L% Lower Semicontinuity of Functionals of Quadratic Type (*) (*+).

NicorA Fusco - GIocONDA MOSCARIELLO {Napoli) (¥*%)

Summary. — A representation formula for the L*-lower semicontinuous envelope of a quadratic
integral of Caleulus of Variations is given. Some particular cases are explicited in the delails.

Let us consider the funectional of the Calculus of Variations

F(Q,u) = | Yay(#x)DuDude  ueH-XQ)
5 Tyd
where a;;= a,;€ L°(R"»), ¥ a,2:2,>0. It is well known that F is weakly sequen-
1,9
tially lower semicontinuous (l.s.c.) in HL%(£2). The situation is completely different
if we congider topologies such as L?(Q2), p>1. There are classical conditions (see [11],

e.g.)
> ay(@)z;2;,>0, VYo,zeRn
i

a;€ C°(R"),

that ensure F' to be L*-Ls.c., but it is possible to give counterexamples (see [1], [8])
showing that this is not the case at all. In particular it has been proved ([8]) that a
necessary and sufficient condition for the functional

f (@) i) ]2 do

Q

to be L*ls.c. on HL3(Q) is that Vo a.e.
r+e

. 1 1 -1
=t (5 [ )

—-&

In this paper we extend the preceding results giving a formula for the L*-Ls.c.
envelope of F(£2, u).

(*) Entrata in Redazione il 13 maggio 1981.
(**) This paper has been supported by G.N.A.F.A. (Gruppo Nazionale per 1’Analisi
Funzionale e le sue Applicazioni).
(***) Istituto di Matematica « R. Caccioppoli», Via Mezzocannone, 8 - 80134 Napoli.
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From previous results (see [1]) it was known that this envelope is still an integral,
namely quadratic, functional. We show that its coefficients b.,(x) are such that
Yze R» and Yz a.e.

Eb,, *) 22 —-hmsupInf{m fz @) D Duda: uez-m—l—Hl’z(Q)}

[e]—o0

where @ is any cube in R» containing x. This formula was proved in [4] in the
particular case of coercive functionals in which F is L*Ls.e. and so b;= a;;. By
this formula we obtain (when n = 1) a result proved in [8] and also a general suf-
ficient condition for I to be l.s.e.

The technics we use here are related to the maximum principle for uniformly
elliptic operators in divergence form and to the duality, but we often employ the
arbitrariness of the open set £2 in which is defined the functional F.

In the particular case that a,;= d;;a:(x) and a,(x) are products of a measurable
funection of x, and of a function of the other variables or in the case a,;, = a;;(®) we
give an explicit calculation of the coefficients b,; of the Ls.c. envelope of F and hence
necessary and sufficient conditions for F to be L*ls.c.:

All the previous results concern the semicontinuity of the funetional F(£, u)
on the space H42(2). But it is known that the minimum points of F(L, ») do not
always belong to H*£) and that the best space where to find them is T(Q) =

= {ue Hy(2): F(2,u) < 4 oo}. So it is useful to obtain semicontinuity results
for F(, u) in T(LQ). At the end of section § 2 we prove a sufficient condition for F
to be ls.c. that is valid up to the space T(£2).

Of course, a similar problem arises in considering the [-convergence of a se-
quence of functionals such as

Fu(R, w) Ea{, z) D, uDudo

whith respect to the L:-topology.
It is known that there exist measurable functions @), ¢,j =1, ..., n, such
that Yu e H22(2) '

(%) I'(Lx9)- )hth (2, u) z a;(®) DauwDude .

In the section § 4 we prove that, with reasonable assumptions on the coefficients
Z, the relation (%) is still valid up to the space T(£2). This result is shown using
some technics introduced by F. C. Liu in[7] and some results on maximal func-

tions in weighted Sobolev gpaces proved in[2].
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1. — Definitions, notations and preliminary results.

Let be Ap, the family of all bounded open sets of R", Qe Ap and =
= (@1, ..., Z,) € R™.
We consider functionals of the type:

F(Q,u)=| Y ay(@) DuDuds

where Q€ Ap,, u € H4*(Q2) and [a,;,;] is a symmetric n X n matrix of bounded measu-
rable functions on R* gsuch that

k(2
(1.1) 0< Y ay,(x)z2,<Al)?

4,5

Yo a.e. and Yze R~
Let us introduce the lower semicontinuous envelope (l.s.e.) of F(2,%) with
respect to the strong L2(2) topology:

F(Q,u) = s (LX) F(Q,u), wueH%Q).

