Studies on the Painlevé Equations (¥

I. - Sixth Painlevé Equation P,;.

Kazvo OxAMOTO

Sommary. — In this series of papers, we study birational canonical transformations of the Pain-
levé system o, that is, the Hamiltonian system associaled with the Painlevé differential equa-
tions. We consider also t-funciion related to 5 and particular solutions of #. The present
article concerns the sixth Painlevé equation. By giving the explicit forms of the canonical
transformations of # associated with the affine transformations of the space of parameters
of #, we obtain the non-linear representation: G — G, of the affine Weyl group of the ex-
ceptional reoi system of the type F, A canonical transformation of G, can extend to the
correspondence of the v-functions related to #. We show the certain sequence of T-funciions
satisfies the equation of the Toda lattice. Solutions of #, which can be writien by the use of
the hypergeometric functions, arve studied in details.

0. - Introduction.

Let E(a, b, ¢) be the set of solutions of the hypergeometric differential equation

dz
(0.1) t(l—t);m—l—(c—(a+b—f—1)t)%—abi:0.

If f = f(t) is in E(a, b, ¢) the function f~ = f~({) defined by
(0.2) F=[tL 1 o—1ls
' ol as
iy contained in H(a, b, ¢ —1). The linear map
Lo): f ~f~

from the two dimensional vector space H(a, b, ¢) to the other E(a, b, ¢ —1) is an
isomorphism. In fact, put

] da
(0.3) ﬁ=P1—nﬁ+c—a~4ﬁ

(*) Entrata in Redazione 1'8 agosto 1985; versione riveduta il 7 novembre 1985.
Indirizzo dell’A.: Department of Mathematics, College of Arts and Sciences, University
of Tokyo, Komaba, Meguro, 153 Tokyo, Japan.
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which defines the linear map from ¥(a, b, ¢) to H(a, b, ¢ + 1):
Tle): f—1T.

We see that (L+(c—1)L_(c))(f) is a constant multiple of f. In particular, if f is
the hypergeometric series:

]c= F(G,b,c t Z [a] [b]'n ,

o Lelnn!

then we have

(0.4) fT=(¢c—1)F(a, b, ¢ —1;1),

(c—a)(c—b

(0,5) fT= )Fm, bye+1;t).

Here we assume that none of ¢, ¢ — a, ¢ — b is integer and use the notation:
fel,=a(a+1)...(a +n—1).

The relations (0.2)-(0.4) and (0.3)-(0.5) are known ag the contiguity relations for
the hypergeometric series of Gauss.

The main purpose of this series of papers iz to obtain such relations for the set
of solutions of the Painlevé equations. In the following of this series of papers, we
will refer to each of the six Painlevé equations as P, (J =1, II, ..., VI). A solution
of P, is called a Painlevé transcendental funciion. Consider the Painlevé equation
P = P,, depending on a parameter v: we will write the equation as P(v) and £ a
transformation of a space V of parameters ». A map of the form

n: 8(v) > 8(¢@), T=alg)
is called a contiguity relation associated with ¢, if § is rational in q and its derivatives
with rational function coefficients of the independent variable #. Using this termi-
nology, we say (0.2) is a contiguity relation of the hypergeometric differential equa-
tion agsociated with the parallel transformation of the parameter:

cr—ec—1.

Now we give the table of the six Painlevé equations:

dz
P: dtg— 692 -1

a2
Pu —g=2q3—i—tq—]—oc

at2
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dzq_lcﬂ? ldg 1 5, 0
P G = () o G A e

az 1{dg\* 3
Pv = (—q)+§q3+4tq2+2<t2—a)q+§

a2~ 2g\dt
R e
e
+ qﬂ———(qtj(tl_)‘f)j“ [oc +h Rt ai;’:;l] .

Here «, f,y and & denote complex constants. We assume throughout the series
of papers that 6 % 0 for P, and 8 = 0 for Pix. We concern mainly the studies on
the contiguity relations of the Painlevé equations, therefore the first equation P:
is not considered in the following. It contains no parameter.

The Painlevé equations P, (J = I, ..., VI) are characterized as nonlinear ordinary
differential equations of the second order without any movable eritical point. They
can be written in the Hamiltonian system: '

dg _°H dp _ 0H

(0.6) at  op’ dt  oq’

with the Hamiltonian H(Z; g, p), rational in ¢ and polynomial in (g, p) ([7], [8]).
The Hamiltonian H, associated with P, is given by the following table;

1
H; gP'—29°—1q
1 ¢ 1
Hu ~p2—(q2+~)p—(a+;) q
2 2 2
1
Hm  5le*p*— {291¢° 4 (26, + 1)q — 208} + 295(05 4 0.,)24]

Hry  2qp*—{q*+ 2tq + 20,}p + 0.4

Hy Sl =1 {ala— 12+ 0alg —1) —ntg}p + #(g—1)]

Hy o lala—1g = )p*—
— {olg —1)g — 1) + mqlg—t) + (0 —1)g(g —V)}p + #(g —B)] .
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Here the constants in H, are connected to «, f§, y, 0 of the equations P, as follows:

Hiy: “:_47']009007 ﬂ: 4770(60+1)7 Y= 4773:;7 6= "477§a
H1v:d:—90+20m+1, /3::—205,

Hy: ‘x::%%?xm ﬂ:—%ﬁg,’ 72—77(0+1)7 6:"'%7727
%= o 07— 3,
Hyi: o =42, f=—%ud, y=4%x%, 0=41-6,

%=ttt A+ 0—1)— 1,

By the assumption, # = 0 for Hv and 5,50 (4 = 0, oo) for Hin: The Hamilto-
nian H; has been introduced by the use of the theory of the isomonodromic deforma-
tion of a linear ordinary differential equation; see [2], [7], [8]

The Hamiltonian structure asscciated with the Painlevé equation P, is repre-
sented by

(0.7) #s= (¢, p,H,s,1) .

We denote by v the set of parameters contained in the Hamiltonian H; and by V a
space of all parameters. When we congider the Hamiltonian system (0.6) at an
arbitrarily fixed value v of parameters, the Hamiltonian structure (0.7) is written as

Here H(v) :HJ(t;q,ﬁ;v) is the Hamiltonian given above. We call £ (v) the
Painlevé system at v. The totality of #(v):

H =] Hv)

vey

is the Painlevé system associated with P,. In this series of papers, we will study
mainly the dependence of 3% = 7, on V. :

A geometrical interpretation of the Hamiltonian strueture £ (v) at v has been
studied in [4]. We constructed the fiber gpace with the foliated structure associated
with #(v). The Painlevé system 2 itself can be regarded as a fiber space with the
base space V: a fiber of this fibration is £ (v) provided with the foliation. We do
not discuss in what follows a geometrical structure of the Painlevé system, although
this point of view will yield some interesting and important problems to be examined.

We shall see that for each J the space V = V, of parameters of H = H; is a
complex affine space, whose dimension N, is:

Nu=1, Nm=Nw=2, DNy=3, Nu=4,
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For example, it seems the third equation Pmr depends on the four parameters «, §,
¥y 6. On the other hand, by replacing ¢ by Aq and ¢ by ut, we can put, without loss
of generality,

A, u being constants.

Let (g(v;1), p(v;t)) be a solution of the Hamiltonian system (0.6) with the
Hamiltonian H(v) = H(?; g, p; v). We call it simply a solution of the Painlevé system
H(v) and write it as (g(v), p(v)). Consider the 2-form:

Q = dpAdg — dHA Gt ,

called the fundamental form attached to the Hamiltonian structure (0.7). We denote
by 0, the restriction of £ on the Painlevé system (v) at v. A transformation of #

w: H -,
is said camonical if Q remains invariant under x:
Tt = 0.

Denote by =z, the restriction of z on the fiber £ (v). For v of V, we have v’ such
that

7, H(v) = H(v),
n:l:(gv’) = Qv .

The transformation of V:

£ v

is thus induced from the eanonical transformation s, Let

(0.8) ¢ =0Q@t;9,p), 2= Pt;q,p)
(0.9) i = p(f)
(0.10) H'= o(t)H + D(t; ¢, p)

be an representation of m,, where we put:
Hw)= (¢, p, H,t), HW)=(¢,p,H,1).

The canonical transformation x is said to be rational, if for any v, the functions @,
P, ¢, 0 and @ are rational with respect to the canonical variables. By the defini-
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tion, we have the following conditions:

3P 3Q 0P 3Q
(0.11) S 50 S = L
(0.12), ePog_oPoQ obde

0g ot ot og oq dt

P3Q aPoQ Ddp
(0.12), op ot wop pat

dp
(0.13) 0 =1

When (0.8)-(0.9) define a birational map from (g, p, t) to (¢, p', t'), we call » a bira-
tional canonical transformation of . A rational canonical transformation of the
form

¢=4q, p'=p, t=t, H=H- P

is said trivial. We do not distinguish such a transformation from the identity map,
since the Hamiltonian system (0.6) is unchanged. We consider a canonical transfor-
mation modulo trivial one.

Let = be a birational canonical transformation, represented by (0.8)-(0.10). We
say 2 is stable with respect to x, if, for any v of V, m,(#(v)) = #(v). The transfor-
mation 7 is said to be of the first kind, if i = ¢ in (0.9). Two birational canonical
transformations z; (¢ == 1, 2) are said to be equivalent, if mom " = 7 is of the first
kind and 4 is stable with respect to #z. We will identify =, and =z, if they are equi-
valent each other. The main subfect of this series of papers iz to investigate a
birational canonical transformation of s which induce an affine transformation
of V. Let ¢ be an affine transformation of V. If for ¢ =1, 2 and for any »

7 o1 (V) > H(L(v)) ,

then 5 is stable with respect to m = m,om;'. Moreover if m is of the first kind 7,
is equivalent to m,. As for this equivalence relation we propose the following
conjecture:

CoNJECTURE 0.1. — Suppose that 3% is stable with respect to a birational canonical
transformation 1. If m is of the first kind, then m is the identity transformation of .

