
Compact Sets in the Space L~(O, T;B) (*). 

JACQUES SIMeoN 

Summary. - A characterization o] compact sets in L~(0, T; B) is given, where 1 < p ~c~ and 
B is a Banach space, l~or the existence o] solutions in nonlinear boundary value problems 
by the compactness method, the point is to obtain compactness in a space .~(0, T; B) Item 
estimates with values in some spaces X ,  Y or B where X c B c Y with compact imbedding 
X ---> B. Using the present characterization /or this kind o] situatious, su]]ieient conditions 
]or compactness are given with optimal parameters. As an example, it is proved that i] 
{f~} is bounded in ~q(O, T; B) and in L~oo(O, T; X)  and i] {~],/~t} is bounded in L~or T; Y) 
then {f.} is relatively compact in L~(O, T; B), Yp < q. 

Introduction. 

The question. - Lef  ] .  be a bounded sequence of functions in JSv(0, T;  B) where B 
is a Banaeh  space and 1 ~<p ~< co. When  does there  exists a s trongly converging 
sub-sequence,  t ha t  is to  say when is {/~) re la t ively compact  in ~ ( 0 ,  T;  B)? 

This is a crucial point  in the  compactness method  (~) for existence of solutions 
in nonlinear boundary  value problems; several  examples of this method  were given 
by  J.  L. LIo~s  [LP]. 

A first answer which allows to solve a large diveI~ity o~ problems, as is shown 
in [L2]~ was given by  J.  P. ~ B I ~  [AU]: it suffices tha t  the  ]~ are bounded in a 
space Z~(0, T;  X) where X is included in B with compact  imbedding and the de- 
r ivat ives  (2) ~]~/~t are bounded in a space Z~(O, T; Y) where B c Y. 

Another  answer was given by  J.  L. LIo~s  [L1] for t I i lber t  spaces, b y  i eplacing 
the  bounde4uess of derivat ives by  a fractional  hypothesis  which is defined b y  the  
Fourier  t ransform. 

5~ore general ly it  suffices, as it  was proved b y  the  author  in [SII] ,  to replace the  
bmmded~ess of derivatives by  the  following uniform (in n) est imates  of t ranslat ions:  

T - - h  

ftt/~(t ~- h) --  ]~(t)[[~ d t < O ( h ) ,  
0 

where 0 denotes a f tmction such t h a t  O(h) --. 0 as h --> O. 

(*) Entrata in Redazione il 28 0ttobre 1985. 
Indirizzo dell'A. : Universit6 Pierre et Marie Curie, Laboratoire d'Analyse Num6rique 

(U. A. 189), Tour 55-65 - 5~me ~tage - 4, place Jussieu - 75230 Paris Cedex 05. 
(1) The ]~ are (( approximated ~> solutions and the strong convergence is used for passing 

to the limit in some nonlinear terms, such as [][4-1] or ](~]/~x) . . . . .  
(2) The derivatives are always defined in the sense of distributions on ]0, T[ in B. 
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The caraeterization o] compact sets. - A great question still remained:  what  are 
the  minimal assumptions for compactness? Question which is sharpened as, in all 
the  results known by  the author,  some um~ecessary restrictions on parameters  (p > 1, 
p < cr ...) or on spaces (reflexivity, separability, Hi lber t  s t ructure  ...) are s ta ted 
and ye t  in various boundary  value problems the excluded cases occur. 

A ~ a n s w e r  is given here  ( theorem 1): a set 2~ of functions ] is re la t ively  compact  
in Z~(O, T;  B), or in C(O, T;  B) if p ~- c~, if and only if 

t~ 

(0.1) Vt~< t~, f/(t) dt lies in a compact  set of B independent  of ] 

T - - h  t~ 

(0.2) fll/(t -]- h)--/(t)tI~dt<O(h), where O(h) is independent  of ] 
0 

with the  usual modifications for p --~ co; (0.1) is called the  space criterion a114 (0.2) 

is the t ime criterion. 

Partial Compactness. - In  the  boundary  value problems, the compactness  is often 
required in Z~(0, T;  B) for a set /~ which is bounded in L~(0, T;  B) wi th  q > p (3); 
this is called the  par t ia l  compactness since p ---- q is not  reached. Then  ( theorem 2) 
the t ime criterion (0.2) in Z v can be replaced by  the  similar criterion in L~or 

(0.3) V0 < t l <  t~< T f tl/(t + - t(t)ll  dt< O(h) 
tx 

where O(h) is independent  of ], but  can depend on t~, t~. 

Applications. - I n  the  bmmdary  value problems est imates are obtained,  see [L2], 
for the approximated  solutions or for thei r  derivat ives or integrals in various spaces. 
In  a general way one has (4) X c B c Y with compact  imbedding X -+ B and  the  
problem now is: obtain the compactness of F in Z~(0, T;  B), f rom est imates  in X, Y 
or B. Two kind of answer are given: 

1 ~ _Partial compavtness (section 9). - I f  F is bounded in some Z~(0~ T;  B) where 
q > p, then  the compactness hold if: 

~F 
(0.4) /~ is bounded  in L~or X) and - ~  is bounded  in Z~o~(O~ T;  Y) 

where ~F/~t-= {~]/~t: ] ~ } .  The assumptioa on 3E/~t m a y  be replaced b y  ~ is 
bounded in ~7~,1~a T;  3~) with s > 0, or b y  an est imate oil t ranslat ions in L~oc(0 , / ' ;  Y). t t  ]CC~V~ 

(8) If the approximated solutions ]~ are bounded in JSq(O, T; B), and if the convergence 
in Z~(0, T; B) is sufficient for the convergence in nonlinear terms. 

(4) c denotes an algebraic and topologic inclusion. The imbedding B --> Y is then con- 
tinuous. 
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2 ~ Limit compactness (section 8). - For  compactness up to the largest order for  
which p is bounded,  and part icular ly for p = 0% stronger assumptions are requ i red  
such as: 

a/P 
(0.5) F is bounded  in L~(0, T;  X) and - ~  is bounded  in L~(0, T;  :Y) 

(P < co). 

This holds for p----co if ~l~/~t is bounded in Lr(O, T; Y) with r > 1. The as- 
sumption oll ~ / ~ t  can be replaced b y  F is bounded  in W~.~(O, T; Y) with s > 0 and 
s > 1/r -- l ip or even by  an est imate  on t ransl ,*ions in L~(0, T;  :Y). 

_Peculiar cases. - I f  I :  = B (section 7) the spaces criterions m ay  be weakened:  
the  compactness hold for every  p < co if 

~ - ~ ' ~ 0  T;  X) and ~F (0.6) F is bounded  in , loc t  , -~- is bounded  in L~(0, T;  B) 

where m is any  integer. Various generalizations are given. 
I f  B is a space of class 0 with respect  to X and Y (section 10) some results are 

improved,  and compactness is obtained for in termediate  derivatives (corollary 10). 

Optimality. - These assumptions, for example the est imates in X or on ~t~/~t, 
are not  necessary then  one has to ensure tha t  every  application is optimal:  it  is 
verified ~hat there  is no useless restr ict ion on the parameters ,  and par t icular ly  tha t  
the compactness order p is as large as possible for the assumptions. 

Comparison with ]ormer results. - The compactness is proved in [AU] (5) if /~ is 
bounded in Z'(0,  T; X) and ~t~/~t is bounded in Lr(0, T;  Y), for r > 1, 1 < p < c~, 
X and Y reflexive spaces. See equally [IJ2] theorem 5.2, p. 60. A proof with ~he 
same restrictions excepted the reflexivi ty is given in [D], see equally [L2] theo- 
rem 12, p. 141. A proof for r = 1, p = 2, X and Y-Hilber t  spaces is given in [T1], 
theorem 2.3, 1). 76. 

The extension with /~ bouuded in W*,p(0, T;  B) instead of the assumption on 
~ / ~ t  is proved for r ---- p ---- 2, X ~nd Y Hi lber t  spaces in [L1], 1st edition chapter  4, 
see equally [L2] theorem 5.2, p. 61. 

The extension with an est imate on translat ions instead of the assumption on 
~F/~t is proved in [S I l l  for 1 < p < co, X and I: reflexive spaces. 

In  the  ease ~ = B, the compactness with an hypothesis  on translat ions is 
amlouneed in [SI2] remark  3.2, and a par t ia l  result  is proved in IT2] theorem 13.3 
p. 100 (~). 

(5) Theorem 1 with m =  1, j =  0, A o = B = X ,  ] ~ = B  and Y = A  1. 
(~) Assuming /~ bounded in Zp(0, T; B) n LI(0, T; X) and (0.2) it is proved that ~ is 

relatively compact in Z~(0, T, B) Vr < p. As it is proved here the conclusion hold for r = p 
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All the  proofs relie on one of the  following two ideas. The first one is to use 

weakly  converging subsequences and  to  p rove  t h a t  such a sequence is s t rongly 
converging. I t  requires the  ref lexivi ty  of Zv(0, T ;  X)  and  Zv(0, T ;  Y) t hen  the  
restr ic t ions 1 < p < c% 1 < r < ~ and  X and Y reflexive spaces (~). The second 

idea, which is used here,  is to approx ima te  un i formly  the  funct ions of ~ b y  some 
mean-funct ions  which are cont inuous and  to conclude with  the  A_scoli theorem.  

I~ocal regularity, Sobolev spaces and interpolation. - The compactness  criterions 
(0.1) and (0.2) are in par t icular  satisfied if, in the  bounda ry  value problems language, 

one has  uni form regular i ty  es t imates  respec t ive ly  in space and  t ime.  We search 

for local criterions since the  regular i ty  es t imates  often don ' t  hold up  to the  boundary  

of the  in terva l  [07 T] on which the  p rob lem is s ta ted.  
The compac t  sets character izat ion of theorems  1 and  2 are some vector  vs,lued 

var ia t ions  on the  Fr~chot -Kolmogorov theorem~ see r e m a r k  4.3. The applicat ions 
to Sobolev spaces (all the  corollaries) are vector  va lued extensions of the  l~ellich- 

Kondrachov  theorem.  
The f rae t ionnary  Sobolov spaces are somet imes  defined b y  interpolat ion;  here 

the  criterion (0.2) on t rans la t ion suggest the  use of the  (equivalent) definition b y  
translat ions.  For  the  in te rmedia te  spaces we use the  condit ion of (~ class 0 ~) which 
is easy to  use and  give more  spaces t h a n  interpolat ion does. Then mos t  of the  

result  are obta ined  b y  easy means.  
This work  is endebted  to J .  L. L Io~s  works for m a n y  basic ideas. A. DA~LA- 

~ A N  and L. TA~TA~ contr ibute  to it  b y  frui tful  debates .  

