Compact Sets in the Space L?(0, T's B) (*).

JACQUES SIMON

Summary. — A characterization of compact sets in L°(0, T'; B) is given, where 1 <p<co and
B is a Banach space. For the ewistence of solutions in nonlinear boundary value problems
by the compactness method, the point is to oblain compaciness in a space L*(0, T'; B) from
estimates with values in some spaces X, ¥ or B where X c Bc ¥ with compact imbedding
X — B. Using the present characterization for this kind of situations, sufficient conditions
for compactness are given with optimal parameters. As an example, it is proved that if
{fn} is bounded in L0, T; B) and in L, (0, T; X) and if {f,/0t} is bounded in L1,,(0, T; T)
then {f,} is relatively compact in L*(0, T; B), Vp < gq.

Introduction.

The question. — Lef f, be a bounded sequence of functions in L2(0, T'; B) where B
is a Banach space and 1<p<co. When does there exists a strongly converging
sub-sequence, that is to say when is {f.} relatively compact in L#(0, T'; B)?

This is a crucial point in the compactness method (1) for existence of solutions
in nonlinear boundary value problems; several examples of this method were given
by J. L. Lions [L2].

A first answer which allows to solve a large diversity of problems, as is shown
in [L2], was given by J.P. AuBIN [AU]: it suffices that the f, are bounded in a
space L*(0, T'; X) where X is included in B with compact imbedding and the de-
rivatives () of,/¢f are bounded in & space L?(0, 7; ¥) where BC Y.

Another answer was given by J. L. Lions [L1] for Hilbert spaces, by replacing
the boundedness of derivatives by a fractional hypothesis which is defined by the
Fourier transform.

More generally it suffices, as it was proved by the author in [S8I1], to replace the
boundedness of derivatives by the following uniform (in ») estimates of translations:

T—h
[1ut + ) = fa)|z at< 0,

1]

where O denotes a funetion such that O(h) — 0 as h — 0.

(*) Entrata in Redazione il 28 Ottobre 1985.

Indirizzo dell’A.: Université Pierre et Marie Curie, Laboratoire d’Analyse Numérique
(U. A. 189), Tour 55-65 - 5éme étage - 4, place Jussieu - 75230 Parigs Cedex 05.

(*) The f, are « approximated » solutions and the strong convergence is used for passing
to the limit in some nonlinear terms, such as |f|*f or f(&f/ow),....

(%) The derivatives are always defined in the sense of distributions on ]0, 7[ in B.
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The caracterization of compact sets. — A. great question still remained: what are
the minimal assumptions for compactness? Question which is sharpened as, in all
the results known by the author, some unnecessary restrictions on parameters (p > 1,
p < oo,...) or on spaces (reflexivity, separability, Hilbert structure...) are stated
and yet in various boundary value problems the excluded cases oceur.

An-answer is given here (theorem 1): a set F of functions f is relatively compact
in L#(0, T; B), or in O(C, T; B) if p = oo, if and only if

(0.1)  Vi<t,, f f(¢) dt lies in a eompact set of B independent of f

21

(0.2) f}}f i k) —f@)5di<Oh where O(k) is independent of f

with the usual modifications for p = oo; (0.1) is ealled the space criterion and (0.2)
ig the time criterion.

Partial Compactness. — In the boundary value problems, the compactness is often
required in L#(0, T'; B) for a set F' which is bounded in Z#(0, T'; B) with ¢ > p (%);
this is called the partial ecompactness since p = ¢ is not reached. Then (theorem 2)
the time eriterion (0.2) in L7 can be replaced by the similar eriterion in Lj,:

(0.3) Vo< ti<t,<T, fuf(t 1) — ()] 2 At < O(R)
ty

where O(h) is independent of f, but can depend on ¢, ¢,.

Applications. — In the boundary value problems estimates are obtained, see [L2],
for the approximated solutions or for their derivatives or integrals in various spaces.
In a general way one has (*) X c Bc ¥ with compact imbedding X — B and the
problem now is: obtain the eompactness of F in L?(0, T'; B), from estimates in X, ¥
or B. Two kind of answer are given:

1° Partial compactness (section 9). — If F' is bounded in some L¢(0, T'; B) where
¢ > p, then the compactness hold if:

I
(0.4) F iz bounded in Li,(0, T'; X) and % is bounded in Li(0, T; Y)

where 0F/0t = {of/ot: f € F'}. The assumption on 0F/df may be replaced by I is
bounded in Wi:k(0, T; ¥) with s > 0, or by an estimate on translations in I (0, T; ¥).

loe

(3) If the approximated solutions f, are bounded in L¢(0, T'; B), and if the convergence
in L#(0, T'; B) is sufficient for the convergence in nonlinear terms.

(%) ¢ denotes an algebraic and topologic inclusion. The imbedding B — Y is then con-
tinuous.
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2° Limit compaciness (section 8). — For compactness up to the largest order for
which p is bounded, and particularly for p == oo, stronger assumptions are required
such as:

7
(0.5) F ig bounded in L#(¢, T; X) and aa_i is bounded in I(0,7T;7Y)

(P < o0).

This holds for p = co if 0F[0¢ is bounded in L0, T'; ¥) with »> 1. The as-
sumption on oF/of can be replaced by F is bounded in W=7(0, T; Y) with s > 0 and
s>1/r—1/p or even by an estimate on translations in Z?(0, 7'; ¥).

Peculiar cases. — If ¥ = B (section 7) the spaces criterions may be weakened:
the compaetness hold for every p < oo if

(0.6) F is bounded in Wi'(0, T; X) and %—I;

is bounded in L0, T; B)
where m is any integer. Various generalizations are given.

If B is a space of class 0 with respect to X and ¥ (section 10) some results are
improved, and compactness is obtained for intermediate derivatives (corollary 10).

Optimality. — These assumptions, for example the estimates in X or on 0F/ot,
are not necessary then one has to ensure that every application is optimal: it is
verified that there is no useless restriction on the parameters, and particularly that
the compactness order p is as large as possible for the assumptions.

Comparison with former vesulls. — The compactness is proved in [AU] (%) if F is
bounded in L*(0, T; X) and oF/ot is bounded in Lr(0, T; ¥), for r > 1, 1 < p < oo,
X and Y reflexive spaces. See equally [L2] theorem 5.2, p. 60. A proof with the
same restrictions excepted the reflexivity is given in [D], see equally [L2] theo-
rem 12, p, 141. A proof for r = 1, p = 2, X and Y-Hilbert spaces is given in [T1],
theorem 2.3, p. 76.

The extension with F bounded in We2(0, T'; B) instead of the assumption on
oF'[ot is proved for r = p = 2, X and ¥ Hilbert spaces in [L1], 1st edition chapter 4,
see equally [L2] theorem 5.2, p. 61.

The extension with an estimate on translations instead of the assumption on
offfct is proved in [SI1] for 1 < p << oo, X and ¥ reflexive spaces.

In the case ¥ = B, the compactness with an hypothesis on translations is
announced in [SI2] remark 3.2, and a partial result is proved in [T2] theorem 13.3
p. 100 (5).

(5) Theorem 1 with m =1, j=0, 4,=B=X, B=0B and Y= 4,.
(%) Assuming F bounded in L#(0, T'; B) n L'(0, T; X) and (0.2) it is proved that F is
relatively compact in L7(0, T, B) Vr < p. As it is proved here the conclusion hold for r=p
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All the proofs relie on one of the following two ideas. The first one is to use
weakly converging subsequences and to prove that such & sequence is strongly
converging. It requires the reflexivity of IL»(0, T; X) and IL?(0, T; ¥) then the
restrictions 1 < p < oo, 1 <r << oo and X and ¥ reflexive spaces (). The second
idea, which, is used here, is to approximate uniformly the functions of F by some
mean-funesions which are continuous and to conciude with the Ascoli theorem.

Local regularity, Sobolev spaces and interpolation. — The compaectness criterions
(0.1) and (0.2) are in particular satisfied if, in the boundary value problems language,
one has uniform regularity estimates respectively in space and time. We search
for local eriterions since the regularity estimates often don’t hold up to the boundary
of the interval [0, T] on which the problem is stated.

The compact sets characterization of theorems 1 and 2 are some vector valued
variagtions on the Fréchet-Kolmogorov theorem, see remark 4.3. The applications
to Sobolev spaces (all the corollaries) are vector valued extensions of the Rellich-
Kondrachov theorem.

The fractionnary Sobolev spaces are sometimes defined by interpolation; here
the criterion (0.2) on translation suggest the use of the (equivalent) definition by
translations. For the intermediate spaces we use the condition of « class 6 » which
is easy to use and give more spaces than interpolation does. Then most of the
result are obtained by easy means.

This work is endebted to J. L. LioNs works for many basic ideas. A. DAMLA-
MIAN and L. TARTAR confribute to it by fruitful debates.

The outlines are

1. The spaces L?(0, T'; B)

2. The Ascoli theorem

3. Characterization of the compact sets of L?(0, T'; B)
4. Characterization for partial compactness
5. Some estimates by translations
6. Compactness for functions with values in a compact space X
7. Partial compactness for functions with values in a compact space X
8. Compactness for functions with values in an intermediate space
9. Partial compactness for functions with values in an intermediate space
10. The case of intermediate spaces of class 6
11. Optimality results

(") It can be extended to the case where IL?(0, T'; X) is a dual space, than 1<p<oco
and X and Y are dual spaces. It cannol be extended for p=1.
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1. — The spaces L*(0,T;B).