Here we identify a trivial transformation with the identity, as was remarked
above.

Assuming that the assertion of the conjecture is established, we obtain for an
affine transformation ¢ of V the unique birational canonical transformation z =
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= {m,; ve V}, if it does exist. We have

for any v. 7 is called a representation of £ on the Painlevé system and written as
(0.14) =Ly .

(Hven a birational canonical transformation z, we denote by V7 the set of v such
that n(éf(v)) = #(v). In the case when x is of the first kind, Conjecture 0.1 means
that V*= V if and only if =z is the identity transformation. Furthermore, we make
the following conjecture.

CoNJECTURE 0.2. — If & is of the first kind and has a non-empty set V", then V™
is a proper analytic subset of V.

These conjectures are not verified yvet. In any case, ¢, can be determined from /7,
if it exists, uniquely up to a stable transformation of the first kind.

Let G be a subgroup of the group (V) of affine motions in V, such that for
any element ¢ of G there exists a birational canonical transformation s which
induees g¢:

7 H(v) %f(g(v)) .

We denote by ¢ the set of such #’s and by %, the subset of ¥ consisting of
transformations m, of the first kind which keep # stable. Noting %, is a normal
subgroup of ¥, we write the quotient group %/¥%, as G,. The assertion of Cobjec-
ture 0.1 implies G == G,. The homomorphism

G eg — g€ By

is called a nonlinear representation of G on the Painlevé system. In other words, the
image G, of G is the family of the contiguity relations g, of Painlevé transcendental
functions. We will associate the group G = G, with each o7, (J =11, ..., VI) and
give an explicit realization of the representation of G. The presentation of G, being
somewhat complicated, we will do it later for each G,;. The group G contains the
affine Weyl w group as a subgroup. To deseribe the group W, we have to introduce
the notion of the r-function of the Painlevé system.

Let (¢(t; v), p(t; v)) be a solution of the Painlevé system s#(v) at v. We define
the z-function z(v;i) related to 3#(v) by:
(0.15) %bg (t; v) = H(t; ¢(t; v), p(t;v); v) ,

with ambiguity of a multiplicative constant (see [61).
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On the other hand, JiMBo and Miwa have defined in [2] 7-functions by using
the theory of the isomonodromic deformation of linear ordinary differential equa-
tion. They coincide with (0.15) as for the Painlevé gystems. A birational canonical
transformation & = g, leads to the correspondence of r-functions:

o(t; v) — (t; g(v))

in a natural way. We denote it also by = = g,. We will make no distinction bet-
ween two ¢-functions 7; (¢ =1, 2) such that

!—1-10 —‘ilo T
d BT T g 08T

is rational in ¢. They are mutually eonnected through a trivial canonical transfor-
mation., This identification will be in discard when we consider rational solutions
or classical solutions of the Painlevé system.

Let G be the affine subgroup with the representation G — G, on the Painlevé
system 2. We say that the z-function 7(v) = 7(t; v) remains invariant under the
birational canonical transformation g, if the logarithmic derivative of the function

gx(v(0))[z(v)

is a rational function of 7. Here we adopt the identification of z-functions. We
denote by W the subgroup of @ such that 7(v) remains invariant under the represen-
tation w, of any w of W. It will be shown for each J that W is a realization of the
Weyl group W(R) of the root system R. The type of each R=R, (J =11, ..., VI)
is given as follows:

Ru: 4,
Rur: B,
Riv: 4,
Rv: 4,
Rvi: D, .

Throughout this series of papers we use the notation used in [1] concerning the
theory of root systems.

Moreover we will construct for each J the birational eanonical transformation 7,
corresponding to the parallel transformation ¢ of V. The group W = W(R,) and ¢
generate W, which is isomorphic to the affine Weyl group W,(R,). We will obtain
the representation:

W'*W*
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on the Painlevé system. For g of W, the birational canonical transformation 9%
is of the first kind.

Let 7(v) = 7(t; v) be the r-function related to a solution (g(v), p(v)) = (a(t; v),
p(t; v)) of the Painlevé system #(v) at v. For £ of the group G we define the set
of r-functions

(0.16) F(4) = {rn; meL}

by 7o=1(v), tn= (&)"t(v). If ¢ is of infinite order, we call (0.16) a z-sequence
defined by /. We will show for each 42, that there exists a parallel transformation ¢
such that the r-sequence (0.16) satisfies the equation:

(0.17) 82 log 7, = 6, Lr=iiml

2 ’
Tm

¢,, being a non-zero constant. Here § is a derivation: we will see

) =c% for Hn, Hiv,
0= t-c—l— . for Hum, Hy
di P
§—=11—1)%  tor Hy.
dt

The constraint (0.17) for (0.16) is the well-known Toda equation for r-functions.
We can put in (0.17) ¢, =1 by choosing suitably normalization constants for <,,.
We will verify (0.17) without the help of the theory of the isomonodromic defor-
mation of linear equations: compare with [2].

Let v = 7(v) be a r-function related to the Painlevé system s (v) at v. We have
the family of z-functions: '

TUG; v) = {7,; 7. = g47 for ge G} .

where g, denotes the representation of g on the Painlevé system. The Painlevé
transecendental functions can be represented in terms of functions in T(G; v). For
example, we will show that there exist the z-functions 7,, 7, such that

(0.18) ¢(v) = const-d 10g§3 ,

1

g(v) being a solution of the Painlevé equation. We note that the expressions (0.17)-
(0.18) are written in consideration of the identification of v-functions mentioned
above: see (0.20).
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It is known that, for particular values of the parameter v, the Painlevé equa-
tion P, possesses special solutions expressible in terms of the classical transcendental
functions, that is, Gauss’ hypergeometric functions, Bessel functions and so on. We
will readjust these facts and obtain some results on special solutions of the Painlevé
system, by taking the affine Weyl group W, (R) into consideration. To describe
the results we use the reflection group W of the affine space V, isomorphic to W,(R).
Let m = g, be the representation of g of W on the Painlevé system H. We will see
that if v is contained in the subset V* of V, the Painlevé system s#(v) possesses a
solution represented by classical transcendental functions. V” is a wall of some Weyl
chamber associated with W _(R). The list of classical transcendental functions which
appear as special solutions of s = 3, is the following:

Hu  Airy functions

Hry  Bessel functions

Hiv  Hermite-Weber functions

Hy Confluent hypergeometric functions

Hvi Hypergeometric functions .

Some rational solutions of the Painlevé systems will be studied.

The present article is the first part of the studies on the Painlevé systems. We
study in the following the sixth Painlevé equation Pyi. The next part of the series
of papers will be devoted to the theory of the fifth one Pv. The other three equa-
tions P, Pur, Piv are relatively known and studied in many articles. We shall
investigate also these equations in the forthcoming papers, by means of the method
of birational canonical transformations.

Some results given in this series of papers have been announced in [p].

In § 1, we will firstly define the auxiliary Hamiltonian funetion h = h(f) asso-
ciated with the sixth Painlevé equation P = Pyi. We will see that h = h(t) satisfies
the nonlinear ordinary differential equation E = Evi:

dh dzh? dh ah 2 L (dh
-— — 1) — —2h — — —_ — —_— 2l
= [t(l ) Stg] €+ [dt {_h (2t —1) dt}+ b1b2b3b4] H(dt 1 bk) 0.

Here the constants b, (k=1,...,4) are defined by

b=} (%4 %)), ba= 30— ), bi=%(0—1+ %), bi=$(0 —1 — o) .
We can regard b = (b, b,, by, by) as a parameter of the Painlevé system # = #v1.
We shall prove that there is the one to-one correspondence from a solution (g, p) of

the Painlevé system 3 to a general solution h of E. The nonlinear representation of
the Weyl group W can ke deduced from this fact,
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Let £ be the parallel transformation:
(0.19) £: (byy gy by, Bs) = (byy bay b3 1, b)) .

We will construct the birational canonical transformation Z, related to £: see Proposi-
tion 1.6. Let G° be the group generated by the Weyl group W and 7, realized as
the subgroup of affine motions on the space of parameters b. G° containg the affine
Weyl group W= W.(R) of the root system of the type D,. The representation g
of any ¢ of G°is of the first kind. One of the main purposes of the present article
is to obtain the explicit form of the birational canonieal transformation g,. We
will do it in §§ 1.2. Proofs of the results stated in § 1 are given in § 2.

It is known that the Hamiltonian associated with the sixth Painlevé equation
P = Py is invariant under some rational transformations ewecept permuiaiions of
constants. For example, replacing in P, ¢ by 1/t and ¢ by 1/¢, we obtain equation:

g 1{1 1 1 \[dg\* (1, 1 1 \dg |
dt? “2(q+q——1+q—~t)(dt) —(t+t~1+q-t)% ‘

glg—1)(g—1) i 1—1 tHt—1)
dg—e—=0f o ,* 5 .
B— 1) [ bt vz <q-t>2]

+

This replacement extends to the canonical transformation:

11 1 1
(g, p, H, 1) "’(g; 5(”0‘{“ 40 —1 + 2.)q — q2p, -;;Ha “t)

and yields in the Hamiltonian the permutation of constants:
Mo —> Moo .

