Random Relaxed Dirichiet Problems (¥).

MICHELE BALZANO

Summary. - We investigate sequences of Relawed Dirichlet Problems of the form:
— duy + ppuy =0

where p, are random Borel measures belonging fo a suitable class M. By means of a varia-
tional approach, necessary and sufficient conditions for the convergence in probability of the
sequence w;, toward the solution of a deterministic Relaxed Dirichlet Problem are given. Some
applications to Dirichlet problems in random perturbated domains and to a Schrédinger
equation with random singular potentials are considered.

0. — Introduction.

In this paper we provide a general framework to study both the elassical Dirichlet
problem in domains with randomly distributed small holes and the stationary
Schrodinger equation with rapidly oscillating random potentials.

More precisely, given a bounded open region D of R? d>2, and a function
fe L¥ D), we deal with problems of the form

— Au=§ in INF
(0.1) )
w € Hy(DN\F)

where F is a random subset of D, and of the form

0.2) { — Aduw 4+ gz)u=Ff in D

w € Hy(D)

where ¢ is a random potential.
Problems (0.1) and (0.2) can be considered as particular cases of the so called
relaxed Dirichlet problems (see [5], [8], [20], [21], [22]) formally written as

(0.3)

—Adu+pu=4Ff in D
#=0 on oD

(*) Entrata in Redazione il 25 febbraio 1987.
 Indirizzo dell’A.: S.I.8.8.A., Strada Costiera 11, 34014 Trieste, Italia.
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where g is a non negative Borel measure on D, which must vanish on sets of (har-
monic) eapacity zero, but may assume the value 4 co on some subset of positive
capacity.
Following [20] we denote by G, the class of all Borel measure of this type.
Problem (0.1) can be written in the form (0.3) by taking u = ooy, Where oop
is the Borel measure on D defined as

0 if cap(BNF)=20
cop(B) = ;

+ oo ifeap(BNF)s=£0.
Problem (0.2) can be written in the form (0.3) by taking

w(B) = [4@) o
B

In this paper we give a variational method for investigating sequences of prob-
lems of the form (0.3), where g are random measures of the class JG,.
The basic tool in our analysis will be the variational p-capacity defined as

O(u, B) = int {fwup das +f(u —1)du; ue H},(D)}

D B

for every uec My, and for every Borel set BC D.

The probabilistic problem we ghall consider can be rigorously stated as follows.
Let (2, 2, P) be a probabilistic space. We consider a sequence (M,) of random
measures, i.e. of measurable maps between (2,2) and My, endowed with the
minimal o-algebra B(Al,) for which the maps C{-, K) are measurable for every
compact subset K of D.

The problem is to analyze the asymptotic behaviour, as # — oo, of the solutions
U7, of the random relaxed Dirichlet problems

{ "‘AU}L”{‘“ JI/I;LUh:f ill D

] U,=90 on oD.
We find necessary and sufficient conditions on (M,) for the convergencein probability
of the sequence (U,) toward the solution of a deterministicrelaxed Dirichlet problem
of the form

A 7 -
0.4) { U+yU=f inD

U e HY(D)

where v is a suitable Radon measure of the class AMy,: These conditions are given in
terms of the asymptotic behaviour of the expectations of the random variables
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C(M,, B) and of the covariances of the random variables C(M,, 4) and O(M,, B)
for disjoint subsets 4 and B of D.

‘When these conditions are satisfied, we obtain also a meaningful characterization
of the limit measure ». In fact, in this case, the expectations of the capacities
O(M,, B) converge weakly (in the sense of [26]) to a countably subadditive increasing
set function o(B) (which turns out to be equal to C(y, B)) and v is the least measure
such that »>e. This generalizes a result proved in [6].

As a first application of our results we consider the asymptotic behaviour of a
sequence of Dirichlet problems

— AU, =f in DN\JF;
(0-5) { U, HYD\F))

in whieh the random sets F, have the form
h

(0.6) F,= | @+ nK)
=1

where (#%),.,<, is a family of independent identically distributed random variables
in D with distribution law § given by

B(B) = f mz)ds  (he L¥D)),
B

K is an arbitrary compact subset contained in the unit ball and (r,) is a sequence of
positive real numbers such that

limar?=1< -+ co.

h—>co

We prove that in this case the solutions U, of the random equation (0.5) converge
in probability to the solution U of the deterministic equation (0.4) with » = ¢f,
where ¢ = [C(K, R¢), and

C(K, R?) = min {f[l)u]z dz; we HY(RY), u>1 g.e. on K} .

Ra

Problems of this kind have been investigated in [4], [32], [38], [40], by Brownian
motion methods and in [36], [37] by Green function methods. Recently the fluc-
tuations around the solution of the limit problem have been investigated in [29].

The corrisponding deterministic case has been studied in [30] by an orthogonal
projection method, and in [31], [35] by a capacitary method. Other results on this
argument can be found in [34], [13], [14], [15], [16]. Moreover, similar problems
on Riemannian manifolds have been studied in [9, Chapter I1X], [10], [11].
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The second application of our abstract theorem concerns the agymptotic behaviour
of a sequence of stationary Schrodinger equations with random potentials of the form

—AUh+thh:f in D
U,e Hy(D)

where ¢, is given by
(L, ifzekl,
w@ =1,

otherwise ,

7, are the sets defined in (0.6) with K equal to the closed unit ball, and (k,) is a
sequence of real numbers.

We prove that, in dimension 4 = 3, if %LI%; v ﬁ;rh == -} oo, then the solutions U,
of the random equations converge to the solution of the deterministic equation (0.4),
with v = ¢f, where ¢ = I0(B,, R?).

Problems of this kind have been studied in the deferministic case in [2], [3]
and {7].

I would like to thank Prof. G. DAL Maso, for suggesting me this research work,
with the precious aid of his advice.

1. — Notation and preliminaries.

Troughout the paper we denote by D a fixed bounded open subset of R? with
d>2. Moreover, we denote by U, the family of all open sets U C D and by X the
family of all compact sets K C D.

Let us recall some well-known definitions which will be often used in the sequel.

DErNTTION 1.1. — For every compact set K e X we define the capacity of K
respect to D by

O(K, D) — inf{fm(p[z, ge 0°(D), p>1 on K}.

D
The definition is oxtended to the sets U e by
C(U, D) = sup {O(K); KC U, K e X}
and to arbitrary sets HC D by

O(E, D) = inf {C(U); U2H, UeW} .
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‘When no confusion can arise, we will simply write O(¥) instead of C(¥, D).

Let E be any subset of D. When a property P(x) is satisfled for all # € E except
for a subset N C E such that O(N) = 0, then we say that P(z) holds quasi every-
where on # (g.e. on E).

A set A C D is said to be quasi open (resp. quasi closed, quasi compact) in D if for
every &> 0 there exists an open (resp. closed, compact) set UC D such that-
0(4 AU) < ¢, where A denotes the symmetric difference (the topological notions
are in the relative topology of D).

We say that a function f: D — R is quasi continuous in D if for every ¢ > 0 there
exists a set E C D such that O(D — F) < ¢ and the restriction of f to & is continuous.

We denote by H(D) the Sobolev space of all functions in L*(D) whose first weak
derivatives belong to L*(D), and by H}(D) the closure of Oy (D) in H(D).

For every e R? and every r > 0 we denote by

" Bw)={yeR%: ly—a|<n}

the open ball centered at z with radius .

By the symbol |B,.(z)| we mean the Lebesgue measure of the ball. By B, we
denote the ball of radius » centered at the origin.

Let we HY(D). It is well-known that the limit

R 1
im 5 @ f wuy) dy
Br(x)

exists and is finite for quasi every z e D.
In the sequel we always require that for every we D

_ 1 . 1
lim meR(T)| f u(y) dy<u(m)<1m:j(1)1pm f)u(y) dy .

>0
Br(z) . Br(x

Thus, the pointwise value u(w) is determined quasi everywhere in D, and the func-
tion u is quasi continuous in D.
It can be shown that

C(E) = min {f[Du]z da; we Hy(D), u>1 g.e. on E}

D

for every subset B of D.

