
A n  Inverse  P r o b l e m  in Potent ia l  Theory  (*). 
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S u m m a r y .  - We consider the classical problem o] ]inding the density Q o] a material body f2 
embedded into a region S, when the potential generated by .(J (possibly coinciding with S) 
is known outside (or on the sat]ace o]) S. I n  the set o/such solutions we look ]or the density 
which has the smallest L~-norm and we prove that ~ belongs to L~(Q), the space o/square sum- 
mable functions harmonic in fP. However ~ is unstable, i.e. its LP-no~m does not depend con- 
tinuously upon the IJP-norm o] the potential. We show how a continuous dependence may 
be restored by introducing mild restrictions on the set of admissible solutions. 

1 .  - I n t r o d u c t i o n .  

The classical inverse problem in potential theory consists in finding the density 5 
of a (charged) material body ~ embedded in a region S by the knowledge of the 
potential generated by this body outside (or on the surface of) S; incidentally $9 
may coincide with S. 

As is well-known, this problem has not a unique solution. For example suppose 
that  ~ coincides with S, q5 e Co(R~), supp ~ (the support of ~ ) c  ~ and take 

5+= Sup (Ar 0), ~----- -- Inf (A~, 0). 

Then 5 + and 5- create outside ~ the same potential U: 

(1.~) U(x) = [ 5 + ( y ) K ( x -  Y)dr =[5-(Y)K( x - - Y ) d r .  

Here K is the fundamental solution of the Laplace equation, i.e. 

(1.2) 
K ( x )  = [(n - -  2 ) ~ ] - 1  lxl~-o 

K ( x )  = - -  (2zc) -~  log lxl (~ = 2). 

Relation (1.1) follows simply from the identity 

= f y) ay = f - -  y)(5+(y) - -  5-(r))  d r ,  0 

which holds for any x ~ ~.  

(*) Entrat~ in Redazione il 27 dicembre 1980. 
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As the density @ cannot be determined uniquely from the values of the poten- 
tial U outside ~9, a first approach to this theory consists in investigating the struc- 
ture of the set of solutions. Convexity and compactness properties of this set have 
been proved in ANGER [i], SCHIYLZE-WILDENI-IAIN [9]. 

However, it is quite obvious that  supplementary information have to be provided 
when the uniqueness of the solution is looked for: e.g. the density @ may be sup- 
posed not to depend on one co-ordinate x,. Results in this direction can be found 
in PEILEPKO [7]. 

Another classical inverse problem in potential theory consists in looking for 
the position and shape of the body f2 contained in S, knowing the density @ 
(typically, @ is a constant) and the potential U outside S. Several results about 
this problem can be found in the Soviet literature: see, for instance, LAV~ENT'EV [3] 
and PEILEPKO [8]. 

Inverse problems for potentials arise in many fields of applied sciences, not 
only in geophysics, but e.g. in cardiology, biology and solid state physics. A rich 
bibliography can be found in A~GE~ [2]. 

The aim of this paper is to consider the first problem outlined above; in the set 
of all densities @ which give rise to the same potential on the surface of t9 we look 
for the one which minimizes some functional, e.g. the L~-norm. Our main interest 
concerns the stability of this solution, i.e. the dependence of the solution @ on the 
given potential. 

Section 2 has a preliminary character: it is devoted to a discussion of some 
properties of the Newtonian potential  

In section 3 the inverse problem is considered: first this (.known) result is stated: 
umong all the densities @ which generate the same potential outside f2, one and 
only one belongs to L~(tP), the space of square summable functions harmonic 
in ~9 [12]. Such a solution is of smallest norm. The s of this solution does 
not depend continuously on the L:-norm of the potential. This aspect is analyzed 
and it is shown how, by means of mild restrictions to the set of solutions, it is pos- 
sible to restore a continuous dependence. The simplest case (t9 = R3_) is discussed 
in detail. 

Grounding on the results of section 3, we show in section 4 that  our problem 
can be approximated by a sequence of stable problems. This fact may be useful 
for numerical computations. 

2. - Some properties of the Newtonian potentials. 

Although all the following considerations can be carried out in the space R" 
(n>~3), we shall work in R a. 

is a simply connected bounded open set in R 3 of class C ~,1 containing t.he 
origin, f2~= C~ is the complementary set of the closure of f2. 
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IJet A be either Y2 or Y2~. In  addi t ion to the  ordinary Sobolev spaces Ws,2(Y2) 
we shall consider also the  following: 

(2.~) ~,,-'(A) = {e e Zf(A, (1 + Ix[2)-~) : D~ e e Zf(A), 1 < i~I <s} (s e rX,{0}) (,) 

(2.2) L~(A) = {e e Lf(A): zJ e = 0 in ~ ' (A)} (2). 