Let [0, T] be a bounded interval of R which is provided with the Lebesgue
measure df, let B be a Banach space and 1<p<oco. Denote C(0, T; B) the space
of continuous functions from [0, T'] into B equipped with the uniform convergence
norm, and

Woso.zom=( [ 1013 0)" (= Sup ess 110 it p = o).

0

By definition (%) L#(0, T'; B), p < oo, is the seperated completed space of C(0, T; B)
for this norm; for p = oo, L*(0, T'; B) is the subset of L'(0, T; B) on which the L*
norm is finite. It is a Banach space for 1<p< oo (?).

Then IL?(0, T'; B) is a space of class of almost everywhere equal functions; in
an usual way, & function will be identified to the class of the a.e. equal functions.
Then C(0, T'; B) is by definition dense in L?(0, T'; B) for p < co.

T

The integral f f(2) dt is defined if f is & measurable finite valued function (%) and
0

it depends continuously on f for the L' norm. The measurable finite valued fune-
tions being dense (1) in L(0, 7T'; B), the integral is defined (!2) in a unique way by
continuous extension for feL'(0, I; B). If w is a measurable subset of [0, T],

T
(1) @t =[1,(01() .
@ o

At last let L (0, T'; B) be the set of (class of a.e. equal functions) 7 such that
1y, 1af € I7(0, T'; B), YO < ;< #,< T, equipped with the semi-norms [f]0q. ... 5-

REMARK 1.1. — Measurability. It follows that (18) L#(0, T'; B) is the set of (class
of a.e. equal) measurable functions f such that |j|z€ L»(0, T). L»(0, T'; B) is some-
times defined by this property, see [Y]. We won’t use the measurability, excepted

(%) [B1] definition 2, p. 129 for p < oo and, for p = co, definition 2, p. 206 and corol-
lary p. 215.

(*) [B1] theorem 2, p. 130 for p < co and proposition 2, p. 206 for p = co.

(1% f is a measurable finite valued function if f~1(b,) = w, is a meagurable set in R for

T
every value b;; then [f(1)dt =3 b, measure (w;), see [B1] p. 80 and [B2].
0 i
(1) [B1] corollary 1, p. 162.
T 7

(1?) Then j' f(&)dt = lim. f f(t) dt where f, is a measurable finite valued function and f, ->f
1] n->0 0
in 720, T; B); see [B1] definition 1, p. 140.
(*3) [B1] theorem 5, p. 184 and definition 2, p. 206; a measurable function is by defi-
nition a.e. limit of a sequence of measurable finite valued functions.
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for the following

(1.1) if feLY0,T;B) and |flzeL?0,T), then felL*(0,T;B)

and  |flweo,nm= [|flzlwon. =

Let us now recall some inequalities
Holder. It ge L*(0, T; B) and p € L"(0, T), 1<5,< oo, then gp € L*(0, T; B) and

i1 1

(1.2) 19¢ 10, 2.0 <lglo, 2wl P late0,my - T==4 -

Particularly (p=1) if g L**(0, T; B), 1 <s,< oo then g€ L*(0, T'; B) and

(1.3) (920,757 < TP gl no, 1 my s 1<8<8 -
Young. If ge (0, T; B), p L*'(0, @), 1 <5, < co and G(?) =fg(t -+ Ayp(4) dA then
G e L0, T— a; B) and 0

1 1

1 1 1
L8 [Glor-sn<ldronnllian,  F=r+i—1,  (f+i1).

Particularly (p =1) if g € L*(0, T'; B), 1 <8< oo, its right-mean funetion is de-
i+a

fined for a >0 by (M.g)(t) = 1/a[g(1) d). Then M.ge C(0, T — a; B) and
|2

atl=iolglpoo,ry  if so<s< o0,
5 R s
For s>s, (1.5) is given by (1.4), and for s <s, it follows from the case s = s, by (1.3).
The estimate (1.4) is given by the standard Young convolution inequality if g and ¢
are extended to B by 0; a proof is given in [S8I3], Appendix and note (1) in the proof
of lemma 7.

2. — The Ascoli theorem.

A set K of a topological space E is compact iff for every family of open sets
covering K there exists a finite sub-family covering K. A set is relatively compact
iff its closure is compact.

If Z is a normed space, K is relatively compact iff

(2.1)  Ve>0, I a finite sub-set {¢;: 1<i<I} of K such that
Ve e K, de; such that e — efz<e.
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It is satisfied if K is the uniform limit of relatively compact sets, that is to say if

(2.2) Ye >0, 3 a relatively compact set K. such that
Vee K, Je.e K. such that [e — e.]z<e.

Let us now recall the Ascoli characferization of compact sets in €(0, 7, B).

LemMMA 1. — A set F of 00, T'; B) is relatively compact if and only if:

(2.3) F(t)y = {f(): fe F} 1is relatively compact in B, Vo<t<T,

(2.4)  F is uniformly equicontinuous: Ve > 0, 3y such that
[ft) —f(t) | s<e, Ve F, V0 <t <t,<T such that |t,—t|<n. =

Proor. — Let ¥ be relatively compact in C(0, T; B). Then (2.3) is obvious and
(2.4) is satisfied sinee F' can be uniformly approximated by finite sets of continuous
funetions.

Conversely if (2.3) and (2.4) are satisfied let us first notice that (2.3) is satisfied
for 0<t <T'; indeed ||f(0) — f(n)|s<e and F(x) is relatively compact in B then F(0)
is relatively compact by (2.2); so does F(T).

For N integer denote fy the function which equals f for every point #T/N, 0 <n <N,
and which is linear between these points. Then Fy= {fy: f € N} is isomorphic to
the product of the sets F(nT/N), 0 <n< N, which is relatively compact in B¥+i,
then Fy is relatively compaet in C(0, T'; B). On other hand by (2.4), if N> T/n then
If — falloo,7: 3y <& Then F is the uniform limit of the relatively compact sets Fiy, -
and it is relatively compact by (2.2). =

3. — Characterization of the compact sets of L”(0, 7'; B).

Denote (z,f)(t) = f(t 4 h) for h > 0. If f is defined on [0, T'], then the translated
funetion 7,f is defined on [— k, T— h]. The main result of this work is the

THEOREM 1. — Let Fc L#(0, T'; B). F is relatively compact in L#(0, T; B) for
1<p <oo, or in 00, T, B) for p = oo (B Banach space) if and only if:

i

ty
(3.1) { f f(t) di: feF} is relatively compact in B, VO<i{<t,<T

3.2)  |wf—"tflwo,r—mm—>0 as h—0, uniformly for feF. u

For p = oo in comparison with Ascoli’s theorem the time criterion (3.2) is exactly
the uniform equicontinuity, but the space eriterion which was stated on f() is
replaced here by the similar one on integrals (3.1).
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REMARK 3.1. — The criterion (3.2) can be expressed as:
(3.3)  Ve>0, I such that: Vfe F, Vh <y one has |7,/ — flie0,r—n;;y<e. M

OPTIMALITY. — The restrietion p < oo i3 necessary since, if f is a discontinuous
bounded function, F' = {f} is compact in L*(0, T'; B) but it does not satisfies (3.2). &

PROOF OF THEOREM 1. — i) Assume firgt that F is a relatively compact set of

L?»(0, T; B), p < co. The map f—>ff t) dt is confinuous from L#(0, T; B) into B
then (3.1) is satisfied.

For every & > 0 there exists, see (2.1), a finite number of f,€ L#(0, T'; B), 1 <i < I,
such that: VfeF, 3f; such that |f — fil0, 7, 5 <&/3-

As C(0, T'; B) is dense in L?(0, T; B) the f, may be choosen in C(0, T'; B). Then
there exists %; such that,

Yh<h,, there holds |tnfi— filzoo, 70 ;)<

-

Wl m

Set n = inf h;. A8 waf —f = w(f— 1) — (f 1) + (mafi—1.), for every h <7 there
holds |77 — f|zso, 7—n: 3y<<¢ Which proves (3.3), then (3.2).
ii) Conversely assume that F satisfies (3.1) and. (3.2). The relative compactness
will follow by three steps.

First step. — For fe F and a> 0 let the right mean function be defined by
t+a
(M,f)(t) = 1/a[f(s) ds. Then M,fe C(0,T — a; B).
t
For every O'<t1<t2<T-— a one has
tita

[(Lf) (k) — (Af)(t) nB—”i [ wit—nwas

1

Then the hypothesis (3.2) imply that the set M,F = {M,f: f € F} is uniformly
equicontinuous in C(0, T — a; B).

For every 0 <t < T — & the hypothesis (3.1) with ¢, =14, t,= ¢t + ¢ imply that
(M, F)(t) is relatively compact in B. Then by Ascoli’s characterization (lemma 1)

1
< E ” Tta—tlf - f”Li(o,T—(tz—-t;);B) .

(3.4) M, F is relatively compact in C(0, T —a; B).

