
Weak Solutions for a System 
of Nonlinear Klein-Gordon Equations (*). 

L. A. )f~,D~,i~os - ~ .  MILLA MIE.~I)A (**) 

S u m m a r y .  - We prove the existence and uniqueness o] weak solutions of the mixed 2~roblem ]or a 
class o] systems o] nonlinear Klein-Gordon equations. Uniqueness is proved when the spatial 
dimension is either n = 1, 2 or 3. 

I n t r o d u c t i o n .  

A mathemat ica l  model describing the  interact ion of scalar fields u, v of mass 
a, fl, respectively, with interact ion constants  g and h, is the  following sys tem of 
nonlinear Klein-Gordon equations:  

(*) [ ]u  + ~2u + g~v~u = O , 12v -{- fl~v + h~u~v = O , 

where [] is the d 'Alembert ian operator,  i.e., [ ]  = ~2/~t~--A. The above system 
defines the motion of charged mesons in an electromagnetic  field and was proposed 
by  I.  SEGAL [8]. A number  of authors  also proposed such systems and among them 
we can ment ion K.  J6~GE~S [2] and V. G. MA~A~XOV [6]. Recent ly  L . A .  ~w- 
DEIRos-G. PElCLA ~_E~qZALA i7] obtained weak solutions of the  mixed problem for 
the system (*) in •X]0 ,  T[, w h e r e / J  denotes a bomlded domain of R ~, n : 1, 2, 3, 

and 3. FE~REI~A and G. PE~LA ~/~ENZALA [1] analyzed the decay of the  solutions 
of the  system ( . ) .  There is no loss of general i ty  if we make  ~ = 0, fl ---- 0, g = 1, 
h = I in ( ,) .  

A significant generalization of ( . )  is the following system: 

where p is a real number,  p > -  1. In  this paper  we s tudy  the  existence and 
uniqueness of weak solutions of the mixed problem for the system (**) .  The 
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existence is proved in tg•  ]0, T[ where t9 denotes a bounded domain of R ~, for 
any  ~ t > l  and the uniqueness is obtained for n = 1, 2~ 3 (when n : 3, @ = 0). Our 
discussion is b~sed on the method applied by J.  L. Lions  [3] to solve the scalar 
nonlinear wave equation Du ~- [uf~e = f, see also LIONS-STlcAUSS [5]. 

1. - Notations and main results. 

Let  ~9 be a regular bounded domain of R ~, T > 0 a real number  and Q the 
cylinder Q : ~9 • ]0, T[. By ( . , . )  and I" ] we denote the inner product  and  norm 
of L~(~9) and by  a(u, v) and II" l], the inner product  and norm of H01(~9), respectively. 
Here a(u, v) denotes the Dirichlet form and H~(~Q) is the closure in Hl(~Q) of the 
space ff)(~9), where O(Y2) denotes the space of infinitely differentiable functions with 
compact support contained in ~9. 

Let  X be a Banach space and 1 < p  < co a real number.  We shall represent by 
L~(0, T; X) the Banach space of vector valued functions u: ]0, T[ --> X which are 
measurable and nu(t)llzeL~(0, T), with the norm: 

T 

0 

By Z~176 T ; X )  we shall represent the Banach space of functions u: ]0, T [ - + X  
which are measurable and essentially bounded in Q, with the norm 

0 < f < T  

Furthermore,  9'(Q) and 9 ' (0,  T) will denote the space of distributions on Q 
and ]0, T[, respectively. All the scalar functions considered in this paper will be 
real valued. 

Let  n > 3  the dimension of R ' .  Let  us consider a real number  @ satisfying the 
following condition: 

4 
(1) --i<@<--. 

~--2 

Let  0 and y be the following real numbers:  

(2) 0 = 
2n(e + 2) 

(n -- 2)(@ -~- 2) ~- 2n(@ + 1)' 
2n(e + 2) 

7 = (n + 2)(e + 2) - 2n(e + 1) 

Clearly, 

1 1 1 
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and 

(3) i<0<@ -~2 @-}-1' },>i. 

