L^{2}-Lower Semicontinuity of Functionals of Quadratic Type ${ }^{(*)}{ }^{(* *)}$.

Nicola Fusco - Gioconda Moscariello (Napoli) (***)

Summary. - A representation formula for the L^{2}-lower semicontinuous envelope of a quadratic integral of Calculus of Variations is given. Some particular cases are explicited in the details.

Let us consider the functional of the Calculus of Variations

$$
F(\Omega, u)=\int_{\Omega} \sum_{i, j} a_{i j}(x) D_{i} u D_{j} u d x \quad u \in H^{1,2}(\Omega)
$$

where $a_{i j}=a_{j i} \in L^{\infty}\left(R^{n}\right), \sum_{i, j} a_{i j} z_{i} z_{j} \geqslant 0$. It is well known that F is weakly sequentially lower semicontinuous (l.s.c.) in $H^{1,2}(\Omega)$. The situation is completely different if we consider topologies such as $L^{p}(\Omega), p \geqslant 1$. There are classical conditions (see [11], e.g.)

$$
\left\{\begin{array}{l}
\sum_{i, j} a_{i j}(x) z_{i} z_{j}>0, \quad \forall x, z \in R^{n} \\
a_{i j} \in C^{0}\left(R^{n}\right)
\end{array}\right.
$$

that ensure F to be L^{2}-l.s.c., but it is possible to give counterexamples (see [1], [8]) showing that this is not the case at all. In particular it has been proved ([8]) that a necessary and sufficient condition for the functional

$$
\int_{\Omega} a(x)|\dot{u}(x)|^{2} d x
$$

to be L^{2}-l.s.c. on $H^{1,2}(\Omega)$ is that $\forall x$ a.e.

$$
a(x)=\lim _{\varepsilon \rightarrow 0^{+}}\left(\frac{1}{2 \varepsilon} \int_{x-\varepsilon}^{x+\varepsilon} \frac{1}{a(t)} d t\right)^{-1}
$$

In this paper we extend the preceding results giving a formula for the L^{2}-1.s.c. envelope of $F(\Omega, u)$.

[^0]From previous results (see [1]) it was known that this envelope is still an integral, namely quadratic, functional. We show that its coefficients $b_{i j}(x)$ are such that $\forall z \in R^{n}$ and $\forall x$ a.e.

$$
\sum_{i, j} b_{i j}(x) z_{i} z_{j}=\limsup _{|Q| \rightarrow 0} \operatorname{Inf}\left\{\frac{1}{\operatorname{mis} Q} \int_{Q} \sum_{i, j} a_{i j}(x) D_{i} u \cdot D_{j} u d x: \quad u \in z \cdot x+H^{1,2}(Q)\right\}
$$

where Q is any cube in R^{n} containing x. This formula was proved in [4] in the particular case of coercive functionals in which F is L^{2}-l.s.c. and so $b_{i j}=a_{i j}$. By this formula we obtain (when $n=1$) a result proved in [8] and also a general sufficient condition for F to be l.s.c.

The technics we use here are related to the maximum principle for uniformly elliptic operators in divergence form and to the duality, but we often employ the arbitrariness of the open set Ω in which is defined the functional F.

In the particular case that $a_{i j}=\delta_{i j} a_{i}(x)$ and $a_{i}(x)$ are products of a measurable function of x_{i} and of a function of the other variables or in the case $a_{i j}=a_{i j}\left(x_{1}\right)$ we give an explicit calculation of the coefficients $b_{i j}$ of the l.s.c. envelope of F and hence necessary and sufficient conditions for F to be L^{2}-l.s.c.

All the previous results concern the semicontinuity of the functional $F(\Omega, u)$ on the space $H^{1,2}(\Omega)$. But it is known that the minimum points of $F(\Omega, u)$ do not always belong to $H^{1,2}(\Omega)$ and that the best space where to find them is $T(\Omega)=$ $=\left\{u \in H_{\mathrm{loc}}^{1,1}(\Omega): F(\Omega, u)<+\infty\right\}$. So it is useful to obtain semicontinuity results for $F(\Omega, u)$ in $T(\Omega)$. At the end of section $\S 2$ we prove a sufficient condition for F to be l.s.c. that is valid up to the space $T(\Omega)$.

Of course, a similar problem arises in considering the Γ-convergence of a sequence of functionals such as

$$
F_{n}(\Omega, u)=\int_{\Omega} \sum_{i, j} a_{i j}^{k}(x) D_{i} u D_{j} u d x
$$

whith respect to the L^{2}-topology.
It is known that there exist measurable functions $a_{i j}(x), i, j=1, \ldots, n$, such that $\forall u \in H^{1,2}(\Omega)$

$$
\begin{equation*}
\Gamma\left(L^{2}(\Omega)^{-}\right) \lim _{h} F_{h}(\Omega, u)=\int_{\Omega} \sum_{i, j} a_{i j}(x) D_{i} u D_{i} u d x \tag{*}
\end{equation*}
$$

In the section $\S 4$ we prove that, with reasonable assumptions on the coefficients $a_{i j}^{h}$, the relation (*) is still valid up to the space $T(\Omega)$. This result is shown using some technics introduced by F. C. LIU in [7] and some results on maximal functions in weighted Sobolev spaces proved in [2].

1. - Definitions, notations and preliminary results.

Let be $A p_{n}$ the family of all bounded open sets of $R^{n}, \Omega \in A p_{n}$ and $x=$ $=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$.

We consider functionals of the type:

$$
F(\Omega, u)=\int_{\Omega} \sum_{i, i} a_{i j}(x) D_{i} u D_{j} u d x
$$

where $\Omega \in A p_{n}, u \in H^{1,2}(\Omega)$ and $\left[a_{i j}\right]$ is a symmetric $n \times n$ matrix of bounded measurable functions on R^{n} such that

$$
\begin{equation*}
0 \leqslant \sum_{i, j}^{n} a_{i j}(x) z_{i} z_{j} \leqslant \Lambda|z|^{2} \tag{1.1}
\end{equation*}
$$

$\forall x$ a.e. and $\forall z \in R^{n}$.
Let us introduce the lower semicontinuous envelope (l.s.e.) of $F^{\prime}(\Omega, u)$ with respect to the strong $L^{2}(\Omega)$ topology:

$$
\bar{F}(\Omega, u)=s o^{-}\left(L^{2}(\Omega)\right) \cdot F(\Omega, u), \quad u \in H^{1,2}(\Omega)
$$

It's easy to verfy that:

$$
\bar{F}(\Omega, u)=\operatorname{Inf}\left\{\underset{h}{\liminf } F\left(\Omega, u_{h}\right): u_{h} \in H^{1,2}(\Omega), u_{h} \rightarrow u \text { in } L^{2}(\Omega)\right\}
$$

By this formula we deduce that

$$
\left\{\begin{array}{l}
\forall u \in H^{1,2}(\Omega) \exists\left\{u_{h}\right\}_{h} \subset H^{1,2}(\Omega): u_{h} \rightarrow u \text { in } L^{2}(\Omega) \quad \text { and } \tag{1.2}\\
\bar{F}(\Omega, u)=\lim _{h} F\left(\Omega, u_{h}\right)
\end{array}\right.
$$

It is known (see [1], [9]) that if F is a quadratic functional also \bar{F} is a quadratic functional. So there exist some bounded measurable functions $b_{i j}(x)$ such that

$$
\begin{equation*}
\bar{F}(\Omega, u)=\int_{\Omega} \sum_{i, j} b_{i j}(x) D_{i} u D_{j} u d x \quad \forall u \in H^{1,2}(\Omega) \tag{1.3}
\end{equation*}
$$

In particular it can be proved that
Proposition 1.1. - If $a_{i j}=a_{i j}\left(x_{1}\right)$, then also the functions $b_{i j}$ verifying (1.3) depend only on x_{1}.

Proof. - If Ω is a bounded open set, let us consider $u(x)=z \cdot x$, with $z \in R^{n}$ and $y=\left(0, \bar{x}_{2}, \ldots, \bar{x}_{n}\right)$. From (1.2) we have that $\exists\left\{u_{h}\right\}_{h} \subset H^{1,2}(\Omega): u_{h} \rightarrow u$ in $L^{2}(\Omega)$ and

$$
\int_{\Omega} \sum_{i, j} b_{i j}(x) z_{i} z_{j} d x=\lim _{h} \int_{\Omega} \sum_{i, j} a_{i j}\left(x_{1}\right) D_{i} u_{h} D_{j} u_{h} d x
$$

Then, taking $u^{y}(x)=u(x-y)$, and $u_{h}^{y}(x)=u_{h}(x-y)$

$$
\int_{y+\Omega} \sum_{i, j} b_{i j}(x) z_{i} z_{j} d x=\lim _{h} \int_{y+\Omega} \sum_{i, j} a_{i j}\left(x_{1}\right) D_{i} u_{n}^{y}(x) D_{j} u_{h}^{y}(x) d x .
$$

Since $a_{i j}=a_{i j}\left(x_{1}\right)$, the integrals at the right side are equal and so

$$
\int_{\nu+\Omega} \sum_{i, j} b_{i j}(x) z_{i} z_{j} d x
$$

does not depend on y. This gives the proof, provided that z and Ω are arbitrary.
Let us recall now some results about the duality that we shall use in the following.
If X and X^{*} are two locally convex topological vector spaces (l.c.t.v.s.) in duality and $\langle\cdot, \cdot\rangle$ is the duality between them, for any $f: X \rightarrow \bar{R}$, we indicate with f^{*} the Young-Fenchel transform of f, i.e.

$$
f^{*}\left(v^{*}\right)=\sup _{v \in \bar{X}}\left\{\left\langle v, v^{*}\right\rangle-f(v)\right\} \quad v^{*} \in X^{*}
$$

In the case of integral functionals the expression of the Young-Fenchel transform may be obtained using the following

Proposition 1.2 (see [5]). - If $f(x, z): \Omega \times R^{n} \rightarrow \bar{R}$ is a Carathéodory function and if $G(u)=\int_{\Omega} f(x, u(x)) d x, u \in L^{p}(\Omega)$, is finite on some $u_{0} \in L^{p}(\Omega)$, then $G^{*}\left(u^{*}\right)=\int_{\Omega} f^{*}(x$, $\left.u^{*}(x)\right) d x$ where $f^{*}(x, \cdot)$ is the Young-Fenchel transform of $f(x, \cdot)$.

