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Summary. - Consider the Ordinary DiNerential System 

(E) 2 = / ( t ,  x ) ,  (t, x) e 9 ,  .Q ~ [t o, ~ )  X R  ~ 

and a subset co o/ .Q. I t  is known that the consequent ma~pping ~ is upper semieontinuous 
at any point t ) e 9 at which 55 is defined and moreover 55(P) is a continuum in 8co. Here 
we study the topological properties o/ the set JS(P) in  the ease where 1 ~ is a singular point 
o/ 55, i.e. there exists a solution o/ (E) through P which stays (right) asymptotic in co. As  
an application we get an existence result o/ a general boundary value problem concerning (E) 
and we also prove that the second-order B V P  

x"-~ /(t, x, x'),  alx(to) - -  blx'(to) = q and %x(tl) + blx'(tl) ---- r 2 

has a solution. 

O. - I n t r o d u c t i o n .  

We consider a differential equation of the form 

(E) 2 = /( t ,  x)  , (t, x)  e 9 

where Y2 _c [to, c~) •  is open and R stands for the real line. 
Under some assumptions on / among which me refer only to the continuity of / 

and uniqueness for (E), WA~EWS~ [13] has proved tha t  there exists a solution x 
of (E) which remains (right) asymptotic  in a certain set co c z9, namely 

G(xlDom+ x) ~ {(t, x(t)) : t e Dora + x -~ [to, co) (~ Dom x} _c co. 

His method is essentially based on the continuity of the so called consequent map- 
ping JS~, i.e. the mapping of co into its boundary 0co under the action of solutions. 

JAC~SO~ and KLiASEN [3] and BE]~E~NES and S c ~ - ~  [1] have shown tha t  
the Wi~nws~I 'S result holds without  the uniqueness assumption. In  this case the 
consequent mapping JS~ is an upper semi-continuous mapping, which sends a point 
of co to a continuum (connected and compact) subset of 0co. They also have pointed 
out, t ha t  the upper semi-continuity of JS~ at  the point P e co depends on the point 

(*) En~rata in Redazione il 19 maggio 1981. 
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and the function 1. In  [11] these results have been carried out for the case where 
the function f satisfies the Carath6odory conditions locally in ~2, namely ] ~ Carrot(S9 ) 
and it has been shown therein~ tha t  there is a connection between these results and 
the well-known [7~ 8] Kneser's theorem. 

Some Kneser's type  topological properties of the cross-section ~(e;  Pc) at the 
extreme (right) point t = e of the common domain of all solutions ~(Po) of (E) 
emanating from the point Poe sP, P~ = (to, Xo), are recently discussed in [7, 8]. More 
precisely we have proved there tha t  every connected component in ll;(e; Pc) is an 
unbounded set. 

In  the above mentioned papers, the various versions of the Wa~ewski's theorem 
have been proved, by  using the fact tha t  there exists a point P e co (called (( singular 
point )~ of ~ )  such tha t  the image N;~(Po) is not a continuum. In  the present paper 
we are discussing the following problem: I] for a certain (singular) point t ) ~ co, 
P = (% ~) a solution x ~ ~,(P) remains (right) asymptotic in co, what kind o] (topo- 
logical) properties has the set ~ ( P ) ?  In proportion to the Kneser's type  property 
at  the extreme point t ~ e mentioned above, we prove tha t  every connected com- 
ponent in ~ ( P )  (~ approaches ~> the boundary ~2 of D, whenever P is a singular 
point of the mapping 3~. Another result of this paper is that for a given interval 

[T~ t*) (depending from co) and for any  point ~ e Iv, t*) there exist an uncountable 
set of solutions x e IE(P) whose the restriction on [~, ~] have their  graphs in e), t ha t  is 

~(~1[~, z]) -~ <(t, x(t)): ~ ~ t ~ ~} _~ ~o. 

Finally we give sufficient conditions, under which given any subset Z of some cross- 
section co(to) ~ ({to} •  ~) n eo of co, every connected component of the consequent 
points of Z * approaches • both the sets ~co(t0) and ~D. 

As a first application, we give the following existence result for a boundary 
value problem of a general type:  For a given set Z g w(t0) and any point ~ in an 
interval [to, t*) (depending on o~), there exists a solution x of (E) which satisfies the 
boundary  condition 

x(to) e z ,  G(x][to, ~]) c ~ and (t, x(t)) e ~co. 