TtIE01gE~ 1. - Let  D be a regular bounded domahl  of R ~ and @ a real n u m b e r  
satisfying the condition (1) if n > 3  or @ > - - 1  if n = 1 ,2 .  Let  

(4) 

(5) 

(6) 

/1, h e_~(o, T; L3(~9)) 

Uo, woe//oi(9) c~ L~(9) 

u .  ~ e  Z3(O, I'; Z~(~9)) 

where p ---- @ ~-2.  Then there  exist functions u, v: ]0, T[ -+L3(D) such tha t :  

(7) u, v e L%0, T; m.(9)) 
(8) r ~'~ z~(o, T; Zo(9)) (u' =~au) 
(9) uv e s176176 T;/5e+3(tQ)) 

satisfying the nonlinear system: 

(10) 

(11) 

u"-- Au @ I@+~-Iuleu = / ~  in E~(0, T;  H-~(~9) + Lo(.Q)) 

v"- -  Av + [ul~+3Ivl~v = / 2  in /53(0, T;  H-I(tg) @ Zo(sg)) ; 

and the initial conditions: 

(12) u(O) = uo ,  v(o)  = Vo 

(13) u'(O) = u l ,  v'(o) = v l .  

T~E0~E~ 2. - Le t  u, v: ]0, T[ -+Z3( tg)  be ftmctions in the  classes (7), (8) and 
(9) satisfying f rom (10) to (13). Then,  u = ~ provided tha t  @>0 in case n ----- 1 or 2; 

u - - - - v i f  @ = 0  in case n = 3 .  

I~Eh~a~K 1. -- We observe tha t  if n ---- 1, 2 the  ~Jbove conditions (5) amount  say 

tha t  Uo and Vo are any  vectors of H~(D) and condition (9) is a consequence of (7). 

REXA~K 2. -- F rom (7) and (8), we have tha t  u(0) and v(0) belong to H~(fg) 
(see [4]). Thus the initial conditions (12) do make  sense. Le t  ~ and fl be the real 
numbers  

0 + 2  q §  
(1t )  ~ = - -  /~ = 

(@ -~- 1 ) 0 '  (@ @ 2 ) - -  (@ -t- 1)0" 
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Consequently, 
i+i 

~ i 

and by (2) and (3): 

2n (15) ~ > i ,  ~ > 1 ,  0 ~ -  
n - - 2  

( n > 3 ) .  

I t  follows by (15) and H61der inequality that  

f ([aoIq+2Iu[~+l)O~ (f '~V[(e+l)Oa dx) 1]~ (f [VIflO~) lift= llUlI(Lea+,i~O)][C)H~a(D) . 

12 12 12 
I~ow we use (15), Sobolev's embedding theorem and (9) to deduce that:  

(i6) 

Therefore, 

(17) 

The above conclusion and equation (10) imply that:  

(i8) u"e r~(0, ~; R-,(~9) + Le(Q)), 

which together with condition (8) imply q,(0)~Z2(~2). Analogously v(0)aZ~(~2). 
Thus, the initial conditions (13) make sense for n > 3 .  When n = 1, 2 we choose 
0 = 2 , ~ = ( ~ @ 2 ) / ( e @ l ) , f l = e @ 2  to obtain 

hence, 

u", v"e Z~(0, T; H-~(~)) ,  

therefore, the initial conditions (13) do make sense. 

2. - Proof  o f  Theorem 1. 

We use Galerkin procedure and compactness method. 

i) Approximate Solutions. - Le t  (w,),~r be a ((basis ~> of Ho~(~2)(~Z~I(~Q), 
P1 = max (p, y) and V~ the subspace generated by  the m first vectors wl, w~,..., w~. Let 

u,~(t) = g;,~(t)w~, vm(t) = ~ h~(t)wj, 
~-i f=l 
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be the approximate solutions in Vm of the problem (10)-(13). They are defined as 

solutions of the system: 

(19) 

(20) 

Y Q+2 Q (u,.(t), w~) § a(u~(t), w,) § (lv,~(t)l lu,~(t)l u,~(t), w~) = (/~(t), w,) 

(v~(t), w~) -~ a(v~(t), wj) -{- (lum(t)l~+~pm(t)l~v,~(t), wj) = (/~(t), ws) , 

j = 1 ,2 ,  .. . ,  m .  