Given Y and I^{*}, other two l.c.t.v.s. in duality and $\Gamma: X \rightarrow Y$ linear and continuous, we indicate with Γ^{*} the adjoint mapping of Γ. If $\left.\left.M: X \rightarrow\right]-\infty,+\infty\right]$. $N: Y \rightarrow]-\infty,+\infty]$ are convex and lower semicontinuous, we can consider the problem:

$$
\begin{equation*}
\operatorname{Inf}_{v \in X}[M(v)+N(\Gamma(v))] \tag{S}
\end{equation*}
$$

and its dual problem (see [4])

$$
\begin{equation*}
\operatorname{Sup}_{p^{*} \in Y^{*}}\left[-M^{*}\left(\Gamma^{*} p^{*}\right)-N^{*}\left(-p^{*}\right)\right] \tag{*}
\end{equation*}
$$

where M^{*} and N^{*} are the Young-Fenchel transform of M and N respectively.

Let us consider also $\forall p \in Y$ the problem:
$\left(\mathscr{T}_{p}\right)$

$$
\operatorname{Inf}_{v \in X}[M(v)+N(\Gamma(v)-p)]
$$

and $\forall p \in I$ let us define $\mathcal{R}(p)=\operatorname{Inf} \mathcal{T}_{p}$. Then (see [5])
Theorem 1.3. - If $\mathcal{R}(0)<+\infty$ and $\mathcal{R}(p)$ is convex and it is also continuous at 0 , then $\operatorname{Inf} \mathfrak{P}=\operatorname{Sup} \mathscr{P}^{*}$ and the problem $\operatorname{Sup} \mathfrak{T}^{*}$ is solvable.
Let us consider now the particular case that

$$
X=H^{1,2}(\Omega), \quad Y=L_{n}^{2}(\Omega), \quad \Gamma u=D u, \quad N(\Gamma u)=\frac{1}{2} F(\Omega, u)
$$

and

$$
M(u)= \begin{cases}0 & \text { if } u \in \mathcal{Z} \cdot x+H_{0}^{1,2}(\Omega) \\ +\infty & \text { otherwise }\end{cases}
$$

Because of continuity and convexity of

$$
N(p)=\frac{1}{2} \int_{\Omega} \sum_{i, j} a_{i j}(x) p_{i}(x) p_{i}(x) d x
$$

on $L_{n}^{2}(\Omega)$, by Theorem 1.3, $\operatorname{Inf} \mathfrak{T}=\operatorname{Sup} \mathfrak{T}^{*}$.
It is easy to prove that (see [5])

$$
M^{*}\left(\Gamma^{*} p^{*}\right)= \begin{cases}\int_{\Omega} z^{*} \cdot p^{*} d x & \text { if } \operatorname{div} p^{*}=0 \\ +\infty & \text { otherwise }\end{cases}
$$

So, by Proposition 1.2, we have:

$$
\operatorname{Inf}_{u \in H_{n}^{1,2}(\Omega)} \frac{1}{2} F(\Omega, u+z \cdot x)=\sup _{\substack{p^{*} \in \mathcal{L}_{n}^{2}(\Omega) \\ \operatorname{div} \boldsymbol{p}^{*}=0}} \int_{\Omega}\left(z \cdot p^{*}-\frac{1}{2} \sum_{i, j} a_{i j}^{*} p_{i}^{*} p_{j}^{*}\right) d x
$$

where $\left[a_{i j}^{*}\right]$ is the inverse matrix of $\left[a_{i j}\right]$.

2. - Lower semicontinuity properties.

Let $a_{i j}(x), i, j=1, \ldots, n$, be measurable functions on R^{n} verifying (1.1). For any $\Omega \in A p_{n}$ and $z=\left(z_{1}, \ldots, z_{n}\right) \in R^{n}$, we define:

$$
\mu(z, \Omega)=\operatorname{Inf}\left\{\frac{1}{\operatorname{mis} \Omega} \int_{\Omega} \sum_{i, j} a_{i j}(x)\left(D_{i} u+z_{i}\right)\left(D_{j} u+z_{j}\right) d x: \quad u \in H_{0}^{1,2}(\Omega)\right\}
$$

and for any $\varepsilon>0$

$$
\mu_{8}(z, \Omega)=\operatorname{Inf}\left\{\frac{1}{\operatorname{mis} \Omega} \int_{\Omega} \sum_{i, j}\left(a_{i j}(x)+\varepsilon \delta_{i z}\right)\left(D_{i} u+z_{i}\right)\left(D_{i} u+z_{j}\right) d x: u \in H_{0}^{1,2}(\Omega)\right\}
$$

It is easy to show that for any $z \in R^{n}$ and for any $\Omega \in A p_{n}$

$$
\begin{equation*}
\lim _{\delta \rightarrow 0^{+}} \mu_{\varepsilon}(z, \Omega)=\mu(z, \Omega) \tag{2.1}
\end{equation*}
$$

In the following we'll indicate with Q any cube in R^{n} and with $|Q|$ its measure.
THEOREM 2.1. - If $F(\Omega, u)$ and $\bar{F}(\Omega, u)$ are defined as in § 1 and $b_{i j}(x)$ are measurable functions in R^{n} verifying (1.3), then for any x a.e. and for any $z \in R^{n}$:

$$
\begin{equation*}
\sum_{i, j} b_{i j}(x) z_{i} z_{j}=\limsup _{|Q| \rightarrow 0} \mu(z, Q) \tag{2.2}
\end{equation*}
$$

where Q is a cube containing x.
Proof. - Let x_{0} be a Lebesgue point for the $b_{i j}$'s; if Q is a cube such that $x_{0} \in Q$, let us choose a sequence $\left\{u_{k}\right\}_{k}$ of functions in $z \cdot x+B_{0}^{1,2}(Q)$ such that

$$
\left.\bar{F}(Q, z \cdot x)=\lim _{k} F\left(Q, u_{k}\right) \quad{ }^{1}\right)
$$

Then

$$
\mu(z, Q) \leqslant \frac{1}{|Q|} \int_{Q} \sum_{i, j} b_{i j}(x) z_{i} z_{j} d x
$$

and therefore, letting $|Q| \rightarrow 0$

$$
\limsup _{|Q| \rightarrow 0} \mu(z, Q) \leqslant \sum_{i, j} b_{i j}\left(x_{0}\right) z_{i} z_{j}
$$

Let us prove now the reverse inequality.
We fix a cube Q_{0} with the faces parallel to the coordinate axes; for any $k \in N$ let P_{k} be a partition of Q_{0} whose elements are the cubes congruent to Q_{0}, contained in Q_{0}, and whose dimensions are in the rate $1 / 2^{k}$ with the corrispondent ones of Q_{0} Let us indicate with Q_{k}^{h} an element of P_{k} and with $\chi_{h, k}(x)$ the characteristic function of Q_{k}^{h} and define for any $z \in R^{n}$

$$
\delta_{z}(x)=\lim _{k} \sup _{n} \sum_{h=1}^{2^{n k}} \mu\left(z, Q_{k}^{h}\right) \chi_{n, k}(x)
$$

${ }^{(1)}$ It can be shown (see [1]) that the functions u_{h} in (1.2) can be chosen in $u+H_{0}^{1,2}(\Omega)$.

We also indicate with E_{0} the set of the Lebesgue points of the $b_{i j}$'s and with E the subset of R^{n} whose elements are Lebesgue points for any $s_{z}(x)$ where z has rational coordinates. If $x_{0} \in Q_{0} \cap E_{0} \cap E$ and Q is a cube with center in x_{0} contained in Q_{0}, we indicate $\forall k$ by $Q_{k}^{1}, \ldots, Q_{k}^{n_{k}}$ all the cubes of P_{k} that are contained in the fixed cube Q. From the relation (2.1) it is clear that $\forall k$ it is possible to find $\left(\varepsilon_{k}\right)_{k}, \varepsilon_{k} \downarrow 0$, such that for any $1 \leqslant h \leqslant n_{k}$

$$
\mu_{\varepsilon_{k}}\left(z, Q_{k k}^{h}\right)<\mu\left(z, Q_{k}^{h}\right)+\frac{1}{k n_{r_{c}}} .
$$

Then, for any k and for any $1 \leqslant h \leqslant n_{k}$ we denote u_{k} the function such that $u_{k}=u_{k}(x, h), \forall h$, where $u_{k}(x, h)$ is the solution in Q_{k}^{h} of the Dirichlet problem

$$
\operatorname{Min}\left\{\int_{Q_{k}^{h}} \sum_{i, j}\left(a_{i j}+\varepsilon_{k} \delta_{i j}\right) D_{i} u D_{i} u d x: \quad u \in \mathcal{Z} \cdot x+H_{0}^{1,2}\left(Q_{k}^{h}\right)\right\}
$$