The outlines are 

1. The spaces Z~(0, T; B) 

2. The Aseoli theorem 

3. Characterization of the compact sets of Zs(0, T; B) 

4. Characterization for partial compactness 

5. Some estimates by translations 

6. Compactness for functions with values in a compact space X 

7. Partial compactness for functions with values in a compact spac e X 

8. Compactness for functions with values in an intermediate space 

9. Partial compactness for functions with values in an intermediate space 

10. The case of intermediate spaces of class 0 

11. Optimality results 

(~) I t  can be extended to the case where L~(0, T; X) is a dual space, than l < p  ~<oo 
and X and Y are dual spaces. I t  cannot be ex~ended for p---- 1. 
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1.  - T h e  s p a c e s  LV(0,  T;B). 

Let  [0, T]  be a botmde4 interval  of R which is provided with the Lebesgue 
measure dt, let B be a Banach space and 1<1o< oo. Denote  C(0, T;  B) the  space 
of continuous functions f rom [0, T] into B equipped with the  uniform convergence 
Ilorln~ and 

I I / ( t ) i l ; ' ,a t  = S u p  e s s  I I / ( t ) l l ,  i f  10 = �9 
O < t < T  

0 

B y  definition (8) I t (0 ,  T;  B), Io < c~, is the seper~ted completed space of U(0, T;  B) 
for this  norm;  for 10 = c~, Ice(0, T;  B) is the  subset of ZI(0, T;  B) on which the  Z ~ 

norm is finite. I t  is a Banach  space for 1 <Io < co (9). 

Then  Zv(0, T;  B) is a space of class of almost everywhere equal fuuctions;  in 
an usual  way, a f lmction will be identified to  the  class of the  a.e. equal functions. 
Then C(0, T;  B) is by  definition dense in /iv(0, T;  B) for  10 < oo. 

T 

The integral  f/(t) dt is defined if / is a measurable finite valued funct ion (lo) and 
0 

i t  depends continuously on ] for  the Z ~ norm. The measm~blo finite valued func- 
t ions being dense (11) in ZI(0, T;  B), the integrM is defined (~2) in a unique way b y  
continuous extension for ]~.5~(O,T;B). I f  ~o is a measurable subset of [0, T], 

Y 

f /(t) at = f  lo(t)l(t) at. 
to 0 

At last let Z~oo(0 , T ;  B) be the set of (class of a.e. equal flmctions) ] such tha t  
a[t,,M/eL,(0, T; B), V0 < t l <  t~< T, equippe4 with the  semi-norms IIfI1L~(~,,~;,). 

ICE,fliCK 1.1. -- Measurability. I t  follows t h a t  (la) iv(0,  T;  B) is the set of (class 
of a.e. equal) measurable flmctions / such tha t  ]]][IB~ Lv(0, T). Zv(0, T;  B) is some- 
t imes defined by  this proper ty ,  see [Y]. We won ' t  use the  measurabili ty,  excepted 

(8) [B1] definition 2, p. 129 for 10 < co and, for p = 0% definition 2, p. 206 and corol- 
lary p. 215. 

(9) [B1] theorem 2, 13. 130 for p < co and proposition 2, p. 206 for p = co. 
(lo) / is a measurable finite valued function if ]-l(bi) = co~ is a measurable set in B for 

T 

every value b~.; then fl(t)dt= ~ b i measure (coil see [B1] p. 80 and [B2]. 
0 

(11) [B1] corollary 1, p. 162. 

(18) Then ~r gt = lira f/,~(t) dt where In is a measurable finite valued function and 1, -+ ] 
0 n - ~  0 

in J51(0, T ;B) ;  see [B1] definition 1, p. 140. 
(18) [B1] theorem 5, p. 184 and definition 2, p. 206; a measurable function is by defi- 

nition a.e. limit of a sequence of measurable finite valued functions. 
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for the following 

(1.1) if / e L~(O, T; B) and IllIl~eL~(o, ~ ) ,  then j e l l ( 0 ,  T ; B )  

and 1I/1I .(o,~)= Illl/ll~lI-(o,~). 

Let us now recall some inequalities 

H61der. If  g e Z~~ T; B) and 9 e L"(0, T), l < s ~  < 0% then g9 e L'(0, T; B) and 

(1.2) 11 g~ [i--(o,r; ~) < II g I1~',(o, ~; ~> ]l ~ ]I~',.(o, ~), 
1 1 1 
8 8 0 81 

Particularly (9 ~ 1) if g e L'~ T; B), 1 <So< c~ then g e Z*(0, T; B) and 

(1.3) Jig]iv(o. ~; ,) < "~'~-II'~ . . 1 < s < So J- I]YlIL ~ T; B) ~ 

a 

Young. If  geL"(0 ,  T; B), 9 eL*'(0, a), 1 <s~< oo and G(t) =fg( t  + 1)9( i  ) dt  then 
O e/58(0, T- -  a; B) and o 

(1.4) I lel l~.(0,~,-o,.)< I l g l l~m~;~ ) ! i~ l l~mo) ,  ; = So s~ ' + 71 > 1  . 

Particularly (9 = 1) if g e Z"(0, T; B), 1 <so< 0% its right-mean function is de- 
f + a  

fined for a > 0 by (Mag)(t) = 1/afg(i) dt. Then Mag 6 C(O, T - -  a; B) and 
t 

(1.5) 
{ a~/*-~/*qgllL'0(o,w ) if  S o < S <  oo,  

IlM~g]]v(o,T-~;~)< T~Z,_~,0ilgil~,o(O,T) if  1 < S < S o .  

For s>so (1.5) is given by (1.4), and for s<so it follows from the case s = So by (1.3). 
The estimate (1.4) is given by the standard Young convolution inequality if g and ~0 
are extended to R by 0; a proof is given in [SI3], Appendix and note (1) in the proof 
of lemma 7. 

2.  - T h e  A s c o l i  t h e o r e m .  

A set K of a topological space E is eompac~ iff for every family of open sets 
covering K there exists a finite sub-family covering K. A set is relatively compact 
iff its closure is compact. 

If  E is a normed space, K is relatively compact iff 

( a n )  Ve>0,  3 a finite sub-set {e,: 1 < / < I }  of ~7 such tha t  

Ve e K ,  ~e~ such tha t  Ile-- e~][~<e. 
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It is satisfied if K is the uuiform limi+~ of relatively compact sets, %hat is to say if 

(2.2) Ve > 0, 3 a relatively compact set ~ such tha t  

Ve e K, 3e~e K~ such tha t  lie - -  e ~ l I ~ < ~ .  

Let us now recall the Ascoli characterization of compact sets in C(0, T, B). 

Lmnvri 1. - A set E of C(0, T; B) is relatively compact if and only if: 

(2.3) 

(2.4) 

E(t) = {/(t): / e E} is relatively co mpac~ in B ,  VO < t < T ,  

F is uniformly equieontinuous: Ve > 0, 3U such tha t  

I[/(t~) --/(t~)II B < e, V/e E, VO < t~ < t~ < T such that Its-- t~ I < ~/. 

PROOF. - Lot /P be relatively compact in C(O, T; B). Then (2.3) is obvious and 
(2.4) is satisfied since/~ can be lmiformly approximated by finite sets of continuous 
functions. 

Conversely if (2.3) and (2.4) are satisfied let us first notice that  (2.3) is satisfied 
for 0 < t  < T ;  indeed [[ / (0)- / (~)n,<e and/~(~) is relatively compact in B then/~(0) 
is relatively compact by (2.2); so does E(T). 

For N integer denote/N the function which equals / for every point nT/N, 0 < n <.N, 
and which is linear between these points. Then E;---- {/.,~: / e  N} is isomorphic to 
the product of the sets .E(nT/N)~ 0 < n < N ,  which is relatively compact in B N+~, 
t hen /% is relatively compact in C(0, T; B). On other hand by (2.4), if N>T/~ then 
]I/-/iv[[o(0,T:B) <e" Then /~ is the uniform limit of the relatively compact sets F~v, 
and it is relatively compact by (2.2). [] 

3. - Characterization of  the compact sets of  L~(0, T;B). 

Denote (v~/)(t) = / ( t  + h) for h > O. ]f / is defined ca [0, T], then the translated 
function r,~/ is defined on [--h, T - -h ] .  The main result of this work is ~he 

TttEOI~E:~[ 1. - Let ~cLv(0 ,  T; B). /P is relatively compact in Zv(0, T; B) for 
l < p  < 0% or in C(O, T, B) for p = co (B BallaCh space) if and only if: 

(3.1) 

(3.2) 

is relatively compact in B,  VO < t1< tg< T 

I[vfl --/[[L,(O,T_h;~)-+O aS h ~ 0 ,  uniformly for / e F .  [] 

For p = cr in comparison with Ascoli's theorem the time criterion (3.2) is exactly 
the uniform equicontimdty, but the space criterion which was stated on /(t) is 
replaced here by the similar one on integrals (3.1). 
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RE~AlCK 3.1. -- The criterion (3.2) can be expressed as: 

(3.3) r e > 0 ,  ]U such tha t :  Vfe/P, V h <  U one has [[v~f-]II~(o,~,_a;~)<e. [] 

OP~I~ALI~u - The restriction p < co is necessary since, if ] is a discontinuous 
bounded function, ~ -~ {/) is compact in Lr176 T; B) but  it  does not  satisfies (3.2). [] 

P~ooF ov ~HEOI~n~ 1. - i) ASSume first tha t  F is a relatively compact set of 
tx 

Zv(0, T; B), p < oo. The map ] -+ ~](~) dt is continuous from .5~(0, T; B) into B 
then  (3.1) is satisfied, t~ 

For every e > 0 there exists, see (2.1), a finite number of f~eZ~(0, T; B), 1 < i < I ~ ,  

such that: v / e  r ,  3/, such that l l / - / , i l . (0 ,~;~)<~/3.  
As C(O, T; B) is dense in Zv(0, T; B) the/~ m a y  be choosen in C(0, T; B). Then 

there exists h~ such that ,  

8 
Vh<h~, there  holds ][~a/~--f*llL,(o,~-a;~)< ~ .  

Set ~ = inf  h~. As ~ ] - - ]  ---- 7:~(]--]~) -- ( / - - / , )  + (v~/~--/.:), for every h < ~  there 
holds which proves (3.3), then  (3.2). 

ii) Conversely assume t h a t / ~  satisfies (3.1) and (3.2). The relative compactness 
will follow by  three steps. 

First step. - For  ] e /P  and a > 0 let the right mean function be defined by 
t+a 

(MJ)($) = l /a l l (s)  ds. Then i J  e C(0, T -- a; B). 
t 

:For every 0 <t~<t~ < T - - a  one h~s 
Q+a 

1 

t~ 

Then the hypothesis (3.2) imply tha t  the set M~F = {Me]: ] ~ B }  is uniformly 
equicontinuous in C(0, T - -  a; B). 

