Singular Points of the Consequent Mapping (¥).

P. K. Paravmioes (Toannina, Greece)

Summary. ~ Consider the Ordinary Differentiol System
(E) &=ftwx, (tae, REt, o)xRr

and a subset w of Q. It is known that the consequeni mapping X is upper semicontinuous
at any point P € Q at which 3 is defined and moreover Xo(P) is a continuum in dw. Here
we study the topological properties of the set Jo(P) in the case where P is a singular point
of X, i.e. theve ewists a solution of (E) through P which stays (right) asympiotic in w. As
an application we get an existence result of a general boundary value problem concerning (E)
and we also prove that the second-order BVP

2" = f(t, x, '}, a,x({tp) — by @' (b)) = 1y and ayx(t) + byw'(t) = 75

has a solution.

0. - Introduction.
We consider a differential equation of the form
(E) ~'i=f(t7w)y (t,w)e!)

where £ C[t,, co) X R is open and R stands for the real line.

Under some assumptions on f among which me refer only to the continuity of f
and uniqueness for (E), WAZEWSKI [13] has proved that there exists a solution x
of (H) which remains (right) asymptotic in a certain set w C £2, namely

G(z[Dom* w) = {(¢, 2(t)): t € Dom* & = [{y, co) " Dom z}C w .

His method is essentially based on the continunity of the so called consequent map-
ping K., i.e. the mapping of w into its boundary 0w under the action of solutions.

JAacksoN and KLAASEN [3] and BEBERNES and ScHUUR [1] have shown that
the WazZEwsKr’s result holds without the uniqueness assumption. In this case the
consequent mapping J, is an upper semi-continuous mapping, which sends a point
of w to a continuum (connected and compact) subset of dw. They also have pointed
out, that the upper semi-continuity of J. at the point P e w depends on the point

(*) Entrata in Redazione il 19 maggio 1981.
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and the function f. In [11] these results have been carried out for the case where
the function f satisfies the Carathéodory conditions locally in Q, namely f € Car, (2}
and it has been shown therein, that there is a connection between these results and
the well-known [7, 8] Kneser’s theorem.

Some Kneser’s type topological properties of the cross-section X(u; Py) at the
extreme (right) point { = o of the common domain of all solutions X(P,) of (E)
emanating from the point P,e 2, P,= (t;, %), are recently discussed in [7, 8]. More
precisely we have proved there that every connected component in L(e; P,) is an
unbounded. set.

In the above mentioned papers, the various versions of the Wazewski’s theorem
have been proved, by using the fact that there exists a point P € o (called « gingular
point » of Jip) such that the image Jw(P,) is not a eontinuum. In the present paper
we are discussing the following problem: If for a certain (singular) point P e w,
P = (1, &) a solution xe X(P) remains (right) asymptotic in w, what kind of (topo-
logical) properties has the set Jou(P)? In proportion to the Kneser’s type property
at the extreme point { = ¢ mentioned above, we prove that every connected com-
ponent in Jo(P) « approaches » the boundary ¢Q of £, whenever P is a singular
point of the mapping K. Another result of this paper is that for a given interval
[1,t*) (depending from ) and for any point f €[z, t*) there exist an uncountable
set of solutions # € X(P) whose the restriction on [z, {] have their graphs in , that is

x|z, f]) = {(t, s@®)): v = ¢

A

flcw.

Finally we give sufficient conditions, under which given any subset Z of some cross-
section w(ty) = ({to} XR") N o of w, every connected component of the consequent
points of Z « approaches » both the sets dw(f,) and 0£2.

As a first application, we give the following existence result for a boundary
value problem of a general type: For a given set Z C w(f,) and any point { in an
interval [#,, #*) (depending on ), there exists a solution « of (E) which satisfies the
boundary condition

wtyeZ, G, )Ceo and (fa)edw.