From the maximum principle for linear elliptic operators in divergence form (see [6]) we get

$$
\sup _{Q_{k}^{h}}\left|u_{k}-z \cdot x\right| \leqslant \frac{\bar{Q}_{k}^{h}}{Q_{k}^{h}} \cdot x \leqslant|z| \operatorname{diam} Q_{k}^{h}
$$

and so, fixing $\nu \in N, u_{k} \rightarrow z \cdot x$ in $A_{v}=\bigcup_{h=1}^{n_{\nu}} Q_{\nu}^{h}$ in the strong $L^{\infty}\left(A_{\nu}\right)$ topology, and $u_{k}=z \cdot x$ on ∂A_{v}. Then

$$
\bar{F}\left(A_{v}, z \cdot x\right) \leqslant \liminf \int_{A_{v}} \sum_{i, j} a_{i j} D_{i} u_{k} D_{j} u_{k} d x \leqslant \lim \sup _{k}\left\{\int_{A_{v}} \sum_{h} \mu\left(z, Q_{k}^{h}\right) \gamma_{h, k}(x) d x+\frac{1}{k}\right\}
$$

where the last summation is extended to all h such that $Q_{k}^{h} \subset A_{v}$.
Taking the limit as $\nu \rightarrow+\infty$, we have

$$
\bar{F}(Q, z \cdot x) \leqslant \int_{Q} s_{z}(x) d x
$$

dividing both sides by $|Q|$ and taking the limit as $|Q| \rightarrow 0$, since $x_{0} \in Q_{0} \cap E_{0} \cap E$, we get

$$
\sum_{i, i} b_{i j}\left(x_{0}\right) z_{i} z_{j} \leqslant s_{z}\left(x_{0}\right)
$$

Finally, observing that $s_{z}\left(x_{0}\right) \leqslant \lim _{|Q| \rightarrow 0} \sup \mu(z, Q)$, we get (2.2) for any x a.e. in Q_{0} and for any \approx with rational coordinates.

The general case, $z \in R^{n}$, follows obviously by the continuity of $\lim \sup \mu(z, Q)$ as function of z.

$$
|Q| \rightarrow 0
$$

Remark. - The previous result was proved by E. De Giorgi-S. Spagnolo (see [4]) in the particular case $\sum_{i, j} a_{i j}(x) z_{i} z_{j} \geqslant|z|^{2}$, making use of Meyers regularity for the solutions of uniformly elliptic equations. In this case $a_{i j}=b_{i j}$.

Corollary 2.2. - If $a_{i j}(x)$ are such that $\forall z \in R^{n}$

$$
0 \leqslant m(z)|z|^{2} \leqslant \sum_{i, j} a_{i j}(x) z_{i} z_{j} \leqslant M(x)|z|^{2}
$$

with $1 / m(x) \in L_{\mathrm{loc}}^{1}(\Omega)$ and $M(x) \in L_{\mathrm{loc}}^{1}(\Omega)$, then $F(\Omega, u)$ is $L^{2}-l . s . c$. on $H^{1,2}(\Omega)$.
Proof. - Let us suppose first $M(x) \leqslant \Lambda$; we choose $x_{0} \in \Omega$ such that for this point is verified the relation (2.2). Then, having fixed $z \in R^{n}$, by the same argument used in $\S 1$ we deduce that $\forall Q: x_{0} \in Q$

$$
\frac{1}{2} \mu(z, Q)=\sup _{\substack{p^{*} \in L_{i}^{L}(Q) \\ \operatorname{div} p^{*}=0}} \frac{1}{|Q|} \int_{Q}\left(z \cdot p^{*}-\frac{1}{2} \sum_{i, j} a_{i j}^{*} p_{i}^{*} p_{j}^{*}\right) d x
$$

Because of the local summability of $1 / m(x)$, the $a_{i j}^{*}$ s are summable in a nhood of x_{0}. From the convexity of $\sum_{i, j} a_{i j}\left(x_{0}\right) z_{i} z_{j}$ as functional of z, there exists (see [5]) $p_{0}^{*} \in R^{n}$ such that $\frac{1}{2} \sum_{i, j} a_{i j}\left(x_{0}\right) z_{i} z_{j} \stackrel{=z}{i, j} p_{0}^{*}-\frac{1}{2} \sum_{i, j} a_{i j}^{*}\left(x_{0}\right) p_{0, i}^{*} i_{0, j}^{*}$.

Therefore we have:

$$
\sup _{\substack{p^{*} \in L_{j}^{2}(Q) \\ d i v p^{*}=0}} \frac{1}{|Q|} \int_{Q}\left(z \cdot p-\frac{1}{2} \sum_{i, j} a_{i j}^{*} p_{i}^{*} p_{j}^{*}\right) d x \geqslant z \cdot p_{0}^{*}-\frac{1}{|Q|} \int_{Q} \frac{1}{2} \sum_{i, j} a_{i j}^{*}(x) p_{0, i}^{*} p_{0, j}^{*} d x
$$

Then if x_{0} is also a Lebesgue point of $b_{j j}$'s and $a_{i j}^{*}$'s, taking the limit as $|Q| \rightarrow 0$ we obtain

$$
\sum_{i, j} b_{i j}\left(x_{0}\right) z_{i} z_{j} \geqslant \sum_{i, j} a_{i j}\left(x_{0}\right) z_{i} z_{j}
$$

and so, since the inverse inequality is obvious, $F=\bar{F}$.
If $M(x) \in L^{1}(\Omega)$, let us fix $\Lambda>0$ and $\Omega_{\Lambda}=\{x \in \Omega: M(x)>\Lambda\}$ and

$$
a_{i j}^{A}(x)= \begin{cases}a_{i j}(x) & \text { if } x \notin \Omega_{\Lambda} \\ \min \left\{\Lambda \delta_{i j}, m(x)\right\}=m^{\Lambda}(x) & \text { if } x \in \Omega_{\Lambda}\end{cases}
$$

Then

$$
0 \leqslant m^{\Lambda}(x)|z|^{2} \leqslant \sum_{i, j} a_{i j}^{\Lambda}(x) z_{i} z_{j} \leqslant \Lambda|z|^{2}
$$

and $1 / m^{4}(x) \in L_{\mathrm{loc}}^{1}(\Omega)$. So, if $u_{k} \rightarrow u$ in $L^{2}(\Omega)$ with $u \in H^{1,2}(\Omega)$:

$$
\underset{k}{\liminf } F\left(\Omega, u_{k}\right) \geqslant \underset{k}{\liminf } \int_{\Omega} \sum_{i, j} a_{i j}^{A}(x) D_{i} u_{k} D_{j} u_{k} d x \geqslant \int_{\Omega} \sum_{i, j} a_{i j}^{A}(x) D_{i} u D_{i} u d x
$$

Then the result follows, taking the limit as $\Lambda \rightarrow+\infty$ and observing that $\left\{\sum_{i, j} a_{i j}^{A}(x) D_{i} u D_{j} u\right\}$ increases as A increases to $+\infty$. Finally the case $M(x) \in L_{\mathrm{loc}}^{1}(\Omega)$ is transled by a standard argument from the case $M(x) \in L^{1}(\Omega)$.

Remark. - From the previous result it's clear that if the coefficients $a_{i j}$ are continuous and $m(x)>0$, then F is L^{2}-l.s.c. on $H^{1,2}(\Omega)$. This is also a particular case of semicontinuity theorem proved by J. Serrin, quoted in [10].

If $1 / m(x) \in L_{\text {loc }}^{1}(\Omega)$ and Ω is a open subset of R^{n} let us denote with $W(m ; \Omega)$ the space of all functions $u(x) \in H_{\text {loc }}^{1,1}(\Omega)$ such that

$$
[u]_{m ; \Omega}=\int_{\Omega}|u(x)|^{2} d x+\int_{\Omega} m(x)|D u|^{2} d x<+\infty
$$

equipped with the norm $\|u\|_{m ; \Omega}=[u]_{m ; \Omega}^{\frac{1}{\frac{1}{2}}}$.
Then (see [12])
Theorem 2.3. - If $1 / m(x) \in L^{1}(\Omega)$, then $G^{1}(\Omega) \cap W(m ; \Omega)$ is dense in $W(m ; \Omega)$ with respect to the norm $\|\cdot\|_{m ; \Omega}$.

By this result and by Corollary 2.2 follows easily:
Theorem 2.4. - If $a_{i j}(x)$ are such that $\forall z \in R^{n}$

$$
0 \leqslant m(x)|z|^{2} \leqslant \sum_{i, j} a_{i j}(x) z_{i} z_{j} \leqslant M(x)|z|^{2}
$$

with $1 / m(x) \in L_{\mathrm{loc}}^{1}(\Omega)$ and $M(x) / m(x) \in L_{\mathrm{loc}}^{\infty}(\Omega)$, then $F(\Omega, u)$ is $L^{2}-$ l.s.c. on $W(m ; \Omega)$.

3. - Some examples.

In this section we give some applications of the formula (2.2) in particular cases. Let us begin with the one-dimensional case.