For these properties of the capacity and of the function of Hi(D) see [28]. We
denote by J3 the ¢-field of all Borel subsets of D. A nonnegative countable additive
set function defined on % and with value in [0, + oo] is called a Borel measure
on D. A Borel measure which assigns finite value to every compact subset of D is
called Radon measure.
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In our paper we deal with a peculiar class of Borel measures, defined as follows:

DEFINITION 1.2. — Y is the class of all Borel measures g on D sueh that:
a) u(B) =0 for every Be % with O(B) = 0;

b) w(B)=inf{u(d): A quasi open, BC 4} for every Be $.

An easy example of measure belonging to M} is the following:

w(B) =t v
B

where fe I (D). More generally, every Radon measure y on D which satisfies a)
belongs to 7.

We remark that the measures belonging to A are not required to be regular
nor o-finite, For istance, the measures introduced in the Definition below belong
to the class Ay (see [17], Remark 3.3).

DEFINITION 1.3. — For every quasi closed set ' of D we denote by oo the Borel
meagure defined by

0 it OFNB)=10
ooF(B)={ +oo if OFNB)#0

for every Be 3.

Other examples are given in [21].

Now, we give the definition of the variational u-capacity associated with any
measure g€ AGy. This will be the basic tool in our investigation.

DEFINITION 1.4. ~ Let ye M. For every Be $ we define the y-capacity of
B as:

O(4; B, D) = int {J”]Dulz dw —]—f(u 1) du; ue H;(D)} .

D B

When no confusion can arise, we will simply write C(g, B) instead of O(u, B, D).
Since the functional is lower semicontinuous in the weak topology of H(D),
the minimum is achieved.

REMARK 1.1. — It is easy to see that if y is the measure oo of the Definition 1.3
with F quasi closed in D, then O(u, B) = C(BN F) for every Be 3.
The main properties of the y-capacity can be summarized in the next Proposition.
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PROPOSITION 1.1. — For every p € My the set function C(u,-) satisfies the following
properties:

a) Oy, §) = 0;
b) if By, B, B and B,C B,, then C{u, By)<C(u, B);

o) if (By) is an increasing sequence in B and U B,= B, then
heN

C(p, B) = sup O(u, B,);
heN

d) if (Bs) is a sequence in B and BC U B, then
heN

Oy, BK%U(M B,);

¢) O(uy ByV By) + O(uy BiN By) < O(py By) + C(uy By) for every By, Be B;
f) C(u, B)<O(B) for every Be B;

g) Clu, B)<u(B) for every Be B;

h) C(u, K) = inf {C(y, U); KC U, UeW} for every K e X;

i) C(u, B) = sup {C(u, K); KC B, Ke X} for every Be B.

For a proof we refer to ([17], Theorem 2.9 - Theorem 3.5 - Theorem 3.7).
The previous properties allow to show an explicit formula to reconstruct a
measure € M from the corresponding u-capacity (see [17], Theorem 4.5).

THEOREM 1.1. — Let pe ME. Then for every Be B we have

w(B) =lim 3 O(u, BN R

h—>o0 j€Zd

where R denotes the cube:

for every he N and for every i = (iy, ..., 4,) € Z°.

In our paper we are interested in studing a class of equations formally written asg

(1.1) Adw +pu=7Ff in D
(1.2) w=g¢ on oD

where ge HY(D), fe L*D) and uec M.
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Following [20] we shall call the equation (1.1) a relaxed Dirichlet problem in D.
In order to give an appropriate sense to the equation (1.1), we need the following
definitions.

(DyN L?

DEFINITION 1.3. — A funetion u € Hj, o

Toe (D, u) is said to be a local weak
solution of the equation (1.1) if

Df Du Dv dx —I—Dfm; du =Df fdw

for every ve HY(D)N L3y, D) with compact support in D.

DEFmNITION 1.8. — A local weak solution of (1.1) is said to satisfy the boundary
condition (1.2) if, in addition, v — ge H}(D).

The non trivial relationships between the definitions above and the definitions

in the sense of distributions are discussed extensively in [21].

REMARK 1.2. ~ It can be proven (see [20]) that if ge HY(D) is given in such a
way that there exists some we HYD)N LD, u) with o — ge Hy(D), then there
exists & unique weak solution of problem (1.1)-(1.2), this solution belongs to HY(D) N
N LD, u) and coincides with the unique minimum point of the funectional

H(v) =Df[1)fv]2 d —l—l)f'uz dp — 2fo1} dw

on the set {v: ve HYD), v — g Hy(D)}.

In what follows we give two examples of relaxed Dirichlet problems which will
be essential in the applications of our main theorems.

Exaweir 1.1, — Dirichlet problems in domains with holes.

Let KeX. Let oox be the measure introduced in Definition 1.3. If g = cox
and g = 0 then the problem (1.1)-(1.2) becomes

) {-A%—i—OOK%:f in D
1.3) =0 on oD.

%

It can be seen in [21] that a funetion w € Hy, (D) N L (D, p) is a local weak solution
of equation (1.3) if and only if u|j\ & is a solution in the usual sense of the boundary
value problem:

—Au=17F in D\K
u e HY(D\K)

and #jz=90 g.e. on K.
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Examprr 1.2. — Schrodinger equation.

Let q € L, (D) with ¢>0. If u(B) = f q(x) do then the problem (1.1)-(1.2) becomes
B

—Au 4+ qgx)u =Ff in D
{ we HyD).

We shall also study the following relaxed Dirichlet problem:

{—Au—l—([u—{—lm)u:f in D
(1.4)

=0 on o¢D

where ue M, fe L¥(D), m denotes the Lebesgue measure on R? and 1>0.
In view of Remark 1.2 we can define a family of operators from L2?(D) into L*D)
which are called resolvent operators.

DEeFINITION 1.7. — For every >0 and for every ue Mk, the resolvent operator Rﬁ
is the mapping which associates with every fe L2(D) the unique weak solution
we Hy (D) N L¥D, u) € L¥D) of the problem (1.4).

REMARK 1.3. — le is a linear continuous operator between L2(D) and L2(D)
(see [5], Definition 2.3).

2. — y-convergence.

In this section we infroduce a variational notion of convergence for sequences
(#4) in MG which will be useful to study the perturbations of the relaxed Dirichlet
problem (1.2)-(1.3).

With every ue M} we associate the following functional F . defined on L*(D)

f |Duf2+[utdu it we HY(D)
F,u) =12 B
+ oo if we L¥D), uw¢ HyD).

Since u(B) = 0 for every Be $B with O(B) = 0, the functional F, is lower semi-
continunous in L*D). .

The following definition of y-convergence for sequences of measures (u;) belonging
to Jy is given in terms of the I™convergence of the corresponding functionals ¥, .
For the definition of [-convergence and its applications to the study of perturbation
problems in calculus of variations, we refer to [2], [23], [24], [25].
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DEFINITION 2.1. — Let (u,) be a sequence in JG; and let p e MY; we say that (u,)
y-converges to p if the following conditions ave satisfied:

a) for every we Hy(D) and for every sequence (u,) in H (D) converging to u
in L3(D) we have:
F (u)<liminf ¥, (u,) ;
h>c0
b) for every u < H(D), there exists a sequence (u,) in H (D) converging to u
in L*D) such that:
F () >1i121_>s;1p B ()
ReMARK 2.1. — There exists a unique metrizable topology on JGr which induces
the y-convergence, which will be called the fopology of y-convergence. All topological

notions we shall consider on A are relative to this topology, with respect to which
M is compaet ([17], Remark 5.4).

A relevant aspect of Definition 1.7 for our purpose is contained in the following
Proposition (see [5], Theorem 2.1).

PROPOSITION 2.1. — Let (u,) be a sequence of measures in Mi and let ye M.
Given 1>0, let Rih be a sequence of resolvent operators associated with the meas-
ures p, and Rﬁ the resolvent operator associated with pu. The following statements are
equivalent:

a) (un) y-converges to p.
b) (R;h) converges to Rj strongly in L*(D).
The following Proposition states the relationships between the y-convergence

of a sequence of measures (u;) and the behaviour of the corrisponding u-capacities,
(see [17], Theorem 6.3 and Theorem 5.9).