We have the representation of the group G*® of permutations of the four constants
%o, %1, 0, %0, On the Painlevé system # (see [4], [10]). Let G = Gvi be tne group
generated by G° and G!, then we obtain the representation of G

G —> G,

on . We define the affine space V = Vy1 as the totality of vectors v = (v, v,,
Vg, ¥,) such that

v=0—1, V=13, Vg=2, U= ¥,

and regard it as the space of parameters of #. We shall realize G as the subgroup
of affine motions in ¥ and see it is isomorphic to the affine Weyl group of the ex-
ceptional root system of the type F,: The determination of G will be done in § 3;
see Theorem 1.



348 Kazvo OxAMOTO: Studies on the Painlevé equations, h

The section 4 concerns the studies on the z-functions of the Painlevé system .
We show in Proposition 4.2 and in Theorem 2 that the r-sequencs defined by the
parallel transformation (0.19) satisfies the Toda equation (0.17). Moreover a gsolu-
tion ¢(¢; v) of the sixth Painlevé equation P(v) is written in the form

(0.20) vy(g(t; v) — 1) = 7% 81, — 13 87,

where 7, 7, are 7-functions of the family T(G;v) and § = t(t — 1)(d/dt).

For certain values of the parameters », the Painlevé system #(v) at v possesses
solutions such that in the expression (0.20) the r-functions ,, 7, are represented
in texms of hypergeometric functions (see [2], [4]). We say such solutions to be
classical. Classical solutions of #(v) are the subject of the final section, § 5, where
we will see that they appear in walls of a Weyl chamber of the affine Weyl group W
of the root system of the type D,. The studies of the last section will lead us to a
new view-point in the theory of hypergeometric functions through the theory of
the Painlevé system. We will give some examples of r-sequences whose z-fune-
tions are classical and examine them in details.

1. — Sixth Painlevé equation.

1.1, Awuwiliary Homiltonian function.

In the present article, we study mainly the sixth Painlevé equation Pyi:

dzq 1 dq 1 \dg
-3 ) ) G
g —1)(g—
1235 —1)2

+

oot bzt v =gt 0=,

(q 1)t (g —1)2

The Hamiltonian Hvr asscciated with it is the following:

lg(g —1)(g —t)p2—
— {st(q —1)g — 1) + %ag(qg — 1) + (0 —1)g(g —1)}p + 2(g —1)],

1
t(t—1)

where %, (4 = 0,1), %, 0 denote the constants such that
=VI2B, wm=V2y, 6=V1—-26,

1 1 —
» =Z(%o+%1+0_'1)2—1%§o, %w——-\/Zcx.

Let e; (j =1, ...,4) be the canonical basis of the four dimensional complex vector
space C* with a symmetric bilinear form (b[b’); we have by definition (e;le;) =
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= (e,le;) = 0,;, 0;; being the Kronecher’s delta. We associate the constants of the
Hamiltonian Hvi with a vector

4
(1.1) b= 3 be,
e

)

in the following manner:

(1.2) wo=1"by+ by, sy=0b—"by, O0=b-+b+1, sHe=D0b—b,.
We consider the space C* as the parameter space of the Painlevé system:
(1.3) Hvi= (¢, p, Hv1, 1),

associated with Pvr, through (1.1)-(1.2). In the following of this paper, the vector
(1.1) will be written simply as b = (b, by, bs, b,). Denote by o,[b] the k-th funda-
mental symmetric polynomial (k = 1, ..., 4) of by, by, by, b, and by a,[b] (s =1, 2, 3)
the s-th one with respect to by, b;, bs.

A Hamiltonian function Hyi(f) related to #y: is defined by

[1.4] Hvi(t) = Hvi(t; (1), p())

where (g(¢), p(t)) is a solution of the Hamiltonian system

@ w_on o

it op’ at oq

with the Hamiltonian Hvi= Hvi(¢; q, p). We call Hvi(¢) simply a Hamiltonian fune-
tion of ;. For the purpose of simplification of presentation, we omit in what
follows the subsecript from Pvi, #vi, Hvi and so on, unless there is a risk of con-
fusion. We introduce the auxiliary Hamiltonian funetion:

(1.6) h(t) = 1(t — 1) H(t) + 0,[b]t — }oy[b],

which plays an important role in our studies. In fact we obtain the following
propositions. :

PrROPOSITION 1.1. ~ The function h = h(t) satisfies the nonlinear ordinary dif-
ferential equation:
dh d2n]: b dh U7 ) N
Evi -d—t[t(l —1) Et’z] 4 [E{fah — (2t-1)a-t—} + oz,[b]] = kIJl (d—tjL bk).

PrOPOSITION 1.2. — There is the one-fo-one correspondence from a general solution h
of E = Evz to that (q, p) of the Painlevé system H#.
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This correspondence is denoted by

(1.7) I'th) = (g, ) .

h is expressed as the polynomial in (¢, p), by the definition (1.6). On the other hand,
it is shown that ¢ and p are rational with respect to h and its derivatives dh/dt,
d*hjdt®. So we say (1.7) defines a birational correspondence. We will prove these
propositions in the next section.

REMARK 1.1. — The equation E has the one-parameter family of singular solutions:
(1.8) h=234+pu.
Here (4, u) is on the elliptic curve:

4
(1.9) (2 + 2 + b= [T 04 )

In general, the funetion h is not written in the form (1.8) for (g, p), since there
is no algebraic first integral for the Painlevé system. This faet has been known as
the transcendency of the Painlevé equation ([10]).

1.2. Invarianice of the differential equation E.
For a point b = (b, b,, by, b,) of C*, consider the following four linear transfor-

mations w; (§ =1, ...,4):

wy: (by, bay by, by) — (b, by, by, bs)
2t (b1 bay by, By) —> (Dy, b, By, By)
w2 (by, bay by, by) — (by, by, by, bs)
( =

b17 b27 b39 )

S

Wy byy bay — b3, —by) .

If we put
a, = €;,— ey, a,= e;— e;, ;== €;— €,, a,= e, ¢,
then for each j, w, is a reflection in C* with respect to a;, that is,

(e,

w;(v) = (aa'lai)

'

Let W be the group generated by w, ..., w,: W is a subgroup of the complex ortho-
gonal group 0,(C) and moreover we have the
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PROPOSITION 1.3 (b[l]). — W is isomorphic to the Weyl group W(R) of simple root
system R of the type D,.

In order to simplify notation, we will write W(R) as W(D,).

We regard C* also as the space of parameters of the nonlinear differential equa-
tion E = Evi. When considering the Painlevé system 2#[b] at b, we denote E by
E[b] and by (¢[b], p[b]) a solution of #[b] with the auxiliary Hamiltonian function
h[b]. It is easy to see the

PROPOSITION 1.4. — For any w of W, we have
E[b] = E[w(b)].
In fact, the coefficients of the equation E are the fundamental symmetric polynomials
of b2, b2, b2, b2 and o4(b), that is, the invariant polynomials of the Weyl group W(D,).
For a solution & == h[b] of E[b],

he = hw(b)]

satisfies E[w(b)] and viece versa. Definitively, by putting

(1.10) b=y,

we obtain the relation between (g, p) = (¢[b], p[b]) and (g., p.) = (q[w(b), p[w(b)])
by means of the correspondence (1.7). In fact, we show the

ProposiTioN 1.5. — There ewists the bivational canonical transformation of the
Painlevé system:

wy: (¢, 9, H[bL, t) — (¢wy P, Hw(b)], ) .

By the definition w, is the representation of w and its explicit form will given in
the proof of this proposition: see the section 2.2. Let W, be the group generated.
by (wi)sx ( =1,...,4). W, is homomorphic to the Weyl group W= W(D,). In
particular, we have from the Proposition 1.5 the expressions:

qo= R(w; 4, p) , Po= 8(w; ¢, p),
¢ = Rw?;qu, po); P = B(W™; guy Pu) 5
R, 8§ denoting rational functions. Moreover, we can construct the representation

of the affine Weyl group W, (R) asscciated with the root system of the type D, on
the Painlevé system. We write W,(R) as W, (D,) in the following of this paper.
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1.3. Realization of the parallel transformation.

Let h = h[b] be an auxiliary Hamiltonian function and (g, p) = I'(k) a solution
of the Painlevé gystem defined by the correspondence (1.7). We will prove the
following propesition: '

PROPOSITION 1.6, — There exists the birational eanonical tramsformation:

(1.11) Oyt (47 p, H[b], t) — (Q+; P, H[b], t) y
where
(1.12) bt=1>b 4 e;.

If we denote by ¢; (j =1, ..., 4) the parallel transformsation:

b—?b"{“e]‘,

then 4y is a representation of £ = £,. In order to prove the proposition, we introduce
the- other auxiliary function At = kt[d] defined by

(1.13) | br=h—q(g—1)p + (br+ b)g— (0 + by + by) .

‘We will verify the following two propositions.

PropPOSITION 1.7. — h*, dh*[dt, d2ht[di® are polynomials in (g, p) and rational in 1.
Oonversely, q and p are written as rational functions of h*, dh*|dt, d*ht[dt? and 3.