Proposition 3.1 (see also [8]). - In the same hypothesis of Theorem 2.1, if $n=1$, we have for any x a.e. in R^{n} :

$$
b(x)=\lim _{\varepsilon \rightarrow 0^{+}}\left(\varphi_{\varepsilon}(x)\right)^{-1}
$$

where

$$
\varphi_{\varepsilon}(x)=\frac{1}{2 \varepsilon} \int_{x-\varepsilon}^{x+s} \frac{1}{a(t)} d t\left(^{2}\right)
$$

Proof. - If $n=1$, from the formula (2.2) we have for any x a.e.:

$$
\begin{equation*}
b(x)=\limsup _{|x| \rightarrow 0} \mu(1, I) \tag{3.1}
\end{equation*}
$$

where I is any open interval containing x.
A direct calculation shows that for any $\varepsilon>0$

$$
\mu_{\star}(1, I)=\left(\frac{1}{|I|} \int_{I} \frac{1}{a(t)+\varepsilon} d t\right)^{-1}
$$

and so the result follows at once from (2.1) and (3.1).
From this Proposition follows also
Proposition 3.2. - Let be

$$
F(\Omega, u)=\int_{\Omega} \sum_{i=1}^{n} a_{i}(x)\left|D_{i} u\right|^{2} d x
$$

with $a_{i}(x)=a_{i}^{\prime}\left(x_{i}\right) a_{i}^{\prime \prime}\left(\hat{x}_{i}\right)\left(\hat{x}_{i}=\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)\right)$. Then

$$
\bar{F}(\Omega, u)=\int_{\Omega} \sum_{i=1}^{n} b_{i}(x)\left|D_{i} u\right|^{2} d x
$$

where for any x_{i} a.e. in $R b_{i}(x)=b_{i}^{\prime}\left(x_{i}\right) a_{i}^{\prime \prime}\left(\hat{x}_{i}\right)$ and

$$
b_{i}^{\prime}\left(x_{i}\right)=\left(\lim _{\varepsilon \rightarrow 0^{+}} \frac{1}{2 \varepsilon} \int_{x_{i}-\varepsilon}^{x_{i}+\varepsilon} \frac{1}{a_{i}^{\prime}(t)} d t\right)^{-1}
$$

Proof. - We can suppose $\left.\Omega=\prod_{k=1}^{n}\right] \alpha_{k}, \beta_{k}[$ and $u=z \cdot x$.
By the previous Proposition and by (1.2) we can say that $\forall i$ there exists a sequence $\left(u_{h}^{i}\left(x_{i}\right)\right)$ converging to $z_{i} x_{i}$ in $L^{2}(] \alpha_{i}, \beta_{i}[)$ such that

$$
\int_{\alpha_{i}}^{\beta_{i}} b_{i}^{\prime}\left(x_{i}\right) z_{i}^{2} d x_{i}=\lim _{h} \int_{\alpha_{i}}^{\beta_{l}} a_{i}^{\prime}\left(x_{i}\right)\left|\dot{u}_{h}^{i}\left(x_{i}\right)\right|^{2} d x
$$

(${ }^{2}$) If the $\lim _{\varepsilon \rightarrow 0} \varphi_{\varepsilon}(x)=+\infty, b(x)$ is intended to be egual to 0 .

But the sequence

$$
u_{h}(x)=\sum_{i=1}^{n} u_{h}^{i}\left(x_{i}\right)
$$

converges to $z \cdot x$ in $L^{2}(\Omega)$. So

$$
\bar{F}(\Omega, u) \leqslant \lim _{\hbar} F\left(\Omega, u_{\hbar}\right)=\int_{\Omega} \sum_{i=1}^{n} b_{i}(x)\left|D_{i} u\right|^{2} d x
$$

To obtain the reverse inequality it's enough to observe that if $u_{h} \rightarrow z \cdot x$ in $L^{2}(\Omega)$
$\left.\liminf _{h} F\left(\Omega, u_{h}\right) \geqslant \sum_{i=1}^{n}\left(\int_{\left.\prod_{k \neq i}\right] \alpha_{k}, \beta_{k} \mathrm{I}} a_{i}^{\prime \prime}\left(\hat{x}_{i}\right) d \hat{x}_{i} \cdot \liminf _{h} \int_{\alpha_{i}}^{\beta_{i}} a_{i}^{\prime}\left(x_{i}\right) \mid D_{i} u_{h}\right]^{2} d x\right) \geqslant$

$$
\geqslant \sum_{i=1}^{n}\left(\int_{i \neq k} \int_{\alpha_{k}, \beta_{k} \mathrm{~L}} a_{i}^{n}\left(\hat{x}_{i}\right) d \hat{x}_{i} \int_{\alpha_{i}}^{\beta_{i}} b_{i}^{\prime}\left(x_{i}\right) z_{i}^{2} d x_{i}\right)
$$

Remark. - In the previous cases continuity assumptions on $a(x)$ and $a_{i}^{\prime}\left(x_{i}\right)$ respectively are sufficient to ensure the l.s.c. of $F(\Omega, u)$ if $a(x)$ and $a_{i}^{\prime}\left(x_{i}\right)$ are also greater than 0, a.e.

Now we intend to give an explicit calculation of the coefficients $b_{i j}$ in the case that $a_{i j}$ depend only on one variable. To this aim, if I is an open interval of R and $a_{i j}\left(x_{1}\right)$ are measurable functions of R verifying (1.1), for any $z \in R^{n}$ we define:

$$
\begin{aligned}
& \gamma(z, I)=\operatorname{Inf}\left\{\frac{1}{\operatorname{mis} I} \int_{I}[\right. {\left[a_{11}\left(x_{1}\right) \dot{u}^{2}+2 \sum_{i=2}^{n}\right.} \\
& a_{1 i}\left(x_{1}\right) \dot{u} z_{i}+ \\
&\left.\left.+\sum_{i, j=2}^{n} a_{i j}\left(x_{1}\right) z_{i} z_{j}\right] d x_{1}: u \in z_{1} x_{1}+H_{0}^{1,2}(I)\right\}, \\
& \gamma_{\varepsilon}(z, I)=\operatorname{Inf}\left\{\frac { 1 } { \operatorname { m i s } \overline { I } } \int _ { I } \left[\left(a_{11}+\varepsilon\right) \dot{u}^{2}+2\right.\right. \sum_{i=2}^{n} a_{1 i} \dot{u} z_{i}+ \\
&\left.\left.+\sum_{i, j=2}^{n}\left(a_{i j}+\varepsilon \delta_{i j}\right) z_{i} z_{j}\right] d x_{1}: u \in z_{1} x_{1}+H_{0}^{1,2}(I)\right\}
\end{aligned}
$$

These quantities are closed related to the ones defined in section $\S 2$.
Again, we have that for any interval I and for any $z \in R^{n}$

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}} \gamma_{\varepsilon}(z, I)=\gamma(z, I) \tag{3.2}
\end{equation*}
$$

In the following, every time we fix a point $x_{1} \in R$, we shall denote by $Q=\prod_{i=1}^{n} I_{i}$ a cube in R^{n} such that $x_{1} \in I_{1}$.

Theorem 3.3. - If $a_{i j}\left(x_{1}\right)$ are measwrable functions of R verifying (1.1), for any $z \in R^{n}$ and for any x_{1} a.e. in R we have:

$$
\sum_{i, j} b_{i j}\left(x_{1}\right) z_{i} z_{j}=\lim _{|Q| \rightarrow 0} \sup _{\mid \rightarrow 0} \mu(z, Q)=\lim _{\left|I_{1}\right| \rightarrow 0} \sup _{p} \gamma\left(z, I_{1}\right)
$$

and $b_{i j}=\bar{b}_{i j}\left(x_{1}\right)$ a.e. in R, where

$$
\bar{b}_{i j}(x)= \begin{cases}a_{i j}\left(x_{1}\right) & \text { if }\left(\lim _{\varepsilon \rightarrow 0^{+}} \varphi_{\varepsilon}\left(x_{1}\right)\right)^{-1}=a_{11}\left(x_{1}\right) \\ a_{i j}\left(x_{1}\right)-\bar{a}_{i j}\left(x_{1}\right) & \text { otherwise }\end{cases}
$$

where:

$$
\bar{a}_{i j}\left(x_{1}\right)= \begin{cases}\frac{a_{1 i}\left(x_{1}\right) a_{1 j}\left(x_{1}\right)}{a_{11}\left(x_{1}\right)} & \text { if } a_{11}\left(x_{1}\right) \neq 0 \\ 0 & \text { if } a_{11}\left(x_{1}\right)=0\end{cases}
$$

From the definition of $\bar{b}_{i j}\left(x_{1}\right)$ it is clear that in the points x_{1} such that $1 / a_{11}$ is summable in some nhood of the point, the quadratic form $\sum_{i, j} b_{i j} z_{i} z_{j}$ coincides with $\sum_{i, j} a_{i j} z_{i} z_{j}$. Otherwise it reduces to the form $\sum_{i, j=2}^{n}\left(a_{i j}-\bar{a}_{i j}\right) z_{i} z_{j}$.