It’s easy to verfy that:

F(, u) = Int {lim inf F(Q, up): 4y € HYQD), w4y —>u in LZ(.Q)} .
h

By this formula we deduce that

[ Vu e Hv*(Q) I{up}s ¢ H2(2): up —u in L2(Q) and
(1.2)

F(Q, u) =lim F(Q, u,) .
R

It is known (see [1], [9]) that if F is a quadratic functional also F is a quadratic
functional. So there exist some bounded measurable functions b;;(x) such that

(1.3) F(Q,u)= Dby@)DuDuds  Vue H-XLQ).

In particular it can be proved that

ProrositioN 1.1. — If a;;= a,(,), then also the functions b,; verifying (1.3) de-
pend only on .
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Proor. — If 2 is a bounded open set, let us consider u(x) = 2-#, with ¢ € B* and
y = (0, Ty, ..., ). From (1.2) we have that I{u,}c HL2(2): u,— » in L¥2) and

Zb,, 2:2;dx = lim Za” x,) Do, Djuy dee
h (%)
o

Then, taking w*(x) = u(z —y), and wj(x) = w,(r —y)

Z b (@) 2,2,dw = hr}]La 2 a;;(w,) D (@) Dyul(z) de .
y+2 w+!21 g

Since a,; = a,,(%,), the integrals at the right side are equal and so

Zbﬁ ®) 2,2, do

y-+02

does not depend on y. This gives the proof, provided that z and £ are arbitrary.
Let us recall now some results about the duality that we shall use in the following.
If X and X* are two locally convex topological vector spaces (l.c.t.v.s.) in duality
and {-,-) is the duality between them, for any f: X — R, we indicate with f* the
Young-Fenchel transform of f, i.e.

f#(o¥) = sup {<v, v*> — f(v)} o*e X*
veX

In the case of integral functionals the expression of the Young-Fenchel transform
may be obtained using the following

PROPOSITION 1 2 (see [5]). - If f(z,2): QX B"— R is a Carathéodory function and
if Glu f f(z, u(z)) dz, u € L7(Q), is fzmte on some uy L7(£2), then G*(u¥) f f*(,
u¥(w)) do where f(@, +) is the Young-Fenchel transform of f(zx, *)

Given Y and Y*, other two l.c.t.v.s. in duality and I': X — Y linear and con-
tinuous, we indicate with I'* the adjoint mapping of I. If M: X — ]— oo, 4 oo].
N:Y —]—oo, 4 o] are convex and lower semicontinuous, we can consider the
problem:

(%) Inf [M(v) + N(I'(v))]

veX

and its dual problem (see [4])

(%) Sup [— M*(I*p*) — N¥(—p*)]

preY*

where M* and N* are the Young-Fenchel transform of M and N respectively.
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Let us consider also Vp € ¥ the problem:

(7,) Int [ M(v) -+ N(I'(v) — p)]

veX
and Vp €Y let us define R(p) = Inf F,. Then (see [5])

TurEOREM 1.3. — If R(0) << 4 oo and R(p) is convex and it is also continuous
at 0, then Inf § = Sup T* and the problem Sup §* is solvable.

Let ug consider now the particular case that

X=H2R), Y=IX2), I'v=Du, N(u) =L1FQ,u)

and
] it uezx- Hy* (D)
+ oo otherwise .

Mu) = {
Because of continuity and convexity of

Np) =3 | 3 as(@)po) pilo) d

on LZ(), by Theorem 1.3, Inf § = Sup T*.
It is easy to prove that (see [5])

[op*dw it divp* =0
M p*) = 2
-+ 00 otherwise.

So, by Proposition 1.2, we have:

1 1
Inf - P(Q,u +22)= Sup f (z-p* -2 a?}p;‘p?) dw
ueH1 () 2 peLi@) o 253

jvp*=

*

where [a;] is the inverse matrix of [a,;].

2, — Lower semicontinuity properties.

Let ay(®), ¢,j =1,...,n, be measurable functions on R® verifying (1.1). For
any € 4p, and 2 = (2, ..., 2,) € B, we define:

1
mis @

plz, ) = Inf{ fz a:;(@) Dot + 2)(Dw +-2))do: ue H%’Z(‘-Q)}

2
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and for any ¢> 0

]é.QJ‘Z (@u(®) + £0:,) (D + 2:) (D -+ 2,) dac: w € H},’Z(.Q)} .
a

a2, Q) = Inf{

mi

It is easy to show that for any ze€ B» and for any Qe Ap,

(2.1) Hm pe(z, 2) = ulz, Q).