ProPOSITION 1.8. — ht satisfies the nonlinear differential equation E[bt].
Proposition 1.6 is an immediate consequence of these propositions. In fact, note

firstly that, by Proposition 1.8, we can put

I+ = h[b+] = h[£(b)]

and then obtain by (1.6) and (1.13) the following:

o
4

it —1)

(1.14) H[£(b)] = H[b] — Y,
where

(1.15) Y =gq(g—1)p — (bs+ bs)(g — 7).
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If we regard h*, dht/dt, d*ht[di® as polynomials in (¢F, p*) by means of the cor-
respondence (1.7), then (g, p) can be written as rational functions of (¢, p*) and ¢;

(1.16) ¢=Qt; ¢ "), »=Plq,p),

by the second assertion of Propogition 1.7. Oppositely, we write (¢*, p+) as rational
function of &+ and its derivatives by applying again Proposition 1.2. Then we deduce
again from Proposition 1.7 the expression:

(1.17) =0 (t;¢,p), pt=P.(t;9,).

Consequently, the birational transfermation (1.11) is given by (1.14), (1.16) and
(1.17). We will see that it is a canonical transformation from s#[b] to #[bt] =
= H#[£(b)], by the use of the explicit forms of (1.16) and (1.17), given in the sec-
tion 2.3.

ReEMARK 1.2. — We obtain from £, the birational canonical transformations ()
(j =1, ..., 4), by combining ¢, with W, obtained in Proposition 1.5 as the represen-
tation of the Weyl group W = W(D,) on the Painlevé system. We have the rep-
regentation

G~ G

of the group generated by W and ¢; (j =1, ..., 4): ef. the section 2.4.

2. — Realization of the affine Weyl group W, (D,).

2.1. Proof of Propositions 1.1 and 1.2.

Firgt of all we make an attempt to obtain a differential equation satisfied by
the auxiliary Hamiltonian funetion h = #(f). By the definition we have

(21) h=gq(qg—1)(g— t)p*— {b:(2¢ — 1)(g — t) — bo(q — t) + (bs+ ba)g(g — 1)} p +
+ (b1 + bs)(by + ba)q — bit — Fou[b].

It follows from (1.6) that

dh

(2.2) =5 = — g —1)p*+ {Bi(2¢ —1) — bojp — b1,

since for the Hamiltonian functien,
d o

— H(t) = — H(t: .
dai ( ) ot (54, p) (g,2)={a(t),0(t))
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We obtain from (2.1) and (2.2):

h dh
(2.3) h——tg = q( [b]) (bs -+ b4)q(q—~1)p~-12—62[b],

and then,

dzh o ah
D = 24 (o401 5 — ot~ 2ata — 112 (i — b ) -

ah
— oi[b] = + oulb],

(2.4)  t(@E—1)

by differentiating (2.3) and using the Hamiltonian system (1.5). It follows from
(2.3) and (2.4) that

(2.5) q= 512[(53—]— b4)B+(@—~b b4)0]
(2.6 sta—1p = g [~ (G o)) + (i1 — it
where
~Lawl —hen )
Aswtd@%*ﬂm — 0 bab, =(a ) )
2.7) B =t{t—1) %% + al[b1%~ 0,161,
@1y 0= (t%ﬁ_h)-—az[b]

Rewriting (2.2) in therfollowing form:
dh .
a(g —1) {55+ 0= — (alg —1)p)*+ {Ba(20 — 1) — ba}glg —1)p

and substituting (2.5), (2.6), we arrive at the differential equation E = Evi. The
Proposition 1.1 is thus established. Given a solution (g, p) = (g(®), p(#)) of the
Painlevé system, we have a solution i = h(t) of the nonlinear differential equa-
tion E. Conversely, for a solution & of E, we define (¢, p) by (2.5), (2.6). It can be
verified by computation that (g, p) thus obtained is a solution of the Painlevé
system, provided that % is not a singular solution, that is, d2hjdtrz% 0. This faet
proves the Proposition 1.2; we do not enter into details of computation.
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REMARK 2.1. — It may oceur that kA = h(f) is a singular solution of F of the form
(1.8). In this ease, ¢ == ¢(¢), a solution of the Painlevé equation P, satisfies also an
algebraic differential equation of the first order, as it is easily seen by virtue of the
Hamiltonian system. We will say such ¢ = g¢(f) is semi-transcendental. On the
other hand, it is known that a Painlevé transcendental function is in general transcen-
dental: it does not satisfy an algebraic differential equation of the first order except
for some special value of the parameters. We will study such case in the section 5
and obtain semi-transcendental solutions of the Painlevé system.

2.2. Weyl group W(D,).

Let W = W(D,) be the Weyl group of the simple root system of the type D,
and consider the realization of W given in the bebinning of the section 1.2. We
obtain now the explicit form of the rational transformation

(2.8) (4, P) = (4w, Pw)

for w of W, assuming that the auxiliary Hamiltonian function % related to (g, »)
is not a singular solution of K. This transformation will be given by the relations:

F(h) = (%p) s P(hw) = (wa.pw)

and by (1.10). Since
dh  dh, a*h __ d?h,

29 AR R

we have from (2.3), (2.4) the following relations:

q Qv
“ed — = -_ G b
(2.10) il (Q(Q *—1)1’) G1b] = Flw(®)] (Qw(qw—l)l’w) (b))
where
dah ,
. —%+ 05[b] —b;— b,
I P dh ’
04[b] A 03[b] —d@ -+ bsb,
1
50‘2[1’]
G[b] =

oib] 2 — o [b]
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Remark that the elements of F[b] and G[b] are polynomials in (¢,, p.) as well as
in (¢, p) by means of (2.2). For example, if w = w,, we obtain:

an :
R _ 2
7 q(g —1)p*+

+ {b1(2q —1)— bz}p — b} = —qi{q,—1)pT + {b2(2§l1‘—1) — bl}Pl'— b; .

where (., p1) = (qu, Pu). The relations (2.10) give us the explicit form of (2.8),
since

an N\ (dh | .,
det F[b] = A = (?.zTJF b3) (E? + b,,)

is not zero by the assumption. Moreover, there exist polynomials e,(w; b), ¢;(w; b)
of by, ..., b, such that

(2.11) HIb) — Hw(b)] = w03 b) + ;= cs(1; b)

In fact the Hamiltonian H[b] is connected to h[b] as follows:

1 0,[b]

03[b] — 20,[b]
t(t—1) hBl—=5 |

2(t—1)

H[b] = +

We have from (2.8), (2.10) the transformation:
wy: H[b] — Hw(b)]

which can be easily seen to be canonical by the use of (0.11)-(0.13). Hence Proposi-
tion 1.5 is completely verified.

EXAMPLE 2.1. — Put w = w,w,w,, that is, w(b) = (bs, bs, b1, b,). We obtain from
(2.10)

dh
Qw 1 ‘o‘l‘t‘+ b by;—bs q

~ ahjai + b

h H
Lulde— 1) o Zin)\aw—1p
since o'[b] = o.[w(b)] and G[b] = G[w(b)], Where

an '
===+ {b,(2g —1) — b}p — b=

= — qu(qu—1) P2+ {bs(2¢u—1) — ba}Pu— b3 .
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2.3. Auxiliary function ht.

In this paragraph we prove Propositions 1.6, 1.7 and 1.8. Let k = k[b] be an
auxiliary funetion and (g, p) the solution of the Painlevé system such that I'(h) =
= (¢, p). By differentiating the both sides of (1.13) with respect to ¢ and by using
the system of differentfial equations: '

d
(2121 W—1)F=2ga—1)g—p—
—bi(2¢ —1)(q —¥) + ba(g — ) — (b + by)g(¢ — 1),

. d
(212),  H—DE=(ga—1) + @ —Dle—1 +ala—1)p*+
+ {baldg — 20 —1) — b+ B+ b)(20 —1)}p — (b ba) (B + b)

we obtain first by (2.2):

dht
(2.13) t(t-l)(———dt -{—b‘;’)+
+ (q—i){h++ (bs— b+ 1) X + %bi(%—l) ——%bl bz} =0.

Here we put

(2.14) X=gq(g—1)p — (b -+ b)q + $ (b + b+ by) .

Moreover it follows from (2.12), (2.14) that

=1 (G + b ) = — Bu—Bg — 0+ (2X — (2 —D)a — 1),

aXx

dht 2
(g —1) Et—: —{g—1) W—l— ba)— 26, X — biby—

—[h++ (bs— by + l)X—}—%bZ(,‘Zt—l)—%blbz].

Taking these equations into consideration, we arrive at the following expression:
i+ '
(2.15) 2 s + (b;+1)2 )X =

a2t
dt2

4 (Bt 1) [(2t-1>%+-—2h+] + bubyb, .

— ¢t —1)

Hence ¢ and X are written as rational functions of h*, dht/di, d2ht/di* and ¢ by
{2.13), (2.15), and so0 is the function p. The proof of the Proposition 1.7 is completed,
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In order to obtain the differential equation satisfied by A+, we eliminate (¢, X)
from (2.13), (2.15) and '

(2.16) hr=h—X.

We deduce fivstly from (2.13), (2.16):
aht + + 1 + 1 +5t
(217)  qU—1){t o — hr— (55 + B X 4 5 (b)) —5 bibE; +
1 1
+(g—1) {X“—bi’X—Z(b‘I—}— b3)? + z(bi)z} =0,

where we write b" = (b7, bf, bf, b7). Note that by the definition by = b, (k # 3)
and bf = b, 1. It follows from (2.13); (2.17) that

dht 2 v . ant s dh+ 2

4(m—+ (o) )X -+ 4{b;(2h+—(2t——1)—dt )—btb2b4}X - (2h+—-(2t—1)——dt) =
ant\? dh+

=:(7§;) %—((bi)ﬂﬁ—(b§>2%—(bIF)-E%—4—(btb§)2+-(b;bz)z4-(b;b;y,

from which we obtain the differential equation

di dnt)e | [kt dht s .
—dt—{t(t—nﬁt—;} +[W{ﬁh+—(2t—1)ﬁ}+a4[b+]] —kzl(ﬁt—ﬂb:))-

The proof of Proposition 1.8 iz completed.
As we have discussed at the end of the last section, (2.13), (2.15) and (1.14)
define the canonical transformation:

ly: H[b] — HTb+] .