Before giving the proof of this result let us prove the following:
Lemra 3.4. - In the same hypothesis of the previous Theorem, for any cube $Q=$ $=\prod_{i=1}^{n} I_{i}$ and for any $z \in R^{n}$ we have:

$$
\begin{equation*}
\mu(z, Q) \geqslant \gamma\left(z, I_{1}\right) \tag{3.3}
\end{equation*}
$$

Proof. - Let us fix $z \in R^{n}$ and Q by the same argument used in $\S 1$ we get, for any $\varepsilon>0$:

$$
\frac{1}{2} \mu_{\varepsilon}(z, Q)=\operatorname{Sup}_{\substack{p^{*} \in L \in L(Q) \\ d \mathrm{jv} \\ p^{2}=0}} \frac{1}{|Q|} \int_{Q}\left(z \cdot p^{*}-\frac{1}{2}\left(a_{i j}+\varepsilon \delta_{i j}\right)^{*} p_{i}^{*} p_{j}^{*}\right) d x
$$

where the matrix $\left[\left(a_{i j}+\varepsilon \delta_{i j}\right)^{*}\right]$ is the inverse matrix of $\left[a_{i j}+\varepsilon \delta_{i j}\right]$. Similary it can be shown that

$$
\begin{aligned}
\frac{1}{2} \gamma_{e}\left(z, I_{1}\right)= & \operatorname{Sup}_{\substack{p_{i}^{*} \in L^{2}\left(I_{1}\right) \\
d i v p_{1}^{*}=0}}\left|I_{1}\right|
\end{aligned}\left\{\int_{I_{1}} p_{1}^{*} z_{1}-\frac{1}{2} \frac{p_{1}^{* 2}}{a_{11}+\varepsilon}+\quad \begin{array}{l}
\\
\\
\\
\left.\quad+\left(\sum_{j=2}^{n 2} \frac{a_{1 j}}{a_{11}+\varepsilon} z_{j}\right) p_{1}^{*}+\frac{1}{2} \sum_{i, j=2}^{n}\left(\left(a_{i j}+\varepsilon \delta_{i j}\right)-\frac{a_{1 i} a_{1 j}}{a_{11}+\varepsilon}\right) z_{i} z_{j}\right\} .
\end{array}\right.
$$

Actually the supremum at the right side is taken up to all constants p_{1}^{*}. For any constant \bar{p}_{1}^{*} let us choose

$$
\bar{p}^{*}\left(x_{1}\right)=\left\{\bar{p}_{1}^{*}, \frac{a_{1 i} \bar{p}_{1}^{*}}{a_{11}+\varepsilon}+\sum_{r=2}^{n}\left(\left(a_{i r}+\varepsilon \delta_{i r}\right)-\frac{a_{1 i} a_{1 r}}{a_{11}+\varepsilon}\right) z_{r} \quad i=2, \ldots, n\right\}
$$

Since $a_{i j}$ depend only on x_{1}, div $\bar{p}^{*}=0$. So, by mean of easy (although tedious) calculation, we get:

$$
\begin{aligned}
& \frac{1}{2} \mu_{\varepsilon}(z, Q) \geqslant \frac{1}{|Q|} \int_{Q}\left(z \cdot \bar{p}^{*}-\frac{1}{2} \sum_{i, j=1}^{n}\left(a_{i j}+\varepsilon \delta_{i j}\right)^{*} \bar{p}_{i}^{*} \bar{p}_{i}^{*}\right) d x= \\
&=\frac{1}{\left|I_{1}\right|} \int_{I_{1}} \bar{p}_{1}^{*} z_{1}-\frac{1}{2} \frac{\bar{p}_{1}^{* 2}}{a_{11}+\varepsilon}+\left(\sum_{i=2}^{n} \frac{a_{1 i}}{a_{11}+\varepsilon} z_{i}\right) \bar{p}_{1}^{*}+ \\
&+\frac{1}{2} \sum_{i, j=2}^{n}\left(\left(a_{i j}+\varepsilon \delta_{i j}\right)-\frac{a_{1 i} a_{1 j}}{a_{11}+\varepsilon}\right) z_{i} z_{j} d x_{1}
\end{aligned}
$$

Then, taking the supremum up to all constants \bar{p}_{1}^{*} we get

$$
\mu_{\varepsilon}(z, Q) \geqslant \gamma_{\varepsilon}\left(z, I_{1}\right)
$$

and so, using (2.1) and (3.2), (3.3) is proved.
Proof of Theorem 3.3. - From Theorem 2.1 and from the previous Lemma it follows:

$$
\begin{equation*}
\sum_{i, j} b_{i j}\left(x_{1}\right) z_{i} z_{j}=\limsup _{|Q| \rightarrow 0} \mu(z, Q) \geqslant \limsup _{\left|I_{1}\right| \rightarrow 0} \gamma\left(z, I_{1}\right) . \tag{2.4}
\end{equation*}
$$

But, as it can be easily checked by direct calculation,

$$
\begin{aligned}
& \gamma_{\varepsilon}\left(z, I_{1}\right)=z_{1}^{2}\left(\frac{1}{\left|I_{1}\right|} \int_{I_{1}} \frac{d t}{a_{11}+\varepsilon}\right)^{-1}+2 \sum_{i=2}^{n} z_{1} z_{i} \frac{\int_{I_{1}}}{} a_{I_{1 i}}(t) /\left(a_{11}+\varepsilon\right) \\
& \int_{I_{1}} d t /\left(a_{11}+\varepsilon\right)
\end{aligned}+\quad \begin{aligned}
& \quad+\sum_{i, i=2}^{n} \frac{z_{i} z_{j}}{\left|I_{1}\right|}\left\{\int_{I_{1}}\left(a_{i j}+\varepsilon \delta_{i j}\right)-\int_{I_{1}} \frac{a_{1 i} a_{1 i}}{a_{11}+\varepsilon}+\frac{\left(\int_{I_{1}} a_{1 i} /\left(a_{11}+\varepsilon\right)\right)\left(\int_{I_{1}} a_{1 i} /\left(a_{11}+\varepsilon\right)\right.}{\int_{I_{1}} 1 /\left(a_{11}+\varepsilon\right)}\right\} .
\end{aligned}
$$

In the points x_{1} such that $1 / a_{11}$ is summable in some nhood of the point we have a.e.

$$
\lim _{\left|I_{1}\right| \rightarrow 0} \lim _{\varepsilon \rightarrow 0^{+}} \gamma_{\varepsilon}\left(z, I_{1}\right)=\sum_{i, i} a_{i j}\left(x_{1}\right) z_{i} z_{j}
$$

Otherwise,

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{1}{\left|I_{1}\right|} \int_{I_{1}} \frac{d t}{a_{11}+\varepsilon}=+\infty
$$

for any nhood I_{1} of x_{1} and so

$$
\begin{aligned}
& \limsup _{\left|I_{1}\right| \rightarrow 0} \gamma\left(z, I_{1}\right)=\sum_{i, j=2}^{n}\left(a_{i j}\left(x_{1}\right)-\bar{a}_{i j}\left(x_{1}\right)\right) z_{i} z_{j}+ \\
& \quad+\lim _{\left|I_{1}\right| \rightarrow 0} \sup \frac{1}{\left|I_{1}\right|} \lim _{\varepsilon \rightarrow 0^{+}} \frac{\sum_{i, j=2}^{n}\left(\int_{I_{2}} a_{1 i} /\left(a_{11}+\varepsilon\right)\right)\left(\int_{I_{1}} a_{1 j} /\left(a_{11}+\varepsilon\right)\right)}{\int_{I_{1}} 1 /\left(a_{11}+\varepsilon\right)} z_{i} z_{j} \geqslant \sum_{i, j=2}^{n}\left(a_{i j}-\bar{a}_{i j}\right) z_{i} z_{j} .
\end{aligned}
$$

So in both cases:

$$
\sum_{i, j=1}^{n} b_{i j}\left(x_{1}\right) z_{i} z_{j} \geqslant \sum_{i, j=1}^{n} \vec{b}_{i j}\left(x_{1}\right) z_{i} z_{j} .
$$

To prove the reverse inequality it is enough, since $\bar{F} \leqslant F$, to confine ourselves at the points x_{1} such that

$$
a_{11}\left(x_{1}\right) \neq \lim _{\varepsilon \rightarrow 0^{+}} \frac{1}{2 \varepsilon} \int_{x_{1}-\varepsilon}^{x_{2}+\varepsilon} \frac{1}{a_{11}(t)} d t
$$

If x_{1} is one of such points we can suppose that $1 / a_{11}$ is not summable in any nhood of x_{1}.

So, if we fix $I_{1}=(a, b) \ni x_{1}, 1 / a_{11} \notin L^{1}\left(I_{1}\right)$.
Then let us consider a sequence of partitions P_{k} of I_{1}, such that $P_{k}=\left\{x_{0, k}=\right.$ $\left.=a<x_{1, k}<\ldots<x_{n_{k}, k}=b\right\}$ and $\forall k, P_{k}$ refines P_{k-1} and the sizes of the intervals in P_{k} tend to 0 as $k \rightarrow+\infty$. For any k we can choose $\varepsilon_{k}>0$ such that:

$$
\begin{equation*}
\frac{1}{x_{k, k}-x_{n-1, k}} \int_{x_{n-1}, k}^{x_{n, k}} \frac{d t}{a_{11}+\varepsilon_{k}}=\int_{x_{n-1}, k}^{x_{n, k}} \frac{d t}{a_{11}+\varepsilon_{k}}>k \tag{3.5}
\end{equation*}
$$

for any $1 \leqslant h \leqslant n_{k}$. Let us consider the functions:

$$
\begin{aligned}
& u_{k}(x)=\sum_{h=1}^{n_{k}}\left\{\frac{\int_{x_{h-1, k}}^{x_{h, k}} \frac{\sum_{i=2}^{n} a_{1 i}(t) z_{i} d t}{a_{11}(t)+\eta} \int_{x_{h-1}, k}^{x} \frac{d t}{a_{11}(t)+\varepsilon_{k}}}{\int_{x_{h-1}, k} \frac{d t}{a_{11}(t)+\varepsilon_{k}}}+\right. \\
& \left.+\frac{\int_{x_{n-1, k}}^{x} \frac{z_{1} d t}{a_{11}(t)+\varepsilon_{k}}}{\int_{x_{n-1, k}}^{x} \frac{d t}{a_{11}(t)+\varepsilon_{k}}} \int_{x_{n-1}, k}^{x} \frac{\sum_{i=2}^{n} a_{1 i}(t) z_{i}}{a_{11}(t)+\eta} d t+z_{1} x_{h-1, k}\right\} \chi_{n, k}(x)
\end{aligned}
$$