Second step. — There holds
(8.5) Mf—f =§f (af—fdh  in L#0, T—a; B) ().
0

() It follows from (3.2) that the map h —t,f is continuous from [0,a] into
I?(0, T — a; B). Then the right hand side integral in (3.5) is defined in I#(0, T — a; B)
and the equality follows from the definition of M,f.
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Then

(3.6) | Mof — flzsco, 7—as 3y < SUD | Taf — Hlzoo, 7—as 3y -
0s<h<a

It follows with (3.3) that, VI,<< T, P is the uniform limit of M,F in L?(0, T,; B)
as a 0 (a<T—1T,). By (3.4) M ,F is relatively compact in L?(0, T; B) then, see
(2.2), F is relatively compact in L?(0, T,; B). ‘

Third step. — The hypothesis (3.1) and (3.2) remains if one changes the time
direction: if f(t) = f(T — ¢) the set F = {: f € F} satisfies (3.1) and (3.2). Then F
is relatively compaet in L#(0, T.; B), thus F is relatively compact in L*(T— T,,
T; B) ().

Choosing T, = T/2 one finally obtains the relative compactness in L7(0, T; B).

iii) If p = oo the proofs are identical in 00, T; B). &

REMARK 3.2, — Using the theorem 1 for a set composed of a single funetion, one
find again the standard continuity property of & — 7,f:

Hrhf——f”Lp(o’T_h;B)eo a8 h—=>0, VYfeL!0,T;B),1<p<co. N

REMARK 3.3. — It is not necessary to assume in theorem 1 that F c L?(0, T'; B).
It is enough to assume (for giving & meaning to (3.1) and (3.2)):

(3.7) feLp(0,T;B) and 1twf—fel»(0,T—h;B), VfeF,Vh>0.

Indeed, then 7,f = f 4 (v4f — f) € Li(h, T— h; B) which implies f € L'(0, T — 2h;
B). Similarly one has fe L'(2h, T'; B) and finally f € L'(0, T'; B).

Then (3.5) is satisfied in L'(0, T — a; B). By (3.2) the map h — 7,f — f belongs
to 0(0, a; L?(0, T — a; B)), then the integral in the right hand side of (3.5) converges
in I7(0, T — a; B), whence fe€ L?(C, T — a; B). Similarly one proves fe I?(a, T; B)
and finally fe L#(0, T; B). m

ReMARK 3.4. — The proof of theorem 1 is easy but one hasg to take care.

For example it fails if the right mean M,f is replaced by the centered mean
t+a

(JH)(t) = 1/2af f(s) ds. Indeed J,F don’t converge to F up to the boundary, then
t—a

one obtains the compactness only in L (0, T; B).

(15) This result may equally be obtained by replacing the righlt mean by the left mean
¢
(M, (1) = (1[a) [f(s)ds.
i—a
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One may equally try to reduce the problem to functions on R by using the ex-
tension f of f by 0. Then the necessary condition (3.2) on f gives again (3.2), on
but it also gives the extra condition (4.4), see [T2, remark 13.1, p. 100]. Without
this extra hypothesis one obtains only partial compactness [T2, thm. 13.3]. m

Application to real valued functions. — A set F is relatively compact in L#(0, T)
when 1<p < oo, or in C(0, T) when p = oo, if and only if:

Gy

(3.8) da, << a, such that f f(t) dt is bounded uniformly for fe F,
T—h -

(3.9) f[f(t LR —f#®)pdt—>0 as h->0 uniformly for feF.
0

12
Proor. — It follows from (3.8) and (3.9) that, YO<t, <t,< T, ff(s) ds is bounded
then (3.1) is satisfied. W b

It is a variation on Fréchet-Kolmogorov’s theorem which states (1¢): A set F
of I*(0, T), 1 <p < oo is relatively compact if and only if:

T—a
Ya >0, f lj(t - B) — (t){ @ —> 0 as h — 0, uniformly for e F,

@ T
f]f(t)[ﬂ di —[—f];‘(t){ﬁ di =0 a8 a —> 0, uniformly for fe I.
0 T—a

These last criterions imply easily (3.8) and (3.9) but the converse implication is
harder. A vector valued extension of Fréchet-Kolmogorov’s characterization will
be given in remark 4.3.

4. — Characterization for partial compactness.

The question here is to characterize the sets which are bounded in L0, T'; B)
and are compact in L»(0, T'; B) with p < ¢. Tt is called partial compactness since
the compactness is not obtained for the larger order p for which the set is bounded.

The main result of this section is the

THEOREM 2. — Let F be a bounded set in Lz(0, T'; B) (1 < ¢ < oo, B Banach space).

(*¢) For example see [N] theorem 1.3, p. 59,
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Then F is relatively compact in L#(0, T'; B), Yp < ¢, if and only if:
YO < ¢, < t,<< T there holds
15

(4.1) { J‘f(t) dt: feF} is relatively ecompact in B,

b

(4.2) ltaf — fl gy 13— 0 88 b — 0, uniformly for feF. um

In comparison with theorem 1, the time criterion in L? is replaced by the similar
one (4.2) in L.

REMARK 4.1. — The criterion (4.2) can be expressed as: V0 <, <f,< T, Ve > 0,
< T —t, such that Vfe F, Yh <, one has |v,f — flpq om<e. W

Let us first conneet compactness with time-local compactness, it can be connected
with partial compactness afterwards, and theorem 2 will follow.

LEMMA 2. — A set F is relatively compact in I2(0, T; B), 1 <p < oo, if and only if:
(4.3) F is relatively compact in ILf (0, T'; B),

h T
(4.4) f 12 @t -+ f If(®]z dt — 0 as h -0, uniformly for je F. m
0 T—h

The meaning of criterion (4.3) is: Y0 <t,<t,<<T, ¥ is relatively compact in
Le(ty, ta; B) (*7).

Proor oF LEMMA 2. — i) Assume first that F is a relatively compact set of
L#(0, T; B). Then (4.3) is obvious. Let f be the extension of f by 0 outside [0, T].
Then F = {f: f € F} is relatively ecompact in L»(— T, 2T; B) and the time criterion
(3.2) for F gives (4.4) since, for h<T,

T

h T—h
eaf — T8 2,020y =175 @t + [I7(¢ + B — f0]3 @t +[TFol3 @
[} 0 T

—h

ii) Conversely assume that F satisfies (4.3) and (4.4). Set f, = 1 p.5;f and
Fv= {fn: fe F}. By (4.4), Ye> 0, Ih such that |f,—f|ps,r; 5y <& uniformly for fe F.
Then F is the uniform limit of the relatively compact sets F, whence, see (2.2), F is
relatively ecompact in L?(0, T; B). ®

(") Or else: {1, ,1f|f € F} is relatively compact in I2(0, T'; B).
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Now partial compactness can be related with compaetness in L.

LuMmA 3. — Let F be a bounded set in Ly(0, T'; B), 1 < g< co. If F is relatively
compact in L (0, T; B), then it is relatively compact in L#(0, T; B), Vp <g. B

ProoF oF LEMMA 3. — By Holder inequality (1.3) there holds, Va<T, Vf € F,

h T
[17@s @ + 17 @t < 2B fl a2,
0 T—h

then F ig relatively compact in L'(0, T; B) by lemma 2.
Given 1< p < ¢ the lemma 11 in section 10 with X = ¥ = B and § defined
by 1/p = (1 — 8)/¢ + 6/1 shows that F is relatively compact in L*(0, T; B). ®

PROOF OF THEOREM 2. — By theorem 1, the hypothesis (4.1) and (4.2) are equi-
valent to the compactness of F in Lj,(0, T; B). By lemma 3 this is equivalent to

the compactness in L#(0, T; B), Vp<¢. ®

OPTIMALITY OF THEOREM 2. — The striet inequality p < ¢ is necessary in theorem 2
(and in lemma 3) sinece there exists bounded sets ¥ in L#(0, T; X) which are relatively
compaet in L#(0, T; B) for every p < ¢ and yet not for p = ¢: see proposition 1
in section 11.

Remark that for ¢ =1 the theorem would be true but empty since there would
be no one p<<qg. ®

REMARK 4.2. ~ With the hypothesis of theorem 2, the closure F of ¥ in L*(0, T; B)
is included and bounded in .Le(0, T'; B).
. Indeed let f € I and denote by ¢ the bound of F in L«(0, T'; B); there exists f.
such that |f,llzeo,r; 3y <¢ and f,—f in L?(0, T'; B) then (**) ||f|z]ze0,my<¢ and by
(1.1) fe L0, T'; B) and |fle0,r;my<c. ™

REMARK 4.3. — Theorem 1 gives, by using lemma 2, a vector valued extension
of Fréchet-Kolmogorov’s theorem. A set F of Lr(0, T; B) is relatively compact
in I#(0, T'; B), 1<p < oo, if and only if

ta
Vo< <t<T, {ff(t) dt: feF} is relatively compact in B,

2
T—a

Ya > 0, f”f(t + k) — f(®)]3 4t — 0 as h — 0, uniformly for fe F,

a

a T
f“]‘(t) I3 de +f|];f(t)|]§; dt — 0 a8 @ — 0, uniformly of fe#. u
i oop

0

(%) 4ol = 1flz in L0, T) weak if ¢ <oo, and in L®(0, T) weak * if q = oo.
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5. — Some estimates by translations.