For  every 0 < t < T -- a r hypothesis (3.!) with t~ = t, t~ = t + a imply tha t  
( M ~ ) ( t )  is relatively compact  in B. Then by  Ascoli~s characterization (lemma 1) 

(3.4) M~F is relatively compact m C(0, T - -  a; B ) .  

Second step. - There holds 

(3.5) x d -  i = ; (~'~f-  i) dh in L,(0, :r--  a; B) (~4). 
0 

(1~) It follows from (3.2) that the map h ~vhJ is continuous from [0, a] into 
/~(0, T - - a ;  B). Then the right hand side integral in (3.5) is defined in /5~'(0, T - - a ;  B) 
and the equality follows from the definltion of Ma]. 
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Then 

(3.6) I I - ~ J  - ~]1~(o, ~-~; ~) < s u p  II ~:~ - l i I~ (o ,  T--a;  .B), 
O<~h<a 

I t  follows with (3.3) that, VT1 < T, /~ is the uniform limit of MoF in Z~(0, T~; B) 
as a -~ 0 ( a < T - -  T~). By  (3.4) MoF is relatively compact in L~(0, T1; B) then, see 
(2.2), F is relatively compae~ in Z~(0, T~; B). 

Third step. - The hypothesis (3.1) and (3.2) remains if one changes the time 
direction: if ](t) ~ - ] ( T - - t )  the set _P ~- (]: ]~/~} satisfies (3.1) and (3.2). Then /~ 
is relatively compact in Zv(0, T~; B), thus /~ is relatively compact in Z~(T--T~, 
T; B) (1~). 

Choosing T1-~ T/2 one finally obtains the relative compactness in Z~(0, T; B). 

iii) If p z o o  the proofs are identical in C(0, T; B). [] 

BE~Al~K 3.2. -- Using the theorem I for ~ set composed of a single function, one 
find agai~ the standard continuity property of h--> v~,]: 

ll~l-lll~,(0,~_~:,)-~0 as h - + 0 ,  V i e r , ~ ( O , T ; B ) ,  l < p < o o .  �9 

I~E~A~K 3.3. - I t  is not necessary to assume in theorem 1 that _F c Z~(0, T; B). 
I t  is enough to assume (for giving ~ meaning to (3.1) and (3.2)): 

(3.7) ] e.5~oo(O, T; B ) and vh / - -  / e t , (O,  T - -  h; B) , V] e F, V h > 0 .  

Indeed, then v~] : ] ~- (~]  -- ]) ~ I~(h, T- -  h; B) which implies ] e Z~(0, T : -  2h; 
B). Similarly one has ] e Z~(2h, T; B) and finally ] e t~(0, T; B). 

Then (3.5) is satisfied in I1(0, T - -  a; B). By (3.2) the map h -+ T~/-- ] belongs 
to C(0, a; Z~(O, T -  a; B)), then the integral in the right hand side of (3.5) converges 
in Z~(0, T - -  a; B), whence ] e Z~(O, T - -  a; B). Similarly one proves ] e Z~(a, T; B) 
and finally ] e Z~(0, T; B). �9 

~EMAI~K 3.4. -- The proof of theorem 1 is easy but  one has to take care. 
For example it fails if the right mean Ma] is replaced by the centered mean 

~ + a  

(Jo/)(t) = 1/2~fi(8)ds. Indeed JoF  don't ~ to F up to the boundary, then 

one obtains the compactness only in Z~oo(0 , T; B). 

(15) This result may equally be obtained by replacing the right mean by the left mean 
t 

(~of)(t) = (lla) Sl(sl~s. 
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One may equally t ry  to reduce the problem to functions on R by using the ex- 
tension ] of ] by 0. Then the necessary condition (3.2) on ] gives again (3.2), on ], 
but it also gives the extra condition (4.4), see [T2, remark 13.1, p. 100]. Without 
this extra hypothesis one obtains only partial compactness [T2, thin. 13.3]. [] 

Appl icat ion  to real va lued /unc t ions .  - A set ~ is relatively compact in Z~(0, T) 
when l < p  < 0% or in C(O, T)  when p = 0% if and only if: 

aa 

(3.8) 3a i<  a2 such that  f/(t)at is bounded uniformly for / e  F ,  

T - - h  

(3.9) fl/(t+Z~)--/(t)?dt~o as h---~O uniformly for / e F .  
0 

t2 

P~ooF. - I t  follows from (3.8) and (3.9) tha t ,  YO < t~ < t2 < T,  f / (s)  ds is bounded 
then (3.1) is satisfied. [] tl 

I t  is a variation on Fr~chet-Kolmogorov's theorem which states (~6): A set E 
of JS~(0, T), l < p  < co is relatively compact if and only if: 

T - - a  

Va > o, f l/(t + n) - ](t)[~ dt ---> o as h --> O, uniformly for ] e 2~, 
a 

a T 

ft/(t)?dt +fl/(t)I, dt o as a - + o ,  un i formly  for / 
0 T I a  

These last criterions imply easily (3.8) and (3.9) but the converse implication is 
harder. A vector valued extensiolx of Fr~chet-Kolmogorov's characterization will 
be given in remark 4.3. 

4. - Characterization for partial compactness .  

The question here is to characterize the sets which are bounded in Zq(0, T; B) 
and are compact in Z~(0, T; B) with p < q. I t  is called partial compactness since 
the compactness is not obtained for the larger order p for which the set is bounded. 

The mMn result of this section is the 

TttEOtCE~ 2. - Let /~ be a bounded set in Lq(0, T; B) (1 < q< co, B Banach space). 

(~6) For example see [N] theorem 1.3, p. 59. 
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Then /~ is relat ively compact ill L~(0, T; B), Vp < q, if and only if: 

VO < t~ < t2 < T there holds 

(4.1) 

(4.2) 

t~ 

t~ 

e/~} is relat ively compact  in B ,  

i] zJ~/--/[] v(t.t~; ~) -+ 0 as h -+ 0, uniformly for / e F .  [] 

In  comparison with theorem 1, the  t ime criterion in L ~ is replaced b y  the similar 

one (r in L~oo. 

I~E~IA~K 4.1. -- The critei'ioll (4.2) can be expressed as: VO < t~< t2< T, Ve > 0, 
3 v < T - t ~  such that V /e~ ,  Vh<V, o~e has I[U/--/]I~,(,,,,~:~)<~. [] 

Let  us first connect compactness with time-local compactness,  it can be connected 
with part ial  compactness afterwards, and theorem 2 will follow. 

L D ~ A  2. - i set E is relatively compact  ia L~(0, T; B), l < p  < 0% if and only if: 

(4.3) 

(4.4) 

F is relatively compact  in Z~oc(0 , T; B ) ,  
h T 

fIl/(t)[l; dt -[-fil/(t)lI] dt -+ o as h --> 0, un i fo rmly  for ] e ~ ' .  
0 T - - h  

[] 

The meaning of criterion (4.3) is: V0 < tx< t~< T, _F is relat ively compact  in 
~(t~, %; B) (-). 

PRooF oF LE)~A 2. - i) Assume first that  /~ is a relat ively compact  set of 
Z~(0, T; B). Then (4.3) is obvious. Let  ] be the  extension of ] b y  0 outside [0, T]. 
Then ~ ---- (]: / e ~} is relatively compact  in Zv( - T, 2T; B) and the t ime criterion 
(3.2) for ~V gives (4.4) since, for h<T, 

h T--h T 

II~J- ?il~,~(-~,~.~-~)=flI/(t)ll~ at +j]ll(t + h)-/(t)ll ~ dt +j'II1(t)II~ at. 
0 0 T - - h  

ii) Conversely assume that  /~ satisfies (4.3) and (4.4). Set ]h = lm.~-7,9 ~ and 
E~---- { / , , : /e  F}. B y  (4A), Ys > 0, 3h such that  II/~-/l]z~(o, T; ~)< s uniformly for / e  ~ .  
Then F is the  uniform limit of the relat ively compact  sets F~ whence, see (2.2), F is 
relat ively compact  ill Z~(0, T; B). [] 

(17) Or else: (l[tl,t~]t ] 61 ~} is relatively compact in L~(0, T; B). 
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:Now partial compactness can be related with compactness in Z~o r 

Z n ~ A  3. - Let ~ be a bounded set in Zr T; B), 1 < ~< o~. If ~ is relatively 
compact in Z~oo(0, T; B), then it is relatively compact in L~(0, T; B), Yp < q. [] 

P~oor o3 LV,~A 3. - By H01der inequality (1.3) Chere holds~ Vh < T, V] ~ E~ 

h T 

fttl(t)llB +fIl/(t)il. at < 
0 T - - h  

then iv is relatively compact in ZI(0, T; B) by lemma 2. 
Given l < p < q  the lemma 11 in section 10 with X =  Y = B  and 0 defined 

by lip = (1 -- O)/q -~ 0/1 shows that  F is relatively compact in Z,(0, T; B). [] 

P~ooF o3 TH]~0~E~ 2. -- By theorem 1, the hypothesis (4.1) and (4.2) are equi- 
valent to the compactness of /~  in Z~oo(0 , T; B). By lemma 3 this is equivalent to 
the compactness in Z~(0, T; B), Vp < q. [] 

OP~I~_~LITY o3 Tm~O~]~ 2. - The strict inequMity p < q is necessary in theorem 2 
(and in lemma 3) since there exists bounded sets/~ in/~(0, T; X) which are rela%ively 
compact in Z~(0, T; B) for every p < q and yet not for p ---- q: see proposition 1 
in see%ion 11. 

l%omark that  for q = 1 the theorem would be true but empty since there would 
be no o n e p < q ,  m 

I~Ei~AI%If 4.2. - With the hypothesis of theorem 2, the closure _~ of iv in Z~(0, T; B) 
is included and bounded in Zq(0, T; B). 

Indeed let / e_~ and denote by c the bound of /~ in Zq(0, T; B) ; there exists/~ 
such that  [If~l]~(o,T;~)<c and /~ -+ /  in Z~(0, T; B) then (~s) HH/[IBIt,(o,~)<c and by 
(1 .a ) /er ,  a(o,r;B) and [] 

Rv,~A~K 4.3. - Theorem 1 gives, by using lemma 2, a vector valued extension 
of Frdchet-Kolmogorov's %heorem. A set F of Z~(0, T; B) is relatively compact 
in /~'(0, T; B)~ l < p <  0% if and only if 

V0 < t ,< t ,< T, ~l/(t ) d t : / e ~ }  is relu%ively compact in B ,  
'%  

Q 
T - - a  

> O, fH/(t + h) -/(t)[l~ dt -+ 0 as h --> 0, uniformly for f e F ,  Va 
a 

a T 

[II/(t)ll; d$ -]- IH/(t)H~ dt --> o ~s a --> O, uniformly of / e E .  [] 
0 T--a 

(is) II/,~IIg + [I/[[B in L~(O, T) weak if ~ < ~ ,  and in L~176 T) weak * if q = ~ .  
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5. - Som~ estimates by translations. 