where η is a fixed positive number and $\chi_{n, c}$ is the charactheristic function of the interval $\left[x_{h-1, k}, x_{h, k}\right]$. It is easy to prove that $u_{k} \rightarrow z_{1} x_{1}$ in $L^{2}\left(I_{1}\right)$ and so the functions

$$
v_{k}(x)=u_{k}\left(x_{1}\right)+\sum_{i=2}^{n} z_{i} x_{i}
$$

converge to $z \cdot x$ in $L^{2}(Q)$.
Finally we get, by some calculation, by (3.5)

$$
\begin{aligned}
\int_{Q} \sum_{i, j} b_{i j}(x) z_{i} d_{j} d x \leqslant \liminf _{k} \int_{Q}\left[a_{11} \dot{u}_{k}^{2}+2 \sum_{i=2}^{n}\right. & \left.a_{1 i} \dot{u}_{k} z_{i}+\sum_{i, j=2}^{n} a_{i j} z_{i} z_{j}\right] d x \leqslant \\
& \leqslant \liminf _{k}\left[c(\eta) O\left(\frac{1}{k}\right)+\sum_{i, j=2}^{n} z_{i} z_{j} \int_{Q} \frac{a_{1 i} a_{1 j} a_{11}}{\left(a_{11}+\eta\right)^{2}}-\right. \\
& \left.-2 \sum_{i, j=2}^{n} z_{i} z_{j} \int_{Q} \frac{a_{1 i} a_{1 j}}{a_{11}+\eta} d x+\sum_{i, i=2}^{n} \int_{Q} a_{i j} z_{i} z_{j} d x\right]
\end{aligned}
$$

where $c(\eta)$ is a constant depending only on $\eta,|Q|, z, \Lambda$.
And then, taking the limit as $k \rightarrow+\infty, \eta \rightarrow 0$ we get:

$$
\int_{Q} \sum_{i, j} b_{i j}(x) z_{i} z_{j} d x \leqslant \sum_{i, j=2}^{n} \int_{Q}\left(a_{i j}-\frac{a_{1 i} a_{1 j}}{a_{11}}\right) z_{i} z_{j} d x
$$

and so Theorem 3.1 is completely proved.
Coronlary 3.3. - In the same hypothesis of Theorem 3.1 if $1 / a_{11} \in L_{\mathrm{loc}}^{1}(R)$ or if $a_{11}\left(x_{1}\right)$ is continuous the functional $F(\Omega, u)$ is L^{2}-l.s.e.

4. $-\Gamma$-convergence of quadratic functionals.

In this section we want to study the Γ-convergence of quadratic functionals with respect to the L^{2}-topology, giving an integral representation theorem for the Γ-limit up to the space $W(m, \Omega)$.

Let us begin with the definition of Γ-convergence.
Definition 4.1. - If (X, τ) is a first countable topological space and $\left(F_{n}(u)\right)_{h}$ is a sequence of functionals such that $u \in X \rightarrow F_{h}(u) \in R \cup\{+\infty\}$ we shall say that $F(u)=\Gamma\left(\tau^{-}\right) i_{h} F_{h}(u)$ iff
i) $\forall u \in X$ and $\forall\left(u_{h}\right)_{h} \subset X$ such that $u_{h} \xrightarrow{\tau} u, F(u) \leqslant \lim _{h} \inf F_{h}\left(u_{h}\right)$;
ii) $\forall u \in X, \exists\left(u_{h}\right)_{h} \subset X$ such that $u_{h} \xrightarrow{\tau} u$ and $F(u)=\lim _{h} F_{h}\left(u_{h}\right)$.

For the basic properties and applications to the Calculus of Variation of such convergence see [3] and the bibliography listed in [1].

In the last years have been proved many theorems insuring when, starting from a sequence of integral functionals, also the Γ-limit is an integral functional. In particular from Theorem 3.2 in [1] it can be proved the following

Theorem 4.2. - If $\left(\left[a_{i=1}^{h}\right]\right)_{h}$ is a sequence of $n \times n$ matrices of bounded measurable functions $a_{i j}^{h}(x)$ on R^{n} such that

$$
\begin{equation*}
m(x)|\zeta|^{2} \leqslant \sum_{i, j} a_{i j}^{h}(x) \zeta_{i} \zeta_{j} \leqslant M(x)|\zeta|^{2} \tag{4.1}
\end{equation*}
$$

$\forall \zeta \in R^{n}, \forall x$ a.e. in R^{n}, where

$$
\begin{align*}
& m(x) \in L^{1}\left(R^{n}\right) ; \quad \frac{1}{m(x)} \in L_{\mathrm{loc}}^{1}\left(R^{n}\right) \tag{4.2}\\
& M(x) \in L_{\mathrm{loo}}^{1}\left(R^{n}\right) \tag{4.3}
\end{align*}
$$

then there exist an increasing sequence $\left(h_{k}\right)_{k}$ of positive integers and a matrix $\left(a_{i j}\right)$ of bounded measurable functions such that

$$
\begin{equation*}
m(x)|\zeta|^{2} \leqslant \sum_{i, j} a_{i j}(x) \zeta_{i} \zeta_{j} \leqslant M(x)|\zeta|^{2} \tag{4.4}
\end{equation*}
$$

$\forall \zeta \in R^{n}, \forall x$ a.e. in $R^{n} ; \forall \Omega \in A p_{n}, \int_{\partial \Omega} M(x) d x=0$ and $\forall u \in C^{1}\left(R^{n}\right)$

$$
\begin{equation*}
\int_{\Omega} \sum_{i, j} a_{i j}(x) D_{i} u D_{j} u d x=\Gamma\left(L^{2}(\Omega)^{-}\right) \lim _{k} \int_{\Omega} \sum_{i, i} a_{i j}^{h_{k}}(x) D_{i} u D_{j} u d x \tag{4.5}
\end{equation*}
$$

If we suppose, as in Theorem 2.4

$$
\begin{equation*}
\frac{M(x)}{m(x)} \in L^{\infty}\left(R^{n}\right) \tag{4.6}
\end{equation*}
$$

we may ask if it is still possible to give (4.5) also, for functions $u \in W(m ; \Omega)$, or for functions $u \in W_{\text {loc }}\left(m ; R^{n}\right)=\left\{u \in W_{\text {loc }}^{1,1}\left(R^{n}\right): \forall \Omega \in A p_{n}, u \in W(m ; \Omega)\right\}$.

So, let us define:

$$
F_{h}(\Omega, u)= \begin{cases}\int_{\Omega} \sum_{i, j} a_{i j}^{n}(x) D_{i} u D_{j} u d x & \text { if } u \in \mathbb{C}^{1}\left(R^{n}\right) \\ +\infty & \text { if } u \in W_{\mathrm{loc}}\left(m ; R^{n}\right)-C^{1}\left(R^{n}\right)\end{cases}
$$

Then we can prove:
Theorem 4.3. - If are verified the hypothesis of Theorem 4.2, the (4.6) and the
following

$$
\begin{equation*}
\sup _{Q \subset R^{n}}\left(f_{Q} m(x) d x\right)\left(f_{Q} \frac{d x}{m(x)}\right)<+\infty \tag{4.7}
\end{equation*}
$$

where Q is any cube in R^{n}, then $\forall \Omega \in A p_{n}$ such that $\int_{\partial \Omega} M(x) d x=0$ we have, together
with (4.5), $\forall u \in W_{\mathrm{loc}}\left(m ; R^{n}\right)$

$$
\begin{equation*}
\int_{\Omega} \sum_{i, j} a_{i j}(x) D_{i} u D_{j} u d x=\Gamma\left(L^{2}(\Omega)^{-}\right) \lim _{k} F_{n_{k}}(\Omega, u) \tag{4.8}
\end{equation*}
$$

Before giving the proof of this theorem we need two preliminary results.
Lemara 4.4 (see [2]). - If $m(x)$ verifies (4.2) and (4.7), then for any $f \in L_{\mathrm{loc}}^{1}\left(R^{2}\right)$, such that $\int_{R^{n}}|f(x)|^{2} m(x) d x<+\infty$,

$$
\int_{R^{n}}|(M f)(x)|^{2} m(x) d x \leqslant C \int_{R^{n}}|f(x)|^{2} m(x) d x
$$

where

$$
(M f)(x)=\operatorname{Sup}_{Q \subset R^{n}} f_{Q}|f(x)| d x \quad \text { and } \quad O=C(n ; m(x))>0
$$

If $u(x) \in W^{1,1}\left(R^{n}\right)$, let us define

$$
\left(M^{*} u\right)(x)=(M u)(x)+\sum_{|\alpha|=1}\left(M D^{\alpha} u\right)(x),
$$

and if $F \subset R^{n}$ is a closed set

$$
R(u ; F)=\operatorname{Sup}_{x, y \in F}\left\{\operatorname{Sup}_{|\alpha|=1}\left|D^{\alpha} u(x)-D^{\alpha} u(y)\right| ; \frac{\left|u(y)-u(x)-\sum_{|x|=1} D^{\alpha} u(x)\left(y_{\alpha}-x_{\alpha}\right)\right|}{|x-y|}\right\}
$$

Then we have
Lemma 4.5 (see [7]). - If $u(x) \in W^{1,1}\left(R^{n}\right), \forall \varepsilon>0$ there exist a closed set $F \subset R^{n}$ and a function $g(x) \in C^{1}\left(R^{n}\right)$ such that $\left|F^{c}\right|<\varepsilon ; u=g$ and $D^{\alpha} u=D^{\alpha} g$ on $F ; R\left(g ; R^{n}\right) \leqslant$ $\leqslant C R(u ; F)$ where $C=C(n)>0$.