This result for such a BVP, as for as we know, is new. Finally an existence result 
concerning the second-order scalar boundary value problem 

x"=/ ( t ,  x, x') 

nix( to)  - b l z ' ( to )  = r~ a n d  a~x(t l )  + blx'( t~)  = r~ , 

which carries out the KAPLA~ e t a l .  [4] (el. also [6], w 3.3) results to the Carath6- 
odory ease, is given. Notice tha t ,  in this case, our proof is shorter and more formal 
than  the one in [4], though our problem is more general. 
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1 .  - P r e l i m i n a r i e s .  

Consider the initial value problem 

(E)  2 = i(t, x) 

(C) x(to) = x0 

where / e Car~oo(t9 ) and -Po = (to, x0) e s Let  3:(P, ]) or simply 3~(Po) be the family 
of solutions of (E)-(C), when it is well known tha t  3~(Po)# 0. A topology which 
associates Carloo(/2 ) is introduced by the following convergence: (], ]~} _c Carlor ) 
and l i m / ~ = /  means tha t  lira j_ ~Ksup I]~(t, x) --  /(t, x)] dt = O, for every compact 

rcstangle I • Also we assume tha t  the set /2 • ) is endowed with 
the natura l  product topology. 

T~Z.EOg~ 1.1 [11]. - Let {(P~, f.} be a sequence in /2 • ) such that lira (_P., 
]~) -~ (Po, f). I /  x . e  3~(P~,/~) ]or any n = 1, 2, ..., then there exist x e 35(P, ]) and a 
subsequence {x~} of (x~} such that 

lira xk.-~ x uni]ormly on compact subintervals o] Dora x ,  

that is ]or any compact subinterval I o/ Dom x 

i) I_CDomxk,  ]or all large n = 1, 2, ...; 

ii) lim x~ -~ x uni]ormly con I.  

Consider now a set co g /2  such tha t  / 2 -  ~ V= 0. 
A poin~ _P e / 2  (~ 3~, P = (~, ~) is a point o] semi-egress of co (with respect to 

the system (E))~ iff there exist a solution x ~ 3~(P), a point t ie  D o m - x  = (-- ~ ,  ~] (3 
(3 D o m x  and an  s > 0 such tha t  

G(x][tl- el, t l ) ; / ) )  c co ~ a n d  G(x[[tl, ~]; _p) c ~co 

where G(xlI  ) = {(t, x(t)): t ~ I} denotes the graph of the restriction x l I  , I c_ Dora x. 
I f  moreover for any  solution x e 3~(_P) there exist a point t~e Dom+x = [z, c~)n  

n D o m x  and an e > 0 such tha t  

G(xI[z, t2]; P) c ~a~ and G(xl(t2, t~-~ s]; P) _ c / 2 -  co 

then  the point _P will be called a point of strict semi-egress of co. 
The family of all points of semi-egress or strict semi-egress will be denoted by co ~ 

or co ~ respectively. 

2 5  - A n n a l i  di  Matemat ica  
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A point  P e w ~ or P e oJ ~ is a point o] egress or respectively, a point of strict egress 
of co iff the above definitions are valid for t~ ~-- ~ or t ~ -  t~ = T. Similarly, the set 
of all points of egress or strict egress of o) will be respectively denoted by  ef  or ~'~. 

A point  P ~ ~ ~ ~o) is a point  of semi-ingres; strict semi-ingress, ingress or strict 
ingress of the  set ~o (with respect the  system (E)) iff, i t  is a point  of semi-egress~ 
strict semi-egress, egress or strict egress of the  set s  r respectively. 

A point  Q e ~o ', Q = ((~, V) with ~ ~ z is a consequent of the point  P e o~, _P -~ 
(v, ~), with respect to the set ~o (and the  system (E)), if there  exist a solution 

x e ~ ( P ,  Q) ~- ~ (P)  ~ 3~(Q) and a point  t~e [~, ~] such tha t  G(x[[t~, ~]) _~ ~ and pro- 

vided that v < t~, G(x(~, t~)) _~ co ~ For  such a solution x ~ 3~(P) we say that it semi- 
egresses f rom o) ( through the point  Q) and, in case Q e ~o~, it semi-egresses strictly 
f rom co. 