We search for conditions involving the t ime criterions (3.2) or (4.2). A first 
possibility is to consider functions with integTable derivatives or more generally 
distributions with integrable derivatives. 

Le t  9 ' (]0,  2~[; B) be the space of distributions from ]0, T[ into B which is defined 
by  L. Scn-wA~mz [$62] as the space of linear continuous m~ps from 9(]0, T[) (~) 
into B. The derivative df/dt of a distribution ] is defined by (d]/dt)(9~) = --](dqD/dt), 
v~ e 9(]0, r [ ) .  T 

For every integrable fmxction ], a distribution is define4 by  /(r 
0 

V~0 e 9(]0, T[). So Z~(0, T; B) is identified to a sub-space of 9 ' (]0,  T[; B), which 
~llows to define the distributional derivative of a.ny function of Z*(0, T; B). 

For  %he distributions whose derivatives are integrables, the translations are 
est imated by  the (standard) 

L~-~rA 4. - Let ] e 9'(]0, T[; B) be such that  3]/~t e L'(O, T; B) where l < r <  ~ .  

Then ] e C(O, T; B) and, Vh > 0, 

h l + l l v -  l l ,  

(5,1) ll :g - < 

1t 
PROOF. - For  every g e Lt(0, 2'; B) there holds g -- (O/Ot);g(s) ds = 0 (it is ob- 

0 

vions if g is continuous and the general result follows since C(0, T;  B) is dense in 

L1(0, !l'; B) by  definition). Setting g = ~J/Ot it  yields ( a / a t ) ( / - f ( a f l a t ) ( s ) & ) =  o 
; ~ 

the~ there exists (so) b e B such tha t  / -- (~]/St)(s) ds = b. 
0 

t + h  

T h e n  l e C(0, T; B) and l(t + h) -- l(t) =f(allat)(s) as, 0 < t < T -  h. 8o that  r~l -- 
t 

- - / =  hM~(a//at) and (5.1) follows from Young's inequali ty (1.5). [] 

Another possibility ia view of verify the t ime criterions is to consider functions 
in a Sobolov space. ~or  0 < a < 1 and 1 < s  < c~ denote 

T T 

Wa'~(O, T; B) = {l: / z L~(O, T; B) and f f [ll(t) -- l(s)[If' at & < ~}  
I t  - -  8la ,+l  

o o 
with the usual change if s = oo. 

(1~) 9(]0, T[) is the space of real valued C ~ functions with compact support in ]0, T[. 
(so) L. 8CrIWA~TZ, [SC1] theorem 1, p. 51, proved that every real distribution whose 

derivative equals 0 is a constant. The proof extends without change to the vector valued 
distributions. 
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T T 

A semi-norm is defined b y  Hill,co,.: (f f...dtds)~/, a~d the  no rm is defined 

by  ll/II o,.= ( l l l l l . .  o o 
The t ransla t ions  are es t imated  by  the  

L E ~  5. - Le t  ] e W~"(0, T;  B), 0 < a < ] ,  l < r <  r162 and  let p be such t ha t  

(5.2) 
] 1 r 1 

p<oo if ~>-, p< oc if ~:-~ p<r,~--- if ~<-. 
~" r ] - -  (rr r 

Then ] e Z,(0, T;  B) and  there  exists c indepondeat  of ] such tha t ,  Vh > 0, 

(5.3) II -/ll-(o, < { 
CLa+l]v--i/r -I �9 

'~ ; W " , r ( O , T ;  B)  if r < p <  c~ 

~f l < r < p .  []  

This ]emma m a y  be obtMned b y  interpolat ion,  for some r~>r (2~) f rom l emma 4, 
and for every  r f rom the fract ionM S o b o b v  imbedding theorems of J .  PEEWEE [P] (~2). 

A direct proof is g iven ia  [SI3, r e m a r k  8.5], with a known constant  e. 
The t ime  criterions are also satisfied if 

(5.4) ill  <o, T ; ; < M h  , Vh > 0 

with r ~ p .  Bu t  it  is enough to ver i fy  this es t imate  for some r < p, with regard to 

LEPTA 6. - Le t  ] EZ~(O, T;  B) satisfy" (5.4) with 0 < a < l ,  l < r <  co ~n4 let p 

be such t ha t  

1 r ] 
- -  if ~<-. (5.5) p K o o i f  ~ > r ' P < r *  1 - - ~ r  r 

(5.6) 

Then / e Z~(0, T;  B) and  there  exists  c independent  of ] such tha t ,  Vh > 0, 

e M h  ~+11~-1]~ if r < p < o o  

] l T h / - - ] l I L ' ( O ' T - - h ; 3 B ) ~  M h a T  11~-11r if l < p < r .  [] 

This result  is p roved  in [SI3~ romurk  8.4]. The inoqualiCy for p < r  is obvious 

(21) One has (L ~, 1~1.~)~.~ = ]~a,~ if 1/r = (1 - -z ) /p  § ~/~ then lemma 4 imply that  
I I ~ d - l H L ~ < ~ ( 1 + I z ~ - ' r  = h~+=~-~1,'lll/l]l, where III Ill is the in te rpo la t ion  no rm and 
1-<<~<p. This gives (5.3) for r < r  where 1/r = (1- -a) /p  § a and the case r 
from the ease r : p by HSlder inequality (1.3). 

(22) By [P] theorem 8.1 and 8.2, Wa, r  ~* if  a < 1/r and W r c C a- l I t  if a < 1/r See 
equMly [BL] theorem 6.5.1, p. 153. All results are proved for real valued functions. 
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by  (1.3). This lemma and the previous one ~re peculiar eases of imbedding in the 

spaces B~ (0, T;  B) (~). 
Le t  us add an imbedding result  in differently valued Sobolev spaces. For  m 

integer and 0 < ~ < 1 denote 

~] ~,,~-~ ~,,r } 
w~,,+~,~(o, T; B) ----- ]: f,-~, ..., ~t~_~e L~(0, T;B) ~nd ~ c  Wa,v(0, TiB) 

W-"+~,~(0, T;  B) = 

= /: J = g . +  ... -t- ~ t  ~- where go, ..., g ~ _ ~ L , ( ( ,  T;  B),  g~e W~,~(O, 2'; B) . 

The derivation being defined in the distribution sense all these spaces are included 
in ~ ' ( ]0 ,  T[; B);  equipped with the s tandard norms they are B~nach spaces. 

Le t  I~V'~+~ T;  B), m ~ 0 ,  denote the space W~+"'~(O, T; B) equipped with the 

semi-norm U/li~- . . . . .  ---- i] ~]/~tmi[~o.~ ([[" ]I~ ~ = [[" l[~;). 
Le t  Be, B~ be two Banach spaces; then  the interpolat ion spaces (.,4) (Be, B~)o,q 

where 0 < 0 < 1, l < q <  oo are in termediate  spaces between Be and B~. 

LE~_~IA 7. - Le t  So, s~ be not  integer, s~>0, 1 < r e <  0% l < r ~ <  oo. 
Le t  0 < 0 < l , s  o =  (1 - -0 ) s0~-0sx ,  1 / r 0 =  (1 - -0 ) / ro~-0 / r~ .  I f  s o is not  an in- 

teger or if r 0 <2  there  holds 

W~~ T;  B0) (h 1;W'~'(0, T;  B~) c W'~176 T;  (B0, B~)o,~o) �9 [] 

P~ooF.  - Le t  us notice first t ha t  ~ s  .... m ay  be replaced by  W s'''l. Indeed if f is 
bounded in ~V~"~'(0, T;  B~) there  holds, see [P], ] = i~ ~- P~ where ]~ is bounded 
in W*'"'(0, T;  B~) and p,~ is a polynom in t of degree m ( r e < s , <  m + 1) with coeffi- 
cients in B~. I f  ] is moreover  bounded in W ' .... (0, T ; B )  then  p~ is bounded in 
Ws'"~ T;  Be) -~- W"*'(0,  T;  B~) c W'"(0,  T;  B~), s = inf s~, r : inf  r~, whence its co- 

efficients are bounded ia B~ and finally ] is bounded in W"'*'(0, T;  B~). 
On other  hand, see [G] (6.9), p. 179 if s~ e~re not  integers, one has (W~~176 T;  Be), 

= B V~ T; (Be, B,)o,,~ 
The lemma follows since B~ ~-- is ~not 'an integer, ~nd since Bj* "c W ~'~ if s 

is integer  and l < r < 2  from [G, (6.6), p. 178]. [] 

co 

(23) B*,r = (] e Lr[~ (h-Z[[~]_ ]]lL,)q(a~/h) < oo} for 0 < a < 1, with usuM change for q 

0 

q co. Then ~'~ B ~+:/~-11~'~ -= Bq c Vp satisfying (5.5). For q = oo one obtains lemma 6 since 
~,~ B~ cBoo. These results are Boo : {] satisfying (5.4)}, and lemma 5 follows since Wa'~= ~'~ ~'~ 

proved in [SI3]; they may also be obtained by interpolMion from the fractionM Sobolev 
imbedding theorems of [P]. 

(~-~) For the definitions see for example [G] whose notations are used here. 
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I~E~Ar~K 5.1. - In. part icular  if So, S~ are not  integer, So< 0 < s ~  and 0 = 
= -- so/(sl-- so), there  holds  

(5.7) WS~ ~;  Be) ('~ %~rs"l(0, ~ ;  B1) c .~1(0, ~ ;  (Be, B~)on ) . 

Since W s'~ increases as s decreases, this imbedding holds for every  s0< O < sl 

if - so/(s~- so) < 0 < 1. �9 

RE~_A~K 5.2. - Denote  T'V~'v(0, T;  B) the closure of ~D(]0, T[; B) in WS'V(O, T; B). 
I f  B is a reflexive space and if 1 < 1o < ~ ,  s > 0 then  W-~'v(O, T; B) is the dual 

�9 S , V  t 

space of W o (0, T;  B')  where l ip  ~ l i p ' =  1~ B ' ~  du~l space of B, and the norm 
of W -8'v is equivalent  to the dual norm. [] 

I~E~AIr 5.3. -- The fractional spaces m a y  be characterized b y  translations since 

T 

0 

for 0 <  a <  1, r <  co 

with the  usual modification if r -~ c~. �9 

6. - Compactness for functions with values in a compact space X.  

Let  us now consider another  space X~ so tha t  

(6.1) X c B with compact  imbedding (X and B are Banaeh spaces) .  

The character izat ion of theorem 1 gives the 

Tn-EORE~ 3. -- Assume (6.1), _~ C Lv(O, T; B) where l ~ < p <  c~, and 

(6.2) 1~ is bounded in Zloc(0, T;  X ) ,  

( 6 ~ 3 )  ]]~a/--/H~(o,T_a;~)-->O as h--~0, uniformly for / ~ F .  