8—>0+

In the following we’ll indicate with @ any cube in B» and with |@] its measure.

THEOREM 2.1. — If F(Q, u) and F(Q, u) are defined as in § 1 and b,;(x) are meas-
urable functions in R* verifying (1.3), then for any x a.e. and for any z € R":

(2.2) Z b.;(#) 2, 2; = lim sup u(z, Q)
59 Q|0

where Q is a cube containing x.

Proor. ~ Let x, be a Lebesgue point for the b,,’s; if @ is a cube such that 2, Q,
let us chooge a sequence {u.}; of functions in z-z ++ Hy*Q) such that

F(Q, 5-2) = Lim F(@ ) ().
Then
e Q)< f S bule)sissdo
and therefore, letting [Q] - 0 ’

lim sup p(z, @) <3 byy(#0) 2:2; .

|@|—0 [

Let us prove now the reverse inequality.

We fix a cube Q, with the faces parallel to the coordinate axes; for any ke N
let P; be a partition of @, whose elements are the cubes congruent to ¢,, contained
in @,, and whose dimensions are in the rate 1/2* with the corrispondent ones of @,
Let us indicate with @} an element of P, and with x,,(2) the characteristic func-
tion of @} and define for any z€ R»

ark

8, (w) = lim sup E ulz, Q%) Ynal®) -
E B=1

(1) It can be shown (see [1]) that the functions u, in (1.2) can be chosen in w+HPH D).
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We also indicate with E, the set of the Lebesgue points of the b,’s and with ¥
the subset of B» whose elements are Lebesgue points for any s,(x) where z has
rational coordinates. If z,eQ,N H,N F and @ is a cube with center in #, con-
tained in Q,, we indicate Yk by @}, ..., @7 all the cubes of P, that are contained in
the fixed cube §. From the relation (2.1) it is clear that Yk it is possible to find
(ex)x, &0, such that for any 1<h<n,

1
el Q) < (2, Q1) + - -

Then, for any % and for any 1<h<n, we denote w, the function such that
ty = U@, h), Vh, Where u(z, k) is the solution in @} of the Dirichlet problem

Min{ Doy + endy) DuDudr:  uez o H},’Z(Qz)} .
5

3
%

From the maximum principle for linear elliptic operators in divergence form
(see [6]) we get

sup |uy — 2w <oscz o< 2| diam @}
ok L3

Ty
and so, fixing ve N, wy—>2-2 in 4,= Q" in the strong L°(4,) topology, and
4y =22 on 0A,. Then h=1

F(4,,z2)<lim inffz a;; D g, Dy dz <lim sup { fz w2y Q%) yunlx) dw + %}
k D

k

i
A4y 4y
where the last summation is extended to all b such that Qic 4,.
Taking the limit as v — + oo, we have

F(Q, 7)< [s,@) du;
Q

dividing both sides by |@| and taking the limit as |@| — 0, since x,€@,N E,N E,
we get

Z bij(@s)%:2; < 8:(@0) -
bi

Finally, observing that s,(x,) <lim sup u(z, @), we get (2.2) for any « a.e. in ¢,
1Q]—0
and for any 2z with rational coordinates.
The general case, z e E», follows obviously by the continuity of lim sup u(z, @)
as function of z. lal—o
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REMARK. — The previous result was proved by E. DE GIORGI-S. SPAGNOLO (see [4])
in the particular case Y a;(%)%;2;> |2|}, making use of Meyers regularity for the

(5

solutions of uniformly elliptic equations. In this case a;; == b,;.
COROLLARY 2.2. - If a;;(#) are such that Vze R»

m(z) [z[2 < z 035(@) 2,2, < M (@) |22

with 1jm(z) e L

loc

(2) and M(z) € L, (2), then F(2,u) is L*-ls.c. on H-(R).

