An Inverse Problem in Potential Theory (*).

A. LorgnzI - C. D. Pacant (Milano)

Summary. - We consider the clussical problem of finding the density g of a material body Q
embedded into o region S, when the potential generated by Q (possibly coinciding with S)
is known outside (or on the surface of) 8. In the set of such solutions we look for the density g
which has the smallest L2-norm and we prove that § belongs to L5(R), the space of square swm-
mable functions harmonic in 2. However § is unstable, i.e. its L2-norm does not depend con-
tnuously wpon the LP-norm of the poleniial. We show how a continuous dependence may
be restored by introducing mild restrictions on the set of admissible solutions.

1. - Introduction.

The classical inverse problem in potential theory consists in finding the density p
of a (charged) material body £ embedded in a region 8 by the knowledge of the
potential generated by this body outside (or on the surface of) §; incidentally 2
may coincide with S.

As is well-known, this problem has not a unique solution. For example suppose
that 2 coincides with 8, @ e CF(R"), supp @ (the support of @) c 2 and take

ot= Sup (49,0), ¢=—1Inf(49,0).
Then ¢+ and ¢~ create outside {2 the same potential U:
(1.1) U(@) =[¢"@)Kw—y) dy =[¢-¢) El@—y) dy .
Q Q
Here K is the fundamental solution of the Laplace equation, i.e.

w2) K@) = [(n — 2)w.] 2|7  (n>3); w.= 2a"2/['(n/2),
' E(z) = — (27)* log |#] (n = 2).

Relation (1.1) follows simply from the identity
0 =[E@—y) 40y) dy = [E@@— y)(e* ) — o) dy ,
2 2
which holds for any = ¢ .

{*) Entrata in Redazione il 27 dicembre 1980,
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As the density ¢ cannot be determined uniquely from the values of the poten-
tial U outside £, a first approach to this theory consists in investigating the struec-
ture of the set of solutions. Convexity and compactness properties of this set have
been proved in ANGER [1], SCHULZE-WILDENHAIN [9].

However, it is quite obvious that supplementary information have to be provided
when the uniqueness of the solution is looked for: e.g. the density ¢ may be sup-
posed not to depend on one co-ordinate ;. Results in this direction can be found
in PRILEPKO [7].

Another classical inverse problem in potential theory consists in looking for
the position and shape of the body £ contained in 8, knowing the density p
(typically, o is a constant) and the potential U outside 8. Several results about
this problem can be found in the Soviet literature: see, for instance, LAVRENT'EV [3]
and PRILEPKO [8].

Inverse problems for potentials arise in many fields of applied sciences, not
only in geophysics, but e.g. in cardiology, biology and solid state physics. A rich
bibliography can be found in ANGER [2].

The aim of this paper is to consider the first problem outlined above; in the set
of all densities ¢ which give rise to the same potential on the surface of £ we look
for the one which minimizes some functional, e.g. the L2norm. Our main interest
concerns the stability of this solution, i.e. the dependence of the solution g on the
given potential.

Section 2 has a preliminary character: it is devoted to a discussion of some
properties of the Newtonian potential.

In section 3 the inverse problem is considered: first this (known) result is stated:
among all the densities ¢ which generate the same potential outside 2, one and
only one belongs to L%(2), the space of square summable functions harmonic
in £ [12]. Such a solution is of smallest norm. The L?norm of this solution does
not depend continuously on the L2norm of the potential. This aspect is analyzed
and it is shown how, by means of mild restrictions to the set of solutions, it is pos-
sible to restore a continuous dependence. The simplest case (2 = R®) is discussed
in detail.

Grounding on the results of section 3, we show in section 4 that our problem
can be approximated by a sequence of stable problems. This fact may be useful
for numerical computations.

2. — Some properties of the Newtonian potentials.

Although all the following counsiderations can be carried out in the space R»
(n>3), we shall work in E3.

£ is a simply connected bounded open set in R* of class 0% containing the
origin. Q,= (@ is the complementary set of the closure of Q.
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Let A be either 2 or £,. In addition to the ordinary Sobolev spaces We2(4)
we shall consider also the following:

(2.1)  We4) = {oe L4, (1 + |o*)): Dxge L¥4), 1<|a|<s} (se N\{0}) (1
(2.2) IA(A)={pe L¥A): dg =0 in D'(4)} (?).
Consider the «potential operator » U so defined in L*Q):

(2.3) To(@) = [lo —yl-e(y) dy .

We denote by N(U) and R(U) respectively its kernel and range.
LemMMA 2.1. - i) operator U: L) — W»2(R,) is continuous;
(2.4) i) N(U) = Lg(Q)* ();
(2.5) iti) R(T) = W*(Q,) " LH(2,, 1+ |=]2)) .

Proor. - 1) Tt is well-known that Up e Wii(R?), Vo € L3(R®); moreover there

exists a positive constant C, (independent of p) such that
(2.6) |DTo] sy < Callell oy, Vo & L), 1< o] <2.
From lemma 2.1 in NIRENBERG-WALKER [6] we deduce also that
(2.7) ” [}~ U@”L’(.Q,)< Ol”@“lﬂ(@) y  YeoeL*Q).
Moreover we shall prove now that
(2.8) HDUQHL=(92)< 02(9)“0”1,”(9)7 Yoe L¥Q),
where () and Cy(£2) are positive constants, C,(2) depending only on 2. Asser-

tion i) easily follows from (2.6), (2.7), (2.8). To prove (2.8) consider first the estimate
(which comes again from [6])

(2.9) | M'IDUQHL’(QA< 03§ieﬂm<.o> y  Yoe LX),

where C; is a positive constant independent of ¢ and .