PROPOSITION 2.2. — Let (us) & sequence in M5 and p e M5, Then (u,) y-converges
o w in MY if and only if the inequalities
a) COlu, U)<limint O(u,, U)
h—> o0

and
b) O, K)>lim sup O, K)
h—o00
hold for every K e X and for every U e .
REMARK 2.2. — In view of Proposition 2.2 a sub-base for the topology induced

by y-convergenee on G is given by the set of the form {ue6¥: O(u, U) > ¢} and
{ne i Ou, K) < s} with t,seR*, UcW and Ke XK.
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We denote by B(AGY) the Borel o-field of Ay endowed with the topology of
y-convergence.

PROPOSITION 2.3. — RB(AME) is the smallest o-field in M for which the fumetions
C(-, U) from M into R are measurable for every U e s (respectively the functions
C(-, K) are measurable for every K € XK).

PROOF. — Denote by X, the smallest o-field in G} for which all functions C(-, U),
U € U, are measurable, and by 2, the smallest o-field in G for which all funetions
O(+, K), K ¢ X, are measurable.

First, let us show that 2, = 2,. It is enough to prove that

@) any function O(:, K), K ¢ X, is Xj-measurable;
and

b) any function C(-, U), U U, is Z;-measurable.
Let us prove a). For every K € J, consider the decreasing sequence of open set:
U,= {we D: dx, K) <1[h}.
We remark that U,\K. By (k) of Proposition 1.1 we have
Oy, K) = 216115 O(u, U,)

for every we A, which proves a).

Assertion b) can be proved in the same way, by choosing, for every U e 4, an
increasing sequence (K,) in J such that K, U and by using Propesition 1.1, (i).

The proof of the Proposition is complete if we show that B(AMi) = 2,. The
inclusion X)C B(AMF) is trivial because C(+, U), UeW is lower semicontinuous on
MEF by Proposition 2.2 (a). In order to show that B(AE)C X, we have only to
observe that the sub-base for the topology of the y-convergence given in Remark 2.2
is contained in X, (because X, = ;) and that M} admits a countable basis for
the open sets. ®

The next Corollary follows directly from the previous proposition.
COROLLARY 2.1. — Let (2, X, P) be a measure space. Let M be a function from
inte ME. The following statements are equivalent:
a) M is X— B(ME) measurable;
b) C(M(-), U) is Z-measurable for every U e W;
¢) O(M(-), K) is Z-measurable for every K e XK.
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We need also some result about the measurability of the function O(-, B) for
every Be $. Let us denote by @(.A{fg) the ¢-algebra of all subset of ¥ which are
universally measurable with respect to B(AGE) (i.e. ()-measurable for every proba-
bility measure @ on (AGF, B(AE))).

ProPoOSITION 2.4. ~ For every Be B the function C(-, B) is /ji(%f)-measumble.

PrOOF. — Let @ be a probability measure on B(AM:). For every Be WU K we set

“(B) = [ O, B) Q.
Moo

By properties (k), (i) and (¢) of Oy, ) in Proposition 1.1 we have that:
(2.1) a(K) = inf {o(U); UK, Ue Uy}

for every K e X,

2.2) a(U) = sup {«(K); K< U, Ke X}

for every U e, and

(2.3) (KU Ky + a(By N K)<a(Ky) 4 a(H,)

for every K,, K,e X.
We can extend the definition of o by

(2.4) «(B) = inf {«(U); U2 B, Ue W}

for every Be . We infer from (2.1), (2.2), (2.3), (2.4) that « is a Choquet capacity
on B (see [27], Theorem 1.5). Applying the capacitabily Theorem (see [12]) we get

(2.5) «(B) = sup {«(K); KC B, K € X}

for every Be %. Now, fix Be $. By (2.4) it follows that for every &> 0 there
exists UeU, U2 B such that

(2.6) a(B) + &2 > o(T) .

Moreover, by (2.5) we also get that for every &> 0 there exists a Ke X, KC B
such that:

@.7) «(B) — £/2 < e(K) .
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By (2.6) and (2.7) we get that for every ¢> 0

(2.8) [ 10w, )= o, BN ag <.

Sinee C(-, K)<C(-, B)<C(-, U), (2.8) gives the measurability of C(-, B) respect
to the o-field of all subsets @-measurable. Finally, the assertion follows noting that
Q is an arbitrary probability measure on B(ACF). m

At the end of this Section we recall some probabilistic notions which we use in
the sequel.

By $(My) we mean the space of all probability measures defined on B(AF), i.e.
an element @ € F(AMF) is a non negative countably additive set function defined on
BACE) with Q(AMF) =1.

We recall the concept of the weak convergence for a sequence (@,) of measures:
belonging to F(AGY).

DEFINITION 2.2. - We say that a sequence (@) of measures in F(AF) converges
weakly to a measure @ in F(MT) if

lim fth_ffdQ
h—)co
for every continuous funetion f: AGF — R.

Similar problems of weak convergence of measures on spaces endowed with
topology related to I-convergence have been studied in [18] and [19].

The two results that we give in the following hold for a generie compact metric
space. For the proofs we refer respectively to [1], Theorem 4.5.1 and to [39], Theo-
rem 6.4.

PROPOSITION 2.5. — Let (Q1) be a sequence of probability measures in T(MEF) and
let Qe F(MY). The following statement are equivalent:

a) (@) converges weakly to @ in T(ACE).
b) lim quh~ffdc2

h—)oo
for every fu'rwtwn f: My — R such that
Q{ue MNi: | is continuous at p} =1.

PROPOSITION 2.6. — For every sequence (@) of measures in F(MF) there ewists
sub-sequence (@, ) weakly convergent in F(AMF).
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We conclude with some definitions:

DEFINITION 2.3. ~ For every $(ACG;)-measurable function X we denote by H,[X]
the ewpectation of X in the probability space (MG, B(AGF), @), defined by

B[ X] = [ X(w) aQ(u) .
Ao

DEFINITION 2.4. — For every X, Y e LA}, B(A6}), @) we denote by Covy [X, Y]
the covariance of X and Y in the probability space (A, B(ACE), @) defined by

Cove [X, Y] = Ho[X Y] — E[X]EJ[Y].

The variance of X is defined by Var,[X] = Cov,[X, X].

3. — The main result.

In this section we prove the main result of this paper: a necessary and sufficient
condition for the convergence of a sequence (,) of measures on My of the class
F(My) to a measure d,€ F(ME) of the form

- 56 0 ifveé
(3-1) WO =11 itres

for every §e B(AM), where » is a finite Borel measure on D of the class ¥, This
condition is expressed in terms of the asymptotic behaviour, as % — oo, of the
functions C(-, B), Be %, considered as a random variables on the probability spaces
(A%, BAE), Q).

We begin with some definitions. Let (@) be a sequence in F(AM7). First, for
every Uel, we define:

«'(U) = lim inf B, [C(-, U)]

A—>co

and

a"(U) = lim sup Eo [C(-, U)]

R—sco

where E,, denotes the expectation in the probability space (MF, B(AE), Q).
Next we consider the inner regularizations o and o« of o and «' defined for
every UeUW by:

(3.2) o (U) = sup {«'(V); VeW, Vc U}
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and

(3.3) & (U) = sup {«"(V); Ve, Vc U}.

Then, we extend the definitions of «_ and «  to the arbitrary Borel sets BC D by

(3.4) « (B) = inf {a' (U); UeW, U2 B}
and
(3.5) o' (B) = inf {a’ (U); Ue W, U2 B}

for every Be 3.

Finally, we denote by »" and »" the least superadditive set functions on & greater
than or equal to o« and o respectively.

We are now in a position to state our main result.

THEOREM 3.1. — Let (@) be a sequence of measures on My of the class F(ME).
Assume that
i) ¥(B) =9"(B)<< + oo for every Be $
and denote by v(B) the common value of v'(B) and v"(B) for every Be $.
Suppose in addition that

ii) there ewist a constant & > 0, an inereasing continuous function
ERxXR >R

with £(0, 0) == 0 and a Radon measure § on B such that

lim sup |Cov,, [C(+, U), O(+, V)]|<&(diam U, diam V)B(U)B(V)

h—>co

for every pair U, Ve such that UNV = 0 with diam U <e, diamV <e.
Then

a) v is a finite Borel measure on B of the class M;

b) (Q:) converges weakly to the probability measure 6, defined by

56 0 ifygé
o(8) = 1 ifyed

for every &e B(AME);
¢) o (B)=o{(B)= O, B) for every Be $.
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ReMARK 3.1. — Let «,: U — R be an increasing set function defined by
x(U) = B [0(+, U)]
and let «: U — R be an increasing set function defined by
o U) = Cw, U) .
Then the condition ¢) of Theorem 3.1 is equivalent to say that (x,) converges weakly

to o in the sense of [26] (with respect to the pair (W, X)).