(21) urn(o) = ram, Uo.,-~ Uo in H~(9) r~ L'(Q) 

(22) vm(O) = yore, vo~ -> vo in //o~(Q) (~ L ' ( Q )  

(23) u~(O) = u l ~ ,  u l ~ - ~  ul  in Z~(Q) 

(24) v'(O) =v~m, v ~ - > v ~  in L~(O) 

The solutions u~(t) and v~(t) are defined in [0, t~], t~ > 0. In order to define 
them in all [0, T], we need to obtain a priori estimates for u~(t) and vm(t). 

ii) A _Priori .~stimates. - Multiplying (19) by g~m(t) and then adding from 

j = O  to j = m ,  we get: 

1 a 1 a ~ + f  (tl, u')  a-~ tu'(t)P + ~ ~ Ilum(t)il Iv,~l~+~lu,~t~u,~u" ax = . 
t , g  

We observe that: 

which implies that :  

~ [u'At)P-F ~ ll~,~(t)ll~-t - I~,,~1~+~ ~ lu~l~+~ a~ = 2(1~, u ' ) .  
Q 

Similarly from (20), multiplying by h' ~m, we obtain: 

d-i ~ lt~m(t)ll~ + lu,~l~+~ I~,~I~+ ~ ax = 2(t~, r  

Adding the last two identities and then using Schwarz's inequahty, we have that :  

at(lu~(t)p+ iv,At)p+ tlu.(t)ll~+ llv~(t)l[~+ ~ f  l~l~+~lv~lo+~ d~) < 
O 

< II~(t)l~+ II~(t)P+ lu'(t)P+ Iv'(t)P. 
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Integrating the above expression from 0 to t, t < ~ ,  using hypothesis (4) on/~, ]2 
and convergences {21)-(24), we get: 

(25) 
t 

9 0 0 

for m large enough, where C is a constant independent of m and t. We observe, by  
using Schwarz's inequality and convergences (21) and (22), that:  

0 

Substituting the above estimate in (25) and applying Gronwali's inequality we, 
finally, obtain the following estimates: 

(26) (~)~eN, (v~)me~ are bom~ded in Z~(0, T; H~(~)) 

(27) (u'm)m~N, (v'~)m~ v are bounded in Z~(O, T; L~(9)) 

(28) (u~vm)m~N is bounded in Z~(0, T; Z~+-~(~2)) . 

I t  follows, from the above estimates, that  we can extract subsequence of (u~)~N 
and a subsequenee of (vm)~eN which we still denoted by  (u~)~eN, (v~)~N and deter- 
mine functions u and v, such that:  

(29) u~ -+ u and v~ -+ v weak star in s T; H~(~)) 

(30) u :  -+ u' and v: -> v' weak star hi Z~(O, T; Z~(/2)) 

(31) u,~v~-+ Z weak star in L~(0, T; Z~+2(~)) �9 

By using Lions-Aubin's compactness theorem, [3], we conclude that:  

(32) 

(33) 

u~ ~ u and v., --~ v strong in L~(Q) 

u,, -> u and v~ --~ v a.e. in Q.  

iii) The nonlinear term. - From (33), it follows: 

(34) 

Applying the same argument that  we used to obtain (17) or (18), it follows from 
the estin~te (26) and (28) that  

(35) is bounded ix L (0, T; 
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Consequently, from (34), (35) and b y  LIONS [3], Lemma 1.3, we conclude tha t :  

(36) ]v~]e+2[umleu~ ~ ]v[e+"[u]qu weak star in L~(0, T; L~ . 

Similarly, 

(37) tu,.le+2[v,~lo~v~ -+ ]u]Q+2[v[ev weak star in L~(0, T2/50(f))) . 

By  (31) and (32) we obtain tha t  

UmVm ~ Z in ~)'(Q) and u.~v,~ ---> uv  in ZI(Q), 

therefore, 

X = u v .  

iv) Passage  to the _Limit. - ~ul t ip ly ing  (19) b y  ~ e if)(0, T) integrating from 0 
to 2' and passing to the limit as m --~ co, ] < m,  we deduce from the convergences 
(29), (30) and (36) that 

T T 

0 0 0 T 

=f (/,(t), dr. 
0 

Observing that (~w~.)~r ~ e ~D(O, T) is a total  set in H~(0, T; H~(tg) n L~l(tg),) 
then,  

T T T T 

0 0 0 0 

for each w e H~(0, T; Ho~(tg) ~ L~'(~9)). Hence ts.klng w e ID'(Q) we obt~,in (10). 
Analogously, we obtain (11). 

I t  follows from the eonvergences (29), (30) and from the ialitial conditions (21), 
(22), tha t  the  initial conditions (12) are satisfied. Also, by  the convcrgenees (30) 
and the approximate  system (19) and (20), it follows the initial conditions (13). 
This conclude the proof of Theorem 1. Q.E.D. 

3. - Proof of  the uniqueness' result (Theorem 2).  

Let  u, v and 4, ~ satisfying the conditions of Theorem 2. Let  

~ u-- 4 and V = v-- @. 
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Then, 

(38)  

(39) 

(40)  

(41)  

w -  Zv" + lul~+~l~?v - I@+~1@~ = o 

~7(o) = o ,  v(o) = o  

~7'(o) = o ,  w(o) = o .  