This result for such a BVP, as for as we know, is new. Finally an existence result
concerning the second-order scalar boundary value problem
o' = f(t7 z, 00’)
a2ty — bya'(t) = 1. and  az(ty) + b2’ (h) = 7,
which carries out the KAPLAN et al. [4] (cf. also [6], § 3.3) results to the Carathé-

odory case, is given. Notice that, in this case, our proof is shorter and more formal
than the one in [4], though our problem is more general.
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1. — Preliminaries.
Consider the initial value problem

(E) & = f(t, )
(©) #(ty) = @,

where f € Car) (2) and Py= (1, #,) € 2. Let L(P, ) or simply L(P,) be the family
of solutions of (E)—(C), when it is well known that X(P,) = 06. A topology which
associates Car,(Q2) is introduced by the following convergence: {f,f.}< Car,, ()

and lim f,=f means that lim f sup [f.(t, @) — f(t, )| df = 0, for every compact
I zekK
restangle I XK C Q. Also we assume that the set Q xCar, () is endowed with

the natural product topology.

THEOREM 1.1 [11]. — Let {(Py, f.} be a sequence in 2 X Car,,(2) such that lim (P,
fu) = (Po, ). If 2,6 L(Py, Ts) for any n == 1,2, ..., then there exist w € L(P, f) and o
subsequence {x; } of {.} such that

limax, =x wuniformly on compact subintervals of Dom 2
n H

that is for any compact subinterval I of Dom x
i) ICDom x;, for all large n =1, 2, ...;
iiy lim @, = & wniformly con I.
Congider now a set w C Q2 such that £ — & = @.
A point Pe RN ow, P = (7,§) is a point of semi-egress of w (with respect to

the system (E)), iff there exist a solution # € X(P), a point t,€ Dom~z = (— oo, 7] N
N Dom # and an &> 0 such that

G(w|lt,— &1, 1,); P) Cw® and  G(x|[t,, 7]; P) C 0w
where G(x|I) = {(t, #(t)): t € I} denotes the graph of the restriction #|I, I C Dom z.
If moreover for any solution # € L(P) there exist a point #,€ Dom* z = [7, o) N
N Dom ¢ and an &> 0 such that
G(z|[r,t,]; P) Cow and G(a|(ty, ta+el; P)SCQ— w
then the point P will be called a point of strict semi-egress of w.

The family of all points of semi-egress or strict semi-egress will be denoted by w*
or w* respectively.

25 = Annali di Malemalica
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A point P € w® or P € w* is a point of egress or respectively, a point of strict egress
of w iff the above definitions are valid for ¢{,= 7 or ¢, = t,= v. Similarly, the set
of all points of egress or strict egress of w will be respectively denoted by w® or w®™.

A point Pe QN do is a point of semi-ingres; strict semi-ingress, imgress or strict
ingress of the set o (with respect the system (E)) iff, it is a point of semi-egress,
strict semi-egress, egress or strict egress of the set 22— w, respectively,

A point @ e w®, @ = (0, %) with 0= 7 is a consequent of the point Pew, P =
= (7, &), with respect to the set w (and the system (E)), if there exist a solution
zeL(P,Q) = L(P) N X(Q) and a point ¢ € [z, ¢] such that ¢(z|[4,, 6]) C dw and pro-
vided that v < t,, G(a(z, #,)) C w®. For such a solution z € X(P) we say that it semi-
egresses from o (through the point @) and, in case @ € w®, it semi-egresses strictly
from w.

The set of all consequent points of P with respect to w (and the system (E))
will be denoted by C(w; P). We also consider the set S(w) = {@ € w: C(w; Q) = 6}
which is usually called the (left) shadow of the set @ and let J» be the consequent
mapping on S{w) to w?, defined by

Fou(@) = C(0;9), Q€S(w).

Finally, we shall say that a set-valued mapping ¥, which maps the points of a
topological space X into compact subsets of ancther one Y is upper semi-continuous
(use) at a point z,e X iff for any open subset V in Y with F(z,) C V there exists a
neighborhood U of x, such that F(z)CV for every weU (see, e.g. [2]).

The next lemmas give sufficient conditions for the upper semicontinuity of the
consequent mapping and some useful properfies for a class of use mappings. We
notice that the consequent mapping is included in this class.

LEMMA 1.1 [11]. - If P e S(w) and every x e X(P) semi-egresses strictly from o,
then the consequent mapping Ko is use of the point P and moreover the image Ko(P)
is @ continwum in Ow.