We search for condifions involving the time criterions (3.2) or (4.2). A first
possibility is to consider funections with integrable derivatives or more generally
distributions with integrable derivatives.

Let D'(10, T[; B) be the space of distributions from 10, 7] into B which is defined
by L. SCHWARTZ [S02] as the space of linear continuous maps from D(10, TT) (29)
into B. The derivative df/dt of a distribution f is defined by (df/dt)(p) = — f(dp/dt),
Vo & D(10, T1). T

For every integrable function f, a distribution is defined by f(p) sz(t)(p(t) dt,

[

Yo & D(10, T[). So L»(0, T; B) is identified to a sub-space of D'(10, T[; B), which
allows to define the distributional derivative of any function of L#(0, T'; B).

For the distributions whose derivatives are integrables, the translations are
estimated by the (standard)

LeMMA 4. - Let f € D'(10, T[; B) be such that of/¢t € Lr(0, T'; B) where 1 <#< co.
Then fe€ C(0, T; B) and, Vb > 0,

pltis—1r %—z ifr<p<on
(0,73 B)
(5.1) lzaf — flzoco, 11,3y < of
hTUp—1ir = ifl<pgr. m
0t (0, ; B)

Proor. — For every g € L' (¢, T'; B) there holds g — (B/St)f.g(s) ds =0 (it is ob-
vious if g is continuous and the general result follows since 00(0, T'; B) is dense in
LY 0, T; B) by definition). Setting g = a.flat it yields (a/at)(f — J (of [ot)(s) ds) =0
then there exists (**) b€ B such that f — £ (6f/2t)(s) ds == b.

t+h
Then f € C(0, T; B) and f(t + k) ~ f(t) =] (3f/ot)(s) ds, 0<t<T—h. So that 7,f —
t
— f = hM,(of/ot) and (5.1) follows from Young’s inequality (i.5). m

Another possibility in view of verify the time criterions is to consider functions
in a Sobolev space. For 0 <o <1 and 1<p< oo denote
T T

Wﬂm((),T;B):{f: fe I#(0, T; B) andf & =113 g, 45 oo}

|t—s]""+1
0

with the usual change if p = co.

(**) D(10, T[) is the space of real valued C® functions with compaet support in 10, T7{.

(2%) L. ScEwar1z, [SC1] theorem 1, p. 51, proved that every real distribution whose
derivative equals 0 is a constant. The proof extends without change to the vector valued
distributions.
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T T
A semi-norm is defined by [f]ze.= (f [...at ds)l/f’ and the norm is defined

BY [lien = (113 + [10) 0o
The translations are estimated by the

LEMMA 5. — Let fe Wo'(0,T; B), 0 < o<1, 1<r< oo and let p be such that

. 1 . 1 . 1
(5.2) p<oolfa>;,p<oolfa:;,p<r*=l__w1fa<;.

Then fe L?(0, T; B) and there exists ¢ independent of f such that, Yk > 0,

B o gy T r<p oo

(5.3) Wl — Hle, 11,3 <
|| 3 ”L (0, T—, B) ohaTllp—ll'f“fHWc,T(O’T;B) ifl<r<p. B

This lemma may be obtained by interpolation, for some »>r (3!) from lemma 4,
and for every # from the fractional Sobolev imbedding theorems of J. PEETRE [P] (22).
A direct proof is given in [SI3, remark 8.5], with a known constant e.

The time criterions are also satisfied if

(5.4) I75f — 1

LT(O, T;B)<Mhu, Vh> 0

with r>p. But it is enough to verify this estimate for some ¢ < p, with regard fo

Levmma 6. — Let f e Lr(0, T'; B) satisfy (5.4) with 0 < &<1, 1<r<oo and let p
be such that

. 1 7 . 1
(5.5) p< oo if 0>;,p<r*=1~m~ if ag;.

Then fe I*(0, T; B) and there exists ¢ independent of f such that, Yh > 0,

cMpTIPUT i p<p< oo

(5:6) If = floormm = o psae 5 l<p<r. ®

This result is proved in [SIS, remark 8.4]. The inequality for p<r is obviocus

(21) One has (I», Whi),, =Wor if 1/r = (1 —o)/p + o/¢ then lemma 4 imply that
ltnf — flze < RO+ H2—UB)|| ]| = Ro+Ve—1|f]l, where ||| is the interpolation norm and
1<{<p. This gives (5.3) for r<r<p where 1/r = (1 —o0)/p + o and the case r >p follows
from the case » = p by Holder inequality (1.3).

(22) By [P] theorem 8.1 and 8.2, Worc L if o < 1/r and Wor c Co—lUr if ¢ < 1/r. See
equally [BL] theorem 6.5.1, p. 153. All results are proved for real valued functions.
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by (1.3). This lemma and the previous one are peculiar cases of imbedding in the
spaces By(0, T; B) (*).

Let us add an imbedding result in differently valued Sobolev spaces. For m
integer and 0 < ¢ <1 denote

a am—-l am
Wrten(0, T; B) = {f: f,—a-é, s 5 € L7(0, T3 B) and Effe We(0, T;B)}

W—ﬂm—t—u,p(o, T; B) —

am - )
:{f=f=go+ Jr_a‘th where o, ...; gma€ L2, T'; B), g€ Wo?(0, T;B)}-

The derivation being defined in the distribution sense all these spaces are included
in D'(10, 7[; B); equipped with the standard norms they are Banach spaces.
Let W™*%?(0, T'; B), m>0, denote the space W™*%?(0, T'; B) equipped with the
semi-nomm [imses = |82 s (|-l = [ z)-
Let B,, B, be two Banach spaces; then the interpolation spaces (**) (B, B,),
where 0 < 6 <1, 1<g¢< oo are intermediate spaces between B, and B,.

LEmMmA 7. — Let s, s, be not integer, $,>0, 1 <ry<< oo, 1 <y << oo,

Tet 0 <0<, 8,=(1—0)s+ 08, 1jr,= (1 — 0)/rs+ O/r,. If s, i3 not an in-
teger or if »,<2 there holds

We(0, T; By) N W(0, T; By) c W*(0, T; (By, Biy,,,) -

PROOF. — Let us notice first that W may be replaced by W™ Indeed if f is
bounded in W*™(0, T; B,) there holds, see [P], f = fn - P, where f, is bounded
in. W*(0, T; B,) and p,, is a polynom in ¢ of degree m (m<s;<<m + 1) with coeffi-
cients in B,. If { is moreover bounded in W* (0, T; B) then p, is bounded in
Wee(0, T; B,) + W*™(0,T; B,) c W*'(0, T; B,), s = infs;, r = infr;, whence iis co-
efficients are bounded in B, and finally f is bounded in W*" (0, T'; By).

On other hand, see [G] (6.9), p. 179 if s, are not integers, one has (W*™(0, T; B,),
W0, T; By))y,, = BE7(0, T; (By, Bysy).

The lemma follows since By"= W*" is not an integer, and since By'c W*" if ¢
is integer and 1<r<2 from [G, (6.6), p. 178]. H

() BY" = {f e I’|[ (A°|[v,f — [l )" (dR[h) < oo} for 0 < o<1, with usual change for

1]
g = co. Then B2’ c Bo+1/»~1m» yp gatistying (5.5). For ¢ = co one obtains lemma 6 since
B%" = {f satisfying (5.4)}, and lemma 5 follows since W%’ = BJ" c BY". These results arc
proved in [8I3]; they may also be obtained by interpolation from the fractional Sobolev
imbedding theorems of [P].
(*1) For the definitions see for example [G] whose notations are used here.
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REMARK 5.1. — In particular if s,,s; are not integer, s<<0<s and 0 =
= — $,/(8;— &), there holds

(5.7) W0, T; By) N W0, T; By) c L0, T; (By, By)s.,) -

Since W*! increases as s decreases, this imbedding holds for every s,<< 0 <s,
i —sfsi—s)<i<l. n :

REMARK 5.2. — Denote W2?(0, T; B) the elosure of D(10, T[; B) in W*(0, T'; B).
If B is a reflexive space and if 1 < p < o0, 8> 0 then W*?(0, T'; B) is the dual
space of W'(0, T; B') where 1/p -1/p' =1, B' = dual space of B, and the norm
of W™%? ig equivalent to the dual norm. &

ReMARK 5.3. — The fractional spaces may be characterized by translations since
T
dh\1/r
“f"ﬁ"’:'= (2f(h__a“'5hf—- f”LT(O,T—~h;B))T ‘1—@—) fOI' 0 < o< 1, r << oo
o

with the usual modification if r = co. H

6. — Compactness for functions with values in a compact space X.
Let us now consider another space X, so that

(6.1) X c B with compact imbedding (X and B are Banach spaces) .
The characterization of theerem 1 gives the

THEOREM 3. — Assume (6.1), F c L?(0, T; B) where 1<p< oo, and

(6.2) F is bounded in I; (0, T; X),

(6:3) [af — fliso, r—n:3y— 0 a8 & —0, uniformly for fe F.