() L*¥4,0(x)) (with o positive) is the weighted Hilbert space normed as follows:
lollz2 o0 = fo(@)20(x) da.
. .

() D'(4) is the space of all distributions over A.
() Lp()* is the subspace in L%(Q) orthogonal to LZ(Q).
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On the other hand, by putting 2(2r) = [8(0, 2r) (*), where r = Sup ly], we get
veR

(2.10) “DU@“L:(Q(zy))< ( f (f |(U - :yi“2 IQ(?I)[ dy)2 dw) 1/2<

oz 0
1/2 1/2
<J‘{Q(?/)i( f [m—y[*‘*dw) dy<f{g(y)]( f [m—y]—4dm)/ dy <
0 Q(2r) . 0 je—ul2r

< (dam(Q)r=1)2|lo] o) -
Then (2.8) is a consequence of (2.9) and (2.10).
ii) (2.4) follows from the well-known fact that the set of functions
x—>le—ylt, yel,
is dense in IZ(Q) (°).

iii) In order to prove (2.5) let us notice first that Up eLi,(.Qe, (14 {w[z)-l),
so that the inclusion R(U)c W>Q,) N L4(R,, (1+ [a])=2) is immediate.

Consider now the equation
(2.11) Uo=1f,
where f is any (assigned) function in W**(2,) N L%(.Qe, (14 [w[z)-l). We are going to

show that equation (2.11) admits a unique solution in L%(£). Thinking of » = Up
as a function in W>*(R?), we have to find two functions » and ¢ such that

(u, o) € WH2(R®) x L*(2)

(2.12) Ay = — 4mp in 2
(@, A'D)Ln(g): 0 P V?) 3 W%)J(Q)
u = f in Q,.

That amounts to find the function w (the restriction of u to Q) such that

we W)

(Aw, A’I))L:(g)z 0 y Yve Wﬁ’z(.Q)
w=f on 02

ow _ of

= Bn on 282 (7).

(%) 8(wxy, 7) is the ball centred at x, with radius r.
(°) This agsertion holds under very large conditions on 92, e.g. a cone condition,
(") () is the outward normal to 02 at w.
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As 0 is of class C*', such a w is unique and depends continuously on fe W>*(Q2,) N
N Lfg(.Qe, (1+ ]m]z)-l). Therefore

(2.14) 0 =—{dn)ytdw in Q.

Such a function golves eq. (2.11). For, from Green’s formula we get for any z e 2,
the equation

0 0
Ue(@) = 100) + 3= [{10) 53755 b = 1) = lo =91 s 0} dot
o

But the integral in the last formula vanishes, as one easily verifies by applying
Green’s formula to f and y > e —y|™*. =

The next lemma deals with the «exterior » Dirichlet problem.
LEMMA 2.2. - Vie LYQ,,1 + |#[2), Vo € We>2(8Q), the problem
u € W2(L,)
(2.15) Au=7F in 0,
Yoot =¥
admits a unique solution satisfying the estimate
(2.16) [elwnacon < Os(R){I ] 2500 1410ty + [l rmacony} -
(Here v, denotes the trace operator on £52.)

PROOF OF LEMMA 2.2. — We know that there exists a boundedly supported func-
tion we W>*(Q,) which satisfies the equation y;,w = v and the estimate

(2.17) llwufu):,l(ge)< 06(96)“/0“ Ws/a,a(ag) .
Putting # = w — w, problem (2.15) is reduced to the following

e We(Q,)
(2.18) Az=1f+ Awe IL¥Q,, 1 + |#]2)

Vanz = 0 .
Such a problem admits a unique variational solution belonging to W;*(L2,) =
= {e € W(L,): y;90% = 0}, according to the following lemma which guarantees that

in Wy, the norm of the gradient #— | Dz ) and the norm induced by
WHE(Q,) are equivalent.
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LEMMA 2.3. — Yu € WA(Q,) the following estimate holds:
(2.19) lel=2] 20 <2[ Do e,y -

By standard regularization procedures we can find a positive constant C,(R,)
such that the W22(Q,)-norm of #z can be estimated as follows:

(2.20) llZIlw=.n<s:,>< 07('Qe){uf“L‘(Qe,lﬂml') + “Aw"L"(.Q,)} .
From this and (2.17) we deduce (2.16). m

Proor oF LEMMA 2.3. — Estimate (2.19) holds for Q,= R3; in fact, take ue
€ Oy (Ry) and consider the identity

+ooa +o0
u(x) = —J‘Eu(tm) dt = —fDu(tm)-m dt .
You get ' ' '
iy 1/2
Vel < [ ( [ Dt as) " at = 2.
1 R?

Then the assertion for R® follows by density arguments.

In the general case take w e Wy*(2,) and define 4 in the following way: d(x) =
= u(@) if ¥€Q,, @) =0 if e {Q,. Then % e Wi2(R*) and Du = Dii, so that
the assertion easily follows. =

The next lemma is concerned with the restriction of U to 0L, i.e. with the linear
operator

(2.21) V= V@QU .
LEMMA 2.4, — i) Operator V is continuous from L2(Q) onto W¥%2(002) and
(2.22) N(V) = N(U) = Li(2)*;

ii) Vo e W*22(0Q) the problem

e € Ly(Q)
(2.23) o

Vo=w
admits a unique solution satisfying the estimate

(2.24) HQ”L“(!)) < Gs(AQ)u”“ Weis2(50) *
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ProoF. — Let ¢ € L¥£L2) be a solution to the equation Vo = 0. Then » = Up
solves pb. (2.15) with f = 0 and v = 0. From lemma 2.2 it follows that Up = 0:
therefore N(V)c N(U) and (2.22) follows immediately.