For the proof of Theorem 3.1 we need some preliminary results. We begin with a
general probabilistic Lemma.

Let (2, X, P) be a probability space. The symbols E[X] and Var [X] will denote
respactively the expectation and the variance of the random variable X with respect
to the measure P.

Lemma 3.1, — Consider a sequence (X;) of non negative random variables on
(2, 2, P).
Suppose thai

i) X,e L2, P) for every he N.
ii) X, converges to X for P-glmost every we Q.

iii) lim Var [X,] = 0.
h— oo
Then, there exists o constant X, such that X(w) = X, for P-almost every w e L.

Proor. - Choose a non negative sequence g, such that

Var [X.
lime,=0 and Llim iz[—h]: 0.
h~>00 h—>c0 &y
Set
Var [ X,]
h=—"—
&

Then there exists a subsequence of t,, still denoted by ?,, such that > &< + oo.
Consider the sets heN

Bh: {C() & Q: ‘Xh_ E[Xh:”>8h} .

By Chebychev’s inequality we have P(B,) < 1, for every h and by Borel-Cantelli’s
Lemma it follows that

P(limsup B,) = 0.

h—coa
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Consequently, if wy, 0, are two elements in Q\li;}l sup B,, we obtain
IXh(wl) —_ Xh(wz)‘ < 2¢,

for h large enough. Passing to the limit, as k — oo, we get the proof of the
assertion. W

In the next Lemma we prove a result concerning inereasing set functions, i.e.
functions «: $ — R such that «(d)<«(B) whenever 4, Be $ and ACB. Tirst
we need some elementary definitions.

DerINITIONS 3.1. — A subset D of U is said to be dense if for every pair
U, VeU such that U c V, there exists a set We D such that Tc WcWc V.

LevmA 3.2. — Let a: B — R be any increasing set function. Then the set

D= {WeW: Wc D, (W)= a(W)}
is dense in U.

Proor. — The Lemma is an immediate consequence of Proposition 4.7 of [26].
For the readers convenience we repeat here the proof in our particular case.

Let U, V be in W such that U c V. By Uryshon’s Lemma there exists a function
fe Oy(V) such that 0<f(w)<1 for every zc Vand f =1 on U. Forevery t€10,1[=T
we consider the open set:

Uy={weV: f®)>1}.
Let g: T — R be the function defined in the following way
9(t) = «(U,) .
Then ¢ is a decreasing function and for every teT we have

inf g(s)>a(U,) > a(U,) >sup g(s) .

s<t s>t

Since the function g has at most a countable set of discontinuity points in 7', there

exists te T such that «(U,) = «(U,) and this proves the Lemma. ®&

In the following we give sufficient conditions in order to have that a probability
measure @ € F(M7) be equal to the meagure 6, defined in (3.1). The conditions are
given in terms of the.functions O(-, B), Be $, considered as random variables on
(65, BAG), Q).
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LeMMA 3.3. — Let @ be a probability measure on MG, of the class F(AME). Define
o U) = H [ O(-, U)] for every UeW, and

%(B) = inf {a(U); U2 B, UeU}

for every Be B. Assume that:
(i) There ewists a Radon meoasure 8, on B such that fi>u on B;
(ii) There exist a constant ¢ > 0, a Radon measure f, on B and an increasing
continuous function &: RxR — R with £(0, 0) such that
(3.6) |Cove [O(+, 1), O+, Ml<é(diam U, diam V)B,(U) (V)
for every pair U, VeW such that UNV = 0, with diam U < ¢ and
diam V <e.

Let v be the least superadditive set function on B such that v=o on H. Then v
is a measure on B of the clas M and

Q=0

Proor. ~ The function « is countably subadditive on U (hence on B) by the
countable subadditivity of C(u,-) (Propesition 1.1, (d)). Therefore » is a measure
by Lemma 4.1 of [17]. We observe that the measure » is in AGE because it is a
Radon measure and »(B) = 0 whenever O(B) = 0 by Proposition 1.1, {f). By proper-
ties (k) and (¢) of Proposition 1.1 we can extend the relation (3.6) to each pair of
disjoint sets 4, Be B and check that

«(B) = Ho[C(", B)]

for every Be $.
Let us denote by #(-, B) the random variable on the probability space (G,
B(AE), Q) defined by

#(u, B) = u(B)

for every Be $.
By Theorem 1.1 we have that

(-, B)=1lim ¥ C(-, BN R}

h—>oo icZ?

for every B e $, where R denotes the cube defined in Theorem 1.1. We apply now
Lemma 3.1 to show that 2(-, B) is a constant random variable. Therefore, we have
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only to prove that:

limVarQ[zC(°,BﬂR;;)] =0.

h—> o A

Now, let us fix Be $ with BC D. For every he N, we have

(8.7) 2 Varg[0(:, BN R;)] = .;Z:,i{EQ[G(" BN B~ (BJO(-, BN B])}<

icZt

< 2 BO(, BN RYI< 2 O(BN BB JO(-, BN R)]<

i€Z? jeZe

< sup C(BN R;) X a(B N R;)<s,0:(B)

jeZa icZa
where we have set

s, =sup O(BNR}).

jeZd

We observe that s, -0, as h — co, because the dimension d is greater than or
equal to 2 and B is compact in D. On the other hand, by hypotheses there exists
hoe N such that, for every hx=h,,

(3.8)

3 Cove[0(, BOR)), O, BN E)]
', jeZa
id
< I &diam (BN RY), diam (B N BY)B,(B N BY)Bo(B N Bi) <
Zz]fjd
<&(diam R?, diam B%) 3 B,(B N E})B,(B N Rj)<&(diam R?, diam BY)[8,(B)I .
. i,jels
ii

<

By (3.7), (3.8) and by hypothesis we get:

lim VarQ[z o(-, BN R;;)]<
h—> 00 YA
<lim { 3 Varo[0(-, B RY)] + 3 Oova[0( BB, O, B R)I}<
—> 00 “{EZS i, j€dl
i#7
< lim {Sh,81(B)

h~>00

|- (diam BY, diam RY)[B(B)?} = 0 .

Therefore Lemma 3.2 implies that for every Borel set (-, B)is a constant random
variable. Now, let us compute the expectation of z(-, B). Since the sequence
(z (BN R,ﬁ))heN is increasing, we get

jeZd

B #(-, B)] = lim EQ[ S0, Bn R;;)] =lim ¥ «(BN R}) = »(B)

h—>o0 ieZ? h—>o0 (€22

for every Be %, where the last equality is proved in [17], Lemma 4.2,
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Hence for every B € $ there exists a subset Ay of Mf with @(AMp = 1) such that
#(py, B) = v(B) for every ue Mp. Let D be a countable dense set in U and let
us consider

JK) _ ﬂ JKJU .
UeD

We obfain that z(u, U) = »(U) for every u< A6 and @Q(AM) = 1. This implies
that #(u,') is 2 Radon measure on B for every ue M, and since z(y,) coincides
with » on a dense set D in U, we can deduce that z(y, B) = »(B) for every Be $
and for every ye M. This concludes the proof of the Lemma. &

Proor oF THEOREM 3.1. — The set function «" is subadditive on U, being the
upper limit of a sequence of subadditive set functions on U. Therefore its inner
regularization «  is countably subadditive on U by Theorem 5.6 of [26]. It is now
easy to see that & is countably subadditive on $, so that +" is a meagure by Lem-
ma 4.1 of [17]. Moreover, »"(B) = 0 whenever ((B)= 0 by Proposition 1.1 (f).
This proves assertion (a).

Since T(AY) is sequentially compact space and »' and »” do not change by passing
to a subsequence, in order to prove (b) we can assume that (Q,) converges weakly
to a probability measure @ € F(A}) and we have only to prove that @ = d,.