Proor. — Let us suppose first M(x)<A; we choose z,& £ such that for this
point is verified the relation (2.2). Then, having fixed 2z € R», by the same argument
used in § 1 we deduce that VQ: z,eQ

1
—u(z, Q)= Su - *prptldr.
21“(7 p*eL’PQ)]QIJ( n'pzpa)

divor=

Because of the local summability of 1/m(z), the a; s are summable in a nhood

of %,. From the convexity of Y a;;(x,)2:2; as functlonal of 2z, there exists (see [5])
(%)
po€ B such that § > a;(w,)2:2;=2-p;— % z 05(%0) Do, {Pa ;-
40 i,
Therefore we have:

1
Sup f(z p— Zaz,pzpj) dr>%-pg — —fEZ ) Po,i Po.; 4 -
) Q] 19]) 21
lVi’)“

Then if #, is also a Lebesgue point of b,'s and a;’s, taking the limit as |Q| —0
we obtain

z bii(@o) 225> Z @;5(%) 2425
i (2%

and so, sinee the inverse inequality is obvious, F = F.
If M(z)e LY Q), let us ix A >0 and 2, = {we Q2: M») > 4} and

A
@y

a4() it w¢Q,y
(@)= { min {48,;, m(x)} = m(x) if xeQ,.

Then

o<miz)pP< I ab(x) 2y <A
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and 1/m*(x) e LL (2). So, if u,—u in L*(Q) with u e HL2(Q):

loc

lim inf #(2, u;) > lim inf Z a3 (@) Dy Dy dow > z a(x) Dy Dyuda .
k k 8]
2

Then the result follows, taking the limit as A —> 4+ co and observing that
Z a3(z) Du D, u} increases as /A increases to -4~ co. Finally the case M(z) e Ll (2)

loc

is transled by a standard argument from the case M(z)e L(2).

REMARK. — From the previous result it’s clear that if the coefficients a,; are
continuous and m(x) > 0, then F ig L*-ls.c. on H%2(£). This is also a particular
case of semicontinuity theorem proved by J. SERRIN, quoted in [10].

If 1/m(z) € L (2) and £2 is a open subset of R let us denote with W(m; Q) the
space of all functions u(») € H:1(Q) such that

loc
[W]pso = 14(@)]? & + [m(@) Dul*do < + o0
2 2
equipped with the norm [u],.o= [#1,,.
Then (see [12])

THEOREM 2.3. — If 1/m(x) € L}(Q), then CY Q)N W(m; 2) is dense in W(m; Q)
with respect to the norm | -|,.q0-

By this result and by Corollary 2.2 follows easily:

THEOREM 2.4. — If a;(x) are such that ¥z e R»
0 <m(z) o< Eau 2, < M()J2|?

with 1/m(x) € Lk

loc

(Q) and M(x)/m(x) € L2 (2), then F(Q,u) is L*ls.c. on W(m; 2).

3. — Some examples.

In this section we give some applications of the formula (2.2) in particular cases.
Let us begin with the one-dimensional case.

ProposITION 3.1 (see also [8]). — In the same hypothesis of Theorem 2.1, if n = 1,
we have for any @ a.e. in Rn:

b(x) = lim (ge(w))™

e—Qt
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where

Proor. — If #n =1, from the formula (2.2) we have for any z a.e.:

(3.1) b(») = lim sup p(1, I)

[1]—0

where I is any open interval containing 2.
A direct calculation shows that for any >0

1 1 -1
(1,0 == [
welly 1) (!Ilzfa(twrsdt)

and so the result follows at onee from (2.1) and (3.1).
From this Proposition follows also

PROPOSITION 3.2. ~ Let be

F(Q, w) = ﬁa, w)|Dyu|*de

i

-

where for any @; a.e. in B b(x) = b(x,)a;(%;) and
xit+8

, 1 1\
bilm) = (Lfﬁbz:f md’) ’

&i—¢€

n
ProOF. — We can suppose 2 = []Jo, B[ and v = z-a.
k=1
By the previous Proposition and by (1.2) we can say that Vi there exists a

sequence (uj(z,)) converging to zz, in L*(]a;, fi[) such that

Bi B
fbﬁ(mi) 2idw, = lim f ay(w;) ()| de .
h

(?) If the lim g@,(x) = + oo, b(x) is intended to be egual to O.

e—>0



N1cora FUsco - GIoCONDA MOSCARIELLO : L*-lower semicontinuity, ete. 315

But the sequence

converges to z-2 in L*(82). So

zn: bi(x)| D2 de .

i

FQ, u)<llm F(Q, u, =f
2

To obtain the reverse inequality it’s enough to observe that if u, — 22 in L*(Q)

B
lim inf F(, 1) > f( f (&) 3, lim int f )ID, uh[edx)

i=1
H I“k,ﬁlc[ %
Bs

al(8) 0%, f bi(w»zidxi).

H]O‘k,ﬁk[ %

>

@

I M:
A

REMARK., — In the previous cases continuity assumptions on a(z) and a;(z;)
respectively are sufficient to ensure the l.s.c. of F(£2, %) if a(x) and a;(z,) are also
greater than 0, a.e.