Then 17 is re la t ively compact  in Z~(0, T;  B) (and ia C(O, T; B) if p = ~) .  �9 

P~ooF. - For  every  0 < t l< t2< T, / is bounded in Zl(tl, t~; X). Then f i ( t )dt  
tl 

is bmmded in X whence it is relat ively compact  in B, and one uses theorem 1. �9 

This result,  excepted the localization in (6.2), is announced in [SI2], remark  3.2, 
and is par t ia l ly  proved in [T2], theorem 13.3. 
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R E ) ~ K  6.1. - The space criterion (6.2) may  be replaced by the weaker one: 

V0 < t, < t2< T, f}(t) dt is bounded in X. [] 
t~ 

REd, ARK 6.2. -- I t  is not  necessary to assume iv c L~(0, T; B) in theorem 3. Wi th  
regard to remark 3.3 it is enough to assume tha t  ~ / - -  ] e L~(0, T - -  h; B), V]e iv. 

O P T I I ~ [ A L I T Y  OF THE01~EI~I 3. - -  The order p is the best one for compactness since 
it is the best one for boundedness. This is obvious if iv is reduced to a single func- 
t ion / such /(t) = b~0(t), b e X .  [] 

The space criterion is obviously verified if iv is bounded in L~(O, T; X), and one 
may  examine whether the localization of this criterion is a useless complication or 
not. In  boundary  value problems some estimates, and peculiarly the estimates in 
the (~ more regular ~> spaces, don ' t  hold up to the boundary  of the interval  [0, T] 
thus it is usefull to search for local criterions. 

I~.~A~K 6.3. -- More generally a finite number of singular points To< T~< ... < T~ 
m a y  be introduced: (6.2) m a y  be replaced by iv is bounded in Z~o• T]"x{To, T~, ...7 
..., r~}; X). 

Indeed by theorem 3 iv is relatively compact in L~(T,~ T~+~; B), Vn, then  in 
L~(O, T; B); this extends to C(O, Z; B) if p - ~  oo. [] 

For differentiable functions it follows: 

Co~o~A~u 1. - Assume (6.1), and let m be any integer. 
Let  iv be bounded in W~o~'l(0, T; X) and 3iv/3t -~ {3]/~t: / e iv} be bounded in 

ZI(0, T; B). Then iv is relatively compact in L~(0, T; B), Yp < co. 
Le t  iv be bounded in W?o~'l(0, T; X) and 3iv/~t be bounded in L~(0, T;  B) where 

r > 1. Then iv is relatively compact in C(0, T; B). [] 

Remind tha t  iv is bounded in W~o~'l(0, T; X) if iv ---- ~'G/~t m where G is bounded 
in Z~oo(0 , T; X). I f  X is a reflexive space it is particularly satisfied, see remark 5.2, 
if there exists /~ > 1 (~5) such tha t  

T 

Pi~oo~ oF eOI~OLLA~Y ] .  - The t ime cr i ter ion (6.3) is satisfied by lemma 4. The 

space criterion (6.2) is satisfied if m<O. i f  m >  O by lemma 7, see remark 5.1, iv is 
bounded in L~or , T ; X )  where X : (X, B)0,~ , m/(m ~ 1) < 0 < 1. The imbedding 
X - > B  is compact by  [LP, theorem 2.1, P. 36] (26), then  the space criterion is 
satisfied with X. [] 

(25) If # = 1, s is obviously bounded in W-~-z,l(O, T~X). 
(~.e) Since X is of class .Ko(X, B) by [LP] proposition 1.1, 1). 27. 
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OPTI~.[ALITu OF COBOLLAlCY 1. - -  The restriction p < c~ is necessary since there 
exists boarded sets F in JS~(0, T; X) with ~/~/~t bolmde4 in s 7 T; B)7 which are 
not relatively compact in Z~(0, T; B): see proposition 3 in section 11. [] 

I~E~AnK 6.4. - One may avoid the use of intermediate space X as follows: by 
theorem 2, _~ is relatively compact in W-~,I(0, T; B), and since ~ is bounded in 
W~.~(O, T; B) lemma 10 shows that  it is relatively compact in W~ T; B), Va < 1 
and the corollary 1 follows by the fractional Sobolev imbedding theorem. [] 

More generally in the fractional or not Sobolev spaces there hold: 

COBOLLA~u 2. - Assume (6.1). Let F be bounded in ~~176 W~oo (07 ~; x)  c~ w~'~(o7 r; B) 
where s ) 0 ,  l < r < c ~  and so is real, l < r o < c ~ .  

If  s<~l/r then /~ is relatively compact in iS,(0, T; B), Vp < r,  : r / ( 1 -  st). 
If  s ~ 1It then ~ is relatively compact in C(O, T; B). [] 

PI~OOF O:F COROLLAI~Y 2. -- ~F0r 8 ) 1  i t  f o l l o w s  f r o m  corollary 1. l~or s < 1 it 
follows from theorem 3: the time criterion (6.3) is satisfied by lemma 5, and the 
space criterion (6.2) is satisfied if so)0,  and if So< 0 it is satisfied with X : (X, B)o,~ , 
- -  So(S~-- so) < 0 < 17 by lemma 7 (see remark 5.t). The imbedding X --~ B is compact 
as in the proof of corollary 1. [] 

Let us notice tha t  one may obviously conclude with an estimate in a Sobolev 
space on X: 

t 
I f  0 < s<~ r 7 W~"( O, T; X)  c L*(O, T; B) with compact imbedding 

(6.5) Vp < r . -~  ~ _ sr . 

>1_ 
If  s , W','(0, T; X) c C(O, T; B) with compact imbedding. 

OPTI~ALITu OF COROLLA~Y 2. -- The restriction p < r .  when s < l / r  is necessary 
in corollary 2 if So--1 /ro<s-- l / r ,  and in (6.5), since there exists bounded sets in 
W',~(07 T; X) which are not relatively compact in zr*(07 2~; B): see (11.4). 

The restriction s ~ 0 is necessary if So <~0, whatever be r and p, since there exists 
bounded sets in Z~(0, T; X) which are not relatively compact ~n ZI(0, T; B): see 
proposition 2. [] 

I~,~ABK 6.5. - With the hypothesis of corollary 2, ~ is bounded in L'*(0, T; B) 
by lemma 5. Then the closure F of/~ in Z,(0, T; B) is bounded in L~*(0, T; B) by 
remark 4.2. [] 

Rv,~BK 6.6. -- Compactness /or the limit eoe]/ieients. F is relatively compact 
8o,To iR Z**(0, T; B) if _~ is bounded in Wioo (0, T; X) and if llT, f f -  ./H~,.,(0,T-h;~)-* 0 as 

h -+  0 uniformly for "/~/~. The proof is similar to the corollary 2 proof. 
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I~  the difforentiablo case F is relatively compact in C(0, T; B) if iv is bounded 
in W~'~(O, T ; X ) a n d  if I]~a(~//~t)--~//~t[IL,(o,T_h;~)-*O aS h - + O  uniformly for 
!ely. 

Notice tha t  the assumption on ~//~t way be replaced by  l[(3//~t)(t)H.<g(t), Vt, 
where g e L~(0, T) is independent o f / .  [] 

7. - Partial compactness for functions with values in a compact space X. 

I f  iv is bounded in Lq(O, T; B), the compactness in Z,(0, T; B) for every p < q 
m a y  be obtained with weaker hypothesis than  in the preceding section. Let  us 
consider again 

(7.1) X c B with compact imbedding (X and B are Banach spaces).  

The characterization of theorera 2 gives the 

Tn-EOI~E~ 4. - Assume (7.1), 1 < q <  0% and 

(7.2) 

(7.3) 

iv is bounded in Zq(0, T; B) n Z~or , T; X) 

V0 < t~< t2< T, [[rh/-- ][[L~(t~.~;~)-+ 0 as h -+ 0, uniformly for / e iv .  

Then iv is relatively compact in L~(0, T; B), Vp < q. [] 

In  comparison with theorem 3 the t ime criterion which was s tated in L" is 
replaced here by  the similar one (7.3) in I~oc; it wi]l be weakened again in section 9 
(by set t ing it in any  Banach space whatever). 

OPTI~IALITY OF TIIEOI~E~I 4. - -  The strict inequali ty p < q is necessary from 
proposition 1 in section 11. [] 

For  ftmctions bounded in Sobolev spaces it follows: 

~--w%,l CO~OLLA]~u 3. -Assume  (7.1). Let  F be bounded in/~q(0, T; B) N ]~1oc (0, T; X) n 
S,1 (~ Wloe(0 , T; B) where 1 < q<  0% m is integer, s > 0. Then F is relatively compact 

in L~(o, T;B) ,  Vp < q. [] 

P~OOF. - The t ime criterion (7.3) is satisfied by  lemma 5. The space criterion 
(7.2) is satisfied if s0>0; if so< 0 F is bounded in L~oo(0 , T, X) where X = (X, B)o.1 , 
-- So/(Sl-- s0) < 0 < 1, by  lemma 7 (see remark 5.1) then  the space criterion is 
satisfied with X (27). [] 

('27) The imbedding X-+ B is relative]y compact as in the proof of corollary 1. 
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I t  is possible to avoid the intermediate  space X, see remark  6.4. ICemark tha t  
one finds again the corollaries 1 and 2 for p < co f rom corollary 3 and Sobolev 

imbedding theorem. 

OeTI~ALI~Y OF COROL]~A~Y 3. -- The restrict ion p < q is necessary i f  s < 1 - -  l /q:  
see proposit ion 4. The restrict ion s > 0 is necessary b y  proposit ion 2. [] 

/~E~AnK 7.1. -- Wi th  t he  hypothesis  of theorem 4 or of corollary 3, the closure _F 
of 2" in Z~(0, T;  B) is bounded in Zq(0, T;  B). I t  follows from remark  4.2. [] 

8. - Compactness  for func t ions  w i t h  v a l u e s  in  an  in termedia te  space.  

B y  using a method  due to J.  I~. LIO~S, the t ime criterion which was s ta ted on 
transla*ions with values in B m a y  be replaced by  the similar one with values in any  
space 2: whatever  if the  space criterion is strengthened.  

So let us consider 

(8.1) 2( c B c Y with compact  imbedding X ~ B (X, B and :Y are Banach  spaces) 

The main result  of this section is: 

TI~EOl~V,~ 5. - Assltmo (8.1), l < p <  oo and 

(8.2) 2" is bounded in ];~(O, T;  X ) ,  

(8.3) l i ra / - -  ]HZ~(O,T--h; Y ) ~  O as  h ---N O, uniformly  for ] e 2 " .  

