35). 

PROOF OF (t~). -- Pre l iminary,  we note  thu t  by  the  Strong Law of Large :Numbers 
we have 

2r 
h h~--7~ 8 (U)  a.e. ~ e ~9 (4.36) 

~nd 
;v~(ui) 

(4.37) h h _ ~  fl(U) in L~(~) 

I / for any  U~  oiL. 5~[orcover, since Na(U~)fl is ~n equibounded sequence of random 
variables we also have 

(4.3s) 
N ! 

~'h ~a) ~ f(U) in L~(.Q) 
(U 

for any  U ~ r We observe t ha t  (4.36), (4.37) and (4.38) hold also with U~ replueed 
by  U ~ h, provided  f(~U) = O. 

By (4.27), (4.31), (4.30) we have 

(4.39) lira inf EI-C(Fh ( �9 ) (h U)C(~h(" ) ~ V)] > (1 -- c~(U))'(1 -- ~(V))'c 2 X 
h~a. oo 

xlimh~oosup {E [Nh~U~) N~(V~).]h j -- .E [:AT1hU]) N~V) ]_  E [Nh~V~).N~U)]] 

for any  pair  U, V ~ r such t ha t  U (~ V = 0, diam U < e, diam V < e with ~ = v/s/eo. 
By (4.38) we have 

(4.40) lim • [2,T~(U~) 7~--->oo L ~ N~Vn)] -~- fl(U)f(V) 
I 

moreover ,  by  L e m m a  4.3 and (4.36) i t  follows 

(4.41) 
v 
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and 

(4.42) lim sup E [N~(_V~) -~ (U) ]  

U 

dx 

for any U, VeCL~. 
Then, (4.39), (4.40), (4.41) and (4.42) give 

(4.43) l im inf E[C(F~(.  ) (~ U) C(2G~(" ) (~ V)] > (1 -- 26(U) - -  2a(V))e 2 • 
h--> c~ 

V U 

for every U, V e fls such tha t  ff  n V = 0 with diam U < s, diam V < s. 
By  (4.28) and (4.38) (applied with U~ instead of U~) we also deduce 

(4.44) lim sup E[C(2~(.  ) n U)C(Fh(. ) n V)] < c2fi(U)fl(V) 
h-~co 

for any U, g e %  with f i (OU)  = f l ( S V )  = O. 

Est imates  like (4.43) and (4.44) for the  upper  and lower limit of the  sequence 
E [ C ( F ~ ( . ) ~  U)] .E[C(Fh(-) (~  V)] can be obtained in the same way. Therefore, 
we deduce tha t  

(4.45) l im sup ]Coy [C(/~h(.) (~ U), C(2Wh(.) n ~)]1< 
h-+co 

V U 

V U 

for every U, V e cth such tha t  U (~ V = 0 with diam U < s, diam V < s. 
Taking s = max {diam U, diam V}, by  (4.30), formula (4A5) becomes 

(4.4:6) lira sup lCov [c(~,~(.)n v)c(~,~(.)n v)][< 
h--> c~ 

V U 

V U 

for every U,V~Clh  such tha t  U n V = 0 ,  with d i a m U < s  and d i a m V < s .  
In  the  last inequal i ty  we have se~ cl = c 2 max {~o~, 2Co}. The assertion (t~) follows 

by(4A6)takingf ldU)=fl (u)+fg~dxforevery  Ue2L and ~(x ,y ) :max{x ,y} .  [] 
U 
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5. - Sctn'iidinger equat ion  wi th  random potent ials .  

In  this section we consider ano ther  applicat ion of our main  Theorem. We s tudy a 
problem concerning the  s ta t ionary  Schr6dinger equat ion in R a with par t icular  random 
potentials .  

We still denote  by  (~, Z,  P)  a probabi l i ty  space. ~o reove r ,  for every  h e N 
we consider a fami ly  (x~)~z,, of r~ndom variables satisfying the  general hypotheses 
(i~), (i~), (in) in the  previous section. 

Denote  by  F~, h e N the  following random sets 

h 

u 
i = l  

Let  (k~) be a sequence of posit ive real  numbers.  
For  each h ~ N we define the  r andom funct ion:  

kh if x ~ ~ 

q~(x) ~ 0 otherwise .  