Let us show now that pb. (2.23) has a unique solufion; as a consequence we
shall get R(V) = W¥22(9L2). Let ¢ be a solution of (2.23); then u = Up solves
(2.15) with f = 0. Therefore a positive constant Cy(Q) exists such that

(2.25) lellaraen < O] o] wonron) -
Let us put now

(2.26) w@) =[lo—yi-ew) dy, VoeQ.
2

The pair (w, p) is a solution to the problem

we Wa(Q)
g e I2(Q)
(2.27) Aw = — 4dmp in
(Q, A@)Ls(g) =0 y Yve Wg,z(g)
ofw o4 .
Vao—EW:Vaga—%;, j=20,1.

From (2.27) we deduce that w is a solution to the variational problem:

we W)
(2.28) (dw, A0y =0,  VYve Wi(Q)
o'w o

o8 Gni = Yoz

As Q is of class 0*' and the norms u — | Au|| 2oy and % ~> [ sy are equivalent
in W»3(Q) N W), we get from (2.25) that

(2.29) ”’wnwz,ﬂ(g) < OIO(Q)“/U”WS/E,R(M;) .
Next we deduce that g is given by the formula
0 =— (4} dw ,

80 that it satisfles estimate (2.24). As we did at the end of the proof of lemma 2.1
we can now prove that (w, ¢) solves problem (2.27). N
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REMARK. — In the sequel we shall use the property: V is a continuous operator
from We2() to Wets22(30) (0 < s < 1/2). This assertion is a consequence of the
continuity of E,U (R, is the restriction operator to £2) from W&2(2) to Ws+22(Q).
To this purpose observe first the equation

(2.30) Uola) =[lo— =) ay ,

Ra

where §(x) = o(@) if xR, §(@) =0 if ve (2.

Moreover from the Ci-regularity of 2 we deduce that W**(Q) = WH*(Q) (0 <
< 8 < 1/2) and the mapping ¢ —> § is continuous from W**(Q) to W>*(R?). Then,
taking lemma 2.1 into account and using representation (2.30), we can easily verify
that U maps continuously Wi2(Q) into W2**2(R®) (j = 0, 1). Therefore R, U maps
continuously W5*(Q) into W2*%3() (j = 0, 1). Finally by interpolation we deduce
the assertion.

3. — The inverse problem.

Recalling the results of section 2 we can state that the set of functions
(3.1) K@) = {pe L¥Q): Vo =},

where v € W¥22(30), is a convex closed unbounded set in L2(£).
In this section we will consider the problem of finding a function in K(v) mini-
mizing some functional. We restrict our attention to the functional

(3.2) Jol0) = | ey -

REMARK. — Notice that other functionals would be more interesting for applica-
tions: e.g. the total mass f o(x) do or the total energy f e@)oy)|r —y|*de dy. But
2 2x2

in the first case the knowledge of the potential v on ¢f2 completely determines the
value of the functional (this is a consequence of the Gauss divergence theorem).
In the latter case it is known (at least to physicists) that the minimum of the
functional does not exist in L2(2): the whole mass (or the whole charge) concen-
trates on 08 (8).

We go on observing that the existence and the uniqueness of the minimum of
(3.2) is guaranteed by a well-known theorem of functional analysis. Therefore our

(8) When 2 is the half-space z, > 0 we can easily verify this assertion; for the minimal
function ¢ must satisfy a non-homogeneous Wiener-Hopf integral equation, whose unique
solution is a Dirac mass supported on the plane x;=10.
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considerations will be mainly concerned with the dependence of the minimizing
function on v.

THEOREM 3.1. — Yv € W¥22(30) the problem
(3.3) peK(v), Jolp) = minimum

admits the unique solution g = g,(v), where py(v) is the unique (harmonic) solution to
problem (2.23). It depends linearly on v and satisfies the estimate

(3.4) l2o(v2) — @o(01)]] 22y < C(2) [ 02— w1 ensacony
for every v, v,e Wo%2(30).

Proor. ~ Notice first that K(v) is a linear affine closed manifold. For, by taking
lemma 2.4 into account, K(v) can be decomposed as follows:

(8.3) K(v) = L(Q)* + e,

where g,= g,(v) is the unique (harmonic) solution to problem (2.23). Then g,c L%(£2)
and every g € K(v) can be represented as ¢ = ¢ -+ g, with ¢ € L%4(2)" It follows
immediately that J,(0)>J,(0,), Yo € K(v); then g, is the unique function minimiz-
ing J, on K(v). Since g, is the solution to pb. (2.23), from (2.24) we get esti-
mate (3.4). W

BEstimate (3.4) is unsatisfactory from a practical point of view, since the L®-norm
of the density depends on the norm of some derivatives of the potential. We wish
now to improve this estimate in order to obtain a dependence of the type

(3.6) ” 0o(v3) — 90(171)”1;5(9) <f( “’01— Uz“m(ag)) ’

where f: R, — R, is a continuous function vanishing at the origin.
Ag is known in many similar cases, such a goal may be often achieved by a
convenient restriction of the class of admissible solutions g.

LemMma 3.1. —~ Let g, = g,(v) be the solution to pb. (3.3) with v € W*22(502). Then
0o} satisfies the estimate

(8.7) “Qo("’)“m(g)<0(s7 Q)] go(v)|

W el

Vs € (0, 1/2), where C(s, Q) is a positive constant depending only on s and £.

Then for any given positive constant # let us define the set

(3.8) H(E) = {p e L¥Q): |0

we2(Q) < E} .

From lemma 3.1 we get immediately the theorem:

19 - Annali di Malematica
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THREOREM 3.2. — For any given K € B, lof po(v,) and g,(v,) be any pair of solutions
to problem (3.3) belonging to H(E); then the following estimate holds:

(3.9)  Jloo(s) — 00(0))] prey < Olsy, 2Y2EYE T2 o, — o | BES™,  Vse(0,1/2).