Then F is relatively compact in L#(0, T; B) (and in C(0, T; B) if p =c0). ®

ta
PROOF. — For every 0<#,<#,<T, f is bounded in L'(, ; X). Then [f(z) dt
171
is bounded in X whence it is relatively compact in B, and one uses theorem 1. W

This result, excepted the localization in (6.2), is announced in [SI2], remark 3.2,
and is partially proved in [T2], theorem 13.3.
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REMARK 6.1. — The space criterion (6.2) may be replaced by the weaker one:

ta
YO < t,<t,< T, [f(t) dt is bounded in X. =
b1

REMARK 6.2. — It is not necessary to assume ¥ c L°(0, T'; B) in theorem 3. With
regard to remark 3.3 it is enough fo assume that v,f — f e L?(0, T— h; B), Vf € F.

OPTIMALITY OF THEOREM 3. — The order p is the best one for compactness since
it is the best one for boundedness. This is obvious if ¥ is reduced to a single fune-
tion f such f(3) = byp(i), be X. H

The space criterion is obviously verified if ¥ is bounded in L'(0, 7; X), and one
may examine whether the localization of this eriterion is a useless complication or
not. In boundary value problems some estimates, and peculiarly the estimates in
the «more regular » spaces, don’t hold up to the boundary of the interval [0, T']
thus it is usefull to search for local criterions.

REMARK 6.3. — More generally a finite number of singular points T'y<< T, << ... < Ty
nia,y be introduced: (6.2) may be replaced by ¥ is bounded in L}OC([O, TN{T,, Ty, .
vy Tw}; X).

Indeed by theorem 3 F is relatively compact in L*(T,, T,.,,; B), Vn, then in
L?(0, T'; B); this extends to C(0, T; B) if p=0c0. H

For differentiable funetions it follows:

ey

COROLLARY 1. — Assume (6.1), and let m be any integer.

Let F be bounded in Wi "0, I'; X) and oF[ot = {of/ot: { € F} be bounded in
ILY0, T'; B). Then ¥ is relatively compact in L?(0, T'; B), Vp < oo.

Let F be bounded in W;;”(0, T; X) and oF/dt be bounded in L'(0, T; B) where
r>1. Then F is relatively ecompact in G0, T; B). &

Remind that F is bounded in W ™'(0, T'; X) if H' = 0mG/dt» where G is bounded
in Lj (0, T; X). If X is a reflexive space it is particularly satisfied, see remark 5.2,
if there exists w>1 (25) such that

om ) ,
g,? y Ve D(J0, T[; X') .

L#0,T; X')

T
(6.4) ‘ff(t)qo(t) dt‘ <o
0

PROOF OF COROLLARY 1. — The time criterion (6.3) is satisfied by lemma 4. The
space criterion (6.2) is satisfied if m<0. If m > 0 by lemma 7, see remark 5.1, ¥ is
bounded in L, (0, T; X) where X = (X, B),, m/(m + 1) < 0 <1. The imbedding
X — B is compact by [LP, theorem 2.1, p. 36] (2¢), then the space criterion is
satisfied with X. =

(28) If p =1, F is obviously bounded in W10, T, X).
(26) Since X is of class Ky(X, B) by [LP] proposition 1.1, p. 27.
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OPTIMALITY OF COROLLARY 1. —~ The restrietion p < oo is necessary since there
exists bounded sety F in L'0, T; X) with 9#/9f bounded in LY(0, T; B), which are
not relatively eompact in L®(0, T'; B): see proposition 3 in section 11. ®

REMARK 6.4. — One may avoid the use of intermediate space X as follows: by
theorem 2, F is relatively compact in W-=1(0, T; B), and sinece F is bounded in
W10, T'; B) lemma 10 shows that it is relatively compact in W'(0, T'; B), Vo < 1
and the corollary 1 follows by the fractional Sobolev imbedding theorem. &

More generally in the fractional or not Sobolev spaces there hold:

COROLLARY 2. — Assume (6.1). Let F be bounded in Wi (0, T'; X)\ W*'(0, T'; B)
where s > 0, 1<r<C oo and s, is real, 1 <7y< oo.

If s<1/r then I is relatively compact in I7(0, T; B), Yp < ry = #/(1 — 7).

If s > 1/r then F is relatively compact in O(0, T; B). =&

PROOF OF COROLLARY 2. — For s>1 it follows from corollary 1. For s<C1 it
follows from theorem 3: the time eriterion (6.3) is satisfled by lemma 5, and the
space criterion (6.2) is satisfied if s,>0, and if s,<< 0 it is satisfied with X = (X, B), ,,
— 8o(81— 8¢) < 6 < 1, by lemma 7 (see remark 5.1). The imbedding X — B is compact
as in the proof of corollary 1. =

Let us notice that one may obviously conclude with an estimate in a Sobolev
space on X:

If 0<s< ; , Wor(0, T; X)c L*(0, T'; B) with compact imbedding
(6.5) Vp<r*=1_w.
Ifs >—}; , Wer(0, T'; X) c C(0, T'; B) with compact imbedding .

OPTIMALITY OF COROLLARY 2. — The restrietion p < 7, when s<1/r is necessary
in corollary 2 if s,— 1/r,<s —1/r, and in (6.5), sinece there exists bounded sets in
Wer(0, T'; X) which are not relatively compact in L™(0, T; B): see (11.4).

The restriction s > 0 is necessary if s,<0, whatever be r and p, since there exists
bounded sets in L*{0, T; X) which are not relatively compact in L'(0, T; B): see
proposition 2. W

REMARK 6.5. — With the hypothesis of corollary 2, F is bounded in L™(0, T'; B)
by lemma 5. Then the closure F of F in L?(0, T; B) is bounded in L™(0, T; B) by
remark 4.2, ®

REMARK 6.6. ~ Compactness for the limit coefficients. F is relatively compact
in L'(0, T'; B) if F is bounded in Wisy*(0, T; X) and if |7,7 — fljerco, 7—n: 3y~ 0 28

Ioe
h — 0 uniformly for fe F. The proof is similar to the corollary 2 proof.
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In the differentiable case F is relatively compact in C(0, T'; B) if F is bounded
in WitH(0, T'; X) and if | z,(3f/0t) — o[t 10, 71,5~ 0 as h —0 uniformly for
fel.

Notice that the assumption on 0f/0f way be replaced by |(&f/2i)(t)|<g(d), V¢,
where g€ L0, T') is independent of . o

7. — Partial compactness for functions with values in a compact space X.

If F is bounded in L2(0, T'; B), the compactness in L*(0, 7'; B) for every p < ¢
may be obtained with weaker hypothesis than in the preceding section. Let us
consider again

(7.1) X c B with compact imbedding (X and B are Banach spaces) .

The characterization of theorem 2 gives the

THEOREM 4. — Assume (7.1), 1 << ¢ << oo, and

(7.2)  F is bounded in L%0, T; B) N L. (0, T; X)

(1.3)  Vo<t<t<T, |tf—FHluw,um—0 as b —0, uniformly for fe F.

Then F ig relatively compact in I?(0, T; B),Vp<¢. ®

In ecomparison with theorem 3 the time criterion which was stated in L7 is
replaced here by the similar one (7.3) in Lj,.; it will be weakened again in section 9

(by setting it in any Banach space whatever).

OPTIMALITY OF THEOREM 4. — The strict inequality p < ¢ is necessary from
proposition 1 in seetion 11. ®

For functions bounded in Sobolev spaces it follows:

COROLLARY 3. — Assume (7.1). Let F be bounded in L0, T; B)yN W ,»1(0, T; X)N

N W0, T'; B) where 1 < ¢ < oo, m is integer, s > 0. Then F is relatively compact
in Zr(0, T; B),Vp<q. ®

Proor. — The time criterion (7.3) is satisfied by lemma 5. The space criterion
(7.2) is satisfied if s,>>0; if s,< 0 F is bounded in L (0, T, X) where X = (X, B), |,

— 8/(81— %) << 8 << 1, by lemma 7 (see remark 5.1) then the space criterion is
satisfied with X (?7). =

(*") The imbedding X — B is relatively compact as in the proof of corollary 1.



84 Jaoques SmioN: Compact sets in the space L*(0, T; B)

It is possible to aveid the intermediate space X, see remark 6.4. Remark that
one finds again the corollaries 1 and 2 for p < oo from corollary 3 and Sobolev
imbedding thecrem.

OPTIMALITY OF COROLLARY 3. — The restriction p < ¢ is necessary if s<1—1/q:
see proposition 4. The restriction s> 0 is necessary by proposition 2. m

REMARK 7.1. - With the hypothesis of theorem 4 or of corollary 3, the closure F
of F in I7(0, T; B) is bounded in L0, T; B). It follows from remark 4.2. H

8. — Compactness for functions with values in an intermediate space.

By using a method due to J. L. Lions, the time criterion which was stated on
translations with values in B may be replaced by the similar one with values in any
space ¥ whatever if the space eriterion is strengthened.

So let us consider

(8.1) X cBc Y with compaet imbedding X — B (X, B and ¥ are Banach spaccs)
The main result of this section is:
THEOREM 5. — Assume (8.1), 1<p< oo and

(8.2) F ig bounded in L?(0, T; X),

(8.3) I%f — flusco, zoms vy = 0 88 h — 0, uniformly for fe F'.