Then 2' is re la t ively  compact  in Z~(0, T;  B) (and in C(0, T;  B) if p = c~). [] 
In  comparison with theorem 3 the  t ime criterion (8.3) is s ta ted with values in Y 

instead of B, whereas the  space criterion (8.2) is s ta ted  in 3~ instead of Z~oc: Thus 
for Y ~ B we don ' t  find again theorem 3; in this case it  is be t t e r  to go back to  

section 6. 
A proof of theorem 5 is given in [SI l l ,  lemma, for reflexive spaces in the  case 

1 < p < ~o. The present  proof relies on the  following est imate  of ft. Ya. L to~s  (2s). 

Lv,~_~ 8. - Assume (8.1). Then  

(s.4) > o, such that: Vv IIG< IIG-4-  iiG" [] 

PI OOF. - D e n o t e  V,~ = {v e B :  I IG< +  II IIG The sets are open in B, 
t h e y  increase with n and the i r  union covers B. The uni t  sphere S of X being rela- 

(~s) See [L1] p. 59 or [L2] lemma 5.1, p. 58. 
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tively compac~ in B, there exists a finite N such that  S c V~. Which yields: 

ltq.<,ViI  +  vliqY, w such that = 

The inequality for every v e X follows by multiplic~*ion by any positive number. [] 

l%~_Al~ 8.1. -- If  the imbedding X - +  If is compact, then (8.4) characterizes 
the intermediate spaces B such that  the imbedding X -+ B is compact. Indeed it 
is easy to see that  (8.4) imply %he compactness of the imbedding X -+ B. [] 

In the evohltion spaces it follows 

LE~L~ 9. - Assume (8.1). Let F be bounded in L~(0, T; X) and be relatively 
compact in Zv(0, T; lr), where l < p < o o .  Then F is relatively compact in Z~(0, 
T; B). m 

P~oo]~. - Given s > 0 there exists a finite s~bsot {/,} of F such that :  V/~ F, 3/, 
such that  II/-/,ll~(0,~;y)<S. The inequality (8.4) implies 

where e is the diameter of ~ in t~(0, T; X). Given # >  0, for ~ = d/2c and s = 
----e'/2N it yields [[/ -- /~U~(o,r:~)<e' which proves that  F is relatively compact 
in Z~(O, T; B). [] 

P~oor oF T~EOnE~ 5. - By theorem 1 F is relatively compact in Z~(0, T; Y) 
and one concludes wick lemma 9. [] 

OPTLMA_LITY 01~ THEOI%EI~ 5. - -  The order p is the best one for compactness since 
it is the best one for bolmdedness. I t  is obvious i f /~  is reduced to a single func- 
tion / such that  ](t) = bq~(t), b e X .  [] 

Let us now give some applications. For the differentiable functions, verifying 
the time criterion (8.3) by ]emma 4, the Aubin's result is extended (~9) by: 

CO~O~LAt~Y 4 -- Assume (8.1). 
Let /~ be bounded in iS*(0, T ; X )  where l < p <  0% and &E/~t--~ {~//~]: / e . F }  

be bounded in Zl(0, T; Y). Then F is relatively compact in Z~(0, T; B). 
Let F be bounded in Z~(0, T; X) and ~F/~t be bounded in Z~(0, T; Y) where 

r > 1. Then F is relatively compact in C(O, T; B). [] 

(29) It was proved in the ease r < l ,  l<p<c~ ,  see [AU] and [L2] theorem 5.1, p. 68 
and theorem 12.1, p. 141. 
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O]~TI~A]~I~u OF C0I~OLI,AIr165 4. -- The order p is r best  one for compactness for 
some spaces B satisfying (8.1): see (11.8) and (11.9). On other  hand  with extra  
hypothesis  on B it  is possible to prove compactness for some q > p : see corollary 8. 

The restr ict ion p < c~ whe~ r = 1 is necessary whatever  be the  space B:  see 

proposit ion 3. [] 

5fore generally iI1 the Sobolov spaces, verifying the  t ime criterion (8.3) b y  
lemm,~ 5 for fractional  orders, o11e has: 

COn0LLAI~Y 5. - Assume (8.1) and 1 < p < c r  l < r < o o .  Le t  /~ be bounded in 
L,(0, T;  X) n W*,~(0, T;  Y) where s > 0 if r>p and where s > 1/r-- 1/p if r<p. 
Then F is re la t ively compact  in Z~(0, T;  B) (and in C(0, T ;  B) if p ----- cr [] 

For  r : p : 2 and reflexive spaces one find again the  theorem 5.2, p. 61 of [L2]. 

O P T I 3 { A L I T Y  OF COIr 5 .  --  The order p is the best  one for compactness for 
some spaces B as in corollary 4: see (11.8) and (11.9). 

The restr ict ion s > 0 is necessary whatever  be the  sp~ce B f rom proposit ion 2, 
and the restr ict ion s > 1/r - - l ip  when r<p is necessary f rom proposi t ion 4. [] 

ICE~A~IC 8.2. - Some results m a y  be extended to the  case where X is not  a vector  
space. Indeed  lemma 8 still holds if X is a cone and if [i ]Ix is replaced a non-negative 
homogeneous hmet ion  SllCh tha t  (x e X:  ~0(x)<1} is re la t ively  compact  in B. This 
idea is due to J .  A. ])UBISISKII, see [D] and [L2] section 12, p. 140 where it  is applied 
to u non linear problem. 

Remark  in par t icular  t ha t  it  is not  necessary t, ha t  the spaces X and :Y be com- 

plete. [] 

9. - Partial compactness  for functions with  values in an intermediate space. 

I f  F is bounded in Zq(0, 2"; B) the  compactness in Z,(0, T;  B) for every  p < q is 
obtMned with weaker hypothesis  t han  in the  proceeding section. The boundedness 
in Zq(O, T; B) m a y  result  f rom est imates in X and Y as it  was supposed b y  J. P. 
AVBII~ [AU], as well as it  m a y  be independent  (3o). 

Le t  ns consider again 

(9.1) X c B c :Y with compact  imbedding X -+ B (X, B and Y are Banach  spaces) .  

THEO~EYi 6. -- Assume (9.1), 1 < q <  co and 

(9.2) 

(9.3) 

is bounded in Zq(0, T;  B) n Z~or , T ;  X ) ,  

VO < tl< t2< T, l]vh/--/ttLl(t,,t:; r)-+ O as h -+ 0, uni formly for / e F .  

(so) For a boundary value problem i~ may be an <( estimate ~> of the solutions. 
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Then F is re la t ively compact  in JSv(0, T; B), Vp < q. [] 

P~ooP. - B y  theorem 1 F is re la t ively compact  in Z~oc(0, 2'; I~), then it is rela- 
t ive ly  compact  in Z~oo(0, T;  B) b y  lemma 9, and one conclude with lemma 3. [] 

OPTIMALITY IN TEE0~E~ 6. -- The restr ict ion p < q is necessary from proposi_ 
tion 1 in section ii. [] 

For  the  differentiable functions it  follows: with lemma 4, the  

COROLLARY 6. -- Assume (9.1) and 1 < q <  oo. Let F be bounded in L~(0, T;  B) c~ 

n L~oc(0 , T;  X) and ~F/~t be bounded in L~oo(0 , 2'; Y). Then F is re la t ively compact  
in Zv(0, T;  B), Vp < q. j 

OPTIMALITY I~ CO~OLLAICY 6. -- There exists some spaces X, B and Y such tha t  
the restr ict ion p < q is necessary: see the  proposit ion 5 with so = 0, s~ ~ 1, re = rx---- 1~ 
0 : l - - 1 / q  then  s o : l - - 1 / q ,  r o = l  and s = 0 ,  r - ~ q .  [] 

More generally in Sobolev spaces the t ime criterion (9.3) is obtained for frac- 
t ional  orders by  lemma 5 and one h~s 

COgOLLA~Y 7. - Assume (9.1). Le t  F be bounded in ~o~(0, T;  X) (~ Zq(0, T;  B) n 
t~ W~o~o(O, T;  ~)  where I < q < ~ ,  s > 0. Then  F is re la t ively  compact  in/~v(0, T;  B), 
Vp<q. m 

REMARK 9.1. - Wi th  the  hypothesis  of theorem 6 or of corollary 6 or 7, the  
closure 2V of F in Zv(0, T;  B) is bounded in Zr T;  B). I t  follows f rom remark  4.2. [] 

OPTIMALITY I~W COrOLLArY 7. -- The restr ict ion p < q is necessary (whml s<l/q) 
whatever  be the space B, see proposit ion 4. When s > 1/q it  is necessary for some 
spaces, see proposit ion 5 with 0 = ( l / s ) ( 1 -  l/q). [] 

10. - The  case  o f  i n t e r m e d i a t e  spaces~of  c lass  O. 

Consider a set F satisfying the space and t ime compactness criterions (8.2) a n d  
(8.3) with two different coefficients, say P0 and p~. 

1) I f  P0 > P, the  par t ia l  compactness result of theorem 6 gives tha t  F is rela- 
t ive ly  compact  in r,~(0, T;  B), Vp < pc and this cannot  be improved.  

2) I f  p o d  p,  theorem 5 gives the  relat ive compactness for p : Pc. The point  
now is to improve this result  when B is a space of class 0 (with respect to  X and Y), 
t ha t  is to say if there  exists 0 and M such tha t  

(10.1) i 1-o ~o where 0 ~ 0 ~ 1 .  v l ~ < M l v  x vllY , V v ~ X  n Y , 
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This definition has been brought by  ft. L. LIONS and g. PEE~RE, [LP] defini- 
t ion 1.1~ p. 27 (sz), where m a n y  properties are given. These spaces are easier to use 
and are more general than  interpolation ones. Indeed every interpolation space 
(X~ Y)0,q satisfies (10.1), bu t  B is not  ~ecessary an interpolation space. Precisely 
if X c Y, (10.1) is equivalent to B c (X~ Y)o,~, by [LP] proposition 1.1~ p. 27. 

As in the preceding sections let us assume tha t  B is intermediate between X 
and Y: 

(10.2) X c B c Y with compact imbedding X -* :Y 

(X, B and :Y being BanaCh spaces). 

A basic result in this section is 

THEORE~ 7. -- Assume (10.1), (10.2), 1~p~oo and 

(10.3) 

(10.4) 

_~ is bounded in Z~~ T; X ) ,  

I l u / -  o as o, uniformly .for / e 1~. 

Then ~ is relatively compact in L~~ T; B) where 1/po = (1 -- O)/po + O/p~. [] 

The ordre p0 is intermediate between P0 and pl, then  this result is fruitful  only 
when p~ > Po: see the opt imali ty in the following. Remark  tha t  in this case po 
increases with 0 then  the largest (a2) 0 satisfying (10.1) is required. 

The proof of theorem 7 lies on the following compactness lemma, which is due 
tO J. L. LIONS and J. PEV, TI~]~ (a3). 