Proor or LEMMA 3.1, — By taking Fourier {ransforms and using Hélder’s ine-
quality (with indexes p == (3 + 25)/3 and p'= (3 + 25)/(25)) we easily deduce the
estimate

(3.10) (D] sin.eirey < Cols) || Bl e 2 ey - | D] 2o b2

which holds for any @ e W3/2te3(Rz?),

Let now » be an arbitrary function in W3/2752(2Q2) and let », (r =1, ..., N) be
the funetions associated with v as in NEGAS [5], pg. 89. Each of these functions
is defined on the square A = {we R?: 0<u2;<«a, j =1, 2}. Proceeding as in NE-
Gas [5], th. 3.9, we can prove that there exists an extension operator &: Lx(A4) —
— L*(R?%) which is eontinuous from Wh2(£2) into W52(R?) (0 <f<2). Then the fol-
lowing chain of estimates holds for any v e W#/*2(30) (0 < s < 1/2):

N R 1/2 N 1/2
A1) [olsaor= (3 Inliesca) (2 lenlimenan) <

N , 1/2
< 0y(s (z uawu%ﬁ;ﬁzmﬂamnﬁ/g:ﬁ) <
r=1
N 3/2(3--23) $/(3+2s)
<0 3 fendmeoan) (3 o0 Hmm) <
-
N 3/2(342s) (3-+2s)
<Om(s)(21 o] %w/wu)) (z 2] W)) = Oy (5)]| 0] 552 Lo 22
~

Finally, taking lemma 2.4 into account, from (2.24) and (3.11) we get the wanted
estimates:

loo@) 222y < Co( D]l marnaoey < Cua(s, D) Vol 53000y 0] o <
< Oyals, Qe eaol5E™ - =

A SPECIAL CASE: Q = R® . Let us denote by ~ the Fourier transformation with
respect to #'= (@,, #,). Then problem (3.3) may be reduced to minimizing the norm

(3.12) §o(@)(&) = [8(& Mz
under the constraint

(3.13) J exp (t|£])8(&, t) dt = 2|£|5(8)

R~
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for almost every & € B2 Such a problem obviously admits a unique solution gy(&, +)
e L*(R_) (for a.e. £ € R?). Moreover it can be explicitly determined by the method
of Lagrange multipliers or, more simply, by developing §(£, ) by a series of ortho-
gonal functions (Laguerre functions). One finds the formula

A 1 A
(3.14) 80(&, 1) = |&12 exp (¢[€]) 9(8) ,
which immediately implies the chain of equations:

(3.15) “QOHI%“(RD: (275)_2”50”12;3(33): (2W4>_1fl§|3|5(5)12 dé = 2”_2”])3,2””12:*(32) )
R2

In order to get an estimate of the form (3.9) it suffices to restrict the class of
admissible solutions of the problem (3.12), (3.13) to the convex set H(E) so defined:

(3.16) H(E) = {p e I*(B*): | Dol sy <E} (),
where s and E are given positive constants. In fact we have

(3.17) [ D20l e = (2) f €68 2

Applying Holder’s inequality with exponents (3 + 25)/3 and (3 -+ 25)/(2s) to the
integral

fl§l3 ]{,‘(5)]2 dé :fms lﬁ(&)le/(s—l—zs) [{)‘(5)181(3+2a) dg
B R
and using (3.17) we get
(3.18) ool easy < 1 D500 2i0sy 2] 22252 < B 29w G5
Thus we obtain the final estimate valid for g,(v,) and go(v,) belonging to H(E):

(3.19) leo(ws) — o0 2y < (2B E ¥ my— 0, |HES™ .

4. — Reformulation of the problem.

As we saw in the previous seetion, an estimate of the form (3.6) (namely (3.9))
is obtained by constraining a-priori the solution to some admissible set, in our case
by bounding a-priori some derivative of the solution. This suggests to reformulate

&) Wepu’ﬁ (D%0)" (&) = (i8)* (&), o€ Ry.
(®) (Do) (£, @) = (46)"Q0(&, ;). Notice that (3.16) implies v e W¥+*(R?),
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problem (3.3) in such a way as to introduce explicity this constraint. On the other
hand we shall tolerate some error on the measured data. Thus we will consider a
new functional J(p) instead of Jy(p), whose minimum g, looked for on some closed
bounded set, automatically will satisfy the constraint and V§ will differ from v by a
small quantity (in L?-norm). Now the data of the new problem will be: the
measured potential v, the numbers ¢ (an estimate of the error on the measured poten-
tial) and E (an estimate of the a-priori bound for the derivative of ).

In general, without further restrictions on the parameters ¢ and E, our problem
will have no solution. We shall give a compatibility relation between the data in
order a solution to exist.

Now, let us pose exactly the new problem: it will be more convenient, for tech-
nical reasons, to break it into two steps.

First we consider the problem (P1):

(P1)  for every fiwed
(4.1) (Ay vy 6, B) e Ry X IXT, ) xR X R,

minimize the functional
(4.2) J(0) = |0z + AE*|oljuacey + e Vo — 0] By

on the whole space W»3(£2) (0 < s <1/2).

Here we have put

(4.3) lo w22y = ( f v —y|7*"2Jo(x) —o(y)[* da dy)m

2x02

and we have denoted by I' any submanifold of 9£2 whose dimension may be 2, 1
(in this case we suppose I' is a Jordan curve of class ') or 0 (in this case we sup-

n
pose I consists of a finite number of points, I' = |J {w,}); 1 is the measure induced
i=0

on I' by the three-dimensional Lebesgue measure if dim I'=1 or 2; if dim I' =0,
we put, for instance, u{z;} =1 (j =1, ..., n).