The set oi a.ll consequent points of P with respect to co (and the system (E)) 
will be denoted by  C(eo; P).  We also consider the set S(~o) : {Q e co: C(o); Q) v= 0) 
which is usually called the (left) shadow of the set (o and let  J ~  be the consequent 
mapping on S(o)) to  co ~, defined by  

*~(Q) = ~(~;Q) ,  Q e ~(co). 

Finally, we shall say tha t  a set-valued mapping F,  which maps the points of a 

topological space X into compact  subsets of another  one Y is upper  semi-contimlous 
(use) at  a point  xo e X iff for any  open subset V in Y with 2'(xo) c V there  exists a 
neighborhood U of Xo such tha t  F ( x ) c  V for every  x e U (see, e.g. [2]). 

The next  lemmas give sufficient conditions for the upper  semicontinuity of the  
consequent mapping and some useful propert ies for a class of use mappings. We 
notice tha t  the  consequent mapping is included in this class. 

LE~VIA 1.1 [11]. - I] t ) ~ S(m) and every x ~ 35(.P) semi-egresses strictly ]tom ~o, 
then the consequent mapping 35~ is usa at the point 2 and moreover the image Js 
is a continuum in ~eo. 

L E n A  1.2 [8]. - Let X and 3(_ be metric spaces, and let T:  X -> 2 r be an use map- 
ping. I] A is a connected subset o] X~ such that ]or every x ~ A the image •(x) is a 
continuum, then the image if(A) = U (~(x):  x ~ A}  is also a continuum subset o] Y.  

]bet A be a subset of ~ and let I be a subset of the projection pr~ A of A into 
the first factor. We will use the nota t ion A(I)  ~ A n (I • for the  cross-section 
of A at the set I u n d ,  for brevi ty  we set, A((t}) = A(t), A([ta, t~]) -~ Alto, t~], A([t~, 
t~)) ~ A[t~, t~) and so on. Also let  

~(A) -~ U (~(-P): P e A} an4 3~(P, A) ~ 3~(P) ~ 3G(A) 

and let fur thermore  3C(~; A) ~- {(~, x(~)) : x e ~(A)} represents the cross-section of all 
solutions x ~ 3C(A) at  the point  t = ~. Moreover let 3C~(A) be the  lamily of all 
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solutions x eE(A)  which remain (right) asymptotic in ~, namely xa~,~(A)<=> 
<=> G(xIDom+x ) _c co. Let  also 

~ ( ~ ;  [to, t~], A) = {(~, ~(~)): x e X(A) ann a(~t[to, t~]) r ~}  

be the cross-section at the point ~ of the family of all solutions having the g~'aph 
of their restrictions x][to, tl] in co, i.e. 

xo([to, t,]; A) = {~ e X(A): a(xl[to, t,]) c ~ } .  

Finally the set 'A _c D is said to be R-almost compact in f2 (el. [12]) iff A(I)  is a 
compact subset of /2 for every compact subset I of pr~ A. I t  is clear tha t  an 
R-almost compact set is closed. 

In the following we shall always assume tha t  o) is an R-almost compact set in ~9 
and moreover sup pr~ c~ ~ sup pr~-Q = t*. 

2. - Singular points of the consequent mapping. 

Let lPo ~ (to, Xo) be ~ point in some cross-section ~o(to) of co. In  the case where 
~E(/)o) = E~(Po), i.e. all the family ~E(-Po) remains (right) asymptotic in ~o, it is clear 
~hat the consequent mapping cannot be defined at  the point Pp. On the other hand, 
when ~Eo(Po)= 0 the lemma 1.1 contains the main properties of the consequent 
mapping. So in the following assume both tha t  ~E~(Po)v~ 0 and ~E~(Po)v a ~(Po) 
and we are going to s tudy the ~( image )) /~o(Po) only in the latter case. The n~in 
result in this section is t ha t  every connected component S o ]  5~o)(~o) approa6hes the 
boundary ~f2 o] K2, i.e. S n ~f2 r 0 or equivalently sup pr~ S = t*. This result is, 
in some sense, the dual one for the Kneser's type  property of the cross-section 
E(~; Pc) at  the extreme (right) point a = sup ~ (Dora x: x e X(Po)} (cf. [8], Th. 2.1). 