L E n A  10. - Assume (10.1). Let  K be bounded in X and relatively compact 
in :Y. Ther~ K is relatively compact in B. [] 

PROOF. - Ve > 0 there exists a finite subset {v~} of K sack tha t :  Vv ~ K,  3v~ such 
that Then IIv- ty,<Mcl-% ~ where is the diameter of K i .  X, 
which implies the relative compactness in B. [] 

F o r  evolution spaces it  follows 

L]~-~rA 11. - Assume (10.1). L e t / ~  be bounded in Lv"(0, T; X) and be relatively 
compact in Z~'(0, T; Y) where 1 <p~ < oo. Then F is relatively compact in Lv~ T; B) 
where 1//oo = (1 -- O)/po + O/p1. [] 

(31) With their words it means that B eKe(X, :Y). 
(32) If X c Y  and B is of class 0, then it is of class 0' for every 0' ~ 0. 
(as) [LP] theorem 2.3, p. 38. 
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P~ooF. - By  the Riesz inequal i ty  there  holds: V/e  Lv~ T;  X) (~ Lv'(0, T;  Y) 

then / e L~'(0, T; B) and (~) 

1-0 , 0 1 1 - - 0  0 
(lO.5) Ill]l~o(o ~.~)<~ll/l~.(o ~)]/1~,,(o ~ ~) where - - = - - + - - .  

. . . . .  P0 Pc Pl 

Then  one uses lemma 10 with K =/~. �9 

P~0OF OF T~EO~E~ 7. -- B y  theorem 1 1~ is relat ively compac~ in /F '(0,  T;  X) 
and one concludes with lomma 11. �9 

REMAI~K 10.1. -- The hypothesis  on spaces, (10.1) and (10.2), imply tha t  the im- 
bedding X -+ B is compact :  i t  follows f rom lemma 10 wi th  K = uni t  bal l  of X. �9 

l~emark tha t  the  hypothesis  on F ,  (10.3) and (10.4), imply  b y  the  l~iesz ine- 
qual i ty  tha t  /~ is bounded in Z~o(0, T;  B). Then  the par t ia l  compactness result  of 

theorem 6 gives again the compactness for every  p < pc b u t  it  don ' t  allow to get 

p =po. 

OPTIMALITY OF THEO~V,~ 7. -- The theorem 7 is not optimal if pl <Po. Indeed 

if pl  < Pc, the  p~ortial compactness result  of theorem 6 gives a larger order (u < Pc 
which is be t t e r  t han  p ~ pc) ; if p~ = Pc the  theorem 5 gives the  same order  (Pc ~- pa 
which is optimal) for more general  spaces B. 

At  the con t ra ry  if p~ > pc then  pc is the best  order of compactness as of b o ~ d -  
edness for some spaces B:  see proposit ion 6 with so----- s~---- So ~ 0. I t  m a y  be proved,  
whatever  be the  space B, t ha t  the best  order is Po(~) where O(B) is the  largest 0 

satisfying (10.1). R 

~or  the functions whose derivat ives are integrables, the t ime criterion (10.4) 
is satisfied for eve ry  p~ < c~, t hen  theorem 7 gives: 

(!o.6) 
Le t  E be bounded  in L~'.(O, T ;  X )  and  - ~  be bounded  in ZI(0, T ;  Y) .  

P0 Then  1~ is re la t ive ly  compact  in Z~(0, T ;  B ) ,  Vp < j ----~. 

This improves  the  corollary ~ in the  case r----1. Now if the  derivat ives are 
r-integrrables one can choose Pl ~ oo in theo~'em 7, then  the  compactness hold for 
p ~ p c / ( 1 -  0). The theorem 7 carmot give a be t t e r  result,  bu t  the result  m a y  be 

improved in the  following way. 

(34) This inequality is obtained by using the Young real inequality ab<aq/q .-[-br ' 
(where 1/q + 1/~/' = 1)for a = (HI(t)llx/[[/[Ii,~(x)) *(l-o), b = (t[/(t)[[ v/[[/l]~p, Cr)) *~ and q = pc/p(1 --  0), 
q' = pl/P O, P = ~o an4 by integrating in t, 
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COROLLA]~Y 8. -- Assume (10.1), (10.2) and l < p o < o % l < r ~ < c ~ .  Let  ~ be 
bo~mded in Z~'(0~ T;  X) and ~_~/3t be bounded in Z~'(0, T;  i7). 

I f  0 (1 - -1 / r~ )<(1 - -O) /po  then  2~ i~ relat ively compact  in Z'(0,  T ; B ) ,  V 2 < p ,  

where l i p ,  ~- (1 --  O)/po-- 0(1 --1/r~). 
I f  0 ( 1 -  1/r~)~ ( 1 -  0)/19o t hen  F is re la t ively compact  in C(0, T;  B). [] 
I f  r~ ~ 1 one finds again (10.6). 

P ~ o o s  o F  CO~OX, LARu 8. - :By lomma 4 there  holds IIv~/-]ll~(O,T_a;r)<e~h, 
V]e 2'. Then the l~iesz inequal i ty  (10.5) gives 

where 1/re = (1 -- O)/po + O/r~ and co is the diameter  o f / ~  in L~'(0, T ;  X).  
One concludes with theorem 3, which t ime criterion (6.3) is verified by  lem- 

m~ 6. �9 

More generally it is possible to use assumptions in fract ional  or not  Sobolev 
spaces. Denote  

(lO.7) 
W = W s ~  Ws,,r'(O,T; Y)  where s~ are reals, ,  l < r , < ~  

1 1 _ 1 - - 0 +  0 and  s , - ~ S o - - - - .  
so = ( 1  - -  O)so + Os~, re re r~ re 

Then the corollary 8 m a y  be generalized by:  

COROLLARY 9. - Assume (10.1), (10.2), (10.7) and so ~ 0. Le t  P be bounded in W. 
I f  s ,  ~< 0 then  _~ is re la t ively  compact  in L~(O, T; B), Vp < p ,  = -- 1/s , .  
I f  s,  ~ 0 then  F is re la t ively  compact  in C(O, T; B). �9 

l~emark tha t  the  order p ,  is in termediate  between re and c~ and tha t  in the 
frui tful  case (see the  opt imal i ty  in the  following) where so - - l / ro<s~- - l / r~ ,  19, 
increases as 0 does. 

P~ooF oF COrOLLArY 9. - Assume first tha t  So, s~ are not  integer and let a < 0 
be such tha t  s a ~ O, s a - -  1 / r  a ~ - -  1/19 (p : c~ if s ,  > O) and such tha t  G is not  
integer.  B y  lemma 7 one has W c  W~"~~ T;  Xa) where X a ~ ( X ,  :Y)~.~, . Since 
a < 0 it follows from [LP] (35) tha t  X~ c B with compact  imbedding, and one con- 
cludes with (6.5). 

' q 
I f  So or s~ is integer let s~ < s~ be n o t  integer and such tha t  s,  ~ s ,  > - -  ]/19. 

Then W c W ' and one concludes by  the  non integer case. �9 

(85) The seeUon 1.3, p. 28 of [LP] gives that X~ is of class /~a(X, Y) and (X, Y)0,1 is 
of class Ko(.X , Y). By theorem 2.3, p. 38 the imbedding X~ -+ (X, Y)0,1 is compact and 
(X, Y)o,lcB wi~h continuous imbedding by proposition 1.1, p. 27. 
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The corollary 8 migh?s have  been p roved  so. However  the  proof  which was g iven 
has  the  a d w n t a g e  to avoid  the  in te rmedia te  imbedding result  of l e m m a  7 which 
full proof is not  easy. 

Le t  us r e m a r k  flint, b y  choosing So = 0 and  s~ = 1 in corollary 9, one find again 
the  case of differentiable funct ions which was t r ea t ed  in corol lary 8. B y  choosing 

so = 0 and  s~ ~ m one %rea~s the  case of m t imes differentiable functions.  More 
general ly  ~'esults on the  in te rmedia te  der ivat ives  are obta ined  b y  apply ing  the  

corollary 9 to the  set ~ / S t ~ =  {~f/~t~: f e E }  with s o = - - j  and  s ~ =  m - - j .  I t  
yields 

COROLLAI~Y 10. - -  Assume (10.1), (10.2) and  l < p o < ~ ,  l<r~<cx~.  Lot  F be 
bounded  in Z~~ Y; X) and  ~_F/~t ~ be bounded  in Z~'(0, T ;  Y), and  let ] < Om 
and  1/ro = (1 - -  O)/po ~, O/r~. 

i f  j > O m -  1Ire then  ~J_F/~t ~ is re la t ive ly  compact  in L~(0, T;  B), Vp < p ,  where 

l ip ,  = 1Ire-  (Om - h. 
I f  ] < Om -- 1/ro t hen  3J_~/~t ~ is re la t ive ly  compac t  in C(0, T;  B). [] 

OPTIMALITY O]~ COROLLA~IES 8, 9 A1ND 10. - -  The restr ic t ions p < p ,  are necessary,  
for  some spaces B, f rom proposi t ion 5. [] 

t~E~rA~X 10.1. -- The limit eases. I f  0 = I one has  B = Y; all ~he proofs of this 
section still  holds and  one finds again  almos~ all ~he results  of section 6 (as). 

The assumpt ion  t h a t  B is of class 0 ~ 0 is satisfied as soo~ as X c B c Y. Bu t  
the  l emma  10 and  11 are no more  valid,  t hen  for this case one has  to  go back  to  

section 8. [] 

A consequent  class of spaces in b m m d a r y  value problems is the  one of Sobolev 
spaces buil~ on un open se% Y2 of R ~. Le t  us suppose t h a t  

[ a9 is open, bounded  and  it  satisfies the  cone p rope r ty  (~7) in R", 
(lO.S) / X ~ W~"~~ B = W~'~(~9) and  Y ~ W~"r 

Then  B is in te rmedia te  in the  sense (10.2) if and  only if 

n 

(] 0.9) ~o > ~ > ~1 and  Do > fl > fll where  fi = ~ - - ( ,  fix : ~i - - ~ .  

The point  now is to  find the  best ,  t h a t  is the  largest,  0. I t  is g iven b y  the  

LEPTA 12. - Assume (10.8) and  (10.9). Then  (10.1) holds V0 < u where 

(10.10) u ~ m i  l - -  - ; �9 �9 
l~o--  ~1 f ie- -  f i,J 

(JG) The theorem 7 gives ~gain the theorem 3 except the lecal type in the space crite- 
rion (6.2), and the corollary 8 gives again the corollary 2 with the same restriction. 