I~EMAI~K 3. - We note  t h a t  

V"(t) e H-~(O) + Lo(O) and V"(t) E L~(9). 

Therefore, does not  make  sense to calculate the  dual i ty  (U"(t),  U'(t)>. Thus,  
the  uniqueness result  v ia  the  s tandard  energy me thod  does not  work  in this case. 

I n  order to r em edy  the  above  difficulty we shall use a me thod  due to VISIK and  
LM)~ZSm~SKAYA [9] see also LIONS-~ASE~ES [4]. Le t  

Then 

:Let 

then  

and  

$ 

- f  Y(a)  da 9(t) = t 

0 

I/ - It(a) da 
~(t) = 

0 

for 0 < t < s  

for s < t < T  

for O < t < s  

for s < t < T .  

v, v e ~(o ,  z; H:(~)). 

t t 

v~(t) = f v ( ,  d, and V,(t) = f v ( ,  d~, 
0 0 

9(t) = 9,(t) - 9ds)  , 9ds)  = - ~(o) 

w(t) = ~,l(t) - ~ , d s ) ,  ~,l(s) = - ~ ( o ) .  

Firs t  of all  we analise the  case n > 3. We make  the  restr ict ion p < (8 - -  2n)/(2n - -  4). 
Then,  q(t), ~(t)eJLs(~9), see (2)i therefore  the  inner  p roduc t  of the  nonl inear  p a r t  
with q or ~ make  sense. B y  t akh lg  the  inner  p roduc t  of (38) and  (39) wi th  ~ and  % 
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respectively, we obtain: 

(42) 

(43) 

8 8 $ 

0 0 0 

8 S 8 

f <v', v,> at § fa(V, W)at + f ( l ~ l ~ + , l @ ~ -  l@+.I@~, w ) a t  
0 0 0 

= 0  

= 0 .  

A simple calculation shows that: 

$ 

f< U", q~> dt 
0 

and 

= - �89 l~(s) P 

8 

fa(~, ~) at = - �89 ll~(0)ll~ = - �89 [l~(~)ll ~ 
0 

Substituting these identities in (42), we deduce that  

$ 

{441 �89 IV(s}l' + �89 I[~l(s}l[' =f(l@+~lulou - I@+'l@a, ~o) at.  
0 

Similarly it follows from (43) that: 
g 

(45) �89 Iv(s)p + �89 jl~iCs)ll' =f(lulo+'lvlo~,- la[o+'l,~lo~, ,p) at. 
0 

Adding (44) and (45) and denoting by M and N the right hand side of (44) and 
(45), respectively, we obtain: 

(46) �89 IU(s)p + �89 lr(s)p + �89 II~ol(s)[I ~ § �89 II~,l(s)II ~ = M + ~v. 

The key idea of the proof will be to show, by using Sobolev's embedding theorem 
and Gronwall inequality, that  there exists a real number so such that  U(t) = it(t) = 0 
for all 0< t<s0 .  Because of the way so is constructed we will be able to repeat the 
same technique in the interval [so, 2so]. Then, by iterative process we conclude 
that U = V = 0. (See LIo~s-M_~G~v,s [4]). 

We write the second member of (44) in the following convenient form: 

(47) 
$ 8 

M =f(rl~l~+.-I@+,]lul~, ~o) at -+-f( l: l~I~- l@a]l@+ ~, ~o) at. 
O 0 
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Next  we examine each of the above integrals. By  the mean value theorem it follows 
that : 

I(Ovl ~+=- I@+ql~l ~ ~)l<(o 4- 2)f[max (I,4o% I@+Cll,4o+qv/f~l ex< 
<(e + 2)fovI ~+~ 4- l@+ql<~+flVIl~l 

# 
dx. 

.O 

B y the Sobolev's embedding theorem we have:  

(48) f I@+~Iul~+qVl#l d x <  

where 

1 ~ 1 _  1 1 
~ ,  + + = 1  

q 2~ ~nn 

because Ho~(~9) c Zq(zg) for 1/q + �89 -- 1/n. Since ~(t) and  u(t) are only bounded in 
Ho~(zg), by  the Sobolev's embedding theorem the two last  integral  exist  only when 
l<2n(@ 4- 1 ) < 2 n / ( n -  2). I t  then  follows t h a t  @ must  to satisfy the condition: 

(49) 1 -  2n 3 -  n 
2---~ <~< 2-5V 

Also by  using the  mean value theorem, we obtain the  inequal i ty:  

(50) 1([1,~1~- - I@,~]1~1 ~*~, q,)[ <(e  +  )fl:tul  § I@31 ~'ll@*~lq, l a~, 
~O 

and for this we must  have:  

(51) e > 0 .  