TEMMA 1.2 [8]. — Let X and Y be metric spaces, and let F: X — 2% be an usc map-
ping. If A is a connected subset of X, such that for every x € A the image F(x) is a
continuum, then the image F(A) = ) {F(x): we A} is also a continuum subset of Y.

Let A be a subset of 2 and let I be a subset of the projection pr; A of A into
the first factor. We will use the notation A(I) = 4 N (I xR») for the eross-section
of A at the set I and, for brevity we set, A{{I}) = A1), 4([f, t.]) = Alts, 2], A([t,
1)) = Alty, t;) and so on. Also let

T(4) =U{X@): Ped} and (P, 4) =I(P)N L(4)

and let furthermore X(f; 4) = {(, #(f)): # € L(4)} represents the cross-section of all
solutions x € X(4) at the point ¢ =7 Moreover let Lo(d) be the family of all
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solutions « e X(A4) which remain (right) asymptotic in w, namely z ¢ Lu(4) <
<> G(2Dom*#) Cw. Let also

Xoll; [fo, 1], 4) = {(f, (D) : 2 L(4) and G|ty t]) € w}

be the cross-section at the point f of the family of all solutions having the graph
of their restrictions z|[f,, %] in w, ie.

Lo([t, 1,]; A) = {w e L(A): G(w|[L, t,]) C w}.

Finally the set'4 C Q is said to be R-almost compact in 2 (cf. [12]) iff A(I) is a
compact subset of O for every compact subset I of pr, 4. It is clear that an
R-almost compact set is closed.

In the following we shall always assume that o is an R-almost compact set in £
and moreover sup pryw == sup pr, £ = t*.

2. — Singular points of the consequent mapping.

Let P,= (t,, #,) be a point in some cross-section w(f,) of w. In the case where
L(P,) = Lul(Py), i.e. all the family L(P,) remains (right) asymptotic in w, it is clear
that the consequent mapping cannot be defined at the point P,. On the other hand,
when Lu(P,) = @ the lemma 1.1 contains the main properties of the consequent
mapping. So in the following assume both that Xu(Pg) w8 and Le(L) 7= L(Fy)
and we are going to study the «image» JHo(P,) only in the latter ease. The main
result in this section is that every commected component 8 of Ko(Po) approaches the
boundary 02 of 9, i.e. SN 02 0 or equivalently sup pr, 8 = t*. This result is,
in some sense, the dual one for the Xneser’s type property of the cross-section
TL(a; Py) at the extreme (right) point ¢ = sup N {Dom z: @ € T(P,)} (cf. [8], Th. 2.1).

LEMMA 2.1. — If wf = w* and moreover Pyc o, Py= (t,, %,), and i € [t,, t*) are poinis
such that the sets Lo(t; [to, £], Po) and Fou([ts, t1; Po) = [Ku(Po))[ts, 1] are nonempty,
then they are both compact.

PROOF. — Consider the compact set w[t,, f] in 2 and notice that every point of

the cross-section w(f) is a point of strict semi-egress from the set wlt,, #1, ie. w(f)
C (w[ly, £])*. Consequently

(w[to, 5])5 = (w[toy ‘?])ss .

On the other hand, by the compactness of w[t,, {], every solution z & X(P,) semi-
egresses (strictly) from this set. Thus by Lemma 1.1, the image X, 3(£o), Po€ o(t)
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is a continuum, where X, 3, stays for the consequent mapping defined with respect
to the set w[t,, £].

The results now follows by the closedness of the sets 0w and w(f).

We also need the next lemma from the classical topology.

Lemma 2.2 ([5], ch. V, § 47, point ITL, Th. 2). - If A is an arbitrary proper subset
of a continuum C and if S is a connected component of A, then

SN (ONA) =0  de SNod==0.

PROPOSITION 2.1. — If w*= w* and Pyc wl(ly), Po= (lo, %,) 18 @ point such that
Lol Py) 5= 0, then either the family L(P,) remains (right) asymplotic in w, i.e. B(Py) =
= Lu(Py) or every connected component S of the set You(P,) approaches the boundary
00 of 0, i.e. 8N 202 0.