LEiV~A 2.1. - I] (o ~ = a~ 8~ and moreover Po~ co, Pc -~ (to, Xo), and t e [to, t*) are points 
s~ch that the sets ~E~(~; [to, t],/DO) and Js t]; P c ) =  [J~(Po)][to, t] are nonempty, 

then they are both compact. 

PRoo~. - Consider the compact set o)[to, ~] in ~ and notice tha t  every point of 
the eross-seetio~ ~(~) is a point of strict semi-egress from the set a)[t~, ~], i.e. ~o(~) _c 
c (~O[to, ~])~. Consequently 

(~[to, ~]), = (~[to, ~])-.  

On the other hand, by the compactness of ~o[to, ~], every solution x e E(Po) semi. 
egresses (strictly) from this set. Thus by Lemma 1.1, the image ~[to,i](Po), -Poe w(to) 
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is a continuum, where 35~t~5~ stays for the  consequent mapping defined with respect 
to the set co[to, t]. 

The results now follows by  the closedness of the sets ~co and co(~). 
We also need the next  lemma from the classical topology. 

LE~.~A 2.2 ([5], ch. V, w ~7, point  I I I ,  Th. 2). - I / A  is an arbitrary proper subset 
o] a continuum C and if S is a connected component o] A,  then 

PROI~OSImION 2.1. - I] cos__ co~ and Poeco(to),-Pc= (to, xo) is a point such that 
3~(Po) V= 0, then either the ]amily 3~(Po) remains (right) asymptotic in co, i.e. 3;(t)o) -= 
= 35~(Po) or every connected component S o ]  the set 35~(Po) approaches the boundary 
~[2 o/ s i.e. S (~ ~[2 V= O. 

I)~oor. - Assume tha t  ~ ( P o )  v e 3~(Po), tha t  is Jb~(Po) v a 9. Let  S be a connected 
component  of J~(Po) and x e 3~(Po) be such that  (~, x(~)) e S for some t e Dom x. 
(We recall tha t  ~2 is open and co is R-almost  compact  in /2.) 

We are going to prove that  S (~ ~9  r 0. B y  assuming the contrary let t~ =- 
= max pr~S, when S(t~)c [2. Thus, by  the R-almost  compactness of co, there 
exists a point ~ > t~ such that  the set colt0, ~] is a compact  subset of tP. Moreover, 
Lemma 2.1 ensures tha t  the  cross-section 3~(~, [to, t]; Pc) of the family 3~([to, ~]; 
Pc) = {x e 3;(/)o): G(xl[to, ~]) c co} is also a compact  subset of the continuum ~:to,~(P0). 
Now, since clearly 

c o - n  ~<,o,~(Po) = (co[to, ~])~,c~ ;~.(Po) 

the connected component S in Jb~(Po) is also a connected component in [Jbouo,71(Po)] ~ 
\co(~), due to the  fact  tha t  ~ > t~. Thus in view of Lemma 2.2, the  component  S 
approaches the set [J~o:t.3a(Po)] (~ co( i )=  3C~(~; [to, t],Po), which by  the definition 
of t~ is a contradiction. 

Pl~OPOSI~io~ 2.2. - I f  the assumptions of Proposition 2.1 are ]ul]illed then, either 
]or any tO[to, t*) the cross-section 3;~(t;Po), o/ all solutions which remain (right) 
asymptotic in co, coincides with the continuum ~(~; 2~o) (and is contained in coo), or there 
exists a point t ~  [to, t*) such that ]or any ~ E [tl, t*) every connected component C o/ 
the cross-section ~]~o(t; [to, t], Pc) approaches the boundary ~co, i.e. C (~ : ~ ( P o ) ~  O. 

P~ooF. - If  X~(Po) ----- ~(Po) then the result is implied b y  the Kneser 's  theory 
(cf. [7]). So, assume tha t  3C~(Po) va ~(Po). Set tl = min 9rl 3~(Po) and take  ~ 
e [ t l ,  t*). B y  Lemmas 1.1 and 2.1, the  set J~([to, t]; Pc) is compact  and the 
Jb~,Eto~(Po) is a continuum. Thus Lemma 2.2 is applicable and the result follows. 

A basic s ta tement  of the  assumptions in the propositions above is the existence 
of a point  /~oe co(t0) such that  ~ ( P 0 )  r 0, i.e. the  existence of a solution x e 3C(co(to)) 
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which remains (right) asymptot ic  in co. About  this fact  we refer here to some 
known results bu t  first we state the  following assumptions. 