Notice that we allow here the experimental measurements v(x) to be performed
on a submanifold I' of 802; moreover v(z) does not coincide, in general, with the
value of the potential Vo(x) on I

We shall prove the existence and uniqueness of a solution ¢ = g(4, v, ¢, E) to
the problem (P1). Of course this solution, depending on the given parameter A,
might be such that Vp is markedly far from the experimental value ». Thus we
are led to consider the second step.

(P2)  for every fimed
(4.4) (e, E)e L3, p) X B . xR,
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minimize the function A — [8(4, v, &, B)| jsqy on the set
(4:.5) A(’U, &,y _E) = {}. S R--I-: E—ZIQ(A, v, &, E)I?’V“"(Q) + 8_2[[ VQ-(}., v, &, .E) — 7)”%:(11’”)<1} .

Now, if there exists a minimal function g(4,, v, &, B), it necessarily satisfies the
estimate

(4.6) 1Vo(2Agy v, &, B) — UHLQ(FJH)<8 )

i.e. we allow the experimental measurements to be far from the potential Vo no
more than a given quantity ¢ in L2norm. Moreover the given parameter F is a
measure of the a-priori bound for the derivative of the solution.

We shall prove that, under suitable restriction on the data (v, e, E), problem
(P2) admits a unique solution continuously depending on » in the L%norm.

THEOREM 4.1. — Problem (P1) admits a unique solution o = g(4,v, ¢, K), which
depends linearly on v and satisfies the estimates

(£.7) 1 V8 v, &, B)| oy < [0l oy
(4.8) Hé(}“’ vy & E)“W*’J(Q)<“(ﬂ7 & B, s, *Q)””HLE(I‘,”) ().
REMARK. - The solution g(4, v, e, &) is also continuously differentiable with

respect to its arguments. The estimates for the derivatives can be obtained by
straightforward calculations.

Proor or THEOREM 4.1. — Notice that, if 2 =0 or v = 0, the functional J ob-
viously attains its minimum at p = 0. Thus let us assume 1> 0 and v # 0. From
definition (4.2) we get

. Tz min (1, 4B elfneim s Vo e WoQ)

Then there exists a closed ball 8(0,7) c W=2(£2) with centre at g = 0 and radius
>0 such that

(4.10) Inf J(o) = Inf J(p).
0510 )

The existence of the minimum now follows from the property: if {0} c 8(0, ) weakly

converges to a function g € 8(0,7), then there exists a subsequence {p,} strongly
converging to ¢ in L Q) for which

k—4o0

(411 lim J(g.,)>J(p) .

(*%) The dependence of & on 2, ¢ E will be detailed in the proof of the theorem.
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The uniqueness of the minimum and ifs properties follow from the fact that
J € O W=x(Q), R).

The minimal function ¢ satisfles the equation
(4.12) J(0h =0, VYhe W»2(Q).
Eq. (4.12) may be written in the form

(4.13)  B(h, 0, 1) = (b, @)pao) + AB(hy @) = 272 (Vh, V)paryy,  Vhe Wox(Q).

The bilinear form B (defined below) is continuous on W+2(£2) and W+?(£2)-elliptic:

(4.14) B(h, 0) = B2y 0)ercay+ €*(Vhy VO)iar

where

(4.15) (b, Qprsier = [ 12— y1*[h(a) — h(w)][e(e) — o(y)] dar dy .
Qx82

From the equation, valid for every he W2(£2),
(4.16) B(hy by 1) = ]2y + A By + A7 VAT

we immediately deduce estimate (4.7).
To prove (4.8) notice first that the norms

1Bl = NBllwescoy
Mzz (H Vh”%ﬂ(r,p) + 1731?17!-2(9))”2

are equivalent in W&2(Q) (see e.g. Nudas [5] for similar arguments). Then from
(4.16) we get the estimate

(4.17) \(B(h, h, ;u)} Hh”%z(g) + A min (E—z, 8—2)0(8, Q)Hh]

%V“l’(!?) y Vh <3 WS’Z(Q) .
From this inequality and (4.13) we deduce

(4.18) [1 + 2 min (B2, e~2)c(s, 'Q)]HQ_(% T &y E)H%E(Q)<

<72 Ve, v, & B)| prrmlol e < e 0] e -
Then we have

(4-19) “@(l, ’U, &y E)lIL2<Q)<6_1/}{1/2[1 + 2, mi]_l (E—27 8_2)0(87 .Q)]_:l/z“'l)“ Lﬂ(T,/)L .
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From (4.13), (4.17), (4.18), (4.19) one obtains the chain of inequalities

(4.20) 3l v, £ B) [3as(ey <max (B2s™% 1)ofs, )7 o] rqr X
X H Vo(4, v, & E)”LZ(P,M)<ma‘X (Bre™2 1)e(s, ‘Q)—lnvllHUHL"](T#)”Q—(;{’ RRd E)”Le(g)< ™

<e tmax (Be? 1)o(s, 2)726,{2) 21 + 2 min (B2, e*)e(s, DTV 0] L2r -

We conclude by observing that (4.8) follows immediately from (4.20). ®&

Let us consider now problem (P2). It will be convenient to study first the prop-
erties of the function @: R, x L¥(I', u) xR, X R,— R, defined as follows

(4.21) DAy v, 8, B) = E 2|34y v, &, B)[3roriay + €| VO(Ay 0, 8y B) — 0 Fagruy -

The main properties of @ are listed in the next lemma 4.1. In particular it is proved
that @, as a function of 4, is decreasing from the value & *|[v]7ur,, (attained at
A ==0) to some limiting value called ¥(v, ¢, B).