In fact, an expression of the form (1.16) is given by (2.13) and (2.15), if we regard
I = h[b*] as polynemial in (¢*, p+) through (2.1). Moreover we obtain the explicit
form of (1.17) by applying (2.5) and (2.6) to the function i+ and then by considering
k* as function of (¢, p). We do not enter into details of computation.

REMARK 2.2. — The canonical transformation 7, is determined under the assump-
tion that none of the auxiliary functions &, b+ is linear in ¢. However, the formula
(2.16) stands also for a singular solution h = h(f) of the nonlinear differential equa-
tion E, unless &+ is a linear function of ¢ at the same time. In fact, as it has been
shown in the proof of Proposition 1.8, the funection h+ defined by (2.16) satisfies the
equation E[b*], provided that dht/dt + (b7)2 0. Moreover if d*h*/di?s£ 0, then we
have the correspondence I'(ht) = (g%, p*) by Proposition 1,2,
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REMARK 2.3. — Denote (1.15) by Y[b]: we have H[b*] = H[b] — (1/t(t — 1)) Y[b].
We obtain from (2.15):
B4 (b4 1)0"

(218) YT = S @+ @ b

where
= azht L dht ant
Br=t(t—1)"C—alb 1o+ afbt],  Ot=2 (tm-—~ h+)— b .

On the other hand, it follows from (2.5) and (2.6) that

— B+ b,C

(2.19) | Y[b] = 2(dnjdt 4 b3)

B, C being given by (2.7), (2.7)'. We will use (2.18) and (2.19) in the section 4.2.

2.4. Parallel transformation and the affine Weyl group.

Let £; be the parallel transformation of C*:
b—>b+te (j=1,..,4)

and W= W(D,) the Weyl group considered above. We denote by G° the group
generated by W and 7,, ..., 4;: G®is a subgroup of the group /(C*% of affine motions.
We have construected in the previous sections the representation of G°:

G’ — G

on the Painlevé system associated with the sixth Painlevé equation.
Consider the element w, of G such that

(2.20) wo(b) = (by, by —by—1, —by—1)

and let W be the group generated by W and w,. We will show that the representa-
tion of W is given in a brief manner, although the realization G. is a little compli-
cated. To determine the representation of w, on the Painlevé system, we remark
first that:

ProposiTioN 2.1 ([1]). - Wis isomorphic to the affine Weyl group W,(D,) asso-
ciated with the root system of the type D,.

The explicit form of the representation 7 = (w,), of w, will be obtained by the
use of the relation:

Wo = WyWyl3Ws Ly .
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On the other hand, remarking that (2.20) is equivalent to the transformation:
(2.21) 0 —~—86

of the constants of the Hamiltonian, we can construct the birational canonical
transformation & by a straightforward way. In fact, consider the canonical trans-
formation ‘

(2.22) (¢, 9, H,t) > (¢, 5, H, 1)
such that
— 6 = 0 wo—1  sy—1
P=pr—r—p H—-H—q_t'l—e( ; +t~—1)'
Then we have
A= [g(g —1)(g— )F*—

— {ro(q —1)(g — 1) + 1q(qg — 1) — (0 N1)q(qg —1)}p + &g — )],
7%=}t 2y— 6 —1)"— Lal ,

which shows
(97 ?7 Ea t) = f}f[wo(b)] .
It follows that

PROPOSITION 2.2. — The transformation (2.22) defines 7w = (Wy)x.

'We have thus the representation of the affine Weyl group W,(D,) on the Painlevé
system. The highest root of W is the vector

@& =—e, + e,
and the reflection with respect to — @ is of the form:
(2.23) wib] = (— by— 1, — by — 1, by, by) .
The canonical transformation @, is thained from m by the use of the relation
W= wwew , wib]= (bs, by, by, bs).
For g of G° g, is a birational canonical transformation of the first kind. In the

following section we will consider a birational canonical transformation of the Pain-
levé system of more general type.
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3. — Transformation group of the Painlevé system.

3.1. Symmetry of the Painlevé equation.

It iy known ([10]) that, if we replace ¢ by 1 —¢ and ¢ by 1 — ¢, the Painlevé
equation is transformed into the following equation:

drqg 11 1 1 dg\* (1 1 1-\dg
Eﬁ_ﬁ(§+§:€+ﬁ)(d_t)_(?+t~1+q—t)dt+
glg =g —? b, 1—1 tu—n]
I ey — d .
o O s v Rl

" This change of variables extends to the canonical transformation of the Painlevé
system. In faet, if we put

(3.1) Gi=1—¢q, p=-—p, t=1—t, H=-—H

and then rewrite (¢, p,, Hi, t) as (¢, p, H, ), the Hamiltonian remains invariant
except the change of the constants:

Xl g >y, My .

For the sake of simplification of presentation, we denote the canonical transforma-
tion (3.1) and the succeeding replacement by

malk: (,p, H,t) ~(1—¢q,—p,—H,1—1).

Moreover, congider canonical transformations of the form:

1 i 1 1
rh: (q,p, H,1) '*(zl‘y eq — 4*p, _—t_ZH’—t)’ & =§(xo+ 4 0—14 %),

t— 1
-7)1 (%p’ H7 t) '%(r__]({y - (t——l)p, (t—1)2H "}' (t"‘l)(qﬁl)p7t“__l)7

where we use the abbreviated form of notation. They are connected to the changes
of constants:

B sy —> Mooy Moo = ¥y
3 .
2 uy—> 0, f —u.

We have the

ProPOSITION 3.1 ([4]). ~ The Hemiltonian H is invariant for each § (j =1,2,3)
under the transformation xl ewcept the permutation x’' of the constants y, 0,
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Let G! be the group generated by #’ (j = 1, 2, 3). This consists of the permuta-
tions of the finite set {iy, #,, %, 0} and then is isomorphic to the symmetric group &,.
On the other hand, the ecanonical transformations «f generate a group G isomorphic
to G'; so we obtain a representation of G* on the Painlevé system.

REMARK 3.1. — The permutations #i induce affine transformations of C4 as follows:

at: (by, b, bsy by) — (b1, — ba, by, by)
#2: (by, by, by, by) —
> (3 (by= byt by— by, F(—bi+ byt bs— b)),  F(bi+ b+ b+ by,
F(—bi— b+ b+ b)) ,

@1 (byy by byy be) > (F (i~ bo+ b+ b+ 1), F(—bi-+b+ b+ b+ 1),
T4 bat+bs—b—1),  F(bit by— b by—1)) .

We denote also by G! the group generated by these affine transformations of C4.

3.2. Affine space V of parameters.

Let G be the subgroup of o/(C%) generated by the two subgroups G° and G,
considered above. Note that G is generated by w, (j =1,...,4), L and &’ (j =1, 2, 3).
We will prove the

PRroPOSITION 3.2. — G is isomorphic to the affine Weyl group of the szmple 700t
system of the type Fy: W, (Fy).

To prove this proposition, we introduce firstly the space V of the parameters
of the Painlevé system. It is a four dimensional vector space with canonical bams I
(k=1,...,4) such that a vector of V of the form

(3.2) v = ﬁkak
k=1

is related to the constants of the Hamiltonian in the following manner:
Ho== Uy, Hi= V5, Ho=1, O0=v-11.

It follows from (1.1) that

(3.3) vy=by+ by, Vy=0b -+ by, Vy=b—by, V=0b—0,.

The group G can be regarded in a natural way as a subgroup of the group 2/(V)
of affine motions of V. Let ¢ be the linear map from V to C* defined by (3.3). For
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the sake of simplification of notation, we denote also by g the element p*g of 7(V)
and by G the subgroup ¢*G. It is convenient to adopt V as the space of para-
meters of the Painlevé system, so that we write the Painlevé system at v of V as
H#(v), the Hamiltonian as H(v), a solution of s#(v) as (g(v),p(v)) and so on, We
may write s#(v) as #[b], if necessary, where v and b are mutually connected through
the isomorphism g. For each g of G, there exists the birational eanonieal trans-
formation

gu: H(v) — H(g(v)) ,

whose explicit form can be given by the use of the canonica ltransformations,
(W) (G =1,...,4), Ly, o) (j =1,2,3). We obtain the representation of G

G”G*

on the Painlevé system. If we write (3.2) simply as v = (v, v,, v;, v,), then the
elements of G, w;, w,, £; and xi are realized as follows:

Wit O —> (g, Uy, — Vg, Vs)

Wyt U —> (%(”1+ Vy— V3— Uy), %,‘(’Ul_}— Vg D3+ ), %("‘ 01 Dy + V3 — vy),

%(“ Uy Vg~ 3+ '”4)) ’
Wyt U —> (Vg 0y, V3, — ),

Wyt U —> (— Vq, Vgy V3, Vy)

Wo: UV —> (— U — 2, Uy, Vs, Vy)
£p > (01,0 0, 04+ 1),
ot v = (U, V3, Vg, Vy) ,

2E: v > (Vg Vg, Vs, Va)

B v > (v,— 1,0, 1,0, 0,) .
We denote by (v|v') the symmetric bilinear form of V such that ( filfi)= (fulfi) = dsw -
3.3. Verification of Proposition 3.2.