From the previous lemma we can prove
Lemma 4.6. - If $m(x)$ verifies (4.2) and (4.7) and if $u(x) \in W^{1,1}\left(R^{n}\right) \cap W\left(m ; R^{n}\right)$, then $\forall \varepsilon>0$ there exist a closed set $F \subset R^{n}$ and a function $g(x) \in C^{1}\left(R^{n}\right)$ such that $\left|F^{c}\right|<\varepsilon ; u=g$ and $D^{\alpha} u=D^{\alpha} g$ on $F ;\|g-u\|_{m ; R^{n}}<\varepsilon$.

Proof. - If $\delta>0$, let us denote $Z_{\delta}=\left\{x \in R^{n}:\left(M^{*} u\right)(x)<\delta\right\}$. Then, see [6], page 650 ,

$$
\forall x, y \in Z_{\delta}, \quad I(x, y) \leqslant e_{1}(n) \delta
$$

where

$$
I(x, y)=\sum_{|\alpha| \leqslant 1}\left|D^{\alpha} u(x)-D^{\alpha} u(y)\right|+\frac{\left|u(y)-u(x)-\sum_{|x|=1} D^{\alpha} u(x)\left(y_{\alpha}-x_{\alpha}\right)\right|}{|x-y|}
$$

Then, by Lemma 4.5, there exist a closed set $F \subset Z_{\delta}$ and a function $g(x) \in C^{1}\left(R^{n}\right)$ such that $u=g$ and $D^{\alpha} u=D^{\alpha} g$ on $F,\left|F^{c}\right|<2\left|Z_{\delta}^{c}\right|$ and

$$
\int_{F^{c}} m(x) d x<2 \int_{Z_{\delta}^{c}} m(x) d x
$$

$R\left(g ; R^{n}\right) \leqslant c_{2}(n) R(u ; F) \leqslant c_{2} c_{1} \delta$.
Then:

$$
\int_{R^{n}}|D g-D u|^{2} m(x) d x=\int_{F^{c}}|D g-D u|^{2} m(x) d x
$$

$$
\begin{aligned}
& \leqslant c_{3}(n)\left[\delta_{F^{c}} \int_{F^{c}} m(x) d x+\int_{F^{c}}|D u|^{2} m(x) d x\right] \\
& \leqslant 2 c_{3}(n)\left[\delta_{Z_{\delta}^{c}} \int_{F^{a}} m(x) d x+\int_{F^{c}}|D u|^{2} m(x) d x\right] \\
& \leqslant 2 c_{3}(n)\left[\int_{Z_{\delta}^{e}} m(x)\left|\left(M^{*} u\right)(x)\right|^{2} d x+\int_{F^{c}}|D u|^{2} m(x) d x\right] .
\end{aligned}
$$

And by Lemma 4.4, letting $\delta \rightarrow+\infty$, we get the proof.
Now we can give the
Proof of Theorem 4.3. - Let us suppose that $\forall \Omega \in A p_{n}$ and $\forall u \in C^{1}\left(R^{n}\right)$

$$
\int_{\Omega} \sum_{i, j} a_{i j}(x) D_{i} u D_{j} u d x=\Gamma\left(L^{2}(\Omega)^{-}\right) \lim _{h} \int_{\Omega} \sum_{i, j} a_{i j}^{h}(x) D_{i} u D_{j} u d x
$$

By a general compactness result we can suppose that there exist

$$
\begin{equation*}
F(\Omega, u)=\Gamma\left(L^{2}(\Omega)\right) \lim _{h} F_{h}(\Omega, u) \quad \text { on } W_{\mathrm{loc}}\left(m ; R^{n}\right) \tag{4.9}
\end{equation*}
$$

Actually, we have to prove that

$$
\begin{equation*}
F(\Omega, u)=\int_{\Omega} \sum_{i, j} a_{i j}(x) D_{i} u D_{i} u d x \quad \forall u \in W_{\mathrm{loc}}\left(m ; R^{n}\right) \tag{4.10}
\end{equation*}
$$

If $u \in W_{\text {loc }}\left(m ; R^{n}\right)$, by Lemma 4.5 , there exist a sequence $\left(w_{h}\right)_{h} \subset O^{1}\left(R^{n}\right)$ such that $w_{h} \rightarrow u$ in $L^{2}(\Omega)$ and

$$
\int_{\Omega} \sum_{i, j} a_{i j}(x) D_{i} u D_{j} u d x=\lim _{h} \int_{\Omega} \sum_{i, j} a_{i j}(x) D_{i} w_{h} D_{j} w_{h} d x
$$

Since Γ-limits are l.s.c. (see [3]) we have:

$$
F(\Omega, u) \leqslant \lim _{h} F\left(\Omega, w_{h}\right)=\lim _{h} \int_{\Omega} \sum_{i, j} a_{i j}(x) D_{i} w_{h} D_{j} w_{h} d x
$$

and so

$$
\begin{equation*}
F(\Omega, u) \leqslant \int_{\Omega} \sum_{i, i} a_{i j}(x) D_{i} u D_{j} u d x \quad \forall u \in W_{\mathrm{loc}}\left(m ; R^{n}\right) \tag{4.11}
\end{equation*}
$$

Let us prove the reverse inequality. Fixed $u \in W_{\text {loc }}\left(m ; R^{n}\right)$, by (ii), let $\left(u_{h}\right)_{n} \mathrm{C}$ $\subset O^{1}\left(R^{n}\right)$ such that

$$
\left\{\begin{array}{l}
u_{h} \rightarrow u \quad \text { in } L^{2}(\Omega) \tag{4.12}\\
F(\Omega, u)=\lim _{h} F_{h}\left(\Omega, u_{h}^{3}\right)
\end{array}\right.
$$

We can suppose $F(\Omega, u)<+\infty$, otherwise (4.10) follows from (4.12). Let us fix $\varepsilon>0$; then by Lemma 4.6 there exist a closed subset $F \subset \subset \Omega$ and a function $w^{s} \in C^{1}\left(R^{n}\right)$ such that

$$
\left\{\begin{array}{l}
\left|\Omega-F_{\varepsilon}\right|<\varepsilon ; \quad w^{\varepsilon}=u \quad \text { and } \quad D w^{\varepsilon}=D u \quad \text { on } F_{\varepsilon} \tag{4.13}\\
\left\|u-w_{\varepsilon}\right\|_{m: \Omega}^{2}<\varepsilon
\end{array}\right.
$$

Let us denote by $\left(\Omega_{\hbar}\right)_{h}$ an decreasing sequence of open sets such that

$$
\left\{\begin{array}{l}
F_{\varepsilon} \subset \subset \Omega_{h} \subset \subset \Omega \tag{4.14}\\
\lim _{h} \operatorname{dist}\left(F_{\varepsilon}, \partial \Omega_{h}\right)=\mathbf{0}
\end{array}\right.
$$

and by $\left(\varphi_{k}\right)_{h} \subset C_{0}^{1}\left(\Omega_{h}\right)$ a sequence of functions such that

$$
\left\{\begin{array}{l}
0 \leqslant \varphi_{h} \leqslant 1 \text { on } \Omega_{h} ; \quad \varphi_{h}=1 \text { and } D_{\varphi_{h}}=0 \text { on } F_{\varepsilon} \tag{4.15}\\
\left|D_{\varphi_{h}}(x)\right| \leqslant \frac{2}{\operatorname{dist}\left(F_{\varepsilon}, \partial \Omega_{h}\right)}
\end{array}\right.
$$

Then let us define

$$
\left\{\begin{array}{l}
\tilde{\varphi}_{h}(x)=\varphi_{h}(x) \operatorname{dist}\left(F_{\varepsilon}, \partial \Omega_{h}\right) \tag{4.16}\\
v_{h}(x)=u_{h} \tilde{\varphi}_{h}+\left(1-\tilde{\varphi}_{h}\right)\left(u_{h}-u+w^{\varepsilon}\right)
\end{array}\right.
$$

and $w_{h}(x) \in C^{1}\left(R^{n}\right)$ such that

$$
\begin{equation*}
\left\|w_{h}-v_{h}\right\|_{m ; \Omega}^{2} \rightarrow 0 \quad \text { as } h \rightarrow+\infty \tag{4.17}
\end{equation*}
$$

Then:

$$
\int_{F_{s}} \sum_{i, j} a_{i j}(x) D_{i} u D_{j} u d x \leqslant F\left(\Omega, w^{\varepsilon}\right) \leqslant \liminf _{h} F_{h}\left(\Omega, w_{h}\right)=\liminf _{h} \int_{\Omega} \sum_{i, j} a_{i j}^{h}(x) \cdot D_{i} w_{h} D_{j} w_{h} d x
$$

and so, by (4.17)

$$
\begin{equation*}
\int_{F_{k}} \sum_{i, j} a_{i j}(x) D_{i} u D_{j} u d x \leqslant \liminf \int_{\Omega} \sum_{i, j} a_{i j}^{h}(x) D_{i} v_{h} D_{j} v_{h} d x \tag{4.18}
\end{equation*}
$$

If we fix $\tau, \sigma \in] 0,1[$, then $\forall h$

$$
\begin{equation*}
\int_{\Omega} \sum_{i, j} a_{i j}^{h}(x) D_{i}\left(\tau \sigma v_{h}\right) D_{j}\left(\tau \sigma v_{h}\right) d x=a_{h}+b_{h}+c_{h} \tag{4.19}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{h}=\int_{\Omega-\Omega_{h}} \sum_{i, j} a_{i j}^{h}(x) D_{i}\left(\tau \sigma v_{h}\right) D_{j}\left(\tau \sigma v_{h}\right) d x \\
& b_{h}=\int_{\Omega_{h}-F_{s}} \sum_{i, j} a_{i j}^{h}(x) D_{i}\left(\tau \sigma v_{h}\right) D_{j}\left(\tau \sigma v_{h}\right) d x \\
& c_{h}=\int_{F_{\varepsilon}} \sum_{i, j} a_{i j}^{h}(x) D_{i}\left(\tau \sigma v_{h}\right) D_{j}\left(\tau \sigma v_{h}\right) d x .
\end{aligned}
$$