(It,) The set co is R-almost compact in 2 ,  sup price = sup p r ~ 2  = t* and 

~co(to, t*) = co~= w '~. 

(H2) co~=-- co~ and there exist a subset Z o/ co~ o~ ~ and a retraction o/ co' onto 
co" ~ Z but there does not exist retraction of Z onto the set co'~ Z. 

(H3) i) /(t, 0 ) =  0, /or any t >= to and the zero /unction is the only solution of 
the initial value problem (E), x(t~) -~ 0, /or any t~>= to. 

ii) co~= co~ and ( Q -  co)~= ( . (2-  co)~. 

iii) There exist closed sets Q~, Q~, ..., Q~ such that U Q~ = co~ and Q ~  Qs = 0 

or Q, nQjC_Qo /or i v : j ,  where Qo= { ( t , x ) e 2 :  x =  0}. ~=1 

iv) There exist a continuum Z in ~O(to) and indeces i~, i~, ..., ik, 2 <_ k ~ p 

such that Qi,(~ Z V: O, n = 1,2 ,  ..., k. 

LE~V~A 2.3 [10]. -- Under the assumption (H~), there exists a solution x ~ ~(Po), 
t)o ~ co(to) which remains (right) asymptotic in co. 

LE~-~A 2A [11]. - Under the assumption (It:) there exist a point Po~ Z and a 
solution x ~ 35(Po) remaining (right) asymptotic in co. 

L E ~  2.5 [9]. - Suppose that (Hs) holds. Then the result o/ Zemma 2.4 remains 

valid. 

5Tow we are ready to formulate  the first of our mMn results of this section. I t  

is not  hard  to see tha t  its proof follows by  Proposit ion 2.1, 2.2 and Lemmas 2.3, 
2.4 and 2.5. 

T~_EO~E~ 2.1. - Assume that the set co is R-almost compact in 2 ,  sup pr~ co-= 
= sup prl Q = t* and at least one /rein the assumptions (It1) , (]~) or (H3) is valid. 

Then there exists a point Poe co(to) such that, either the continuum 35(Po) remains 

(right) asymptotic in co ( thus /or  any ~ ~ [to, t*) 5G(~; Pc) is also a continuum in coo) or 

/or any ~ ~ pr~ J~(-Po), 

n ~,.Q # O and O n Y~(Po) # O 

]or all connected components S and C in Y~o~(_Po) a~d ~ ( ~ ;  [to, t]; Pc) respectively. 

In  the special case where 2 - ~  Eto, o o ) •  we get the ]ollowing result: 

CO~O]~LA~u 2.1. - I n  addition to the assumptions o/ the previous theorem we assume 



390 P. K. PALA)~DES: Singular points of the consequent mapping 

that ~,z(Po):/: 3~(Po), where Po is guaranteed by the theorem. Then the set J~(Po) has 
two connected components S~ and S~. Furthermore if 2~ and S~ are both nonempty then 

sup p r~S~=  sup pr~ S~--= co and ~co[t~, c~) -~ co~[t~, c~) c_ S~ W S~ 

where t~ = max {min pr~ $1, min pr~ $2}. 
Up to now, we have studied the  behavior  of the connected components  of 

J~(Po) to the (~ right )). ~ e x t  we deal with the  following problem: (( Is  there a non- 
empty set Z c_ co(to) such that 

S ~ ~co(to) # 0 and S ~ ~ :/: 0 

for every connected component S of Jh~(Z)? ~> We give a positive answer to this problem 
but  first we give the following lemma: 

I~]~v~A 2.6. - Suppose that Z is a compact subset o] the cross-section co(to) and 
co~: co~. Then the set 35~(Z)-~ [J { ~ ( P ) :  P ~ Z} of solutions which start from Z 
and remain asymptotic in (9 is compact (hence its cross-section Z~ = Z~(to; Z) is also 
compact). 

P~oo~. - Le t  {x~} be a sequence in ~ ( Z ) .  In  view of Theorem 1.1, we may  

assume tha t  

lim x~ = x uniformly on every compact  subset of Dom x .  

Now, if x ~ Xz ~ 3~(co(to)) then  (~, x(~)) e D -- co for some ~ e Dom x. Bu t  then,  
we would have (~, x~(~)) ~ D -- co, for all large n = 1, 2, ... which is a contradiction. 
Finally the compactness of Z implies tha t  x e ~ ( Z ) .  