Consider the following elements of G:

s =o', s=a2', 8= 1w;,

8y == W WeWsWet0y , Sy = LRWe& &t .
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Viewing them as elements of #(V), we have:

812 v —> (g, Vs, Vg, V4)

8yt ¥ = (V1 Vg, Vg, Us)

S5: U —> (U1, Vg, Ugy —Vs)

$40 U —> (%(”1+ Vg Uy F 0a)y 301+ V= V35— V), F(V— Vst V3 — W),

t(—v— v+ 714))3
Sgt ¥ > (— vy—1, —v;— 1, 5, vl).

We denote by G, the subgroup of G generated by s, (j = 0,1, ...,4). Put

alzfz“‘fw azzﬁ—'fu a=fy,
a4:%‘(f1_f2_.ﬁ‘—ﬁ)7 ao:_.fl“‘fz'

Then a; (j =1, ..., 4) compose the set of fundamental roots of the exceptional root
system of the type F; and each s; is a reflection of V with respect to the hyperplane
(ajlv) = 0. @, is the minus of the highest root and s, is a reflection with respect to
(ao]v) == 1: sec [1]. Therefore s; (j = 1, ..., 4, 0) generate the affine Weyl group W, (¥,)
of the root system of the type F, and G, is isomorphic to W,(F,). The Coxeter graph
of G, is of the form:

o}

) o )
8o 81 8y 83 84y

[+

that is, we have the relations

=1 (j=1,...,4,0),

(5081)% = (818:)° = (s38)* =1,

(8284)* =1
(8:8;)2 = (otherwise) .
To prove the Proposition 3.2, it is enough to show s; (j =1, ..., 4, 0) generate G.

Recall that G is generated by the two subgroups G° and Gt, and G° is generated
by the Weyl group W and the parallel transformation £,. We claim: G* is a sub-
group of G,. In fact, w, and x' are contained in G, by the definition of s;. More-
over w, and x? are in G,, since ¥ = $,8,8;, W, = $,5,8,. On the other hand, putting
g1 = s, xl, We See T°= §,8,4;; note

g1 0 —> (U, — Uy, Vs, U4) .
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We will show next that G° is a subgroup of G,. Put g, = s,8,8;, g, = wyp,w,. It
is easy to see:

Joi U > (Vg Vgy — Uy —V3) 5y Ga1 U —> (— Uy, Vg, Vs, V)
Then W is a subgroup of G,, since w,== ¢,8,0,, W, = ¢;Wsg;. Finally putting
Jo == 838,8383838,83 = 840284

we obtain the expression

ls = WyW B Go@PWo W,
which is verified by the use of

CGoi V> (Vg U1y Vgy Uy) .

Definitively 4; is in G,, since w,= #°s,¢4,. The proof of the Proposition 3.2 is thus
completed.
3.4. Conclusion.

Getting together the discussion given above, we arrive at the following theorem:

THEOREM 1. — Let G be the realization of the affine Weyl group of the root system
of the type F, as the reflection group of the four dimensional affine space . Then there
ewists the representation

(3.4) 0: G — Gy

on the Painlevé system H# associated with the siwth Painlevé equation, such that, for g
of G, gx==0(g) is a birational canonical transformation of .

REMARK 3.2. — (3.4) i3 not an isomorphism. In faet, the Hamiltonian of the
Painlevé system is invariant under (s;)y: H#(v) = (83(v)). We will use this fact in
the following section in order to establish some expressions of a Painlevé transcen-

dental function by means of z-functions.

ExAMPLE 3.1. — If we put

(3.5)

-
J Vg —1)(g—1)’
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then the Painlevé equation P = P,; is transformed into the equation:

] aru dv 1 1 0 .
t(l—«t)—(ﬁ;—}—(1—~2t)ﬁ—~zu—2——-—”1___75)%1/)(1&,75),
where
1) = sl . TR 2, 1—1 o Ht—1)
L T R T e T

g = P(u;t) denoting the inverse function of (3.5). It follows that, if wy = %, = w0 =
== § = 0, then a general solution of P is of the form

(3.6) 4(t) = P(eon(t) -+ es(t); 1)

where w,(1) (¢ =1, 2) are linearly independent solution of the hypergeometric dif-
ferential equation
du du 1
The function (3;6) with two parameters ¢, ¢, is called the solution of E. Picard. This
occurs at the point v°= (—1, 0, 0, 0) of the affine space V.
Let O(»®; G) be the orbit of v° by G. Then we have the

PROPOSITION 3.3. ~ The Painlevé sysiem #(v) at v of O(v°; G) is integrable by
quadrature with elliptic functions, provided that a birational canonical transformation
does exist for g, where v = g(v°).

For instance, put g = w,w,w;. Then a solution of the Painlevé system at g{v°) =
= (%, 3, 1, — 1) is given by the formulas given in the example 2.1 with (3.6).

REMARK 3.3. — v° is characterized by the equations:
V0= 5,(1°) = 8,(v%) = 8,(0°) = 5,(v"),

therefore the isotropy subgroup G(v°) of G at v° is generated by s; (j=1, 2,3, 0).
The Coxeter graph of G(v°) is

) o o o
8o 8y Sy Sz

that is, G(v°) is isomorphic to the Weyl group W(B,) of the root system of the
type B,.
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4. — 7-function of the Painlevé system.

4.1, tv-sequence and Toda equation.

Let #(v) be the Painlevé system at v of V, h(v) an auxiliary function and (g(v),
p(v)) a solution of H(v) such that I'(h(v)) = (¢(v), p(v)). A r-funetion v(v) of H#(v)
related to the Hamiltonian H(v) = H(¢; ¢, p; v) is defined by

d
(4.1) H{t; q(v), p(v); v) = 7108 T(V) .
We have by (1.6)

d
(4.2) h(v) = t(t —1) d—tlog T(v) -+ ao[b]t -—%o’g[b]

where v and b are mutually connected by the correspondence (3.3): we write b = p(v).
The z-funetion z(v) is holomorphic on the universal covering Riemann surface of
C\{0, 1}; see [6]. For any g of G, we have constructed the birational ecanonical
transformation:

gy: H(v) — H(g(v)) ,
which induces in a natural way the correspondence from the r-function t(v) fo
the other r(g(v)). Disregarding ambiguity about multiplicative constants, we denote
it also by g4. As we have mentioned in the introduction, the twe r-function 7., 7,
are identified, if the logarithmic derivative of the quotient 7,/7, is a rational func-

tion of #. By adopting this identification, we obtain from the preceding section the
following proposition:

PRrOPOSITION 4.1. ~ The t-function is invariant under the group W, of the canonical
transformations.

W, is a realization of the Weyl group W(D,).

DEFINITION 4.1. — A t-sequence defined by g is by definition a sequence of 7-func-
tions, written as

(4.3) T(g) = {rn; me 2},
such that for any integer m,
g*Tm—-l = Tm H

g« being the representation of g of G on the Painlevé system.
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One of the most important examples of the 7-sequence is related to the parallel
transformation 7= £, studied in the proposition 1.6. It is defined by [b] = (b,
by, by -1, b,) or £(v) = ¢g*f(v) = (v, + 1, vy, v5, v, + 1). For an arbitrary fixed point
v of V, we put for an integer m,

v,=7"v), vy=v, b,=b]l, b=>b (b=g¢W).
So, starting from £, = s#(v), we have the sequence of the Painlevé systems

Hon = L5 H o= H (V)

and that of the functions (., Pu), bn such that I'(k,) = (gm, ). Here £, denotes
the birational eanonical transformation (1.11). Let 7, the z-function of 4, related
t0 (Gm, Pn). We will prove the following proposition:

PROPOSITION 4.2. — The v-sequence T(L) = {t,,; m € Z} is subject to the constraint:

(4d) g U 1) I08 T (b Dk )byt Byt m) = ofm) T2
¢(m) being a nonzero constant.
REMARK 4.1. — (4.4) is equivalent to:
(4.5) 52 10g 7, = ¢(m) T—’”:T‘%i"ﬂ ,
where
(4.6) _ b =t(t-1)%.
In fact, put
(4.7) Tn= Tuftt — 1)}, €= 1(b,+ by + m)(bs+ b+ m),

therefore 7, satisfy (4.5). The substitution (4.7) is corresponding to a trivial can-
onical transformation of the form

1 1

We can put ¢(m) = 1, by taking suitably multiplicative constants of the z-functions.
The equation (4.5) is known as the Toda equation.
The preceding proposition establishes the following theorem:

THEOREM 2. — The 1-sequence T(L) of the Painlevé system satisfies the Toda equation.
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REMARK 4.2. —~ We can deduce from Proposition 4.1 the regults similar to Theo-
rem 2 concerning the t-sequence TUL) (=1, ..., 4).

4,2, Proof of Proposition 4.2.

Remark first £7[b] = (by, by, bs 4 m, b,). Putting

X = @G — 1)Pm~ (b1~ ba)@m + F(by -+ b2+ b4)
17m = Qm(QM_ 1)pm_ (bl + b4)(q'm_ t) i

we have by (1.14) and (2.16)
1

(4.8) Hm+1=Hm—m Y,
(4.9) bpiy = by — X, .
Moreover, we deduce from (2.18), (2.19):
(4.10) Y - Bt (b4 m +1)Opys _ = Bat (s m)Cn
) " 2(dAhy 1 [dt A (bg+ m + 1)2)  2(dhy[dt + (bs+ m)2)’
where
azh,, dh,,
B, =tt—1) 7 al[bm]———— O3[bn]

- dzhm dhm
Bp=t(t—1) = — albu] == + oslba]

dh,
Om:2(t"%'~h ) Uz[bm],

see Remark 2.3. If follows from (4.10) that

L
@A) Y= Yo = e )

—1)(dhn/d1?) t(t-——l)ﬁlo (d;t + (bs+ M)Q)-

On the other hand, since, by (4.8) and by the definition of the z-function,

a log

4.12 _
(4.12) Y= t(t—1) Tm+1

we obtain from (4.11):

Tm1Tmgr OB

(4.13) o(m) 2 — R (b, m),

Tm
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¢(m) being a non-zero constant. Taking (4.2) infto consideration, we see the right
hand side of (4.13) equals

d d
at(t“l);ﬁk’g T+ {by =+ by + m)(by+ by + m),

which establishes the proposition.