Then F is relatively compact in L#(0, T'; B) (and in C(6, T; B) if p = o). m

In comparison with theorem 3 the time eriterion (8.3) is stated with values in ¥
instead of B, whereas the space eriterion (8.2) is stated in L» instead of If,.: Thus
for ¥ = B we don’t find again theorem 3; in this case it is better to go back to
section 6.

A proof of theorem 5 is given in [SI1], lemma, for reflexive spaces in the case
1 < p < oo. The present proof relies on the following estimate of J. L. Lrons (*®).

Levuma 8. — Assume (8.1). Then
(8.4) Vp>0, AN such that: VYoeX, |v|,<y|v|z-+ Njv],. =

ProOF. — Denote V,= {ve B: [v]z<n + n|v]z}. The sets V, are open in B,
they increase with # and their union covers B. The unit sphere § of X being rela-

(28) See [L1] p. 59 or [L2] lemma 5.1, p. 58.
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tively compaet in B, there exists & finite N such that §c Vy. Which yields:

lv]le<nlo|z+ N|v]y, VeeX such that [o]z=1.

The inequality for every » € X follows by multiplication by any positive number. @

ReEMARK 8.1. — If the imbedding X — ¥ is compaet, then (8.4) characterizes
the intermediate spaces B such that the imbedding X — B is compact. Indeed it
is easy to see that (8.4) imply the compactness of the imbedding X — B. =

In the evolution spaces it follows

LEMvA 9. — Assume (8.1). Let F be bounded in L#(0, T'; X) and be relatively
compact in L#(0, T; ¥), where 1<p<oo. Then F is relatively compact in Lr(0,
T;B). &

PROOF. — Given &> 0 there exists a finite subset {f;} of F such that: Vf e F, 3,
such that ||f — £l no, 7, vy<&. The inequality (8.4) implies

If — fi“m(o, T;B)<’7Nf - fe”m(o,m;x)‘*‘ Nif - fi”Lv(o,T; n<nc -+ Ne

where ¢ is the diameter of F' in L#(0, T'; X). Given &> 0, for # = &'/2¢ and & =
= ¢/[2N it yields [f — {0, 1:5<¢ which proves that F is relatively eompact
in I#(0, T; B). ®

Proor orF THEOREM 5. — By theorem 1 F is relatively compact in L?(0, T'; ¥)
and one concludes with lemmsa 9. ®

OPTIMALITY OF THEOREM 5. ~ The order p is the best one for compactness since
it is the best one for boundedness. It is obvious if F is reduced to a single func-
tion f such that f(t) = be(t), be X.

Let us now give some applications. For the differentiable functions, verifying
the time ecriterion (8.3) by lemma 4, the Aubin’s result is extended (%) by:

COoROLLARY 4. — Assume (8.1).

Let F be bounded in I#(0, T'; X) where 1<p < oo, and oF[ot = {of/cf: fe F}.
be bounded in L0, T; Y). Then F is relatively compacet in L#(0, T; B).

Let F be bounded in L=(0, T; X) and 9F/ot be bounded. in L"(0, T; ¥) where
7 >1. Then F is relatively compaect in C(0,7; B). ®

(#%) It was proved in the case r <1, 1< p < oo, see [AU] and [L2] theorem 5.1, p. 68
and theorem 12.1, p. 141.
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OPTIMALITY OF COROLLARY 4. — The order p is the best one for compactness for
some spaces B satisfying (8.1): see (11.8) and (11.9). On other hand with extra
hypothesis on B it ig possible to prove compactness for some ¢ > p: see corollary 8.

The restriction p < oo when ¢ == 1 is necessary whatever be the space B: see
proposition 3. &

More gonerally in the Sobolev spaces, verifying the fime criterion (8.3) by
lemmao 5 for fractional orders, one has:

COROLLARY 5. — Assume (8.1) and 1<p< oo, 1<r< co. Let F be bounded in
Le(0, T; X) N\ Wer(0, T; ¥) where s> 0 if r>p and where s> 1/r—1/p if r<p.
Then F is relatively compact in I?»(0, T; B) (and in C(0, T3 B) if p = o). &

For + = p = 2 and reflexive spaces one find again the theorem 5.2, p. 61 of [L2].

OPTIMALITY OF COROLLARY 5. — The order p is the best one for compactness for
gsome gpaces B ag in corollary 4: see (11.8) and (11.9).

The restriction s > 0 is necessary whatever be the space B from proposition 2,
and the restriction s> 1/r —1/p when r<p is necessary from proposition 4. M

REMARK 8.2. — Some results may be extended to the case where X is not a vector
space. Indeed lemma 8 still holds if X is a cone and if || |; is replaced a non-negative
homogeneous function such that {# € X: p(w) <1} is relatively ecompact in B. This
idea is due to J. A. DUBINSKII, see [D] and [L2] section 12, p. 140 where it is applied
to & non linear problem.

Remark in particular that it is not necessary that the spaces X and ¥ be com-
plete. W

9. — Partial compactness for functions with values in an intermediate space.

If F is bounded in L0, T; B) the compactness in Lr(0, T'; B) for every p < g is
obtained with weaker hypothesis than in the preceeding section. The boundedness
in 17(0, T'; B) may result from estimates in X and ¥ as it was supposed by J. P.
AvuBin [AU], as well as it may be independent (%).

Let us consider again

(9.1 X c Bc ¥ with compact imbedding X — B (X, B and ¥ are Banach spaces) .
THEOREM 6. — Assume (9.1), 1 < g¢< oo and

(9.2)  F is bounded in L%0, T; B)N I (0, T; X),
(9.8)  Yo<t;<t,<T, |ltnf — flp,ts 1y 0 88 h —> 0, uniformly for fe F.

(3%) For a boundary value problem it may be an «estimate » of the solutions.
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Then F is relatively compact in L?(0, T; B),Vp <¢q. =

Proor. — By theorem 1 F is relatively compact in Ll (0, T; ¥), then it is rela-
tively compact in L0, T; B) by lemma 9, and one conclude with lemma 3. m

OPTIMALITY IN THEOREM 6. — The rostriction p < ¢ is unecessary from proposi.
tion 1 in seection 11. &

For the differentiable functions it follows, with lemmsa 4, the

COROLLARY 6. — Assume (9.1) and 1 < ¢< co. Let F be bounded in Le(0, T; B) N
N L (0, T; X) and 6F/ot be bounded in L} (0, T; ¥). Then F is relatively compact
in I#(0, 7;B),Vp<q. ®&

OPTIMALITY IN COROLLARY 6. — There exists some spaces X, B and ¥ such that
the restriction p < ¢ is necessary: see the proposition 5 with s,=0, 8,=1, ry=1,=1
6 =1—1/q then ss=1—1/g,1re=1 and s =0, 7r=¢q. N

’

More generally in Sobolev spaces the time criterion (9.3) is obtained for frac-
tional orders by lemma 5 and one has

COROLLARY 7. — Assume (9.1). Let F be bounded in Ll (0, T; X) N L0, T; B) N
N Wie(0, T; Y) where 1 < g < oo, s > 0. Then F is relatively compact in L?(0, T; B),
YVp<¢. w

REMARK 9.1. — With the hypothesis of theorem 6 or of corollary 6 or 7, the
closure ¥ of F in L#(0, T; B) is bounded in Lo(0, T'; B). It follows from remark 4.2. W

OPTIMALITY IN COROLLARY 7. — The restriction p < ¢ is necessary (when s<1/q)
whatever be the space B, see proposition 4. When s > 1/q it is necessary for some
spaces, see proposition 5 with 6 = (1/s)(1 —1/¢). =

10. — The case of intermediate spaces_ of class 0.

Consider a set F satisfying the space and ftime compactness criterions (8.2) and
(8.3) with two different coefficients, say p, and p,.

1) If p,> p, the partial compactness result of theorem 6 gives that F is rela-
tively compact in L?(0, T'; B), Vp < p, and this cannot be improved.

2) If p,<< p, theorem 5 gives the relative compactness for p = p,. The point
now is to improve this result when B is a space of class § (with respeet to X and Y),
that is to say if there exists 6 and M such that

(10.1) [ols<M|o[5°[»]5, VveXNY, where0<O<1.
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This definition has been brought by J. L. LioNs and J. PEETRE, [LP] defini-
tion 1.1, p. 27 (1), where many properties are given. These spaces are easier to use
and are more general than interpolation ones. Indeed every interpolation space
(X, ¥),, satisfies (10.1), but B is not necessary an interpolation space. Precisely
if Xc¥, (10.1) is equivalent to Bc (X, Y),,, by [LP] proposition 1.1, p. 27.

As in the preceding sections let us assume that B is intermediate between X
and Y:

(10.2) XcBcY with compact imbedding X Y

(X, B and Y being Banach spaces).

A basie result in this section is

THEOREM 7. — Assume (10.1), (10.2), 1<p;< oo and

(10.3) F is bounded in I*(0, T; X),

(10.4) lnf — Az, 7—=1; vy — 0 @8 h — 0, uniformly for fe F.