Now we intend to give an explicit calculation of the coefficients b,; in the case
that a,; depend only on one variable. To thig aim, if 7 is an open interval of R and
a:;(2;) are measurable functions of B verifying (1.1), for any z€ R" we define:

1=2

y(z, I) = Inf {;n—ils——jf[au(@l 2 Z a;,(1,) g, 4
! + Z @;;(%:) zizi] doy: w € 2w + H%'E(I)} ’

1,d=2
ve(2, I) = Inf {I‘H:il“sff[(an +e)ar + 2 z @y U; +
! + Z “—I—Sa” zz]dml:uezlxl'{_Hé'z(I)}‘

iyi=2

These quantities are closed related to the ones defined in section § 2.
Again, we have that for any interval I and for any ze€ R»

(3.2) lim ye(z, I) = v(z, I).

>0t

In the following, every time we fix a point #, € E, we shall denote by @ = H I;a
e¢ube in R"* such that ;e I,. i=1

THEOREM 3.3. — If a,(x,) are measurable functions of R wverifying (1.1), for any
2z € R and for any =, a.e. in B we have:

2 bus(@) z:2; = lim sup p(z, Q) = lim sup y(z, I)

iy @}—0 1L]—0
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and by; = b,;(x,) a.e. in R, where

a;j(wl) ’lf (hIIl (pe(;pl))—-l — au(%)
bi(x) = s—>0*
ay;(,) — Qy5(y)  otherwise

where:
(1) t15(21)

@y;(wy) = a1 (1)
0 if (%) =0.

if ay(2,) #0

From the definition of &,(x;) it is clear that in the points @, such that 1/ay, is

summable in some nhood of the point, the quadratic form Y b,;2,2, coincides with
n (X1
> ay%:2;. Otherwise it reduces to the form 3 (a,;— @;)2;2;.
i ii=2
Before giving the proof of this result let us prove the following:

LemmA 3.4. — In the same hypothesis of the previous Theorem, for any cube @ —=

= [] I; and for any zc R we have:

i=1
(3.3) w2, Q)>7(Z’ 1) .

PRrOOF. ~ Let us fix 2 € B* and @ by the same argument used in § 1 we get, for
any ¢ > 0:

1 )

L @)= Sup f (z v — L (a4 0, p: p;’) i

2 pe13(@) Q]
]VZ?*

where the matrix [(e;; + £d;,)*] is the inverse matrix of [a;; 4 £d,,]. Similary it can
be shown that

1 1 “ 1 p
Gvele, 1) = Sup llll{fplzi +

p*eL"(Il) 2 a1 + €

divp¥= I
i ay; Oy Oy g
ij 51'3‘ - - Bi%p .
—l_(azz “11+5 )p1+ ,122( T e0u) a11+'9) }

Actually the supremum at the right side is taken up to all constants p;. For
any constant P, let us choose

. D1 ul s Aoy .
—ﬁ*(wl) = {p; 0/111 ﬁlé‘ + Z ((az"r + 85“.) _m)zr = 27 crey WL} .

r=2
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Since a;; depend only on #,, divy*= 0. So, by mean of easy (although te-
dious) caleulation, we gef:

1 1
51“5(2? iQIJ‘(z p _51’2

Ms

(@ + 80" B 7 ) do =

1 '—*2 n a’li y
*I’J\plzl 20111-—|-€+(4;§2d11+82i)p1+

i7 5“ lialj)ziz,'dw .
T3 ,522( Te T '

1

]

Then, taking the supremum up to all constants 7, we get

/‘E(Zy Q) >7’6(z7 I,)
and so, using (2.1) and (3.2), (3.8) is proved.

PrROOF oF THEOREM 3.3. — From Theorem 2.1 and from the previous Lemma it
follows:

(2.4) Z by(y) 2;2; = lim supy(z, Q)>l1m sup y(z, I,) .
@

iyd |- I[—>0

But, as it can be easily checked by direct calculation,

® falz (a1, + &)
Ve(?, 11) 21({I1lfa11+8) +2®z &% fdt/ a11+8 -+

. (Ij: /(01 e)) (1‘[ g (o a))
+ z lIl {f M+86ﬁ)—-fan+8+ fl/(a11+8) }.
5L i

I,

In the points x, such that 1/a;, is summable in some nhood of the point we
have a.e.

lim lim ye(z, I,) = 3 @;(@) 2:2; -

1Lj—0 e—0* ]