PROOF. — Assume that Lo(P,) 7= L(P,), that is Ke(P,) 5= . Let S be a connected
component of Kw(Py) and x e L(P,) be such that (z,x(z)) € § for some e Dom .
(We recall that £ is open and w is R-almost compact in Q.)

We are going to prove that SN 82 0. By assuming the contrary let i, =
= max pr; §, when 8(t,)C 0. Thus, by the R-almost compactness of cw, there
exists a point £> ¢, such that the set w[f,, {] is a compact subset of £2. Moreover,
Lemma 2.1 ensures that the cross-section Lo(f, [t, t1; Po) of the family Lo([ty, f1;
Py) = {w e X(P,y): G(w|[ty, 1]) © w} is also a compact subset of the continuum K, 3(Po)-
Now, since clearly

0* N Koy, 1(Po) = (wlto, £])e2 N Ku(Py)

the connected component § in J.u(P,) is also a connected component in [Fo,;, 3 (Po)TN\
\(f), due to the fact that > ;. Thus in view of Lemma 2.2, the component §
approaches the set [J0,q, 4(Po)]1N w(f) = Lu(f; [to, {], Py), which by the definition
of ¢, is a contradiction.

PROPOSITION 2.2. — If the assumptions of Proposition 2.1 are fulfilled then, either
for any te [to, %) the cross-section ZI’,w(f; o), of all solutions which remain (right)
asymplotic in w, coincides with the continuum L(t; P,) (and is contained in w®), or there
exists a point t,.€ [Ty, 1*) such that for any te[t,, *) every connected component C of
the cross-section Xo(t; [y, 11, P,) approaches the boundary dw, i.e. C N Ku(Py) # 0.

PROOF. — If Xu(Py) = XL(P,) then the result is implied by the Kneser's theory
(cf. [7]). So, assume that Lo(Py) s~ L(P,). Set ¢ = min pr, Ku(P,) and take e
€[t,?*). By Lemmas 1.1 and 2.1, the set Jo([fo,f]; P,) is compact and the
Foorr, 1(Po) i8 @ continuum. Thus Lemma 2.2 is applicable and the result follows.

A basic statement of the assumptions in the propositions above is the existence
of a point Pye w(t,) such that Lo(P,) + 0, i.e. the existence of a solution & € L(w(k))
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which remains (right) asymptotic in w. About this fact we refer here to some
known results but first we state the following assumptions.

(H,) The set w is R-almost compact in 2, sup pr;w = sup pr; 2 = t* and

feo(ty, %) = 0° = w*.

(Hy) w*= w* and there exist o subsel Z of w’N w*® and a retraciion of w* onto
w'N Z but there does not exist retraction of Z onto the set w*N Z.

(H;) i) f(2,0) = 0, for any t =1, and the zero function is the only solution of
the tnitial value problem (E), x(t,) = 0, for any t,=1,.

i) w®= w* and (2— w)*= (2 — w)*.

P
iii) There exist closed sets Qy, @, ..., Q, such that |JQ,= w* and Q,N Q,= 0
or Q;NQ;CQ, for i 7], where Q= {(t, #) € Q: v = 0}. "=!

iv) There exist a continuum Z in o(l,) and indeces iy, iz, ..., b, 2K = p

such that @, NZ#0, n=1,2,.., k.

LeMMA 2.3 [10]. — Under the assumption (H,), there exists a solution e X(P,),
P, ¢ w(t,) which remains (right) asymptotic in w.

Levma 2.4 [11]. — Under the assumption (Hy) there exist a point Py Z and a
solution x € L(P,) remaining (vight) asympiotic in w.

LeMmA 2.5 [9]. — Suppose that (H,) holds. Then the result of Lemma 2.4 remains
valid.

Now we are ready to formulate the first of our main results of this section. It
is not hard to see that its proof follows by Proposition 2.1, 2.2 and Lemmas 2.3,
2.4 and 2.5.