We will s tudy  the  equations:  

- Au,: § q,~(x)u~ § 2u~ = ] in 1) 
(5.1) l ua ~ H~(D) 

where 2~>0 is a r e a I  number  and ]eL~(D). 
To use the  theory  developed in section 3 we consider the sequence (Ma) of r andom 

measures defined by  

(5.2) M~(B) =fq~(x) dx 

for any  B ~ 3}. 

REMA:~K 5.1. - For  every  U ~ qs the  funct ions C(Mh(')~ U) are Z-measurab1% 
each of t hem being the  infimum of a sequence of measurable functions. To see this, 
it  is enough to use the  var ia t ional  definition of C(Mh(')~ U) and the  fact  t ha t  the  

functions % are bounded  so tha t  

q_~,~(.), U) = inf { f  lDv[~ dx § f (v-- lVq~(') 

where H is a eout~table dense subset of H~(D). Therefore  the  maps M~: ~ -~ ui6* 
are ac tual ly  random measures b y  Corollary 1.1. 
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The problems (5.1) are equivalent  to the  following relaxed Dirichlet  problems 

-- Au~-}- (Mh(o~) -+- I m ) u a =  ] in D 

u~, = 0 on ~D.  

We shall prove the  following theorems:  

TKEOt~E~ 5.1. - .Let (Q~) be the sequence o] distribution laws on .A(,* associated with 
the sequence o] random measures ( Ma) defined in (5.2). Assume that the general hypoth- 
eses (i~), (is), (is) hold. Moreover, we suppose also that 

(i~) l ira V ~  rh = + c ~ .  
h--+ co  

Then (Qh) converges weakly to the distribution law ~ defined by 

1 i ] r e ~  

(~( g ) =- 0 otherwise 

]or any ~ :ll(,h(~), where v = eft, c = tC(B~, R3), and C(B~, R 3) is defined as in 
Theorem 4.2. 

TKEORE~t 5.2. -- Zet (Ma) be the sequence o] random measures de]ined in (5.2). 
Assume that the general hypotheses (il), (is), (i~) hold. Suppose also that 

(i,) l ira ~ / ~ r h  = + ~ .  
h-- ' -  co  

Then, ]or any ] ~ Z2(D) and ]or every e > 0 

l i ra  P{o) e Q: [IR~(~)E]] - R~ff]l[ m ~  > e} = 0 
h - >  co  

where R~ is the sequence o] resolvent operators associated with the random potentials q~, 
(i.e. with the random measures M~) and 1~ ~ is the resolvent operator associated with the 
constant potential eg (i.e. with the measure eft). 

The proofs of these theorems will depend on the  nex t  Proposi t ion 5.1. In  par- 
t icular,  the  proof of Theorem 5.1 will be obta ined by  applying Theorem 3.1 and 
Proposi t ion 5.1; the  Theorem 5.2 will follow from Theorem 4.1 and Proposi t ion 5.1. 

PROPOSITIO~I 5.1. - Zet (M~) be the sequence o] random measures defined in (5.2). 
Zet o: r and o: '~ be the set ]unctions as de]ined respectively in (4.3) and (4.4). Assume 
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the general hypotheses ( i j ,  (i~), (ia). I n  addition, suppose that 

(i~) lira g ~ r ~  : + oo. 
h-'-> o~ 

The~ b the following assertions hold: 

(t[) 

(4) 
W(B) ---- W(B) = eft(B) ]or every B ~ ~ 

there exist a constant e > O, an increasing continuous .]unction ~: R X R - +  R 
with ~(0~ O) = 0 and a Radon measure fi~ such that: 

lira sup ICov [C(M~(.), U)~ C(M~(.),  V)]]<$(dism U, diam V)fl~(U)~ fi~(V) 
h--> oo 

]or any U, V e 91, such that U ~ V : O with d i a m U < s ,  d i a m V < e .  

The proof will be based on the  lollowing two ]emmas. 

LEM_~ 5.1. - .bet ~a ~ ~*o. Then, Lemma 4.2 holds i] we replace C(B) by 
r ~).  