Due to the restrictions (49), (51) on ~, we conclude tha t  if n = 3 then  @ = 0 
and if n >  4, this method  does not  allow us to conclude t h a t  we have unique solu- 
t ion of the  system, in the  conditions of the  Theorem 1. 

Therefore, we shall prove uniqueness in the  case n = 3, @ = 0. Using estimates 
(48) and (50), we obtain,  f rom (47): 

(52) 

8 

[MI < o f  (IV(t)I + I U(t)i)]{r at< 
0 8 8 

0 0 0 
$ 8 

< ~ -  ] V ( t ) p d t +  [U(tll" dt 4- C ]{q~l(t)H2dt+ Cst[~l(slH ~ , 

0 0 0 
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where  C denote  var ious  cons tan t s .  Similar ly  we h~ve:  

8 

0 0 0 

dt + CsHv~(s)I[ ~ . 

Combin ing  es t ima tes  (52) a n 4  (53) in (46), we ob ta in :  

(5~) ]U(s)12 ~- IV(s)] ~ -~ (1 - -  2Cs)[]~(s)]l 2 ~- (1 - 2Cs)]Iy~(s)l[~< 

8 

< 2 ~ f ( l ~ ( t ) l  ~ + Ir(t)l  ~ + II%(tlll ~ + ll~(t)ll ~) dr .  
0 

B y  choos ing  S o :  1/4C we h a v e  1 - - 2 C s > � 8 9  for  all O < s < s o .  I t  follows f r o m  (54) 

a n d  Gronwa] l  i nequa l i ty  t h a t  U(t) -~ V(t) -~ 0 for  all 0 < t  <so.  

I f  So ~ T,  we use the  same  a r g u m e n t  wi th  init iul  d a t a  zero in so and  we consider  

s o < s < T .  As it  was  done  above ,  t he  coefficients c f II~(s)lI 2 a n d  l]~(s)][ ~ are  

1 - -  2C(s - So). IJet s~- -  2So, t h e n  1 - -  2C(s - -  so)>�89 for  all So<S<2So which  implies 

t h a t  U ( t ) - - - - V ( t ) - ~  0 on  [s2, 2s0]. B y  con t inu ing  this  process  we conc lude  t h a t  

U = V = 0  on [0, T], tha~ is u = ~  a n d  v = ~ .  

I f  n ~-- 1, 2, we a lways  ob ta in  t he  es t imates  (52) and  (53) for a n y  real  @~>0 an4  

the  p roof  in ~his case is more  direct .  This concludes  r p roof  of T h e o r e m  2. Q.E .D.  

REFERENCES 

[1]  J .  F E R R E I R A  - G. PERLA I-V[ENZALA, Decay o] solutions o] a system o/nonlinear Klein-Gordon 
equations (to appear). 

[2] K. J~iRGENS, Nonlinear wave equations, University of Colorado, Department of Mathe- 
matics, 1970. 

[3] J. L. LIONS, Quctques mdthodes de rdsolution des probl~mes aux limites non lin~aires, Dunod, 
Paris, 1969. 

[4]~J. L. LIONS - E. MAGENES, Probt~mes aux limites non homog~nes et applications, Vol. 1, 
Dunod, Paris, 1968. 

[5] J . L .  LIoNs - W. A. STRAVSS, Some no~ linear evolutions equations, Bull. Soc. Math. de 
France, 95 (1965), pp. 43-96. 

[6] V. G. M A K I I A N K O V ,  Dynamics o] classical solutions in integrable systems, Physics Reports 
(Section C of Physics Letters), 35 (1) (1978), pp. 1-128. 

[7] L. A. MED]~IROS - G. PERLA ME•ZALA,  On a mixed problem ]or a class o] nonlinear Klein- 
Gordon equations (to appear). 

[8] I. SEGAL, Nonlinear partial di]/erential equations in Quantum Field Theory, Proc. Syrup. 
Appl. Math. A.M.S., 17 (1965), pp. 210-226. 

[9] M. I. VISIK - O. A. LADYZHENSKAYA, On boundary value problems for partial di//erentia l 
equations and certain class o/operator equations, A.M.S. Translations Series 2, vol. 10, 1958 

$ 