Now consider the following mapping:  

I :  P ~ pr~ ~ ( P ) ,  P e S(co) 

where recall tha t  S(w) is the  (left) shadow of the  set co. 
Moreover, by  Lamina 1.1, this mult i-valued mapping is usc at any  point  Pc for 

which ffi~(Po) = 0 and hence clearly the  image I(Po) is then  a closed subinterval  
of the set [to, t*). Now, our purpose is to s tudy the  case where ~ ( P o ) #  0. Then 
by  Proposit ion 2.1, the image I(Po) is an interval  of the form Its, t*) where t== 

= rain Ph  3~(Po). 

T~ORE:~ 2.2. - Suppose that the set co is R-almost compact in ~ and (H3) (or (tt~) 
]or some continuum Z c o)(to)) is satisfied. Then every connected component S of J~o(Z) 
approaches the boundary ~ of ~ ,  i.e. S (~ ~ • O. Moreover 

I (Z)  = p r o s  ---- [to, t*) 

where t* ~ sup prl co = sup prl ~ .  
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P~ooF. - Le t  Z _c o)(to) be a cont inuum which satisfies (Ha) (or H~). By  Theo- 

rem 2.1, we have Ez(Z) =/= 0 and so by  Lemma 2.6, the cross-section Z~ = ~z(to; Z) 
is a compact  subset of co ~ 

Le t  S be any  connected component  in /E~(Z) and let So be the connected com- 
ponent  in Z ~ Z ~  such tha t  S r J4~(So)~ O. Lemma 2.2 and the assumption (H~) 
(or H~) imply then 

(1) Son Z~r 0 and S o n  eo~# 0 .  

Clearly ~(So)=/= 0 and thus, by  Lemma 1.2, the set J~(So) is a connected subset 

of S. t~y (1) it  is clear tha t  ra inproOf(So)-- - -minpr~ S = to. We examine now 
the  following two possible cases: 

i) E v e r y  solution x e ~([~So] n Zo) remains (right) asymptot ic  in w, tha t  is 

(2) 

In  order to prove tha t  S approaches the boundary  ~/2 of ~Q it is enough to prove 

tha t  J~(#o) has the same proper ty ,  since J~o,(S0)_c S. By  assuming tha t  [~ (So) ]  
r~ ~/2 = 0, and setting t~ = max  pr~ J~(So) we have t~< t* and observe tha t  the se~ 
@[to, t~] is a compact  subset of D. In  view of (1) and Theorem 1.1, there exist a 

sequence {x~} of solutions in ~(So) and an x e X([SSo] n g~) such tha t  lira x,~ = x 
uniformly on every compact  subset of Dora x. But  then,  by  vir tue of (2), x remains 

asymptot ic  in co and so we would have (t~, x(t~)} e co ~ Consequently we would get 
(t~, x,(t~)) 6 w ~ for all large n ---- 1, 2, ... which, by  the choise of So, is a contradiction. 

if) There exists a point  Po 6 [8So] (~ Z~ such tha t  g~(Po) sa 0. Then,  by  The- 
orem 2.1, any  connected component  S* of J~(Po) satisfies S* (~ ~f2 @ 0. Now, if 
we prove tha t  [J~(So)] n S*sa 0, then  S will have the desired properties, since 
clearly [J~(So)] ~) S*_c S. By  assuming the contrary,  we get tl = max  prz JC~(So) <~ 
< rain pr~ S*. Let  {x,} be a sequence in 3:(So) and x be a solution in ~(P~ such tha t  
lim x~ = x uniformly on compact  subintervals of Dora x. Then again we get easily 

the same contradict ion as in the first ease. 

THEO~E~ 2.3. - I] the assumption (H1) is satis]ied and in additio~ the cross-section 
w(to) o] w is a continuum, then 

]or every connected component S o/ the set J~(~O(to)). 

PgooF.  - The proof goes along the lines of the proof os the previous theorem, 
under  obvious modifications. 



392 P. K. PALA~DES: Singular points of the consequent mapping 

3 .  - A p p l i c a t i o n s .  