Notice that the equation @(4, v, &, ) = 1 is just the equation of the border of
the set A(v, ¢, B) (defined by (4.5)) on which we are looking for the minimum of
the function 2 — [|g(4, v, &, B)| 10 Sinee this minimum, if it exists, it is attained
at the border of this get, from the stated properties of @ we immediately derive the
conditions on (v, ¢, F) which guarantee the existence of the minimum.

LEMMaA 4.1. — Function D, defined by {4.21), iz continuously differentiable in its
arguments and has the properties:

i) D 0,8 B)>0 <>v0;

... 09 o 00

i) 221, 0,6,8) = —zsa(ﬁ (v, &, 8,22 (1, 0,5, B, z) and
)]
%I(l,v,s,E)<0 < v 0;

111) @(O, P, &, E) == 6‘#2 ”U“z“(f’,[x);
iv) ¥, ., B) = Lum DA, v, ¢, B) =
= E_2|§(+ o0,y U, & E)EW“(.Q) + &2 |Vg(+ oo, 0, & B) — UHJZJ’(F,M?

where §(+ oo, v, &, B) is the solution to the varialional equation

(4.22) B(h, §(+ o0, v, &, B)) = e Vh, )1y, Yhe WoQ).

M V= Sup |b]Ea | VR = 6l2).
reLHN\J0}



296 A. LoreNzI - C.D. PAGANI: An inverse problem in potential theory

Moreover the limiting value ¥ has the following properties:

oV -
v) —a’; (0,8 B) = —2e7* ” Vo(+4 o0, v, &y B) — ””i’-‘(l’,yﬁ

vi) g(v, g, B) <0 <> v 5 constant- V1 (12);

... 0F -
vii) ”é'; (v, &, B) = — 2% l@(+ 0,y v,y &y E)I%V"’(Q);

viii) %Z—/(v, e, B) < 0 <> v 5= constant- V1 .

Proor. — Most of the above statements i) to viii) are readily verifiable: thus the
proofs of some assertions are omitted.

i): @Dy, E)=0 = g4, & B) = ¢ = constant, v = c¢V1 = ¢(h, 1)5:0),
Vhe W2() => ¢ =0 = v =0. Conversely v =0 = g(4,0,¢, ) = 0 = &(},0, s,
E)=0.

ii): it is a consequence of (4.13) and (4.14) (substitute there h = (2g/04)(4, v,
e, B), 0 = 3(A, v, e, B)) and of the following equations where we replace % by
0g/0A (A, v, &, H)
00 -
(4.23) B (h7 5% (4, 0, &, B), Z) = — B(h, §(4, v, &, E)) + &% (Vhy ) par,y=
» = A_l(h’ @-(27 v, 8 E))L’(Q) ’ Yhe Ws,z(g) .

Moreover we have

oD d
(0,6 H) =0 < (by (£17)), a—i

=7 (A, v,¢, B) = 0 <> (by (4.23)),
B(hy 9_(27 ?y & E)) = ¢~%Vh, v)Lz(l‘,y)y Vhe W8’2(Q) <~ (by (4~13)) ’

(h, é(l, v, &, E))Lz(g): 0 [} Vh € WQ’E(Q) = Q-(l, v, & .E) =0 <= (Vh, U)L“(T,y)z 0 s

Yhe Wex(Q) <> v =0 (remember that VW#x(Q) is dense in L¥T, p)).

iv): as A — D(A, v, &, E) strictly decreases if v+ 0, then the limit ¥(v, ¢, E)
exists and is finite. To prove the assertion it suffices to show that g(4,v, ¢, B) —
— §(+ o0, v, &, H) in W=2(Q) as A — -+ co. By substracting (4.14) from (4.22) one
gets the equation
(4.24) B(h7 o(4, v, &, B) — o(+ o0, v, ¢, E)) = }v—l(hy o4, v, & E))Lﬂ(!)) ’

Yh e Wo2(Q) .

(12) 1 stands for the constant funetion which equals 1 in £,
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Trom (4.24), (4.14) and (4.8) one derives the inequality
(4.25)  |8(4 v, & B) — @(+ o0, v, &, B) | sy <max (B2, e2) A-ta(2, &, B, 8, D)||0] a1 -
It implies the assertion, since «(-, ¢, B, s, £2) is bounded. m
REMARK. — Notice that from (4.22) it follows that
(4.26) o(+ o0, V1,6, E) =1, V(e,B)eR,.XE,
and, as a consequence,
(4.27) Y(constant- V1,6, BE) =0, VY, H)eR . XR,.
Let us consider now the equation
(4.28) A, B)=1.
LeEMMA 4.2. - i) If &> ||v]|5(r, there is no value of A satisfying eq. (4.28);

if) 4f & = ||v]| g,y €4 (4.28) is satisfied only for A= 0;

iii) of 0 <& < ||v]ar, there ewists one (and only one) value of A satisfying eq.
(4.28) iff

(4.29) P, e, B)<1.

In other words eq. (4.28) is uniquely solvable with respect to A iff the triplet (v, ¢, E)
is an element of the set D so defined

(4.30) D= {(v,&, B) e L¥(I, p)) X B X R1: 0 < e< | sy,  Plvs &, B) <1},
Moreover the function (v, &, E), implicitly defined by (4.28), belongs to C°(D) N Cl(ﬁ) (1%).

ProoF. — It derives obviously from properties i) to v) of the previous lemma. W

In the next lemma we want to study more closely the compatibility relation
(4.29). Therefore let us consider the equation

(4.31) Y, e, B) =1.