4.3. t-function and Painlevé transcendental functions.

Let (g, p) = (q(v), p(v)) be a solution of the Painlevé system #(v) at v. We
have from (4.12):

d
(4.14) 9(g—1)p — (b1 + by)(q — 1) =t(t—1)d—tlog;(3,£—:2—))-

As we have mentioned in Remark 3.2, the Painlevé system 4 (v) is invariant under
the canonical transformation (s;),: in particular (g, p) = (q(sg(v)), p(.sg(v))). Tt follows
from (4.14) that
- d 7(85{v)) .
(15) 9@ —1)p — (b + badlg — ) = Ht—1) Flog p2 iy =
a 7(v)

= t(t_l)ﬁmgr—_(ﬁ(v)) ,

where £, = 8,7,8;. Therefore we have from (4.14) and (4.15):

d 2
(ba—By)(g — ) = t(t —1) —-log :E/E:;; '

We arrive at the following proposition:

ProPOSITION 4.3, — A solution (g, p) of S (v) is represenied in terms of v-functions
as (4.14) and

(4.16) V(g —1) =1t —1) %log :§2§:;§ '

4.4. Particular solutions and v-functions.

Consider the transformation g, of G such that g(v) = (— vy, v3, 5, v,) and put
§1= g:8:9; (see the section 3.3). Let V(g,) be the hyperplane of V defined by:

(4.17) v = g,(v) .
It is easy to see (4.17) is equivalent to each of the following three expressions:

Vit Ot 05+ 0=0, -+ 24+0—1+%=0, b+b=0.
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In this cage, the Painlevé system 47 (v) is possessed of a family of special solutions
of the form:

d
(418) #t—1D T = —ml@— 1@ —1) —mag—H) — @ —1)glg —1), p=0;

cf. [3], [4]. The Hamiltonian funection and the auxiliary function related to
such a solution are:

(4.19) H(t;0)=0,  h{t; v) = bybyt — 3 (budy -+ baby) .
Put
@ =0+ by=F 0+ VaF V—0) =+ 0 —1.

If ¢ = 0, then (4.18) is reduced to the linear equation

dg

t(t—l)a—t— = {(s6 + #2)8 — s2}q — 1 .

So we assume a = 0. It follows from (4.14) that

(4.20) alg —1) =t —1) -(%log T(4(v)),

where 7(v) is reduced to a constant by (4.19); we ecan put 7,== r(v) = 1 without
loss of generality. Remark that (4.14) is valid even if hy= h(v) is a linear function
in #; see Remark 2.2. Imserting (4.20) into (4.18), we see the function 7, = t(fg(v))
satisfies the following hypergeometric differential equation:

a2y
di?

dry

+(e—(a+b +1)t)7t——ab11=0,

(4.21) 1 —1)
where, by (4.17),

b=ov,+1=0b+b+1=80, e=v,+v,+1=0b-b,+1=12n,1+80.
Starting from 1,=1, and the hypergeometric function:

T, = f’;u"‘l(l — w1 —tu) du ,

Wwe obtain successively the z-functions 7, for m =2 by the use of the Toda equa-
tion (4.4). For example, 7, is & constant multiple of:

d 1 dl 2 2
(6—1—(a+ b—l)t)rlj‘%—-t(t—l)(d—z;) —bla —1)73.
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The guxiliary function #,, defined by (4.2) is no longer a singular solution of the
differential equation E, = E[£*(b)] for m = 1. Hence, the solution (¢,.,, p.) = (k)
of the Painlevé system £, = .7/(/;“('0)) is well-defined and written as rationalfunc-
tion of the hypergeometric function 7; and its first derivative. We obtain the sems-
sequence of r-functions:

(4.22) T () = {tn; m=0}.
REMARK 4.3. — It is known that, if

Tm_1Tmi1

T=1, 6210g7m:_—12_'—— (mz=1),
then 7, (m = 2) are given by:
Tyy 67y, ..., OmlTy
(4.23) 7, = 0y, Oty oy 0Ty ,
(Sm_l‘rl, 6’”11’ ey dam-2q,

with an arbitrary funefion v,. This fact might be remarked for the first time by
G. DARBOUX: see Legon sur la théorie générale des surfaces, vol. I1. If we define for
(4.22) the functions 7, by (4.7) and normalize their multiplicative constants as
¢(m) =1 in (4.5), then 7, (m = 2) are written in the form (4.23).

5. — Classical solutions.

5.1. Weyl chamber of W, (D,).

In this section, we study a solution of the Painlevé system 2# which is written
by the use of elementary functions or classical transcendental functions: hyper-
geometric function, Bessel function and so on. We call such a solution a classical
solution of 2. We adopt the notation in the section 1 and consider a vector b =
= (by, by, b;, b,) as a parameter of #. Let W be the realization of the affine Weyl
group W,(D,) of the type D,, for which we have constructed in the section 2 the
representation

W’?W*

on the Painlevé system. We denote by € a Weyl chamber of W in the space C* of
parameters of H and by 0€ the set of walls of €. For a generic point of b of €, the
Painlevé system #[b] has no classical solution. This fact is an immediate consequence
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of the fiwéducibé’l@'ty of the Painlevé transcendental functions: ef. ([10]). On the
other hand, we have the following theorem:

THEOREM 3. — If b is contained in 0€, then H#[b] has a classical solution.

We can assume that o€ is defined by the following five hyperplane:

(5.1) by— b= 0,
(5.2) by— by=0,
(5.3) by— b= 0,
(5.4) : by b= 0,
(5.5) byt b—1=0.

In fact, for another €', there exists w of W which transforms €' onto €. Applying
the representation w, to the Painlevé system J#[b'] at a point b’ of €', we can
verify the theorem for €', even if it happens that the auxiliary function A[b'] de-
generates into a singular solution of E[b']. We will study in details cases of degen-
eration for some examples.

REMARK 5.1. — The Weyl chamber € defined by (5.1)-(5.5) is a simplex with the
vertices: O (the origin), Py(e,), Pz(% (er+ ez))a Pa(’% (1} €+ e;— 34))7 P4('% (e, + e;+
+ e, e,)). Here e, (j =1,...,4) are the canonical basis of C* with respect to
the symmetric bilinear form (b|b’); see the section 1.2. Each P; is of the form

1
— T ;
nj i

where wm; denote the weight vectors of the Weyl group W = W(D,) and (n, %,
Ny, M) = (1,2,1,1): cf. [1].
5.2. Proof of Theorem 3.

(1) Case (5.1). — If b is on the hyperplane (5.1), then s, = 0. It is easy to
see #[b] has a family of solutions of the form:

d
e=1, W—1DL——1p+({—t—Drn+o-1}p—=,

which is a singular solutien of the Painlevé equation P = Py,.

(ii) Case (5.3). — Apply the canonical transformation #%, introduced in the
section 3.1, to the Painlevé system s[b] at b. By putting

“:. [b] = ”Lmz(b)] = (%p, H} t),
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we have a solution of #[x?(b)] of the form:

p
(5.6) g=0, t(t—l)a%o=——tp2—(tx1—}-6—1)p———%.

It corresponds to a singular solution ¢ = oo of P: note xe= 0.

(iii) Case (5.2). — Apply again the transformation # to #[b] and put 22#[b] =
= (¢, p, H, t). The transformation #2 of V induces the alternation of the constants
%y and #w. We have the particular solutions:

dg

(5.7) e

—%w(q—l)(q—-t)—zlq(q—t)—(ﬂ—l)q(q—l), p=0,

since (5.2) implies:

o=+ 0 —1 4 2.

The Riceati equation (5.7) is solved by use of the Gauss hypergeometric differential
equation; see the section 4.4. We obtain from (5.7) a family of classical solu-
tions of 2£[b].

(iv) Case (5.5). — We have »%,=1 from (5.5). This case is reduced to (5.4)
by the transformation «%, since a® replaces », by 6, and so (5.53) by (5.4).

(v) Case (5.4). — Let b = (b, by, by, b,) be a point on the hyperplane (5.4)
and #[b] = (g, p, H, t) be the Painlevé system at b. We prove the following proposi-
tion, which establishes the theorem.

Prorosition 5.1. — H#[b] has a classical solution of the form

Zr—b,Z
(5.8) 1= T 90,2 T (b L b)(Bs 1 Bp)
(5.8)’ Xo=—Z—§(bs+ bt ba)
where

Xy=q(q—1)p — (bs+ bs)q + 4 (b + by + bs)
and Z is a solution of the equation:

(5.9) t(z—1)‘%§= — Z 4 (1 —by—by—2(by— 1)8(Z — (t + by + by)(bs -+ byt .

5.3. Proof of Proposition 5.1.
Consider the hyperplane:
(5.10) b+ 0,41 =0,
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It is easy to see that for a point b of (5.10), .#[5] has a solution of the form:

(5.11) §—i=0, t(t-l)‘%: — i — 1) P (Bt —1) + tH— (A — 1)} P—%.