On the base of the results of the previous section we give here two existence 
results for bonndgry value problems. The first of these is new even for the  par t icular  
cuse where ] is continuous und it is of a general type.  The second one refers to 
Carath6odory systems though we mention tha t  lZAPLA~, LASO~A and YORKE have 

discussed the same subject in [4] (cf. ulso [6], w 3.3) for the continuous case. 
Consider an R-almost compact  set ~o such tha t  sup pr~ ~o ---- sup pr~ ~9 ---- t* and a 

subset Z of its cross-section ~o(t0). We are going to show tha t  for any point  ~ e [to, t*), 
the  BVP 

(E) 2 = / ( t ,  x) 

(P) X(to) e z ,  (~, x(~)) e ~o~ 

bus a solution x such tha t  G(xl[to , ~])c oJ. 

PRo~osI~IO~ 3.1. - Assume that 35~(Po) V: 0 and 3~o~(_Po) V: 35(Po) ]or some Poe ~, 
Pc = (to, Xo). I] moreover ~o~[to, t*) = cordite, t*), then ]or every ~ ~ ][(Po) = [t~, t*) there 
exists a solution x ~ 3~(P) sueh that G(xf[to , ~])_c o) and (~, x(~))~ ~co. Moreover there 
exists a solution x ~ 3~(Po) such that 

dist (~a), G(xl[to, t*))) = lira dist [~Y2, (t, x(t))] = O. 
t--+t* 

P~ooP. - The first par t  of the  conclusion follows at  once by  Proposi t ion 2.1, in 
view of the definition of the  interval  / ( P c ) =  It1, t*). Let  now a sequence (x~} 
where x,  is a solution of the  BVP (E)-(P) with ~ = t~, n = 1, 2, ... and such tha t  
lim t ~ =  t*. Now, by  Theorem 1.1 and a diagonalization argument  (cf. [10]) we 

obtain a limit funct ion of (x.}, say x e 3~(Po) which clearly has the desired proper ty .  
A consequence of Proposit ion 2.2 is the next  one. 

P~oPoslTIO~ 3.2] - I] the assumptions of the previous proposition are satis]ied 
then /or every ~e (tl, t*) there exist an uncountable set o] solutions x e35(Po) with 
~(xi[to, ~]) c ~o. 

The Iollowing two theorems (and especially the  second one) const i tute  the ex- 
istence result of the  I~VP (E)-(P).  Notice tha t  their  proofs are a direct consequent 
of the Propositions 3.1, 3.2 and Theorems 2.1 and 2.2. 

TH_EO~E~ 3.1. - Assume that the set (~ is R-almost compact in ~, sup pr lw = 
= s u p p r l Q  = t* and at least one ]rom the assumptions (It1), (1t2) or (Hs) i s  valid. 
Then there exists a 2oint Poe o~(to) such that either g6o~(Po) : O, or ]or every ~ e I(Po) 
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there exist solutions x e ~(Po) and 2; ~ 2~(Po) such taht 

G(xl[to,~])~_co , ( t , x ( t ) ) ~ c o  and limdist(~.Q,(t,x(t)))~-O. 
t~ t*  

Tn-EORE~ 3.2. - Suppose that the set co is R-almost eompact, sup pr~ co = sup pr~ ~ = 
-~ t* and (tI~) (or (tt~) /or some continuum Z c_ co(to)) is saris]led. Then ]or every 

e [to, t*). 

i) There exists a solution o] the boundary value problem (E)-(P). 

ii) The set, ~,~([to, i]; Z ) = - { x  e3C(Z): G(x[[to, ~])_c co} o] all solutions x ~ 35(Z) 
whose the restrictions on [to~ t] have their graphs in co, is uncountable and Jim dist (3Q, 
(t, x(t))) = 0 ]or a certain solution x e[F,~(Z)(3 3]~([to, ~]; Z). t-~t* 

As a second application we shall proove tha t  the  BVP 

(3) 

(4)  L ~ ( x )  = r~ , 

(5) JL~(x) = r~ , 

x ' = / ( t ,  x, x') 

Lx(x) -~ alx(t~) -- b~x' (tl) 

L~(x) ~ a~x(t~) ~ b2x'(t~) 

has a solution x bounded on [t~, t~] by  two functions a and fl given below and 
] e Carloo([tl, cr • 

Let  a and fl be two real functions in C~([tl, t2], R)  (C~([t~, t~], R) is the space of 
twice differentiable on [t~, t2] real functions) such that  

(6) 

and 

(7) 

~(t) __< fl(t), ~"(t) _>_/(t, ~(t), ~'(t)) and fi"(t) < / ( t ,  ~(t), #'(t)), t~_< t g t. 