LeEMMA 4.3. — Eq. (4.31) is uniquely solvable with respect to E iff the pair (v, ¢) 8
an element of the set A, where

(4.32) £ ={(v,8) e LA, p) X Ry: 0 < & < 5()}

(1%) D stands for the interior of D.
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and
(4.33) &) = [(V1, 0) e |V mirn V1 — Ve -

Moreover the function (v, &), implicitly defined by (4.31), belongs to C°(A) N OX(A)
and the function ¢ — p(v, &) is sirictly decreasing in (0,(v)) and vanishes when & = §(v).

REMARK. — The general behaviour of the function & — (v, &) is llustrated in

fig. 1.
di

] i this region
the solution is
> <l l
AN
r>1 \ % |
<
0 £(v) CAPREN: 8
Fig. 1.

Notice that, as ¢ — 07, then p — 4 oco; however it may happen that there
exists a finite limit for special (¢ very regular ») v (see the example at the end of the
section). In particular, when ».= V1, then £(v) = 0 and the curve in fig. 1 reduces
to the positive half-axis ¢ = 0, £ > 0. _

In general notice that £(v) iz the norm of the projection of v along the direc-
tion of the vector orthogonal to V1 belonging to the plane containing » and V1.
Thus we have

£(0) <[] gy -
In particnlar, when 2 is a ball and I'= 82, we get

&(v) = |larithmetic mean of v on the surface of the ball — v|par -

PROOF OF LEMMA 4.3. — First we prove the relation

(4.34) Vo(+oo,v,8, E) —v in I¥I,p) a8 B — 400, V(v,e)e LN, p) XK, .
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To this purpose observe that it is easy to show (arguing as in the prcof of theo-
rem 4.1) that the solution g(+ oo, 9, £, H) to eq. (4.14) satisfies the following esti-
mates valid for any (v, ¢, BE) e L}, p) X B X R

(4.35) 1Va(+ 05 vy &5 B)| gy <9l ey

WS-2(9)1< O(S, .Q)(l + E’za_z)l/zﬂvnp(p’y)

(4.37) lo(+ 00, v, & B) ey <Be 30| garry -

(4.36) ”é(‘[’ 0, 0y &y E)[

From (4.14) and (4.37) we immediately deduce the relation

(4.38) im (Vh, V(4 00, v, &, B) — 0)ppy= 0
]
Y(h,v,6) € W2 (Q) X LT, ) X R .
Recall then that VWe2(Q) is strongly dense in L*(I, u) and the set {Vg(-+ oo, v,
&, B): (¢, B) € R, xR} is strongly bounded in L*(I', u) for every (fixed) v € L¥(I, u),

owing to estimate (4.35). By virtue of a well-known theorem in Funetional Analysis
(see for instance YostpA [11], theor. 3, p. 121) from (4.38) we obtain that

(4.39) Vg(+ oo, v,8, B) =0 in L¥I',u) as B — 4+ oo, V(v,e)e LI, p) xR, .
From (4.33) and (4.39) we easily get the following estimate, which proves (4.34):
[VE(+ o0, v, 8y B) — 0| 3air <2(v — VE(+ o0, v, &, B), 9)1ar,u) -

Thus from (4.14) (with h = §(+ oo, v, &, ), (4.34), (4.35) we deduce the relation

(4.40) lim E_zk_)'(—l— co, V, &, E){%;?s,z(g): 0 » V(/U, 8) € Iﬂ(f’, ILL) XR+ .

E—+ o0
Finally (4.34) and (4.40) imply that

(4.41) lim (o, e, B) =0, VY@, elil,u)xR,.

B+ oo

The next step consists in proving that the relation

(4.42) lim P, ¢, B) = e25(v)?

E—>0+

holds for any (v, &) € L3I, u) X R..

First we show that there exists a sequence {H,}c R, decreasing monotonically
to 0 a8 n — -+ co such that for any (v, &) e L3I, u) xR,
(4.43)  @(+ 00y 0, 6 By) = (V1 0)perpy | Vi pirn: 1 i LX) a8 n— + o0

(4.44)  |B713(+ 00, v, & B)lppusio)—> 0 as n— + oo,
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We postpone for a moment the proofs of (4.43) and (4.44) and observe that they,
together with the monotonicity of E — ¥(v,¢, E) (see ix) in lemma 4.1), imply
immediately relation (4.42).

To prove (4.43) we recall that (4.36) (with a fixed pair (v, ¢)) and the bounded-
ness of 2 assure the existence of a function g,e W**(2) and of a sequence {E,}cR,,
E,|0 as # — + oo such that

(4.45) 8(+ 00, v, &, By) — g, in We2(0)

(4.46) 8(+ 00,0, &, Ba) — g, in LYQ)

as n—> + oo, V(v, &) e L}, u) X R..
Hence from (4.14) and (4.35) we deduce that

(B @o)posy=0, Yhe WoxQ2).
This means that
(4:.47) Qo == 01

for some ¢ ¢ R. Moreover from (4.14) (with h = 1 and F = H,) it is easy to infer
the equation (V1, ¢V1 — v),,y= 0, which, in turn, implies

(4.48) ¢ = (V1,0 “ " HIT’%F,M) :

Observe now that (4.43) is an immediate consequence of (4.46), (4.47), (4.48).

It remains to prove relation (4.44); it is implied by (4.14) (with h = g(4 oo, v,
&, B,)) and (4.43).

Taking now relations (4.41) and (4.42) into account and recalling the mono-
tonicity of @ with respect to B, it is immediate to realize that eq. (4.31) is solvable
for ¥ e R. iff the pair (v, &) belongs to the set A defined by (4.32).