(aT) See for example [AD] section 4.3. 
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PRoo~.  - B y  t h e  p ropos i t i on  1.1 of [LP] ,  (10.1) is equivalen~ to  ( W  ~~176 W~l':~)o,z c 

c W ~'~. I % w  if 0 < u one  h a s  (as) (W~,,~~ W~,~)o,~ c W~,,~, where  ~ =  (1 - -  u ) ~ o +  u ~  

a n d  1/$, = (1 - -  u)/~o + ~t/~l. 
D e n o t e  a ---- (~o-- ~)/(~o--  ~ )  a n d  b : (flo-- #)/(flo-- fl,). 
I f  a < b  one h a s  ~ :  ~ a n d  (~) ~ > ~  t h e n  W~~162 W ~'r and  (10.1) is sat isf ied 

since ~ ~ a. 
I f  a > b  one has  ~ > ~  ~ a n d  ~ - -  n / ~  = (1 - -  b)flo + bflz ~ b -~ o~-- n/~ %he~ 

b y  tho  f r ac t iona l  Sobo lev  t h e o r e m  t h e r e  holds  W~ ' :~c  W ~'~ a n d  (10.1) is sa t is f ied 

s ince u ~ b. [] 

Rr_~A]CK 10.2. - The limit  eoe//icients. (10.1) ho lds  for  0 = u if ~o, ~ and  ~ are  

no t  in teger  and  m o r e  gene ra l l y  if  (use [G, (6.6) a n d  (6.7), p.  178]) 

~ > 2  if g~ is i n t e g e r ,  i = 0, 1 ,  a n d  ~ , < 2  if :r is i n t e g e r .  [] 

1 1 .  - O p t i m a l i t y  r e s u l t s .  

The p o i n t  n o w  is t o  v e r i f y  t h a t  t h e  va r i ous  res t r i c t ions  on t h e  p a r a m e t e r s  in t he  

p reced ing  resu l t s  were  necessa ry .  To  th i s  end  some  sets  F are  bu i l t  b y  h o m o t h e t i e s  
f r o m  a r egu l a r  f unc t i on  ~. 

L e t  us  beg in  b y  some  resu l t s  which  are  sa t is f ied for  e v e r y  B a n a c h  spaces  X a n d  B 
such  tha~ X c B.  D e n o t e  (H~] ) ( t )=  ](~t) a n d  let  

(11.1) b o X ,  b r  a n d  q ~ G ~ ( R ) ,  ~o = 0 ou ts ide  ]0, T[,  ~ ~ 0 .  

(11.2) g,,,(t) = n~/qb~(nt) a n d  G ~ =  {g,,~: n > l } .  

A t  first  le t  us  v e r i f y  t h a t  t h e  p a r t i a l  c o m p a c t n e s s  d e n t  i m p l y  t h e  l imi t  com-  
pac tness .  

P]~oPOSl~lO~ 1. - F o r  1 < q <  c~, d~ is b o u n d e d  in  Z~(0, T ;  X ) ,  is r e l a t i v e l y  com-  

p a c t  in Z~(0, T ;  X ) ,  Vp < q, a n d  is no t  r e l a t i v e l y  c o m p a c t  in  Z~(0, T ;  B).  [] 

(sa) (Wao,r W~l,r r (B~o-e, r B~-e ,  r -~ B~ ~ r > 0. I f  ~o • ~z then t0 > ~u and 
for e = % -- ~ ,  B~e-e. r c B~",r c W ~",r I f  ~o < ~z then ~o <: ~, and for e : (no -- ~/~o) - -  
- -  ( ~ .  - -  n / ~ . ) ,  ~[~-~, ~o c B ~ - , ~ .  c W ~ , r  - .  

(as) One has 

0 = (rio -- fl) -- b(flo -- flz) < (fie fl) -- a(flo -- ill) = ao -- ~ -- -- -- 
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P~ooF. - For ~>! one has 

R 

t~,eu IIg.,oll-{o,~;~)= ~'~176 Zt ~omlows ~h~t Go is b o ~ d e d  in Zo(O, i,'; x )  
and is relaf~ively compacS in Z~(0, I ;  X),  Vp < q. ~Ioreover G~ is noS rel~Sively 
compact in Z~(0, T; X)  since othe:cwise %here wo~ld exis% a subseq'uence such %hat 
a ~ , ~  g as m -~ oo and Ilgll.(o,~;x) = HbllxlI~II.(R) which is impossible as a = 0 (~om 
%he convergence a.e. or from f~he convergence iu Z~(0, T; X)). 

Ill these results X may be replaced by  B, since b ~ B~ which ends ~he proof. [] 

]:~EI~AI~K 11.1. -- The comloacSness properSies may be proved by the characteriza- 
%ion of theorem 1: She space cri~eriou (3.1) is s~r since 

t~ 

f g,,~(t) dt ~ {/~b: ]~l < I~~ which is compacr in X .  
t~ 

i f  p < q ~he %ime criterion (3.2) is satisfied since (use 1emma 4 if l<~h<l/n) 

l~or p = q ~he ~ime cri%erion is nee sar since, ~'or h<~T/2 and n > T / h  

:Now leS us verify ~ha~ the comloacSness ir~ ~he Sobolev imbedding ~heorem holds 
only ~or posiSive regulari?~y order s. T,e~ 

k~(t) -= b sin n ~  and K = {/~,: n > l } .  

P~o~,os~:Eo~ 2. - K is bom~dea in Z~(0, 2'; N) and is not relatively compact 
in Z~(0, T; B). [] 

~ o o ~ .  - o n e  has  t l ~ . t I ~ o , ~ ; x ) =  II~ll~. o ~  o~her hand ,  i~ ~ = r / ~ ,  

~ - - l r _ l l ~ l l  ~ o  ~s ~ - + 0  
7~ 

Chert %he ~ime criterion (3.2) o:~ ~heorem 1 is uo:~ sa~isfied~ so ~ha~ K is no% relatively 
compac~ in L~(O, T; B). [] 
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Then let 1is verify *hat the imbedding in the Sobolev theorem is no~ compact 
for the limit coefficients. Begin by the integer case: 

FI~OPOSlTIO~ 3. - G~o is bouI~ded in C(0, T; X), ~G~o/~t is bounded in Z~(0, T; X) 
and Gee is no* relatively compact ia Z~~ T; X). [] 

PI~OOg. - From proposi*io~l 1 it remains to bound ~Go~/~t. _Now 

~g~'~ ~ (o,~; x)---- [lbI[~ n~-~ (nt) dr= ,,b][x l-~-I/~ (~). 
1r 

In  the fract ionnary case one has: 

PROPOSITIO~ 4. -- Let  l < r < q <  c~. Then Gq is bounded i~ WZl~-~/q,r(O, T, X) (3 
n Zq(0, T; X) and is not  relatively compact ill Zq(0, T; B). [] 

Changing the notatio~ls it yields: 

1 r 
(11.4) let 0 < s < - r  and ~ * - - l - - r s ' "  --  Then G~. is bounded in 

Ws.r(O, T; X) ~ Lr*(0, T; X) and is not  relat ively compact  in L~*(0, T; B) .  

PI~ooI~ o1~ P~Ol'OSI~IO~ 4. - From proposition i it remains *o bound G~ i~1 Ws'~ 
where s = I / r - -1. /q .  xNow by  remark 5.2 one has 

pc 

0 

~hen ][g~,~fl~,.(o,T;x) <.l/~+'-~/~lfbllx[l~[l~.,.(~). []  

Now let ns give result in intermediate spaces, with coefflcients depending Oll 
the spaces irL which %he functions are valued. 

Let  1 < a <  c~ be given and Xo = Wl-~ T). Then (4o) %he imbedding Xo-+2(1 
is compact and Xo is of class 0 wi~h respect to Xo and X~. Denote 

W : W'~ T, Xo) (3 WS"r'(0, T; X~) where s~ are reals, 1<~ ' ,<  c~ 

]~(t, x) = n-(~l-xlrl)ttllacf(nt)qD(#x ) where /t : n (8'-1/~0-(8~176 

1 1 - - 0  0 
= {L :  ~ > 1 } ,  s o =  (1 - 0)So + 08~, - + - .  

~'0 To 'rl 

PROPOSITIO~ 5. - Assume sl-- :[/r~>so-- 1/re: Th e n / ~  is bounded ,~nd not rela- 
t ively compact in W and in WS'r(O, T; Xo) if 8 -  1/r = so--1/r~. [] 

(40) For example by corollary 1 and by the application in section 10. 
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P~ooF. - For  every s and r there exists 0 < m < M such that ,  V i > I  (~), 

(11 .7 )  whe .e : 

Since s~--1/r~>So--1/ro one has /~>1 then (11.7) imply 

II/.llw. w,-o c (n ,  = c (n ,  

ORe concludes by  the same argument  as in the prooi of proposit ion 1, since 

w = N W~~176 o, ~r; Xo). [] 
0=0,1 

Let  us complete the proposition 5 by  a result for a compact  set in W: denote  

= { / . / l o g  

Pt~OPOSlTION 6. -- Assume sx--1/r~>so--1~re. Then F is relatively compact  in 

W and, if s -  1/r > so--1/ro, E is not  bounded in WS'~(0, T; Xo). [] 

PROOF. -- It is similar to the preceding one. [] 

Let  us give an application. Let  l~<r~<c~ and s~>0. Then (~-~) 

(11.8) V r > r o  there  exists 0 <  0 <  1 and  a compact  set E in 

L~.(0, T;  32o) (3 W ..... (0, T;  X) which is not  bounded  in Z~(0, T;  Xo) �9 

R ] ~ ] ~ K  11.1. - There exists some intermediate spaces B, with compact  im- 

bedding Xo--> B, which are suitable for all r > re, tha t  is to  say such tha t  

(11.9) there  exists a bounded set E in Z~.(0, T;  Xo) (3 W ..... (0, T;  X~) which is 

compac t  for no one space /~*(0~ T;  B), r > re.  

For  example 

Ilog hi } 
B = / e L ~ ( O ,  !): S u p - - T - -  I [~] - - / l I~(o ,~-~)<  ~ , 

h>0 

this will not  be s tated here. Remark  tha t  no one space of class 0 > 0 m a y  be suitable 

for all r > re (it follows from corollary 9). [] 

(41) If s = 0 see (11.3). For the function ~ with compact support in ]0, T[ which is the 
case for Hz~, one has if 0 < s < 1, II~][w,,,(o,T) ~ [l~V[]ws,,(~) -~ [[~P[]~,,~(~) and (11.7) follows 
from a change of variable, see (11.5). In the general case one has 

~m~p 
II~][w ..... (o.z)~ ~ ~o.,<o,z) and [l~llw ..... .  (o,z)~ tl~l[~o.,<o,z) 

where O'~pm/OP= ~, ~z(t) = 0 if t<  0, and (11.7) follows since (O~H~9)/OP= ~H~(~q/OP). 
(42) If s~--1/rx<--1/rx it follows from proposition 4, u If sd-- lira>-- 1/% it follows 

from proposition 6 with s o = s = 0 and 0 small enough s o -  1/re < -- 1/r. 
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