Otherwise,

a—>0+ IIllfall -+ g
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for any nhood I, of @, and so

%

1111]1 supy(z, I;) = Z( (@) — @oy(:) ) 2,25 -+
I,]—->0 i,5=2
Z (j'a'u [(@s1 - €) )({au/(au + 8)) "

lim sup = Lm Li=2 22 > ) 2 2
i S S

So in both cases:

.

n
Z bi(@)2:2,> Z b.i(2)2:2, .
i=1

=1 i,

To prove the reverse inequality it is enough, since F<F, to confine ourselves
at the points @, such that

Z;+¢&

1 1
() #lim f —

e->0+ 28 a(2)
e

If o, is one of such points we can suppose that 1/a,; is not summable in any
nhood of .

So, if we fix I,= (a,b)> 5, 1/a,, ¢ LYI,).

Then let us consider & sequence of partitions P, of I, such that P, = {wo=
=0 < &< ...< =0} and Vk, P, refines P, , and the sizes of the intervals
in P, tend to 0 as k — 4+ co. For any &k we can choose &, > 0 such that:

Zh,k Zn,k

1 dt dt
3.5 = —_— >k
(3:5) Ly — Lp1,k f 0y - £ f A 3

Lh-1,k Ln-y,k

for any 1<h<n,. Let us consider the functions:

"3 a,,(t) 2, dt :
izz 1) dt
wnler) = 3 | woe W00 oy GO Fer
" dt
411( )+ €5
Lhetsk

x

2, dt n
fan()-}—sk J« Z“utz

Ear-ve () £ 7

Xr,k

Al F 2 Zpgi | Yne(T)
dt Thoyk
a1:(t) + &5

Lh-1.%
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where # is a fixed positive number and y,, is the charactheristic function of the
interval [#_y x, #]. It is easy to prove that u, — 2@, in L*(I,) and so the functions

(%) = (@) - ; 2;%;

i=2

converge to z-x in L¥Q).
Finally we get, by some caleulation, by (3.5)

% n
fz by(@)2;d,dzw<lim infj[audi +2 3 etz + al-,.z,-z,] az <
T E e ;
2

1,i=2

”
Qi Ay Qg3
> v | 1L

2 (@ 4 n)?

Q

PR @y Ay <
—2 ¥ %z e dx + E_ a;;%:2;d2
& é

<lim inf [0(77) 0 (%) +
3 i

where ¢(n) is a constant depending only on 7, [Q], 2, 4.
And then, taking the limit as k¥ — - oo,  — 0 we get:

Z ay; 0
zbij(x)zizidm< z (az‘j— 1(; ”)z,-zjdm
4,4 ]

$,i=2 11

and so Theorem 3.1 is completely proved.

COROLLARY 3.3. — In the same hypothesis of Theorem 3.1 if 1/a,, € L]

Ioc(‘R) or if
(%) 98 continuous the functional F(Q,u) is L*-ls.c.

4. — I-convergence of quadratic functionals.

In this section we want to study the I-convergence of quadratic functionals
with respect to the L*-topology, giving an integral representation theorem for the
I-limit up to the space W(m, Q).

Let us begin with the definition of I-convergence.

DEFINITION 4.1, — If (X, 7) is a first countable topological space and (F,(u))s
is a sequence of functionals such that e X — Fy(u) e RU {- oo} we shall say
that F(u) = I'(x) ip Fy(u) iff

i) Yu € X and Y(w,)»c X such that u,—> «, F(u)<1in}-1l inf Fa(us);

ii) Yu e X, I(wp)ac X such that u,—> u and F(u) = lim F(up).
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For the basic properties and applications to the Calculus of Variation of such
convergence see [3] and the bibliography listed in [1].

In the last years have been proved many theorems insuring when, starting
from a sequence of integral functionals, also the J-limit is an integral funetional.
In particular from Theorem 3.2 in [1] it can be proved the following

THEOREM 4.2. — If ([al]), is @ sequence of nXn mairices of bounded measurable
functions ali(x) on B such that

(4.1) m(@) L[ < Za @), < M(w)|C 2
Vi e Rr, Yo a.e. in R*, where

1
(4.2) m(xz) € L*(R"); pey € Li,o(R")
(4.3) M(w) € Li(E")

then there ewist am increasing sequence (hy), of positive integers and a matrix (a,;) of
bounded measurable functions such that

(4.4) z)[f]P< thu ) Li< M(m)[E]
V¢ e R, Vo ae. in R YQe Ap,, [M(x) de =0 and Yue CYR")
802

(4.5) fE a;,(w) D D dee = I(L(Q)~)lim | ¥ af¥(w) DuDyuds .
A !