THEOREM 2.1. — Assume that the se¢i o is R-almost compact in £, sup pr,w =
== gup pr; 2 = t* and at least one from the assumptions (H,), (H,) or (H,) is valid.
Then there exists a point Py w(l,) suck that, either the continuum X(P,) remains
(right) asymplotic in o (thus for any e [ty, t*) L(f; Py) is also a continuum in o°) or
for any t e pr, Ko(Py),

8SNnoR=0 and ON Ko(P,) =0

for all connected components S and C in Xu(P,) and ZI;a,(f; [to, t1; P,) respectively.

In the special case where £ = [t,, co) XR we get the following result:

COROLLARY 2.1. — In addition to the assumptions of the previous theorem we assume
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that Lo(P,) = L(P,), where P, is guaranteed by the theorem. Then the set Ko(P,) has
two conmected components S; and S,. Furthermore if S, and 8, are both nonempty then

sup pry 8; = sup p1y Sy = oo and  Ow[t;, co) = w*[f;, 00) CH;U 8,

where 1, = max {min pr, 8;, min pr, S,}.

Up to now, we have studied the behavior of the connected components of
Kw(P,) to the «right ». Next we deal with the following problem: « Is there a non-
empty set Z C w(t,) such that

SN owit)=0 and SNoL~0

for every connected component S of Ko(Z)? » We give a positive answer to this problem
but first we give the following lemma:

LEMMA 2.6. — Suppose that Z is a compact subset of the cross-section w(t,) and
w'= w*". Then the set Lu(Z) = {Lu(P): P Z} of solutions which start from Z
and remain asympiotic in o is compact (hence its cross-section Zo= Zu(ty; Z) is also
compact).

ProOF. — Let {w,} be a sequence in Xw(Z). In view of Theorem 1.1, we may
assume that

lim»,=« uniformly on every compact subset of Dom x .

Now, if @ ¢ Lo= Lo(w(t)) then (f z(t)) € 2 — w for some € Dom #. But then,
we would have (f, z,(f)) € 2 — o, for all large n = 1,2, ... which is a contradiction.
Finally the compactness of Z implies that x € Ln(Z).

Now consider the following mapping:

I: P —»pr, Ko(P), PeblSw)

where recall that S(w) is the (left) shadow of the set w.

Moreover, by Lemma 1.1, this multi-valuéd mapping is 1sc at any point P, for
which Xu(P,) = 0 and hence clearly the image I(P,) is then a closed subinterval
of the set [f,,1*). Now, our purpose is to study the case where Lu(P,) 5% 0. Then
by Proposition 2.1, the image I(P,) is an interval of the form {%,, #*) where i.=
= min pr, Ko(Py). ‘

THEOREM 2.2. — Suppose that the set w is R-almost compact in Q and (Hy) (or (H,)
for some continuum Z C w(ty)) is satisfied. Then every connected component S of Kow(Z)
approaches the boundary 02 of Q, i.e. SN 025 0. Moreover

I(Z) = pr, 8 = [t, %)

where t* = sup pryw = sup pry 2.



P. K. PArAMIDES: Singular points of the consequent mapping 391

Proor. — Let Z C w(f,) be a continuum which satisfies (H;) (or H,). By Theo-
rem 2.1, we have Lu(Z) = 0 and so by Lemma 2.6, the cross-section Z, = Lu(t,; Z)
is a compact subset of .

Let § be any connected component in Xq(Z) and let 8, be the connected com-
ponent in Z\Z, such that §N Ko(S,) % 0. Lemma 2.2 and the assumption (H,)
(or H,) imply then )

(1) SN Zy=0® and SN wr#0.

Clearly To(8,) 7= 0 and thus, by Lemma 1.2, the set Ju(8,) is a connected subset
of §. By (1) it is clear that min pr, Ko(S,) = min pr, § =#,. We examine now
the following two possible cases:

i) Every solution 2 e X([08,] N Zy) remains (right) asymptotic in w, that is
(2) Lo(w® N 08,) == L(w® N 08,) .