PRoem - I t  is enough to replace the funct ion u used in the prooi of Lemma 4.2 
with the / t -capae i ta ry  potent ial  of B in D, defined as the unique function w e H~o(D) 
such tha t  

D B 

and to use the  comparison Theorem lor relaxed Dirichlet problems ([20], Theo- 
rem 2.10) instead of the  classical eomio~rison Theorem for variational inequalities. I 

We now compute the/z-capaei tary potent ial  o2 ~ ball with respect to ~ concentric 
ball, when /~ is the  Lebesgue measure (multiplied by a constant).  

L E i m ~  5.2. - Let r, R be two positive rea~ numbers such tha~ r < 1{. Moreover, 
let iz be the Borel measure in ~ *  de]ined by 

#(B) -= l~f dx 

for any B ~ 33, where k is constant. 
Then, the /z-capacity potential associated with C(I~ , B ~  B~) is the ]uneiion 

(5.3) : 

r<Ixl<  

e sinh ~r 
1 o < 1x]<r 
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]or x e B~, where 

a = R - -  
eosh (V r) 

b = 

sinh (Vkr) +  /kr) cosh (Vkr) 

sinh (%/kr) -}- ( V k R -  ~/kr)  cosh (Vkr )  

R 

sinh (~/kr) + (~/kR -- V/kr) cosh (~/Kr) " 

Moreover, setting d = w(r) we have 

(5.4) (1 - -  d) ~ C(B~, B~) < C(/z, B , ,  Ba) < C(B~, B~). 

PROOF. -- The proof of (5.3) is obtained solving explicitly the Euler equation of 
the funct ional  

BR ~r  

with the  boundary  condition u -  1 e H~(B~). In  order to proof (5.4) we note t ha t  
the relation C(tt , B,, B~)< C(B~,BR) follows by  the property  (/) of Proposition 1.1; 
moreover let us define 

( w -  d) + 
1 - - d  

I t  is easy to see t ha t  u~H~(B~) and u~>l q.e. on B~. 
Hence, 

l iD(w- -d )+[  2 1 f 1 C([~,Br, Be ) C(B~, B~)< (1 -- d)~ < (1 -- d) - - - - ~  [DwI2 ax -- (1 -- g)~ 
.Br B~ 

which proves (5.4). [] 

P~ooF or  P~0POSITIO~ 5.1. - For  each h e N let us define a sequence/~a of Borel 
measures in the following way:  

B 

for any  B e 31. 
Le t  U e ~1,. Le t  U~ and U~ be the sets defined in (4.23) and (4.24) respectively. 

By  J~(U'~) we denote the set of indices defined in (4.25). l~urthermore let ~(U, h) 
be as defined in (4.26), -~(U) as in (4.19) and N~(U) as in (4.20). By  hypothesis (i8), 
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b y  L e m m a  5.1 a n d  L e m m ~  5.2 we  c a n  g e t  thut~ for  e ach  co e t ~  

(5.5) C(M~, U)>(1-- ~(U,h)? ~ C(~,B~(x~),B~(x~))= 
~eJ~(U~) 

= (~ - ~(~, h) )~[~(UD- iv~(v)] r B~, B,~)> 

> ( ~ -  a(~, h))~[~V~(~)- ~V~(~)](~- a~)~r ~ )  = 

; '  ] 
whenever  h is sufficiently large ~nd diem U < e, with  e = ~/S]eo. 

By  (5.3) we h~ve t h a t  for e~eh h ~ N 

t 
dn 

S% b y  h y p o t h e s i s  (i~) i t  fo l lows t h a t  d~ -+  0 ~s h -+ + c~. 