Observing that

$$
D v_{h}(x)=D u_{h} \tilde{\varphi}_{n}+D\left(u_{h}-u+w^{\varepsilon}\right)\left(\mathbf{1}-\tilde{\varphi}_{n}\right)+D \tilde{\varphi}_{n}\left(w^{\varepsilon}-u\right)
$$

we have, from (4.15)

$$
\begin{aligned}
& a_{h}=\int_{\Omega-\Omega_{h}} \sum_{i, j} a_{i j}^{h}(x) D_{i}\left(\sigma \tau\left(u_{h}-u+w^{\varepsilon}\right)\right) D_{j}\left(\sigma \tau\left(u_{h}-u+w^{\varepsilon}\right)\right) d x \leqslant \\
& \leqslant \sigma^{2} \tau F_{h}\left(\Omega-\Omega_{h}, u_{h}\right)+\frac{\sigma^{2} \tau^{2}}{1-\tau} \int_{\Omega-\Omega_{h}} \sum_{i, j} a_{i i}^{h}(x) D_{i}\left(w^{\varepsilon}-u\right) D_{j}\left(w^{\varepsilon}-u\right) d x \leqslant \\
& \leqslant \sigma^{2} \tau F_{h}\left(\Omega-\Omega_{h}, u_{h}\right)+\frac{\sigma^{2} \tau^{2}}{1-\tau} \varepsilon \operatorname{Sup}_{\Omega} \frac{M(x)}{m(x)} \\
& \begin{aligned}
b_{h}=\int_{\Omega_{n}-F_{s}} \sum_{i, j} a_{i j}^{h}(x) D_{i}\left(\sigma \tau v_{h}\right) D_{j}\left(\sigma \tau v_{h}\right) d x \leqslant \\
\leqslant \sigma^{\mathfrak{s}} \tau \int_{\Omega_{h}-F_{s}} \sum_{i, j} a_{i j}^{h}(x)\left[\tilde{\varphi}_{h} D_{i} u_{h}+\left(1-\tilde{\varphi}_{h}\right) D_{i}\left(u_{h}-u+w^{\varepsilon}\right)\right]
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\tilde{\varphi}_{h} D_{j} u_{h}+\left(1-\tilde{\varphi}_{h}\right) D_{j}\left(u_{h}-u+w^{\varepsilon}\right)\right] d x+} \\
&+\frac{\sigma^{2} \tau^{2}}{1-\tau} \int_{\Omega_{h}-F_{\varepsilon}} \sum_{i, j} a_{i j}^{h}(x)\left(w^{\varepsilon}-u\right)^{2} D_{i} \tilde{\varphi}_{h} D_{j} \tilde{\varphi}_{h} d x \leqslant \\
& \leqslant \sigma^{2} \tau \int_{\Omega_{h}-F_{\varepsilon}} \tilde{\varphi}_{h}(x) \sum_{i, j} a_{i j}^{h}(x) D_{i} u_{h} D_{j} u_{h} d x+\frac{4 \sigma^{2} \tau^{2}}{1-\tau} \varepsilon+ \\
&+\tau \int_{\Omega_{h}-F_{\varepsilon}}\left(1-\tilde{\varphi}_{h}\right) \sum_{i, j} a_{i j}^{h}(x) D_{i}\left[\sigma u_{h}+\sigma\left(w^{\varepsilon}-u\right)\right] D_{j}\left[\sigma u_{h}+\sigma\left(w^{\varepsilon}-u\right)\right] d x \leqslant \\
& \leqslant \sigma^{2} \tau \int_{\Omega_{h}-F_{s}} \tilde{\varphi}_{h}(x) \sum_{i, j} a_{i j}^{h}(x) D_{i} u_{h} D_{j} u_{h} d x+\frac{4 \sigma^{2} \tau^{2}}{1-\tau} \varepsilon+ \\
&+\sigma \tau \int_{\Omega_{h}-F_{\varepsilon}}\left(1-\tilde{\varphi}_{h}\right) \sum_{i, j} a_{i j}^{h}(x) D_{i} u_{h} D_{j} u_{h} d x+ \\
&+\frac{\sigma^{2} \tau}{1-\int_{\Omega_{h}-F_{s}}\left(1-\tilde{\varphi}_{h}\right) \sum_{i, j} a_{i j}^{k}(x) D_{i}\left(w^{\varepsilon}-u\right) D_{j}(w-u) d x \leqslant} \\
& \leqslant \sigma \tau \int_{\Omega_{h}-F_{s}} \sum_{i, j} a_{i j}^{h}(x) D_{i} u_{h} D_{j} u_{h} d x+\frac{\sigma^{2} \tau}{1-\sigma} \varepsilon \operatorname{Sup}_{\Omega} \frac{M(x)}{m(x)}+\frac{4 \sigma^{2} \tau^{2}}{1-\tau} \varepsilon .
\end{aligned}
$$

Finally

$$
e_{h}=\sigma^{2} \tau^{2} F_{h}\left(F_{\varepsilon} ; u_{h}\right)
$$

From (4.19) and from the following inequalities we have

$$
\begin{aligned}
\tau^{2} \sigma^{2} F_{h}\left(\Omega, v_{h}\right) \leqslant \sigma^{2} \tau F_{h}(\Omega & \left.-\Omega_{h}, u_{h}\right)+\sigma \tau F_{h}^{\prime}\left(\Omega_{h}-F_{\varepsilon}, u_{h}\right)+ \\
& +\sigma^{2} \tau^{2} F_{h}\left(F_{\varepsilon} ; u_{h}\right)+\varepsilon \operatorname{Sup}_{\Omega} \frac{M(m)}{m(x)}\left(\frac{\sigma^{2} \tau^{2}}{1-\tau}+\frac{\sigma^{2} \tau}{1-\sigma}\right)+\frac{4 \sigma^{2} \tau^{2}}{1-\tau} \varepsilon \leqslant \\
& \leqslant \sigma \tau F_{h}\left(\Omega, u_{h}\right)+\varepsilon \operatorname{Sup}_{\Omega} \frac{M(x)}{m(x)}\left(\frac{\sigma^{2} \tau^{2}}{1-\tau}+\frac{\sigma^{2} \tau}{1-\sigma}\right)+\frac{4 \sigma^{2} \tau^{2}}{1-\tau} \varepsilon .
\end{aligned}
$$

Letting $h \rightarrow+\infty$ and then $\varepsilon \rightarrow 0$ we have, from (4.12) and (4.18)

$$
\sigma^{2} \tau^{2} \int_{\Omega} \sum_{i, j} a_{i j}(x) D_{i} u D_{j} u d x \leqslant \sigma \tau F(\Omega, u)
$$

and so, letting $\sigma, \tau \rightarrow 1^{-}$we get

$$
\int_{\Omega} \sum_{i, j} a_{i j}(x) D_{i} u D_{j} u d x \leqslant F(\Omega, u)
$$

and so, by (4.11), (4.10) is proved.

BIBLIOGRAPHY

[1] L. Carbone - C. Sbordone, Some properties of Γ-limits of integral functionals, Annali di Matem. Pura Appl., (IV), 122 (1979), pp. 1-60.
[2] R. R. Colfman - C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math., 51 (1974), pp. 241-250.
[3] E. De Giorgi - T. Franzoni, Su un tipo di convergenza variazionale, Rend. Acc. Naz. Lincei, Roma (1975), pp. 842-850.
[4] E. De Grorgi - S. Spagnolo, Sulla convergenza degli integrali dell'energia per operatori ellittici del 2° ordine, Boll. U.M.I., 8 (1973), pp. 391-4ll.
[5] I. Ekeland - R. Temam, Analyse convexe et problèmes variationnels, Dunod-GauthierVillars, 1974.
[6] I. Gilbarg - N. Trudinger, Elliptic partial differential equations of second order, Springer Verlag, (1977).
[7] F. Lit, A Luzin type property of Sobolev functions, Indiana University Math. Journal, 26, no. 4 (1977).
[8] P. Marcellini, Some problems of semicontinuity and of Γ-convergence for integrals of the Calculus of Variations, Proc. of the Int. Coll. «Metodi recenti di Analisi non lineare e Applicazioni», Roma, May 1978.
[9] P. Marcellini - C. Sbordone, Homogeneization of non-uniformly elliptic operators, Applicable Analysis, 8 (1978), pp. 101-113.
[10] N. G. Meyers - J. Serrin, $H=W$, Proc. Nat. Acad. Sci. U.S.A., 51 (1964), pp. 1055-1056.
[11] C. B. Morrey, Multiple integrals in the Calculus of Variations, Springer, 1966.
[12] F. Murat, H-Convergence, Séminaire d'Analyse Fonctionnelle et Numerique 77-78 de l'Université d'Alger.
[13] N. Trudinger, Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa, 27 (1973), pp. 265-308.

[^0]: (*) Entrata in Redazione il 13 maggio 1981.
 (**) This paper has been supported by G.N.A.F.A. (Gruppo Nazionale per l'Analisi Funzionale e le sue Applicazioni).
 (***) Istituto di Matematica《R. Caccioppoli», Via Mezzocannone, 8-80134 Napoli.

 20-Annali di Matematica