In order to prove that S approaches the boundary 22 of £ it is enough to prove
that Jo(S,) has the same property, since J,(S,) CS. By assuming that [Fe(Sy)]N
M 02 = B, and setting ;= max pr; Ku(S,) we have ;<< t* and observe that the set
wlty, 1] 18 & compact subset of Q. In view of (1) and Theorem 1.1, there exist a
sequence {x,} of solutions in X(S,) and an z € X([08,] N Zy,) such that limz,=a
uniformly on every compact subset of Dom . But then, by virtue of (2), # remains
asymptotic in o and so we would have (1, #(t)) € w°. Consequently we would get
(t., #a(ty)) € @° for all large n = 1, 2, ... which, by the choise of §;, is a contradiction.

ii) There exists a point P e [08,] N Z, such that Ku(P,) 5= 8. Then, by The-
orem 2.1, any connected component §* of Jo(P,) satisfies S* N 0025 0. Now, if
we prove that [Jo(S,)] N 8%~ 0, then § will have the desired properties, since
clearly [Ko(Sp)]U §*C 8. By assuming the contrary, we get f, = max pr; Xo(S;) <.
< min pr, §*. Let {z,} be a sequence in X(8;) and # be a solution in L(P,) such that
lim #, = « uniformly on compact subintervals of Dom x. Then again we get easily
the same contradiction as in the first case.

THEOREM 2.3. — If the assumption (H,) is satisfied and in addition the cross-section
wlty) of w is a continuum, then

S, SN owt)=0 and SNoQ~0

for every comnected component S of the set Fow(w(ty)).

Proor. — The proof goes along the lines of the proof of the previous theorem,
under obvious modifications. '
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3. — Applications.

On the base of the results of the previous section we give here two existence
results for boundary value problems. The first of these is new even for the particular
case where f ig continuous and it is of a general type. The second one refers to
Carathéodory systems though we mention that KAPLAN, Lasors and YORKE have
discussed the same subject in [4] (cf. also [6], § 3.3) for the continuous case.

Consider an R-almost compact set @ such that sup pr, w = sup pry 2 = * and a
subset Z of its cross-section w(f,). We are going to show that for any point £ € [¢,, t*),
the BVP

(B) & = f(t, »)

P) w(t)€Z, (t ) edw

has a solution @ such that G(w|[t, f]) C .

PROPOSITION 3.1. — Assume that Lu(Py) # 0 and Lu(P,) = L(P,) for some Pye w,
Py= (ty, #,). If moreover we[ty, t*) = w*[ty, 1*), then for every t € I(P,) = [t;, t*) there
ewists a solution x € X(P) such that G(x|[t,, {]) C o and ({, #(f)) € d0w. Moreover there
exists a solution x € Lo(P,) such that

dist (2w, G(x|t, *))) = lim dist [32, (2, 2(1))] = 0 .

t—>i*

Proor. — The first part of the conclusion follows at once by Proposition 2.1, in
view of the definition of the interval I(P,) = [t,,?*). Let now a sequence {w,}
where x, is a solution of the BVP (E)-(P) with { =t,, n = 1,2, ... and such that
limt,=t*. Now, by Theorem 1.1 and a diagonalization argument (cf. [10]) we
obtain a limit function of {w,}, say « € X(P,) which clearly has the desired property.

A consequence of Proposition 2.2 is the next one.

PROPOSITION 3.2. — If the assumptions of the previous proposition are satisfied
then for every te(t,,1t*) there ewist an uncountable set of solutions xe XL(P,) with
(@[, 1) € .

The following two theorems (and especially the second one) constitute the ex-
istence result of the BVP (E)-(P). Notice that their proofs are a direct consequent
of the Propositions 3.1, 3.2 and Theorems 2.1 and 2.2.

THEOREM 3.1. ~ Assume that the set o is R-almost compact in £, sup pryo =
= sup pry £ = t* and at least one from the assumptions (Hy), (H,) or (Hj) is valid.
Then there exists a point P,& w(ty) such that either Kou(P,) = 0, or for every te I(P,)
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there exist solutions x € X(Py) and & € Lu(P,) such taht

G|ty i) Cw, (had)edw and limdist (8!2, (t, m(t))) =0,

i—>i*

THEOREM 3.2. — Suppose that the set w is R-almost compact, sup pr, w = sup pr; 2 =
=% and (Hy) (or (H,) for some continuum Z C w(ly)) is satisfied. Then for every
te [ty, t*).

i) There exists a solution of the boundary value problem (E)-(P).