By Lemma 3.2 the set

D = {UeW: BO(-, U)] = B[O, DT}
is dense in U.
Consequently, for every U € D, the equality C(u, U) = C(u, U) holds for @-almost
all ue M. Therefore, by Proposition 2.2,
Q{ue ME: O(-, U) is y-continuous at u} =1
for every Ue D. Then, by Proposition 2.5 we have
(3.9) hlim Bo,[C(+;, U)] = H[O(, U)] = a/(U) = o'(U)
for every Ue D, and

(3.10) lim Eo,[0(-, U)C(-, V)] = B [O(+, U)O(-, V)]

h—>o00

for every U, Ve D.
By (3.9), (3.10) by hypothesis (ii) and by the properties of the u-capacity (Pro-
position 1.1, (k) and (¢)) we get that

(3.11) BJlO(+, U)] = o (U) = o« (V)
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for every Ue, and

[Cove [O(+, U), O(-, V)]|<é(diam U, diam V)B(U)H(V)

for every pair U, Ve U with diam U < e and diam V <e such that UnV=4.
Assertion (b) follows now from Lemma 3.3.
Assertion (¢) can be obtained from (b) and (3.11) by using (3.4), (3.5) and the
properties of C(u,-) stated in Proposition 1.1, (h) and (/). ®

REMARK 3.2. — Conditions (i) and (ii) of Theorem 3.1 are also necessary. In fact,
if @, converges weakly to a probability measure of the form &, (see (3.1)), where v
is a finite Borel measure on $ of the class AU}, then (3.9) and (3.10) imply that there
exists a family D dense in Ul such that

(3.12) o (U)y =o' (U) = Cl», U)

for every Ue D and

(3.13) lim |Covg, [C(+, T), (-, V)] = 0
h—>c0

for every U, VeU with UN ¥V = @. By the properties of the capacities C(u,-)
(Proposition 1.1, (), (1)), (3.12) implies that

(3.14) o (B) = o (B) = O(», B)

for every Be B and (3.13) implies condition (ii) of Theorem 3.1. The condition (i)
follows now from (3.14) and from the characterization of » as the least superadditive
set function greater than or equal to O(»,-), (see [17], Theorem 4.3).

4. — Dirichlet problems in domains with random smail holes.

In this section we consider an application of our results to a Dirichlet problem
in a domain with small holes. In order to simplify the computations we assume
d>3.

Let (Q, X, P) be a probability space. We shall denote by E and by Cov respec-
tively the expectation and the covariance of a random variable, with respect to
the measure P.

DerFiNtTION 4.1. — A measurable function M: Q2 — MY will be called random
measure.
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We recall that necessary and sufficient conditions for the meagurability of a
function M: 2 — MG} are given in Corollary 2.1.
Let M be a random measure.

DEFINITION 4.2. — The probability measure in F(AM}) defined by
Q(8) = P{M-Y8)} for any &e B(M])

will be ecalled the distribution law of the random measure M.

Let (M) be a sequence of random measures and M a random measure. Let (Q;)
be the sequence of the distribution laws of M, and let @ be the distribution law of M.

DEFINITION 4.3. — We say that (M) converges in law to the random measure M
if and only if the distribution laws @, converge weakly in F(A) to the ;distribution
law Q.

Let ) be the distribution of random measure M. It is easy to see that:

(41)  BC(-, U)]= E[C(M(-), U)] for any UeW
4.2) Covo[C(-, )C(+, V)] =
= B[C(M(-), U)C(M(-), V)] — B[C(M(-), U)]B[C(M(-), V)] =
= Cov [C(M(-), U).C(M(), V)]
for any pair U, Ve.
Let (M,) be a sequence of random measures and let (@;) be the corresponding

sequence of distribution laws.
Let us define the set funetions:

(4.3) #(U) = limint E[C(M,(-), U)]
h—co

(4.4) o' (U) = lim sup B[O(M,(-), U)]
h—>o00

for every U e .

In the sequel we will denote by o and o respectively the inner regularization
of o' and «" as defined in (3.2) and (3.3).

The functions ¥’ and »" will be the least superadditive set funetion on B greater
than or equal to «_ and o, respectively.

REMarK 4.1. - BEqualities (4.1), (4.2), (4.3), (4.4) allow to reformulate the hy-
potheses of Theorem 3.1 in terms of the expectations and covariances of the random
variables O(M(-), U). By definition 4.3 the theses of Theorem 3.1 can be refor-
mulated saying that the sequence (M,) converges in law to a random measure M such
that M(w) = v for P-almost every we Q (i.e. to the constant random measure
M =y).
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REMARK 4.2. — It is well known that, whenever M is a constant random measure,
the convergence in law and the convergence in probability toward M of the sequence
(M) of random meagures are equivalent. Thus, by Remark 4.1, we can deduce that,
if the assumptions of Theorem 3.1 hold, then the sequence (M,) converges in proba-
bility to the measure » in JG}, that is, for every ¢> 0

lim P{w € Q: dy(M,(w),v) >} =0
h— o0

where dy is any metric on G which induces y-convergence (Remark 2.1).
We wish to study the following sequence of random relaxed Dirichlet problems

— du, 4 (M, + Im)u,=f in D
#p==0 on oD

where A>0, fe L*(D), m denotes the Lebesgue measure on R?

Let ye MY and let R* be the resolvent operator associated with ». The next
Theorem states a relationship between the previous results and the convergence
of the resolvent operators R} associated with the random measures M.

THEOREM 4.1. — Let (M,) be a sequence of random measures. Let o and o« be the
functions defined in (4.3) and (4.4) and let v’ and v" be the least superadditive set func-
tions on B greater than or equal to o and o respectively.

Assume that

(i) »/(B) =»"(B)< 4 oo for every Be D
and denote by v(B) the common value of v'(B) and v'(B) for every Be 3.

Suppose, in addition, that

(ii) there ewist a constant &> 0, an increasing continuous function
EERXR—->R
with £(0, 0) = 0 and o Radon measure 8 on B such that:

lim sup [Cov [O(My(-), U)C(M,(-), V)] <&(diam T, diam V)B(U)4(V)

h—>o00

for every pair U, VeU such that UN TV = 6 and with diam U < ¢, diam V < s.
Then, for every A>0, R} converges strongly in probability to R?, i.e.

lhzr;P{w € Q: | Bi(0)[f] ~ B*fl| o>} = 0

for every n >0, and for any fe L¥D).
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Proor. - By Remark 4.2 we have that the sequence (M,) eonverges in probability
to v in A%, To get the assertion it is enough to recall that, by Proposition 2.1, for
every w € £2 the sequence of measures (3f,) y-converges toy if and only if the reselvent
operators RXw) converge to R* strongly in I¥D). ®

Next, we wish to consider a particular sequence (M) of random measures related
with Dirichlet problems in domains with random holes.
Let F(D) be the family of all closed sets contained in D.

DEFINITION 4.4. — A funetion F: Q —F(D) is called a random set if the function
M: 2 — M} defined by M(w) = ooy, for each w e 2 is Z-measurable, where Or(w)
is the measure in JF as in Definition 1.3.

REMARK 4.3. — Let F: Q — F(D) be a funetion. By Corollary 2.1 and by the
equality O(cc,, B) = C( N B) the following conditions are equivalent:
a) F is a random set.
b) C(F(-)n U) is Z-measurable for every Ue U.
¢) O(F(-)N K) is Z-measurable for every K e X.

Let us take a sequence (F,) of random sets. Let (M,) be the sequence of ran-
dom measures so defined

M,(w) = oop,,,y for each wme 2.