L~(a) < r ,< L~(~) , i = 1, 2. 

We consider now the set 

co -= {(t, x, y) e 9 :  tl <= t <= t2 and ~(t) g x ~ fl(t)} 

and its faces 

Q~= ((t, x , y ) e  ~co: x = ~( t ) }  and Q~--= {(t, x, y) e ~co: x = fl(t)} 

as well as their subsets 

Q[__ ~___ --  { ( t , x , y )  eQ~: y < :r and Q~ { ( t , x , y )  eQ~: y > f l ' ( t ) } .  
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l~inully, assume tha t  f is continuous oll some neighborhoods V~ and V~ of the 
(( curves ~> 

r~ = {(t, ~(t), ~'(t)): t~ g t =< t~} a n d  ~ = {(t, ~(t), ~ ' ( t )) :  t~ < t < t~} 

respectively and furthermore f satisfies a Nagumo condition on ~o, tha t  is there 
exists ~ positive and locally measurable function ~ on [0, c~) such tha t  the func- 

c o  

t i o n  s/cf(s) is locally bounded on [0, c~), f[s/9(s)] ds -~ ~ and ](h(t, x, y))[ ~ ~0([yl) 
for almost all (t, x, y) e ~. o 

TttEORE~ 3.3. - Assume  that there exist two real ]unctions ~ and fi which satisfy 
(6) and (7). I f  f satisfies on co the above ~ a g u m o  condition, then there exists a solu- 
tion x of the BYP (3), (4) and (5) sueh that ~(t) ~ x(t) ~= fl(t), ]or all t ~ Its, t.,]. 

P~oo~. - Consider the set 

S~ = ((t~, ~, ~): a ~  -- b~  = r~ and at(t1) g ~ <__ fl(t~)} 

which is clearly a continuum in the cross-section ~o(t~) of co. Since, m"(t) exists a 
any  point t e [t~, t..] such tha t  x(t) -~ :r and x'(t) = s  or x(t) -~ fl(t) and x'(t) = 
= fl'(t) (by the continuity of f in the neighborhoods V~ und V~) it is easy to show 
(cf. also [3, 11]) tha t  

(s) Q~'u ' Q, w co(t~) = ( ~ :  ~ "  a n d  

(Q~- Q') w (Q~- Q~) = ( t 2 -  o~)~= (~9-  ~ ) , , "  

Consequently, by  the Nagumo condition, every solution x ~ 3C(S~) has its derivative 
bounded and so it semi-egresses (strictly) from the set co. Thus, by Lemm~s 1.1 
and 1.2, the set ~ ( S ~ )  is also a continuum and hence there exists g solution 
x~e 3C(S~) such tha t  

~(t) ~ x~(t) ~ fl(t), tl ~ t ~ t~ and x~(t2) = ~(t2) �9 

By Lemma 2.2 now, the connected component S~ in [co(t~)(~ Js containing 
the point (t~, x~(t~), x'~(ts)) reaches the set Qz, tha t  is there exists a solution x~e 3C(S0 
such ~hat 

~(t) _~ x~(t) ~/~(t) , t l ~  t ~ t2, x~(t2) = fl(t~) and (t2, x~(t~), x~(t2)) e S~. 

(In the ease where ~(t~) : fl(t2) we set x~ ~ x~ and so we obtain S~ : {(t~, x~(t2) 
, )}) x~(t~) . In  vmw of (8) and the definition of the consequent mapping we have 
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(t~, ~(t~), x~(t~) ) e Q'~ and (t~, x~(t~), x'~(t~) c Q~, that  is 

l 
(9) x'(tD <= s and x~(tD _--> fl'(t:). 

Now without  loss of generality we may  a, ssume that  b~ > 0 (i = 1, 2) and then 
by  (7) and (9) we obtain 

~(x~) <= r~ < L~(x~) . 

Thus,  b y  the  connec tedness  of the  c o m p o n e n t  S~ and  t he  con t inu i ty  of t he  func-  

t ion  L2 we ge t  ~ solut ion x e 3](S~) such t h a t  L ~ ( x ) ~  0 and  ~ ( t ) g  x(t)<= fl(t) for  

all t e It1, t~]. 
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