Then F is relatively compact in. L*°(0, T; B) where 1/pe= (1 — 0)/p,-+ 0/p,. B

The ordre ps is intermediate between p, and p,, then this result is fruitful only
when p, > p,: see the optimality in the following. Remark that in this case pe
increases with 6 then the largest (32) 0 satisfying (10.1) is required.

The proof of theorem 7 lics on the following compactness lemma, which is due
to J. L. LionNs and J. PEBTRE ().

LeMMA 10. — Assume (10.1). Let K be bounded in X and relatively eompact
in ¥. Then K ig relatively compaet in B. H

PROOF. — Ve > 0 there exists a finite subset {v;} of K such. that: Vo € K, Jv, such
that I['v—vi]];<e. Then ”1)—4),-[[3<_Mcl_oe° where ¢ is the diameter of K in X,
which implies the relative compactness in B. ®

For evolution spaces it follows

LEMMA 11. — Assume (10.1). Let F be bounded in L0, T'; X) and be relatively
compact in I?1(0, T'; Y) where 1 <p, < oo. Then F is relatively compact in L*(0, T'; B)
where 1/pe= (1 — 0)/p, + O/p,. H

(31) With their words it means that BeKyX, Y).
(3% If XcY and B is of class 6, then it is of class 6’ for every 6 = 6.
(33) [L.P] theorem 2.3, p. 38.
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ProoF. — By the Riesz inequality there holds: Vfe L™(0, T; X) N L0, T; Y)
then fe L*(0, T; B) and (®*)
- , 1 1—6 6
(10.8) 1l sy g 3o <My g, W1 where  — =

20,1:8) V0,15 0)" EP0, T 7) I 2 T

Then one uses lemma 10 with K =F. m

PBOOF OF THEOREM 7. — By theorem 1 F is relatively compact in L™(0, T'; X)
and one concludes with lemma 11. o

ReMARK 10.1. ~ The hypothesis on spaces, (10.1) and (10.2), imply that the im-
bedding X — B is compact: it follows from lemma 10 with K == unit ballof X. m

Remark that the hypothesis on F, (10.3) and (10.4), imply by the Riesz ine-
quality that F is bounded in L”%(0, T'; B). Then the partial compactness result of
theorem 6 gives again the compactness for every p << pe but it don’t allow fo get

P = po.

OPTIMALITY OF TEEOREM 7. — The theorem 7 is not optimal.if p,<p,. Indeed
if p, < Py, the partial compactness result of theorem 6 gives a larger order (Yp < p,
which is better than p = pe); if p, = p, the theorem 5 gives the same order (p, = ps
which is optimal) for more general spaces B.

At the contrary if p, > p, then ps is the best order of compactness as of bound-
edness for some spaces B: see proposition 6 with s,= s, = s¢= 0. It may be proved,
whatever be the space B, that the best order is p,p, where 6(B) is the largest 6
satisfying (10.1). ®

For the functions whose derivatives are integrables, the time criterion (10.4)
is satisfied for every p,<C co, then theorem 7 gives:

¥
Let I be bounded in I#(0, T; X) and aa_t be bounded in L1(0,7; Y).
(10.6)
Then F is relatively compact in L#(0, T'; B), Vp < 111’_ R

This improves the corollary 4 in the case r = 1. Now if the derivatives are
r-integrables one can choose p, = oo in theorem 7, then the compactness hold for
P == po/(1 — 0). The theorem 7 cannot give a better result, but the result may be
improved in the following way.

(34) This inequality iz obtained by using the Young real inequality ab<a%q -+ b¥'/¢
(where 1/q +1/¢'= 1) for a = (If(#) | x/Iflzez))?™~®, b = ([1®) | ¥/ 1/ zs))?° and g = po/p(1 — ),
q' = p,/p9, p = pe and by integrating in ¢,



90 JA0QUES SiMoN: Compact sels in the space Lr(0, T'; B)

COROLLARY 8, — Assume (10.1), (10.2) and 1<p,<oo, 1<r < co. Let F De
bounded in L™(0, T'; X) and oF/ot be bounded in L™(0, T'; ¥).

It (1 —1/r)<(1 — 0)/p, then F iy relatively compact in L=(0, T; B), ¥p < ps
where 1/p. = (1 — 0)[p,— 6(1 —1/r,).

If (1 —1/r) > (1 — 0)/p, then F is relatively compaet in C(0,T;B). m

If r,=1 one finds again (10.6).

PROOF OF COROLLARY 8. — By lemma 4 there holds |7,/ — frro, r—n: v) <€ 7
Y/ e F. Then the Riesz inequality (10.5) gives

lzaf = Hlzroco, r—nimy < M| e f — f”;z‘?(O,T—h,X)”Thf - f“z%(o,fr—n;Y)<Mc$‘001eh6

where 1/rs== (1 — 8)/p, + 0/r; and ¢, is the diameter of F in L™(0, T; X).
One concludes with theorem 3, which time criterion (6.3) is verified by lem-
ma 6. m

More generally it is possible to use assumptions in fractional or not Sobolev
spaces. Denote

W = Wer(0, T'; X} Weors(0, T; Y) where s, are reals,, I1<r,<oo

1 1—9 0 1
8g = (1 —0)s, -+ Os;, P p. and  sy= 36"‘7',“6-
] 1

(10.7)

Then the eorollary 8 may be generalized by:

COROLLARY 9. ~ Assume (10.1), (10.2), (10.7) and ss > 0. Let F be bounded in W.
If 5. < 0 then F is relatively compact in L»(0, T'; B), Vp << Py = — 1/84.
If 84> 0 then F is relatively compact in C(0, T; B). =

Remark that the order p, is intermediate between 7y and co and that in the
fruitful case (see the optimality in the following) where s,— 1/r,<<s;— 1[ry, P«
increases as 0 does.

PROOF OF COROLLARY 9. — Assume first that s,, s; are not integer and let & < 0
be sueh that s,> 0,s,—1/r,> —1/p (p = oo if 8, >0) and such that s, is not
integer. By lemma 7 one has Wc W*™(0, T; X,) where X,= (X, ¥),, . Since
a < 6 it follows from [LP] (%) that X, c B with compact imbedding, and one con-
cludes with (6.5).

If s, or s, is integer let s, < s, be not integer and such that s, > s >— 1/p.
Then Wc W’ and one concludes by the non integer case. ®

(**) The section 1.3, p. 28 of [LP] gives that X, is of class K, (X, ¥) and (X, ¥)g, is
of class Ky(X, Y). By theorem 2.3, p. 38 the imbedding X, ~ (X, ¥)p,; is compact and
(X, ¥Y)g1cB with continuous imbedding by proposition 1.1, p. 27.
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The corollary 8 might have been proved so. However the proof which was given
has the advantage to aveid the intermediate imbedding result of lemma 7 which
full proof is not easy.

Let us remark that, by choosing s,= 0 and s, = 1 in corollary 9, one find again
the case of differentiable functions which was treated in eorollary 8. By choosing
8= 0 and s, = m one treats the case of m times differentiable functions. More
generally results on the intermediate derivatives are obtained by applying the
corollary 9 to the set o'F/[ot! = {9f/o': f e F} with s,= —j and s,=m —j. It
yields

COROLLARY 10. — Assume (10.1), (10.2) and 1<p,< oo, 1< < oo. Let F be
bounded in L”(0, T'; X) and o=F/¢t» be bounded in L"(0, T; ¥), and let §< 6m
and 1fro= (1 — 0)[py+ Ofr,.

If j>0m —1/re then " F[ct’ is relatively compact in L7(0, T'; B), Yp << py where
1/ps = 1jre— (8m — J).

It § < Om —1[re then o/F/ot is relatively compact in C(0,T; B). =

OPTIMALITY OF COROLLARIES 8, 9 AND 10. — The restrictions p < p, are necessary,
for some spaces B, from proposition 5. ®

REMARK 10.1. — The limit cases. 1f § =1 one has B == ¥; all the proofs of this
seetion still holds and one finds again almost all the results of section 6 (3¢).

The assumption that B is of elass 0 = 0 is satisfied as soon as X c Bc Y. But
the lemma 10 and 11 are no more valid, then for this case one has to go back to
section 8. W

A congequent class of spaces in boundary value problems is the one of Sobolev
spaces built on an open set £ of R*. Let us suppose that

L2 is open, bounded and it satisfies the cone property (*%) in R,

(10.8)
B X=W<hQ), B=W"Q) and Y=WHQ).

Then B is intermediate in the sense (10.2) if and only if

(10.9) oe>a>a; and  Sy>f>f, where f= a—g, B:= oci—/g—.

The point now is to find the begt, that is the largest, 6. It is given by the

LeMMA 12, — Assume (10.8) and (10.9). Then (10.1) holds V6 < « where

S L .
(10.10) u = inf {“o_ ot 50“51}' ]

(*) The theorem 7 gives again the theorem 3 exeept the local type in the space crite-
rion (6.2), and the corollary 8 gives again the corollary 2 with the same restriction.
(37) See for example [AD] section 4.3.
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PROOF. — By the proposition 1.1 of [LiP], (10.1) is equivalent to (W*t, W*»%), ¢
c Wk, Now if 6 < u one has (%) (Wb, Writ), . c W where o, = (1 — u)o -+ e
and 1/0,= (1 — )/l + u[ly.