Moreover, since (v, &) € £ implies v 5= ¢1, Ve € B, from viii) and x) in lemma 4.1
we get the inequalities (0¥/0¢)(v, ¢, B) <0 and (3¥/0H)(v e, B)<0,VY(v,¢, B)e A X ..
The previous relations imply that eq. (4.31) implicitly defines a unique function
y: £ — R,. Owing to lemma 4.1 and to the implicit function theorem, it has the
property stated in the lemma. R

We can now solve problem (P2) stated at the beginning of this section. First
we observe that the set A(v, ¢, F) defined by (4.5) i§, due to lemma 4.2, a closed half-
line in Ry, V(v,e, B)e DU D, D being defined by

(4.49) D= {(eEye L{I, p) xR X R: 0 <|v] oy <€} -
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More particularly we get the following equations:

[p(v, &, B), +0c0), V(v,¢,E)eD,

(4.30) A, &, B) ={ B, Yw,e, B)eD.

We can now prove the following existence-unigueness theorem for problem (P2):
THEOREM 4.2. — For every (v,¢, B)e DU D the function 2 — |g(% v, & B))|1ae)

attains its least value m(v, &, E) on A(v, &, E) at & unique point Ly, the pair (1y, m(v, &, E))
being given by the formulas

(v, e, B), V(v,e,E)eD
Y(v, ¢, B)e D

=S

(4.51) o= {

{ Q—(‘P(”’ & H), v, e,E), (v,e, E)e D,
0

(4.52) m(v, & B) = 0, ByeD.

Moreover the function (v, B) — m(v, ¢, E) belongs to C°(D,U DE; We2(02)) N Ol(ﬁsuﬁz;
WeH(Q)) ().

PROOF OF THEOREM 4.2. — The statement relative to 4, is an obvious consequence
of lemma 4.2 and eq. (4.23) (**) as well as the one relative to the function (v, E) —
~> m(v, ¢, B), except for the continuity of such a function at the points of the set

B = {("77 Eye L3I, p) X B,: (v, &) € £, ”’UHL’(I‘,”): e, B> y(v, 5)} .
Consider now the relations

D0, v, 8 B) = o)ar =1, Vo Eebl,
Y, e, H)<1, Y(v, Ee F, .

As De (R, xL¥I', p) xR, x R,) and ¥ e CY(LYT, u) X R, X R.), from the implicit
function theorem applied to the equation @(4, v, e, E) =1 we easily obtain that
A=gp, & B)—>0as D, 3 (v, E)— (v, E)cF,. From (4.20) we immediately deduce
the wanted relation, i.e.

m(v, &, B) = g(p(, ¢, B), v, &, ) — 0
in L¥), Yee R, as D,c (v, B) — (v, By)e F, .

1

(1) D,, denotes the intersection of D with the hyperplane &= &,:
(5) Substitute there 2 = (8g/02)(4, v, &, B).
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A SpEcrAL casE: £ =R?®. Let us consider again the example previously
discussed. We can pose problem (P1) in a slightly modified manner: for every fized
(Ay v, &, B) e R, X L}R?) X R, X R, minimize the functional

Je) = el fas) + ABT?| D0

2 —2
|2y + 27 Vo — 0] Ty -
Using Fourier transforms with respect to «'= (#,, 4,) we can write the equation

J(0) =[(1 + AB-2(gl3) g€, @) ds da, +
R?

ae | [1ei7 exp (— Wllel) e, @) dy — 6(6)] .
R% ~oco

Straightforward calculations give us the explicit formula for the solution to prob-
lem (P1), namely:

(4.53)  §(& @) = 22> exp (— |&||ms])[4 + 26%(1 + AB-*IE)[E]P]16(6) -

The assertions in theorem 4.1 {and in the remark following it) can be directly verified.
Problem. (P2) now consists in minimizing the funetion

2> |@l3eiaey = 22218102 + 261 -+ 2Bl el 6) | ag

Re

subject to the constraint

5| stzdsf 1818, a2 o, + o= lg1-2 g f (&, @) exp (— léljm) dny— 6@ <1
R? —oo R* —o0

Taking formula (4.53) into account, the constraint can be written in the form
DA, v, e, BN,
where

DAy v, 8, B) =
— et — AR+ A1+ 20 B [2etlE + A1 - 26 BE) ) a

R2

Clearly the minimal function § will be either 0 or g = §(4, v, &, B), 4, being a solu-
tion to the equation

(4.54) DAy v,6, B) =1.
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The properties of the function @ listed in lemmas 4.1, 4.2, 4.3 can be easily
verified. In particular, since @ is a decreasing function of 2, (0, v, & B) = e 2||9] ;xa)
and

P(v, ¢y H) = @(+ 00,2, ¢, E) =J1§I5(E2/2 + 52!55)—1 16(5)!2 ¢,
Rﬂ
we coneclude that the necessary and sufficient condition in order a unigne (positive)
root 4 of equation (4.54) to exist is that the triplet (v, ¢, B) be a solution to the
inequality

Plo, ¢, B)<1.

The situation is pictured as in fig. 1, where now &(v) = |[v]zegs)-

Notice that, if » is smooth enough, namely if » € W*22(R?), we find s finite value
for = EEI(ZHL (v, €).

Moreover, when & == |[0] 12z, the solution of (4.54) is A = 0, which yields § = 0.
In this case the uncertainty on the measurement is so high that the set A(v, ¢, E)
(defined by (4.5)) includes the origin: thus the null function is the solution.

Note added in proofs.

It has been pointed out to us that N. WeCK, in Applicable Analysis, 2 (1972), pp. 195-238,
considered a problem quite analogous to that studied here; he assumes that the potential v
is measured on a large spherical surface containing (2 rather than on the boundary of @ itself.
This paper has some contact points with Weck’s.
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