On  t h e  o t h e r  h ~ n d  we  h~ve  b y  t h e  p r o p e r t i e s  of t h e  # - e ~ p ~ e i t y  

(5.6) C(M~, U)< ~ C(m, B~(x~), B~(x~)) = N~(U"'C'~) ~,~, B~,,, B~)< 

N~(U~) hr C~B < ~ ( v ~ )  r  B ~ )  --  ~ ,~ ~ ~, B~,~)  

By repeat ing the  s~me steps m~de in the  proof of the  ~ssertions (t~) ~nd (t2) of 
P r o p o s i t i o n  4.1, w e  g e t  b y  (5.5) ~nd  (5.6) i m m e d i a t e l y  t h e  e q u i v a l e n t  ~s se r t ion  in  

th i s  case.  [] 

R E F E R E N C E S  

[1] R. ASK, Real analysis and probability, Academic Press, New York, 1972. 
[2] H. ATTOVCR, Variational convergence ]or ]unctions and operators, Pi tman,  London, 1984. 
[3] H. AT~OUCE - F. MV~AT, Potentiels ]ortement oscillant, to appear.  
[4] J. R. B~_~]~R - R . V .  CHACON - ~q. C. JAI l ,  Weak limits o] stopped di]]usions, Trans. 

Amer. Math. Soc., 293 (1986), pp. 767-792. 
[5] J. R. BAXT]~ - G. DA~ MAso - U. Mosco, Stopping times and F-convergence, Trans. Amer. 

Math. Soc., 303 (1987), pp. 1-38. 
[6] J. R. BAX~E~ - N. C. JAI l ,  Asymptotic capacities ]or finery divided bodies and stopped 

di]]usions, Ill inois J. Math., 31 (1987), pp. 469-495. 
[7] A. BnILLA~D, Quelques questions de convergence ... and calcul des variations, These, Uni- 

versit4 de Paris  Sud, 0rsay,  1983. 
[8] G. BuT~Azzo - G. DAL MASO - U. Mosco, A derivation theorem for capacities with respect 

to a Radon measure, J. Funct .  AnaL, 71 (1987), pp. 263-278. 
[9] I. C~v]~L, Eigenvalues in Riemannian Geometry, Academic Press, New York, 1984. 



MICm~LE BALZAC0: Random relaxed Dirichlet  problems 173 

[10] I. CHAVEL - E. A. FELDI~AN, The Lenz shi]t and Wiener sausage in  1~iemannian mani]olds, 
to appear. 

[11] 2. CHAVEL - E. A. FELD~AN, The Wiener sausage, and a theorem o] Spitzer,in Riemannian 
manifolds, to appear. 

[12] G. CHOqUET, fforme abstraite du th~oreme de capacitabilit~, Ann. Inst. Fourier (Grenoble), 
9 (1959), pp. 83-89. 

[13] D. CIO~ANESCU - F. MURAT, Un terme dtrange venu d'ailleurs, I ,  in <( Nonlinear partial 
differential equations and their applications )), Coll~g6 de France Seminar, Volume II,  
pp. 98-138, Res. Notes in Math., 69, Pitman,  London, 1982. 

[14] D. CIORANESCU - F. MURAT, Un terme ~trange venu d'ailleurs, I I ,  in (( Nonlinear partial 
differential equations an4 their applications )), Coll~ge de France Seminar, Volume III ,  
pp. 154-178, Res. Notes in Math., 70, Pitman,  London, 1983. 

[15] D. CIORANESCU - J. SAINT JEAN PAULIN, Homog~ndisation dans des ouverts ~ eavitds, C. R. 
Acad. Sci. Paris Ser. A, 284 (!977), pp. 857-860. 

[16] D. CIORANESCU - J. SAINT JEAN PAULIN, Homogenization in open sets with holes, J. Math. 
Anal. Appl., 71 (1979), pp. 590-607. 

[17] G. DAL MASO, F-convergence and re-capacities, Ann. Scuola Norm. Sup. Pisa C1. Sci. 
(4) 14 (1987), pp. 423-464. 

[18] G. DAL MASO - E. DE GIORGI - L. MODICA, Wealc convergence o] measures on spaces o] 
lower semieontinuous ]unctions, in (( Integral functionals in calculus of variations )~ (Trieste, 
1985), pp. 59-100, Supplemento ai Rend. Circ. Mat. Palermo, 15 (1987). 

[19] G. DAL MASO - L. MODICA, .Nonlinear stochastic homogenization, Ann. Mat. Pura Appl., 
(4) 144 (1986), pp. 347-389. 

[20] G. DAL MASO - U. MOSCO, Wiener criteria and energy decay ]or relaxed Dirietdet problems, 
Arch. Rational Mech. Anal., 95 (1986), pp. 345-387. 