Denote a = (otg— )/(otg— o) and b = (fo— B)/(fo— b1)-

Tf a<b one has o, = o and (**) £,>¢ then W™ c W*% and (10.1) is satisfied
since # = a.

If a>b one has w>a,= o« and o— n/= (1 —b)fo+ 1= 0 = o — n/{ then
by the fractional Sobolev theorem there holds W**®c W** and (10.1) is satisfied
gince v =b. W

REMARK 10.2. — The limit coefficients. (10.1) holds for 6 = u if oy, oy and « are
not integer and more generally if (use [G, (6.6) and (6.7), p. 178])

{;>2 if «, is integer, ¢=10,1, and [ ,<2if « is integer. m

11. - Optimality results.

The point now is to verify that the various restrictions on the parameters in the
preceding results were necessary. To this end some sets F' are built by homotheties
from a regular funection g.

Let us begin by some results which are satisfied for every Banach. spaces X and B
such that X c B. Denote (H,f)(t) = f(A) and let

(111) beX,b%0 and ¢@ecC°R), p=0 outside 10,7[, ¢ 0.
(11.2)  gn,(t) = ntebp(nt) and G, = {gnq: n>1}.

At first let us verify that the partial compactness dont imply the limit com-
pactness.

ProposITION 1. — For 1<¢< oo, G, is bounded in L0, T; X), is relatively com-
pact in L#(0, T; X), Vp < ¢, and is not relatively compact in L«0, T; B). =

(28) (Wao,co Wo:ncl)o c (B‘xn e o, B"‘x e, 4‘1)9 L= Buo-—e, Lo Ve > 0. If Co> ¢, then fy> ¢, and
for ¢ = op— B“f’“e» b CB"‘":C" c W"‘urfu If g, < Cl then &5 < ¢, and for e = (ag — n/ly) —
— (ot —nf2,), Bao—e %o CBzxu,cu c Wousbu,
(32) One has
1 1

0=1(—P—bh—p)< /3—ﬂ)—a(ﬁo~—ﬂ1)=ao—a'—n(g——z)—
0

o )+¢m(1 1) (1 1-a a) n(l 1)
— oy — o —_—— ] =l — == —— 1.
! L & EoL G &
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Proor. — For A>1 one has

1/p
(11.3) [ H | zoc0,m = (fltp(ﬂt)l" dt) = 177 @] za(z)

R

then | g, oz, r: 9= 1"""""|b] x| @] zs(z,- It follows that &, is bounded in Le(0, T'; X)
and is relatively compaet in L?(6, T; X), Vp << q. Moreover @G, is not relatively
compact in L0, T'; X) since otherwise there would exist a subsequence such that
Ima—> 9 88 m — oo and [|g]lpao, 1 xy = [P x]@]zamy Which is impossible as g = 0 (from
the convergence a.6. or from the convergence in L#(0, T'; x)).

In these resulis X may be replaced by B, since b € B, which ends the proof. m

REMARK 11.1. — The compaectness properties may be proved by the characteriza-
tion of theorem 1: the space criterion (3.1) is satisfied since

t
fgm(t) dt € {ub: |u|<|p|;z} Which is compact in X .
ts

If p < g the time criterion (3.2) is satisfied since (use lemma 4 if 1<h<1/n)

| %agna— Gnalzoco, 7—n: ) <M 2] x| Tanp — @l zam <

<h1/q—1/ﬁub“x Sup{

op
— s 9lp » —0 as b —0.
at ”LP(R) ? ”(p”L (R)}

For p = ¢ the time criterion is not satisfled since, for h<T/2 and n>T/h

“Thgn,q— gn,q“La(o,T—h;x) = ”b”x”‘l’”La(R) +0as h—>0. B

Now let us verify that the compactness in the Sobolev imbedding theorem holds
only for positive regularity order s. Let

k.(t) = b sin (nt%) and K = {k,: n>1}.

ProposITION 2. — K is bounded in L®(0, T'; X) and is not relatively compact
in Z1(0,T;B). =

PROOF. — One has ||k,] ;0 1;x)= [[b|x. On other hand, if & = T'/n,

n—1

T
MThkn_‘kn”L‘(D,T—h;B): 4 E“b”B + 0 as h—0

then the time criterion (3.2) of theorem 1 is not satisfied, so that K is not relatively
compact in L0, 7;B). ®W
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Then let us verify that the imbedding in the Sobolev theorem is not compact
for the limit coefficients. Begin by the integer case:

PROPOSITION 3. — G is bounded in C(0, T'; X), 0G»/0t is bounded in L'(0, T; X)
and G is not relatively compact in L*(0, T; X). m®m

ProOF. — From proposition 1 it remains to bound 6G./2t. Now

' — ol
LYo, T; X)
R

In the fractionnary case one has:

%
ot

00n,
ot

0
n-a(—f(nt) dt = |b] x

L)

PROPOSITION 4. — Let 1<r<g<oo. Then G, is bounded in WY (0, T, X) N
N L0, T'; X) and is not relatively compact in L2(0,T; B). =
Changing the notations it yields:

1 . .
(11.4) let 0<s< = and %=1 . Then &,, is bounded in

W0, T; X)N L™+(0, T; X) and is not relatively compaet in Lm(0, T; B) .

PROOF OF PROPOSITION 4. — From proposition 1 it remains to bound @, in e
where s =1/¢ —1/g. Now by remark 5.2 one has

[==]

an\r
(11.5)  [Hag|wero, 7 1< (2f(h’s[]Tth(p —HﬂPULr(R))’T) = 27 @lwerm

0

then Hgn,allﬁn-r(omm<n“““‘”’ﬂbllxﬂwl

u'7s,r( R)- ]

Now let us give result in intermediate spaces, with coefficients depending on
the spaces in which the functions are valued.

Let 1 <a< oo be given and Xs= W'~%%0, T). Then () the imbedding X, X,
is compact and X, is of class 6 with respect to X, and X,. Denote

W = W0, T, X,) N W?"(0, T; X;) where s, are reals, 1<r,< co

fn(t, .’I/') — 72“(31“1/71)M1/ﬂ¢(%t)(p<ﬂm) Where ‘u — n(31—‘1/71)"(50_1/7‘u)

1 1-—6 0
F={fin>1}, sp=(1—0)s,+ 0sy, -

o ¥y

PROPOSITION 5. — Assume 8, — 1/r;>8,— 1/75: Then F is bounded and not rela-
tively compact in W and in W0, T; Xo) if s ~1/r =so—1frs. ®&

(1% For example by corollary 1 and by the application in section 10.
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ProoF. — For every s and # there exists 0 <<m << M such that, Yi>1 (),

(11.7) | H; 9]

woro,ry = 0X | @lurnmy  Where  m<o=o(lp)<M.

Since 8, —1/r >s,— 1/r, one has u>1 then (11.7) imply

“«anW‘-’(O,T; wr-e.ago, 1)) = e(n, (p)n(s—1/7‘)—(81—1/r1)‘u1-6 = o(n, (p)n(s—— 1/1)— (89~ 1/rg) .

One concludes by the same argument as in the proof of proposition 1, since
W= W0, T; Xo). ™

6=0,1
Let us complete the proposition 5 by a result for a compact set in W: denote

F = {f.flogn: n>1}.

PROPOSITION 6. — Assume s, — 1/r;»>8,— 1/r,. Then F is relatively compact in
W and, if s —1fr > ss—1/re, F is not bounded in W*"(0, T'; Xo). M

PrOOF. — It is similar to the preceding one. =

Let us give an application. Let 1<r;< oo and s,>0. Then (*2)

(11.8) Vr >, there exigts 0 < § < 1 and a compact set I in
Lm0, T Xo) N Weonn(0, T'; X) which is not bounded in L0, T'; Xp).

REMARK 11.1. — There exists some intermediate spaces B, with compact im-
bedding X,-> B, which are suitable for all » > r,, that is to say such that

(11.9) there exists a bounded set F in Lm(0, T; X;) N Weann(Q, T'5 X;) which is
compact for no one space L7(0, T; B), ¥ >17,.

For example

log k

5 =70, 1): sup PEH fraf — flyois i< o]
h>0

this will not be stated here. Remark that no one space of class 8 > 0 may be suitable

for all r > r, (it follows from corollary 9). @&

(41) If s = 0 see (11.3). For the function v with compact support in J0, 7[ which is the
cage for Hip, one has if 0 <s <1, {[9wlparo, ) = [9lwerm = | ¥l and (11.7) follows
from a change of variable, see (11.5). In the general case one has
aﬂlqp
o

I llwmtario, 7y = and | plw-mroro, my = |¥lwero, )

wer(0,T)

where 9™y, [0t = y, v, (t) = 0 if £<0, and (11.7) follows since (0"H,¢)/dt™ = AmH,(omp/[ot™).
(1) It s, —1/r, <—1/r, it follows from proposition 4, V6. If s, — 1/ry>— 1/r; it follows

from proposition 6 with s,= s = 0 and 6 small enough s5— 1/rs<<—1/r.
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