If we suppose, as in Theorem 2.4

M(x)
m(x)

(4.6) e L®(R")

we may ask if it is still possible to give (4.5) also, for functions » € W(m; ), or for
functions u € Wy (m; R") = {u € WiXR"): VQ € Ap,, uc W(m; Q2)}.
So, let us define:

4,9

f &) DuDuds if uwe G1(Rr),
Pu@,u) =1 #
._[_

oo if we Wi(m; B") — CL(E").

Then we can prove:

THEOREM 4.3. — If are werified the hypothesis of Theorem 4.2, the (4.6) and the
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following
dx
wo §Z§3(fm(””"”)(fm)<+°°

where Q is any cube in R", then YO € Ap, such that f M(x) de = 0 we have, iogether
with (4.5), Yu € Wy, (m; E")

(4.8) Z a2y D Dy do = I'(LHQ2)") im F, (2, u) .
% .

Q2

Before giving the proof of this theorem we need two preliminary results.

LeMMA 4.4 (see [2]). ~ If m(x) verifies (4.2) and (4.7), then for any fe LL (R"),
such that f]f V[2m(zw) de << + oo,

[101)@) pia) @< 0 (@) pm(a) de
Rn R»

where

(Mf)(z) = Supf [f(@)|de and O=CO(n;m(x))>0.
QCR™
@

If w(x) € WHi(R"), let us define

(M* u)(@) = (Mu)(@) +] (MD*u) () ,
1

o=

and if Fc R» iz a closed set

lu(y) — w(@) — 3 D*u(@)(Ya — 7a)|
R{u; F) = Sup{Sup [D*u(2) — D*uly)]; lo]=1 }
wyel | 2] =1 o — v

Then we have

LemMa 4.5 (see [7]). — If u(z)e WHYR"), Ve > 0 there ewist o closed set F c Be
and a function g(w) € C*(RB") such that |F°| < g; u = g and D*u=D"g on F; R(g; B*) <
< CR(u; F) where C = C(n) >0

From the previous lemma we can prove
LEMMA 4.6. — If m(x) verifies (4.2) and (4.7) and if u(x) e WHYR*) N W(m; B),

then Ye >0 there exist a closed set FC Rr and a function g(x)ec CYR=) such that
Bl <e; u=g and D*u = D% on F; ||g—u],.z.<e.

21 ~ Annali di Malematica
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Proor. — If >0, let us denote Z,= {» e R": (M*u)(x) < 6}. Then, see [6],
page 650,

Vo, y e Zs, I(®y)<e(n)d

where
[u(y) 1 IZD“ Yo — Za)|
Iz, Dey(x) — D* #=t
(@, ) la]qu u(y)] + T—

Then, by Lemma 4.5, there exist a closed set F ¢ Z,; and a function g(z) € C1(R*)
such that 4 = ¢ and D*u = D*g on F, [F°|< 2|Z}| and

fm(m) de < 2jm(w dex
4§

Fe

R(g; B*) <ex(n) B(u; F)<cye,d.
Then:

f|pg Dufrm( dw_fwg Dulrm(z) dw

<oy(n) Laz f m(z) de -+ f \Du [2m(x) dm]
»e »e

<2ey(n) :62 f m(w) do - f \Dupm(x) dzv]
zg Fe

< 264(n) -fm(m)[(M*u )2 de —i—f]DuIﬁm dx] .

70 [
Zd F

And by Lemma 4.4, letting é — + oo, we get the proof.
Now we can give the

Proor oF THEOREM 4.3. ~ Let us suppose that Y2 e Ap, and Vu € C{(R")

z ay(w) Dauw Dy de = I'(LA(Q)~ )hm Z aly(w) DauDyudey .

By a general compactness result we can suppose that there exist

(4.9) F(Q, w) = I'(LAQ))im Fy(Q, u)  on Wi(m; R").
h

Actually, we have to prove that

(4.10) F(2,u) Z ay(@) DuDude  Yue Wy (m; B?).

IR



N1doLA FUSCO - GIOUONDA MOSCARIELLO: L*-lower semicontinuity, eto. 328

If we W, (m; B*), by Lemma 4.5, there exist a sequence (w;),c CYR*) such
that w, — % in L*(£2) and

Zaw #) D Dude = lim Za,, YD, w, D;w, da .
@5
2

h X
2
Since Ilimits are ls.c. (see [3]) we have:

F(Q, u)<hmF(Q wy) = 11m E a:;(x) D w, D, de

(%]

and so

(4.11) Z ay(@)DuDudr  Yue W, (m;R").