If b is on (5.4), b= £-1(b) is on (5.10), where £ =1/¢,. In this case the auxiliary
Hamiltonian function k- = A~(f) related to (5.11) is:

(5.12) =4t — 1)B(8) — (B3 — by + )t + F(B3— by by by— byby) .
Moreover for a solution § = $(t) of (5.11) with b = £-1(b), the function
(5.13) Z(t) =tt —1)P — (by+ b,)t

is a solution of (5.9). Since the auxiliary function k = k() of H[b] is connected to
(5.12) as:

h=hk—Z—3(b,+ b+ b)),
we have
(5.14) h = —bit + § (b5 — biby)
for which the expressions (2.5), (2.6) are not defined. In fact, writing forj=1,...,4
dh .

4;= F + b3,
we obtain from (5.13)

A;,=A4,=0.
On the other hand, there does exist a solution (g, ) of #[b| = #[¢-1(b)] which
is not classical. Such solutions constitute a family with ftwo-parameters, from
which we obtain the special solution (5.11) by taking the limit: § —¢ — 0. The
birational canonical transformation 77 defined by (2.13), (2.15) can be applied to
(§, P) except for (5.11). Put for such (g, P)

X=§@—1)F— bu+0)7 + 30+ batb) -

The auxiliary Hamiltonian function h of #[b] is given by:

h=h—X
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and is no longer of the form (5.14). It represents (¢, ) by the formulae (2.13), (2.15)
with b = /~1(b). We obtain from (2.5), (2.6)

¢ 1
q =54 glg—1)p =2—A¢3[~—B+b10],

where, by (5.4)

azh dh

B = t(t—l)-a?—]— (by+ b)4,, C= z(t%-—h)—blbz—}- b3.

Moreover, we can deduce from (2.15):
dzh ( dh ) dah

24,X = Bt —1) 7 + 2bs (85— B — by —biboby = B — (by + by + b5) 4; + b, 0 .

It follows that:

(5.15) gfg—1)p— (by+bs)g = —X — F(by+ by by) .

Since by (5.13)
Xlyei=Z + F (b + b+ by,

we deduce (5.8)" from (5.15) by putting § = ¢. To verify (5.8), consider (2.13) and
(2.17), which are in this case written as:

tt—1)4, + G —1) [h + 2b3X—{—%b§ (2t—1)—%b1b2] =0,

. an 1
q(t-—l){t%——wri(

. o s 1 1
§1b3—b)}+ (q—t){X2+ b X — 2 (b + bz)2+1b§}= 0.
By eliminating § — ¢ from these relations, we have

O _ X0 X (bt b2 405t
24; b4 2b,X - 632t —1) —§bib, G’

which reduces to (5.8) after the limiting: § —¢. Since (5.8) and (5.8)' defines the
canonical transformation from #7¢-1(b)] to H#[b], they give a solution of the Pain-
levé system s#[b]. The proof of Proposition 3.1 is thus completed.

5.4, Examples of t-functions.

Consider again the hyperplane (4.17); we have determined the semi-sequence
of r-funetions T(4) = {r,,; m = 0} with

=1, Ty=F(by+ by, 1+ by+ by 1+ bo+ 045 7).



Kazuo OxAMOTO: Studies on the Painlevé equations, I 377

In what follows, we will obtain z-funetions v, also for m < 0. To do 80, we have
to compute the canonical transformation ;' from #(v) to #(¢/~'(v)) by a similar
manner to Proposition 5.1, since for (4.18)

A, =A4,=0.
Put H#(v) = (g, p, H, t), #({-1(v)) = (q~, p~, H™, 1) for v of V(g,), and moreover
X =g (¢ —1)p — (by+ b)g+ $(bs+ b2+ by) .

By assuming b, +- b, 0, p # 0, we deduce from (2.2), (2.3), (2.4) and (2.15) that

1 —1
(5.16) X~ = (bs+ b)q — 4(a —1) st =7 (b + by ba) + 2ba(by + by Le—1p T )2

qlq—1)p q(¢g —1)

Ay T —qlg—1)p + bi(29—1)—b,"

Now we put p = 0. It follows from (5.16) that:

- _1 . (b + bs)q
(5.17) X =—(b;+ b, Z, 5 (by+ b3+ by, Z, = b‘_—_—‘—l(2q 1 —3,’

from which we have, by using (2.13),

t—q~ t
(5.18) t———l_ - t_:Z_‘; .

ProrosiTION 5.2. — A function ¢~ given by (5.18) is a solution -of the Painlevé
equation P(£-(v)) at /-1(v).

PROOF. — Since ¢ is a solution of the Riceati equation (4.18) , Z, satisfies

(5.19) t(t—l)% = (by + ba) Z5 + (2b51 + by + ba) Zy 4~ (bs + by) 1.

It follows from (5.18) that

d —
(5.20)  tt—1) T = m(e-— L) —1) + Mg — 1) + b0-(g"—1),

which shows ¢~ is a solution of P(¢-!(v)).

REMARK 5.2. — Define the canonical transformation

(6.21) (g; p, H, 1) — (4, D, E, ?)
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by: »
N . S 0 oo 0 Ho -0 w0
P=pr—y i = FTHE T i
We have '
He——[glg—1)g —1) " +
—1)

+ {olg —1)(g —t) Fq(g — ) + (0 +1)g(g — 1)} P + #qg —1)],
%(”0_}—”1'{_0_[_1) %”%07

Applying (5.21) to #[£-2(v)], we see immediately (5.20) gives a family of classical
solutions of P(£-(v)).

It is not difficult to determine the 7-function 7_,= z(/-1(v)). In fact, taking
(4.14) into congideration we obtain from (5.17)

— (bs -+ b4) Zo 4 1(by + by) — (b +- by) = 1(t —1) %log To1,

where we put 7,=1. It follows from (5.19) that v = 7_, satisfies:

da*t

(1 —1¥)—— e

+[¢'— (a¢" + b -+ 1)t]-———a’b’r =0,
where

@/=—b—by, b=—b—b+1, &=1—Db—b,.

We can thus determine r-functions 7,, also for m < 0 by means of (4.4). We arrive
at the following proposition.

PROPOSITION 5.3, — If we write a point b on the hyperplane by - by= 0 in the form:
(5.22) b= (3(a—b+1),c—}(@+b+1), —ta—b+1), tat+b—1),
then the Painlavé system H#[b) at b has particular solutions defined by the Riccati equation

t(t—l)%:—aqz—l— {(a—b41)t+e—1}g—(c—b)t, p=0.

Starting from such a solution (g, p), we have the t-sequence at b:
0) = {tn; me 7}
such that

To=1, 1,=F@abe;t), v,=F(—a2—5b2—c¢t,
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If we define 7, by (4.7), they satisfy

Tm—1 Tmt1

7

o2 log T, = e(m)
for m=1 and for —m =1 separately.

REMARK 5.3. — By normalizing multiplicative constants of %, as ¢(m) =1, we
obtain the expression (4.23) also for — m = 2.

REMARK 5.4. — Put for an integer n

F,= Fla, b, ¢4 n;1).

By assuming none of ¢, ¢ — a and ¢ — b is integer, we have

(5.24) (t&d—t—}—o—}—n——l)ﬁ’nz(0—}—%—1)Fn_1,

(¢c+n—a)c+n—0>)
¢+ n

(5.25) ((l—t)d%+ ¢ - n——cw——b)F,Z = P,

which are known as the contiguity relations of Gauss (confer (0.2), (0.3)). It is
known ([9]) that the function

G.= {1 — 1)} a1,

satisfies the Toda equation:

Gn—l Gn+1

H

=S

where a, is some constant and

20, = (c+n—1)2—(at+b—1)(¢c+n—1)F ab.

We see from Proposition 5.3 the Function F, is a r-function at £ £,{b] for a point b
of C* of the form (5.22). It follows that (5.24), (5.25) can be obtained from the
birational canonical transformation (), from J#, to Hpy1, OF t0 H,_4, Where 5,
denotes the Painlevé syster 2[4 4[b]].

5.5. Rational solutions.

Recall a hypergeometric function is reduced to a polynomial (Jacobi polynomial,
Gegenbauer polynomial and so on) for a special value of the parameters a, b, c.
Hence the Painlevé system has a rational solution at a point b of the form (5.22).
We see it occurs certainly at the intersection of walls of the Weyl chamber. We
give an example of rational solutions of the Painlevé system.
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PROPOSITION 5. — The Painlevé system #(v,) at
V= (—3—m, 0,1, —m)

has the rational solution:

(5.26) | (QM7PM):(M+1 L )7

t-m’tt+mt1

m being non-negative integers.

ProoF. — It ig easy to see the Painlevé system S (v) at
v=(—3,0,1,0)

possesses a solution of the form

' 1 t
9 = § — —_——
(5.27) (4, p) (t, 1+t),
from which we have the Hamiltonian functions:
1 2 1 2
) == —— —— 1) — ——f — =

and then the z-function
To=1{v) =121 4 1).

On the other hand, we obtain from (5.27)

_ 1 2
Yo=q(g—1)p— b+ 0@ —1) =375~ 3,
hence we can put
7= 1(4®) =1.
It follows from (4.4) with ¢(m) = (m -+ 1){(m + 2) that
(5.28) T = T(Vp) = "2t + m + 1)

where v, = £-3™(v). Consequently we have (5.26) and

_ (m+1)(m+2) m{m 1)
To=—t+ t+m+1  t+m

by means of {5.28) and (4.12), which proves the proposition.
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