Let fe L¥(D) and >0 be a real parameter. We shall consider the weak solutions
u;, of the following Dirichlet problems on random domains
— Au,+ Au, = f  on DN\F,
5 wne H(D\F,)

In view of the example 1.1, Tsetting u, = 0 on the set F,, we have that u, is
the local weak solution of the relaxed Dirichlet problem

— Ay + (cop, 4 Am)u, = | in D
Uy = 0 on ¢D

where # denotes the Lebesgue measure in R%

We are interested in the behaviour of the sequence u, as k — co. More specifi-
cally, we will study the convergence of the resolvent operators R! agsociated with
the measures ooy, wWhich are related to the resolvents operators B! ot the Dirichlet
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problems (4.5) by

Bif) on D\F,
Rm:{ Y

on F,

(see example 1.1).
To do that we consider the distribution laws @, of the random measures M, = ocop, ,
defined by

(4.6) Q,(8) = P{oop(8)} for any &e B(AM) .

h

It is easy to check that
B, [0(+, U)]1 = E[C(Fy(+), U)] for any UeUW
and
Cov,[0(, U), C(-, V)] = Cov [O(F,(+) N T), O(F,(-) N 7)]

for any pair U, Veb.
In this case the functions «', «” defined in (4.3) and (4.4), take the following form

“.7) o« (U) =1lim inf E[C(Fy(-) N U)]
h—>o0

(4.8) o(U) = lim sup B[O(F,(-) N U)]
fh—co

for every U eql.
An interesting case occurs when the probability distribution of the random set
is gpecified. We will assume the following general hypotheses:

(i;) Let g be a probability law on D of the form

BB) =g do
B

for every Be $, where g e L3(D).

(i;} For every he N we set I,= {1, ..., h} and we consider » measurable fune-
tions #}: 2 — D, i€ I, such that ()., is a family of independent iden-
tically distributed random variables with probability distribution g.

(iy) Let 7, be a sequence of strictly positive numbers such that

lim r42h = 1

h—>oco

for some constant I << 4~ co.
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Let xe€ R% Let F be a closed set of R%. We define the set # + F by
v+ F={yeR:zv—yeck}.
The next Lemma will be useful to identify a class of random sets,

Lmna 4.1, — For every compact set K of R® the function

h -

(D1 1oy By) —> O[U (#; -+ Fyn Kj from (R%* into R

i=1

is wpper semicontinuous in R7

ProoF. — For each ne N we define the set
. 1
F,= {w e Re: dist (v, F) < 7—1} .

Set & = (0 ...y 3,). Let (Z,),ev e 2 sequence in (R converging to % in (R%)™
Then, for every ne N there exists ke N such that

@)+ FCoa,+ F,

for every k>k, and for every ic {1, ..., h}.
Hence, for every n e N and for every compact set K of R?% we obtain

0((_@1 zo+ F,) 0 K)>1im sup 0(({}1 @)+ F) N K) :

k> 00 =

Since:

N [(L3J19"+ Fn)mK] - (_L’jlwi+ F)nK

neN j=

by property (r} of Proposition 1.1 we get that

G((G 2+ F) Oy K)>1im sup 0((.@1 @)+ F) 0 K)

§=1 k—> o0 =
which proves the Lemma. B

Let K be a compact set of R? such that K C B;: For any ke N, we denote by
K* the following set:

K":{meRd_ﬁeK}
Y
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and by K% the random sets

T

K’;:{weD:l(w—w’;)eK}
we note that K;C B, (). Finally, we denote by F, the random sets:
h
(4.9) F.= K, heN.
i=1

REMARK 4.4. — By Lemma 4.1 and Remark 4.3 the sets F,, are actually random
sets in according to Definition 4.4. '

We will prove the following theorems
THROREM 4.2. — Let (I,) be the sequence of random sets defined in (4.9). If the

general hypotheses (iy), (i;) and (i5) hold then the sequence (Q,) of distribution laws defined
in (4.6) converges weakly to the distribution law J,, defined by

ois 1 ifves
o(8) = 0 otherwise

for any & B(M), where v = ¢f, ¢ = IC(X, R?), and

O(K, R =inf{f[1)u|2; ue HY(RY, u>1 q.e. on K}.
Ra

THEOREM 4.3. ~ Let (F,) be the sequence of random seis defined in (4.9). Assume
the general hypotheses (i1), (io) and (iy). Then, for any fe L*(D) and for every &> 0,

lim P{o € Q: | RY@)/] — Elfllrw > e = 0

where R w) is the sequence of resolvent operators associated with the random meas-
ures oop, and R* is the resolvent operator associated with the measure .

Both the theorems will be consequences of the next Proposition 4.1. More
specifically, Theorem 4.2 will follow by applying Thecrem 3.1 and Proposition 4.1;
while the proof of Theorem 4.3 will be obtained by Theorem 4.1 and Proposition 4.1.

PrROPOSITION 4.1. — Let (F,) be the sequence of random sets defined in (4.9). Let
o, o be the set functions as defined in (4.7), (4.8) respectively. Then, if the general
hypotheses (i,), (i,) and (i;) hold, we have:

(t) v'(B) ="(B) = ¢8(B) for every Be 3 ;
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(t,) there exist o constant >0, an increasing continuous funcltion
& RXR R
with £(0, 0) = 0 and a Radon measure f,, such that

lim sup’[Cov [O(F4(-) N T(, O(F(-) N V)]|< &(diam U, diam V)4,(U)B(V)

R o0

for any U, VeW such that U NV = 6 with diam U < ¢ and diam V <e.

For the proof of Proposition 4.1 we need some preliminary results. First, we
give a result which allows us to estimate from below the capacity of the union of a
family of sets (B,);;; by means of the sum of capacities of the sets H,.

LevMa 4.2. — Let (B,),.; be a family of subsets of D and let E = U B,. Assume
that there exist o finite family (v,),o; of points in D and two positiﬂ;e,zfeal numbers
r, B such that

i) O<r<B;
(ii) B,.CB.(2)C Baz)CD for icl;
(iii) Bg(z,) N Bglw;) = 0 for i,jel, i5£7§.

Let us set

Then, if 6 <1 we have

C(B)>(1— 8)* > O(E;, Bg(x))) .

i€l
Proor. ~ Let u e Hi(D) be such that
O(B) =f|Du|2 dx
D

and 4>1 q.e. on E.
It is well known that u is the unique solution of the variational inequality

we K, fDu Dwv—u)yde>0 for veK,
D
where

K,= {ve HY(D); v>1 q.e. on E}.



MicHELE BALZANO: Random relaved Dirichlet problems 161

Assume that

(4.10) u<d q.e. on oBy(w;) for every icI.
We prove that the assertion follows. Let us define the function

(w—d)*
1—6 °

It is easy to see that ve H (D), v>1 g.e. on F and v = 0 q.e. on 0Bx(z;) for each
¢ I. Since (ii) holds, we have

OBy Bafwd) < [ |Dojs o
Br(z;)

for any 7€ I. Hence,

(4.11) f|Dv|2 de> Z | Dol® de > z O(B,, Bg(x)) .
H " Bt m

On the other hand, by definition of » we also have

1 1 1
D D D

By (4.11) and (4.12) we obtain the assertion.
Let us verify (4.10). For every ¢ I we consider the function u, defined by

rd——- 2

uz(w)z[ 2/\1], rve R,

o — m,]%

It is not difficult to check that u;e H:

loe

(R% and that

— Au, >0 in R?
(4.13)

;=1 on B,(w,-)-
for any ¢ 1. Let us set

(4.14) #@) = > ui(x), weR®.
i€l

We see that z¢ H:

e(R%) and it satisfies the following conditions

— A2>0 in D
(4.15) 2>1 q.e on F
2>0 on oD.
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By a classical comparison Theorem ([33], Chapter II, Theorem 6.4), we can get,
by (4.13) and (4.15), that

(4.16) u<z qg.e.on D,
Let y € 8Bg(w,;) for i I fixed. We wish to estimate 2(y). By (4.14) we have

?nd’Z
417 <3 .
(4.17) 2(y) % P—

To estimate the right-hand side we introduce the following sets
Cly) ={weR: kR<jr—yl<(E+ 1R}, Ek=0,1,...

Moreover, let

I(y) = {i € I: w.e Culy)}

and let N.(y) be the number of elements of I,(y). Since |v,— y|>R for each jeI,
it is easy to see that

1 [diam E/RI+1 1

£.18) < N
( 8) .g[ [xj__ yld_z “~ (kR)d——Z Nk\y)

where [a.] denotes the infeger part of a.
Let us estimate N,(y). Since, for & fixed,

U Ba@)C {we B (k—1)R<|o— y|<(k + 2)R}
i€lx(v)
we have
meas [ U Bk(xi)] <o, RY(k + 2)*— (k— 1)7]
ieln(v)

where w, is the volume of the unit ball. Then, using (iii), we have
(4.19) Nuly) < (b + 2)3— (b — 1)3 <dofo? .