it) The set, Lo(lto, I]; Z) = {w € L(Z): (x|t £]) C ) of all solutions x € L(Z)
whose the restrictions on [ty, t] have their graphs in w, is uncountable and lim dist (00,
(t, w(t))) =0 for a certain solution x e Xu(Z) N Lo([ty, 11; Z). =i

As a second application we shall proove that the BVP

(3) @' = {(t, », ')
(4) Lyw) =1y, Ly@) = a@(t) — ba'(t)
(8) Ly(w) =1y,  Ly(@) = a,5(ty) - b’ (2,)

has a solution x# bounded on [#,t,] by two functions « and f given below and
f € Cary,([t,, oo) XR?).

Let « and 8 be two real functions in C%([t, t,], R) (02([251, 1.}, R) is the space of
twice differentiable on [%, {,] real functions) such that

6) at) <P, LBzftub),a®) and O, LW), LSSt
and

(7) Ly =r,S L(f), i=1,2.
We congider now the set
o={tr,ye:,<i<t, and oaft) < o= P}
and its faces
Q= {t,2,9)€0w: v =at)} and Q= {(t,4,¥)€dw:x=p(1)}
as well as their subsets

Q.= {t,z,)€Qu:y<o/'(t)} and Q= {t, 2,y eQ:y=p®)}.
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Finally, assume that f is continuous on some neighborhoods Vs and V; of the
« eurves »

ya={(t,a®), ') <t <ty and  ye= {(t, (1), /(D) 1, <1< ty}

respectively and furthermore f satisfies a Nagumo condition on w, that is there
exigts a positive and loeally measurable function ¢ on [0, co) such that the func-

‘tion s/gp(s) is locally bounded on [0, co), f[s/go(s)]ds = oo and |(k(t, 2, 1))| < ¢(ly|)
for almost all (¢, #, ) € w. 0

THEOREM 3.3. — Assume that there exist two real fumections o« and B which satisfy
(6) and (7). If f satisfies on o the above Nagumo condition, then there exists a solu-
tion © of the BVP (3), (4) and (5) such that o(t) < x(t) < B(t), for all t € [ty, 1,].

Proor. — Consider the set
8= {(iu Enrab—by=r and o)< /3(751)}

which is clearly a continuum in the cross-section w(#) of w. Since, %'(t) exists a
any point ¢ e [#,, t,] sueh that x(t) = «(f) and 2'(t) = o'(f) or «(t) = B(t) and 2'(t) =
= f'(t) (by the continuity of f in the neighborhoods V. and V) it is easy to show
(cf. also [3, 11]) that

(8) Q.U QU () =w'=w* and

(Qu— Q) U (Q5— Qp) = (2 — 0) = (2 — o)
Consequently, by the Nagumo condition, every solution » ¢ X(8;) has its derivative
bounded and so it semi-egresses (strictly) from the set w. Thus, by Lemmas 1.1

and 1.2, the set Xo(8,) is also a confinuum and hence there exists a solution
xa€ L(8;) such that

alt) Swal) = f(1), H=t1=t  and  a(h) = alty) .

By Lemma 2.2 now, the connected ecomponent 8, in [w(f,) N Kn(8,)]Q containing
the point (£,, Za(ta), xa(t,)) Teaches the set @, that is there exists a solution xse L(8,)
such that

a(t) < @(l) < B(F) , h=t<1,, @plty) = B(ts) and (tzy @a(ta), w;?(tz)) €8,.

In the case where a(fy) = f(i,) We set za = and so we obtain 8,= {(t;, za(ly)
xé(tz))}). In view of (8) and the definition of the consequent mapping we have
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(tza La(la), mz;(tz)) € Qs and (tzy @a(ts), '”4,3(?2) € Q,;, that is
(9) m"?;(tz) <o'(fy)  and ”l,?(tz) =) .

Now without loss of generality we may assume that b,>0 (¢ = 1, 2) and then
by (7) and (9) we obtain

Ly(ws) = 7o L(mg) -

Thus, by the connectedness of the component 8, and the continuity of the func-
tion I, we get a solution # e X(8;) such that L,(z) = 0 and «(?) < #(?) = 5() for
all te[t, ]
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