Let us prove the reverse inequality. Fixed u e W, (m; B"), by (ii), let (u,)scC
c C{R*) such that

Uu, —u  in L3Q) and
(4.12)

F('Q’ u) = lith(‘Qa '“’:) .
R

We can suppose F(Q, u) < + oo, otherwise (4.10) follows from (4.12). Let us
fix ¢> 0; then by Lemma 4.6 there exist a closed subset F cc 2 and a function
w®e CYR") such that

R —Fe|<e; w'=wu and Dw'=Du onF,,
(4.13) |

Iu . we“%n:!) <e.
Let us denote by (£2,). an decreasing sequence of open sets such that

Fecc ,cc
(4.14)

h
and by (ga)aC C3(£2:) a sequence of functions such that

0<‘Ph<1 on Qh; (phzl and D(ph:‘—o on Fg,

4.15 ’
(4.15) Dol < G 7, 50

Then let us define

(4.16) { Pn(%) = ga(® )dist(Fe, 80, ,

(@) = Un Gy - (1 — @) (4, — o - w°)
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and w,(x) € C(R") such that
(4.17) [w,—vy[2.0—>0 a8 b=+ co.
Then:

z a:;(®) Dou Dyu do < F (2, w®) <lUm inf F,(Q, w,) = liminf | > aly(@) D, Dw, de
3,3 [ h [
Fe Q

and so, by (4.17)

(4.18) fz ay(x) D D da <lim infj~ S a(@) Dy Dyvrdew .
o) b J i

Fe

It we fix 7, 070, 1], then Vi
(4.19) z aly(@) Di(vov,) D {tov,) do = ay, -+ by -+ ¢,
(8]
where

f Za,,(w {1ovy) D(rov,) dw

Q-0p

by, = z aly(@) D(tov,) Dy(Tov,) de
2= 7,

e = Za, (@) D{vov,) Dy(rov,) dw
e

Observing that
Doy(2) = Dun@p 4 D(p— v + w) (1 — §2) -+ DPalww® — u)

we have, from (4.15)

a= | 3 al(@) Dior(un—u + w)) Dyfor (wn —u + wf))do<
2o, g% 72
<ot (2 — Qy, w) + = 2 al(x) Dy(w® — u) Dy(w® — ) de <
Q—Q:’]
0? 1% M)
<o ol (Q — £,y wa) + T—,° QP m(z)’
by = 2 at{(x) D (otvs) Dy(otvs) do <
Dp—~Fs i

<ot Za/?j(x) (@1 D ta + (L — @) Do(wn — # - w*)]

2,3
Qp~Fs
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[ Dsun + (L — @a) Dy(U — 4 + w°)]dow +

1—7
Qp—Fs

o212
+ 2 al(w)(w® — u)* D@, D; ¢ do <

4% 'c“‘

<ot f 7@ 3, at (o) Daus Dy o 4
5d
Qh—Fs

+ T f (1 — @) Zajaz)D[o'uh—[-d(w — w)] D,[ou, + o(w*—u)]de <

:

Qn—Fe
4g? 12
<ot f Za, DuhDuhdm—{—
gh 4,3
+ f 1—(ph 20&3 DuhDuhdw—'-‘
24~ F, b
0%t - %
+i— | A=) 2 a(@) Dy(w® — u) Dy(w —u)de<
%)
-Qh—Fs

M(z)  4o021?
m(x) + 1—=+°

<07 > ai5(@) Dy uy Dy,
amr
Finally
¢, = T2, (Fs; uy) .

From (4.19) and from the following inequalities we have

722 F,(£2, vh)<0'2TFn(-Q—~th Uy) + T (2, — Fe, tn) +

M(m) [ 0?72 ot 40272

2+2 .

+GT.Fh(Feyuh)+SSgp m(m) (1_,_7: 1 ) 1—T8<
1 M) o*® | o7\ | 4027

<ath(Q,un)Tﬁsgp m(m)(l—f 1—o‘>+1—1‘6'

Letting A — + co and then ¢ — 0 we have, from (4.12) and (4.18)

o272 Zfb” )DuDude <otF(Q, u)

and so, letting 0,7 — 1~ we get

z ay;(2) Du D de < F(LQ, u)

and so, by (4.11), (4.10) is proved.
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