By (4.17), {4.18), (4.19), we obtain

pi-2  ldism B/RI1+1 ri—2 ([diam B 2
wegmie 5 ket ([F+ 1) <

pi-2 [ (RV/diam H)
< {2 i

2 Td—Z N
} = 4d+1 3 (BVdiam H)*.
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This inequality, toghether with (4.16), shows that assumption (4.10) is always
]

satisfied and this completes the proof of the Lemma
For each subset Z C D we define the random set of indices
1.(Z)={iel,: #'c Z}

and the random variable:
N,(Z) = number of elements of I.(Z).

(4.19)

For each he N, let R = (s/h)/* where s is a positive real number (we note
For s fixed we also consider

that by (i;) 7, < R for h large enough).
I:(Z) = {ie L(Z): 3jel,, i+ j such that [o}— #}| < E:}

and
(4.20) N:(Z) = number of elements of I;(Z).
The following estimate is crucial for our result

LEMMa 4.3. ~ Ir (i) and (i) hold then
INS(T
lim supw <wdsfg2 dw
h—o0 h
U

for any UeW, where w, ts the volume of the unit ball
Proor. — Fix UeUb. It is easy to check that ie I;(U) if and only if

h
)
ng XBRZ(m’;)n U @)>1.
i

Therefore, we see that

h h

8 h

(4.21) UARS igl ; XBR;(’Uh)ﬂU ;) -
iFi

By (4.21) and the assumptions (i), (iz) we obtain

fx o v (@) 2P(0) =

![fxsah(y)nu ) df (@ ]dﬁ

BBats) 0 0) apl) = wh—1) [ p(E ) T) 4pt)
D

h

(4.22)  E[NyU)l<

-
.
il

R

4=

i

‘EM:,
M=

._.

Qm

By
-

=l

i

i
T
¥ A=
b;___§

o, s,
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Finally, by (4.22) we get

lim sup BIN(U)] < s lim sup [*h:fﬂ(BR;(y) N U)] dply) =
h—soco h R 00 §
D

. Wg _ 2
= slu:;l  sup f [[ Barly)| f g() dw] g(y) dy = sw, J. g*(y) dy

D Briw)o U U

by Lebesgue Theorem. ®

ProOF OF THE PROPOSITION 4.1. — For any U e, let

(4.23) U, = {ze U: dist (v, 0U) > R}
and
(4.24) U,= {we D: dist (v, U) < R} .

We observe that U,c Uc U,.
Moreover, we note that

(4.25) 7,(U,) = LIUNL(D)

is the set of all elements i I, which satisfy the following conditions:
(@) #;eU;
(a2) Br(@h)CU;

(a5) |ot— ot|>R; for any jeI, with ¢4 .
Denote by F, the random set

= U K.
'iEJn(U,'l)
We have
(b1) KC B, (#}) C Bge(#}) 5
(b,) BR;(aof) N BR;(w;‘) =@ fordje Jh(U,;) with 447 .
Let us set

g—2
]

(4.26) S(U, ) = da+1 -

T (diam U)?.

Choosing & = v/s]e,, where ¢,= 4¢+1], by assumption (i;), we see that 6(U, b) will
be less than 1 for h large enough and diam U <e.
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Thus, by Lemma 4.2 we obtain that, for each we £,

@20 O(F0) O U)> O(Fi(w))> (1 - (U W) S O, Bulal)) >
ieJn(U;

>(1— (U, b)F[Nw(U3) — Ni(U)] O(K", Byy) =
Nh f,l, 'N-;l d—2
= (= o, mp [P T o, By,

whenever h is sufficiently large and diam U <e. On the other hand, by using the
elementary properties of the capacity, we immediately get that

N UII
@28) A U< 3 O, Bulah) = 50 bt (K, Byy,)
1&In(U3)

for every U e ‘.
Now we are in position to prove (f,) and (4,) of the Proposition 4.1.

Proor oF {1,). — First, we observe that by the Law of Large Numbers we have

00 h o~ h
for every U el with f(2U) = 0.
Moreover, by (i;) and (4.26) we obtain
(4.30) lim 8(U, b) = 8(U) = -‘;l(diam U)e
h—>co

where ¢, = 4+1],
Next, we observe that for every compact subset KC B,

(4.31) lim O(K, B,) = C(K, RY) .

R—> 00

By Lemma 4.3, (4.27), (4.28), (4.29), (4.30) and (4.31) we deduce that
(4.32) . (B)<of(B)

for every Be &, and

(4.33) o (B)> (1 — %(diam B)Z)Zc [ﬂ(B) — codsfgz(y) dy]
B

for every Be $ with sufficiently small diameter. By (4.32) we have that

v"(B) < ¢f(B)
for every Be 9.
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Therefore, we have only to prove that
(4.34) v'(B)>cf(B)
for every Be 3. Let us fix Be $. Next, for arbitrary 5> 0 choose a partition

(B);er of B such that B,c ® and diam B,<y for every ic I. Then, by (4.33)
applied with s = 5, we get '

(35)  ¥(B)= Iv(B)> 3ol (B)>(1— cn)o[B(B) — v gy) dy] .
B

el iel
Since 5 is arbitrary, (4.34) follows from (4.35).

ProOF OF (f,). — Preliminary, we note that by the Strong Law of Large Numbers
we have

(4.36) al ”;LU’IL) ——B(U) ae wef
and

Nh ’,L .
(4.37) (hU )7;7? B(U) in LY Q)

for any U eU. Moreover, since N h(U,’L),/h is an equibounded sequence of random
variables we also have

N:(Us)

(4.38) e BU) in I4(Q)

for any U e Ab. We observe that (4.36), (4.37) and (4.38) hold also with U}'L replaced
by U,, provided B(2U) = 0.
By (4.27), (4.31), (4.30) we have

(4.39) lim inf E[O(F,(-) 0 U)C(Fa(-) 0 V)]> (1 — 8(T) (1 — 8(V))2er x
00 -
{E [0 3] [N SATY) _  [AT) 2 o)

x lim sup A A 7 7 7

h—o00

for any pair U, Ve such that TN V= 9, diam U < ¢, diam V < ¢ with ¢ = \/S—/O;-
By (4.38) we have

(4.40) lim B

h—>o00

AR AT
| ) gy,

Moreover, by Lemma 4.3 and (4.36) it follows

No(U3) N3(V)

(4.41) lim sup # [ W 7 ] <wd/3(U)sf g2 dz
7

h—co



Micaurir BALzZANO: Random relaxed Dirichlet problems 167

and

(4.42) lim sup &

h—>o00

[thV,’,) _N,”,}(LU)] <waf(V) sf g dw

U

for any U, V€.
Then, (4.39), (4£.40), (4.41) and (4.42) give

(4.43) lim inf B[C(F4(-) N U)O(F(+) N V)]> (1 — 26(T) — 28(V))e? x
h—>co
X[BOBI) = BOU) wus g2 do— B(V) 05 da]
v U

for every U, Ve U, such that UNV = @ with diam U < &, diam V < e.
By (4.28) and (4.38) (applied with U, instead of U,) we also deduce

(4.44) lim sup B[O(F,(-) N U)C(F(-) N V)< B(U)B(Y)
h—>00

for any U, VeUW with f(0U) = B(oV) = 0.

Estimates like (4.43) and (4.44) for the upper and lower limit of the sequence
E[C(F,(-)N U)]-E[C(FW(-)N V)] can be obtained in the same way. Therefore,
we deduce that

(4.45)  lim sup [Cov [O(F,(*) N T), O(F4(*) N V)]|<

h—> o0
<eBUIB(V) — [1 — 28(0) — 28(V)]e*{ BUIB(Y) — B(T) w3 g2 Ao — (V)8 g | <
. ‘ . 14 U

<o {B(0)0,s g7 @0 + BT [ do + 200(T) + SVYBOBT)}
. v U

for every U, VeW such that UN V¥ = 0 with diam U < ¢, diam V < e.
Taking s = max {diam U, diam V}, by (4.30), formula (4.45) becomes

(4.46) lim sup |Cov [C(F(-) N U)C(F.(-) N V)]|<
h—> o0
<e{B(0)was[gt do + B(V) o3[t do + 20,58(0) (T | <
14 U

<eus{B(0) [g* do+ BV g dw + BB
v U

for every U, Ve such that U N V = @, with diam U < ¢ and diam V < e.
In the last inequality we have set ¢; = ¢ max {w,, 2¢,}. The assertion (4,) follows
by (4.46) taking p(U) = f(U) —]-fg2 dx for every UeU, and &(z,y) = max{r,y}. ®&
U
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5. — Schrodinger equation with random potentials.