[21] G. DAL MASO - U. Mosco, Wiener's criterion and F-convergence, Appl. Math. Optim., 
15 (1987), pp. 15-63. 

[22] G. D ~  MASO - U. Mosco, The Wiener modulus o] a radial measure, Houston J. Math., 
to appear. 

[23] E. DE GIORGI, G-operators and F-convergence, Proceedings of the (~ International  Congress 
of Mathematicians ~, pp. 1175-1191, Warszaw, 1983. 

[24] E. DE GIORGI - T. FnANZONI, Su un tipo di convergenza variazionale, Atti  Acead. Naz. 
Lincei Rend. C1. Sci. Fis. Mat. Natur., (8) 58 (1975), pp. 842-850. 

[25] E. DE GIOnGI - T. FRANZONI, SU un tipo di eonve~yenza variazionale, Rend. Sere. Mat. 
Brescia, 3 (1979), pp. 63-101. 

[26] E. DE GIO~GI - G. LETTA, Une notion g~ndrale de eonve~yence ]aible pour des ]onctions 
eroissantes d'ensemble, Ann. Scuola Norm. Sup. Pisa C1. Sci., (4) 4 (1977), pp. 61-99. 

[27] C. DELLACHE~IE, Ensembles analytiques, capacitds, mesures de Hausdor]], Lecture Notes 
in Math., 295, Springer-Verlag, Berlin, 1972. 

[28] H. F]~DERER - W. ZIE~ER, The Lebesgue set o] a ]unction whose distribution derivatives 
are p-th power summable, Indiana Univ. Math. J., 22 (1972), pp. 139-158. 

[29] R. F~GARI - E. 0RLAN])~ - S. TE~A, The Laplaeian in regions with many small obstacles: 
]luetuation around the limit operator, J. Statist. Phys., 41 (1985), pp. 465-487. 

[30] E. Ya. H~USLOV, The method o] orthogonal projections and the Diriehlet problems in  
domains with a line.grained boundary, Math. U.S.S.R. Sb., 17 (1972), pp. 37-59. 

[31] E. Ya. H~USLOV, The ]irst boundary value problem in domains with a complicated boundary 
]or higher order equations, Math. U.S.S.R. Sb., 32 (1977), pp. 535-549. 

[32] M. KAc, Probabilistiv methods in some problems o] scattering theory, Rocky Mountain J. 
Math., 4 (1974), pp. 511-538. 

[33] D. KINDE~LE~ER - G. ST~ACCH~A, Introduction to variational inequalities and their 
applications, Academic Press, New York, 1980. 



174 I~LICttELE BALZA~O: Random relaxed Diriehlet problems 

[34] A. V. ~'IA~tC~NKO - E. Ya. HttusLov, Boundary value problems in domains with closed- 
grained boundaries (Russian), Naukova Dumka,  Kiev, 1974. 

[35] A. V. MA~c~_~xo - E. Ya. HttusLov, New results in the theory o] boundary value problems 
]or regions with closed-grained boundaries, Uspekhi Mat. ~auk ,  33 (1978), pp. 127-137. 

[36] S. OZAWA, On an elaboration o] M. Kae's theorem eoneerrdng eigenvalues o] the Laplaciau 
in a region with randomly distributed small obstacles, Comm. Math. Phys. ,  91 (1983), 
pp.  473-487. 

[37] S. OZAWA, Random media and the eigenvalues o] the Laplacian, Comm. Math. Phys.,  94 
(1984), pp. 421-437. 

[38] G. C. PAPANICOLAOV - S. l~. S. V~AD~AN, Di/]usion in regions with many small holes, 
in ~( Stochastic differential systems, filtering and control ~), Proceedings of the I F I P - W G  
7/1 Working Conference (Vilnius, Li thuania,  1978), pp. 190-206, Lecture Notes in Control 
and Information Sci., Springer-Verl~g, 25 (1980). 

[39] K. R. P~T~ASA~A~HY, Probability measures on metric spaces, Academic Press, New 
York, 1967. 

[40] J. I~AVCH - i-~[. TAXLOR, Potential and scattering theory on wildly perturbed domains, J. 
Funct .  Anal. ,  18 (1975), pp. 27-59. 