In this section we eonsider another application of our main Theorem. We study a
problem concerning the stationary Schrodinger equation in R® with particular random
potentials.

We still denote by (£, 2, P) a probability space. Moreover, for every he N
we consider s family (a}),,; of random variables satisfying the general hypotheses
(i), (i2), (i;) in the previous section.

Denote by F,, ke N the following random sets

Let (k,) be a sequence of positive real numbers.
For each he N we define the random function:

kh if xe .F'h
0iw) = 0 otherwise .

We will study the equations:

(5.1) { — dw+ q(@)wn+ Jm,=f in D

€ Hy(D)

where A>90 is a real number and fe L¥D).
To use the theory developed in section 3 we consider the sequence (M) of random
measures defined by

(5.2) My(B) = [0p(o) do
B

for any Be 3.

REMARK 5.1. — For every Ue b the functions C(M,(+), U) are L-measurable,
each of them being the infimum of a sequence of measurable functions. To see this,
it is enough to use the variational definition of C(M,(-), U) and the fact that the
functions g, are bounded so that

(M), U) = inf{f]l)v

velH

2dm+f<v—~1>2qh(->dw}
D

where H is a countable dense subset of H(D). Therefore the maps M,: Q > M
are actually random measures by Corollary 1.1.
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The problems (5.1) are equivalent to the following relaxed Dirichlet problems

— Aup+ (Mu(w) + Am)u,=f in D
w, =0 on 0D.

We shall prove the following theorems:

THEOREM B5.1. — Let (@) be the sequence of distribution laws on M5 associated with
the sequence of random measures (M,) defined in (5.2). Assume that the general hypoth-
eses (iy), (i2), (i;) hold. Moreover, we suppose also that

(is) lim Vi, 7= -+ oo.

h—>co
Then (Q,) converges weakly to the distribution law J, defined by

1 ifreé
8(8) = 0  otherwise

for any &e B(ME), where v = ¢f, ¢ = IC(B,, R®), and C(B;, R®) is defined as in
Theorem 4.2.

THEOREM 5.2. — Let (M,) be the sequence of random measures defined in (5.2).
Assume that the general hypotheses (i), (i»), (i;) hold. Suppose also that

(i4) ].im VE Ty, = + oo,
h—>co

Then, for any fe L*(D) and for every £>0

;ILEI:OP{CO € Q: | R o)[f] — Rfl| o> e} = 0

where R is the sequence of resolvent operators associated with the random potentials 4,
(.. with the random measures M,) and R* is the resolvent operator associated with the
constant potential og (i.e. with the measure off).

The proofs of these theorems will depend on the next Proposition 5.1. In par-
ticular, the proof of Theorem 5.1 will be obtained by applying Theorem 3.1 and
Proposition 5.1; the Theorem 5.2 will follow from Theorem 4.1 and Proposition 5.1.

ProposITioN 5.1. — Let (M,) be the sequence of random measures defined in (5.2).
Let o and o be the set funclions as defined respectively in (4.3) and (4.4). Assume
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the general hypotheses (i), (is), (i5). In addition, suppose that

(ia) Um Vi, 7= -+ oo,

h~> oo

Then, the following assertions hold:

(t,) ¥(B) =9"(B) = c¢f(B) for every Be B ;

(%) there exist @ constant & > 0, an increasing continuous function £: RxXR — R
with £(0, 0) = 0 and & Radon measure B, such that:

lim sup [Oov [O(M(+), U), O(Ma(), V)]|<&(diam T, diam V)B,(T), (V)

h>00

jor any U, Ve such that UNV = 0 with diam U < ¢, diam V < &.

The proof will be based on the following two lemmas.

Lemya 5.1. — Let pe M5, Then, Lemma 4.2 holds if we replace O(E) by
Clu, B).

Proor. - It is enongh to replace the function # used in the proof of Lemma 4.2
with the u-capacitary potential of F in D, defined as the unique function w e Hy{(D)
suech that

Olpy B) = [|Dwl* do + (w0 — 1)* dp
D B

and to use the comparison Theorem for relaxed Dirichlet problems ([20], Theo-
rem 2.10) instead of the classical comparison Theorem for variational inequalities. @

We now compute the y-capacitary potential of a ball with respect to a concentric
ball, when g is the Lebesgue measure (multiplied by a constant).

LeMwa 5.2. — Let v, B be two positive real numbers such thai r << R. Moreover,
let w be the Borel measure in M5 defined by

14(B) = kfdm
B

for any Bec B, where k is constant.
Then, the u-capacity potential associated with C(u, B, Bg) is the funciion

1~ (a4 b) r<lo|<R

(5.3) w(lel) =1 ¢sinh Vo

1 7] 0 < lwj<r



MiIcHELE BALZANO: Random relaxed Dirichlet problems 171

for x € By, where

o B V' R? cosh (V)
a sinh(Vﬁr) + (\/I;R——\/Er)cosh(\/lzr)
b — Vk R cosh (Vir)
~ sinh (Vk?) 4 (VR — VEr) cosh (Vi)
R

4

" sinh (Vir) + (VER — Vir) eosh (VEr)
Moreover, setting d = w(r) we have
(5.4) (1 — d)* O(B,, Bz)<O(u, B;, Bz)< C(B;, Bx) .

Proor. — The proof of (5.3) is obtained solving explicitly the Huler equation of
the functional

F(u) =f1pu|z dw -+ kfuzm
Br Br

with the boundary condition »— 1 € Hy(Bg). In order to proof (b.4) we note that
the relation CO(u, B,, Bp)< C(B,, Bg) follows by the property (f) of Proposition 1.1;
moreover let us define

(w—da)"
1—d °

It is easy to see that uec Hy(Bg) and u>1 g.e. on B,.
Hence, -

Dw— a1 L
O(Br7 B.R) <J (1 — d)z < (1 — d)zf !DWI dr = (T——d)2 G(‘u, BT, BR)
- Br

which proves (6.4). R

PROOF OF PROPOSITION 5.1. — For each ke N let us define a sequence y, of Borel
measures in the following way:

w(B) = khfdw
B

for any Be &.

Let Ue W. Let U, and U, be the sets defined in (4.23) and (4.24) respectively.
By J,(U,) we denote the set of indices defined in (4.25). Furthermore let (U, k)
be ag defined in (4.26), N¥,(U) as in (4.19) and N:(U) as in (4.20). By hypothesis (i),
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by Lemma 5.1 and Lemma 5.2 we can get that, for each we Q,

(6.5) O, U)>(1— (U, W) 3 O(pn, B, (@), By, (o) =

ieda(U) ™
= (1 — o(U, h’)>2[Nh(U;1) — Ni(U)]0(ua, B, , Bz)>
>{(1— (U, B)P[N,(U;) — Ny(U)I(1 — )2 C(B,,, Bg,) =

(T3 Ny
h h

= (1~ 8(U, b))z (1 — dy)? [ ] by, O(By, Bryr,)

whenever % is sufficiently large and diam U < ¢, with & = /s, .
By (5.3) we have that for each he N

1
dh - — p— .
o] B 4+ [VERW(L — r/By)] 7[Ry, coth (Ve 1)

So, by hypothesis (i,) it follows that d, — 0 as h — - oo.
On the other hand we have by the properties of the u-capacity

(6.6) OM,, U)< 3 Olwi, B, (2}), Ba(oh)) = Nu(U3) O(py By, Br,) <

ieli(0y) o
<N\(U})O(B,,, By,) = 22500

h/"h O(Bla B.R,,/r,,) .

By repeating the same steps made in the proof of the assertions (f;) and (&) of
Proposition 4.1, we get by (5.5) and (5.6) immediately the equivalent assertion in
this case. M
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