Consider the  (( potent ia l  operator  ~ U so defined in Lf(~) :  

(2.3) Ue(x, ) =; Ix  -- yI-le(y) dy.  
1"2 

We denote b y  N(U)  and Y~(U) respect ively its kernel and range. 

L E n A  2.1. - i) operator U: Z~([2) - ,  q]9~,2(9~) is continuous; 

(2.4) ii) N(U)  = L~r(~2) • (z); 

(2.5) iii) : ~ ( V ) =  "tD2'2(9,)~ L~(9,,  ( 1 +  ]xlf)-l). 

2,2 PROOF. - i) I t  is well-known that  U~ a W~o~(R ), V~ ~ L2(Rs); moreover  there 
exists a posit ive constant  Co (independent of Q) such tha t  

(2.6) ]]D~Ur162 V~ e L2(R3), 1 <I : r  

F rom ]emma 2.1 in NIRENBEI~G-WALKE:g [6] we deduce also tha t  

II Ixl-' vdI.(.o,)<< ve 

~oreover  we shall prove now that  

(2.8) [IDVe]]~,(~.><c~(~)ileil.(~), ve e 

where C~ and C~(Sf) are posit ive constants,  C2(/2) depending only on $2. Asser- 
t ion i) easily follows from (2.6), (2.7), (2.8). To prove (2.8) consider first the  est imate 
(which comes again f rom [6]) 

(2.9) ]]Ixl-'DVeL.( o>< G i l e l l . ( o )  . ve e . 

where Ca is a posit ive constant  independent  of ~ and Y2. 

(1) L~(A,a(x)) (with ~ positive) is the weighted Hilbert space normed as follows: 

A 
(2) ~)'(A) is the space of all distributions over A. 
(a) L~(D)• is the subspace in L~(D) or~hogonal to L~(~2). 
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(2.1o) 

On the other hand,  by  put t ing  ~(2r) = ~S(O, 2r) (4), where r = Sup ]y], we get 

< �9 

Then (2.8) is a consequence of (2.9) and (2.10). 

if) (2.4) follows from the well-known fact tha t  the  set of functions 

z ~ l x - - y l  -~, y z ~ ,  

is dense in Z~(~) (6). 

iii) In  order to prove (2.5) let us notice first tha t  U~ e J5~(/2~, (1 + lx]~)-l), 
so tha t  the inclusion s  ql)2'2(~9~)(~ Z ~ ( ~ ,  ( 1 +  [x]~) -~) is immediate.  

Consider now the equation 

(2.11) ue = / ,  

where ] is any  (assigned) function in ql)2'2(s L ~ ( ~ ,  (1 + [xp)-l). We are going to 
show tha t  equation (2.11) admits  a unique solution in L~(s Thinking of u -= UQ 
as a function in ql)~'2(/~8), we have to find two functions u and e such tha t  

(2.12) 

(U, O) ~ ~2'2("RS) • 

Au -- - -  4z~ in 

(q, Av)v(z)= O, Vv ~ W~'~(~) 

That  amounts  to find the funct ion w (the restriction of u to /2) such tha t  

w e W2'~(~9) 

(Aw, Av)v(a)= 0, Vv ~ W~o'~(D) 
w = / on ~ 9  

~w ~f on  ~ 9  (6). 

(~) S(xo, r ) i s  the ball centred at x o with radius r. 
(~) This assertion holds under very large conditions on 2/9, e.g. a cone condition. 
(7) n(x) is the outward normal to ~I2 at x. 
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As f2 is of class C 2'1, such a w is unique  and depends cont inuously on ] e ~l)2'2(fPe) (~ 

n ~ i ( ~ , ,  (1 + Ixp)-'). ~herefore 

(2.14) e = - -  (4~) -~ d w  in Q .  

Such a funct ion solves eq. (2.11). For,  f rom Green's formula we get for any  x e KP, 

the  equat ion  

ue(x) = ](~) + ~f{](y) e , x - - Y I - I ~ ( Y ) }  ~ ( l x - y p ) -  d<y). 

But  the integral  in the  last formula vanishes, as one easily verifies b y  applying 

Green's formula  to ] and y - ~  I x - - y i  -1. [] 

The nex t  lemma deals with the  (( exter ior  >) Dirichlet  problem. 

L E n A  2.2. - V] ~ Z~([2~, 1 + Ix[~), Vv ~ W~I~,~(8~Q), the problem 

~ ~,~(~,) 

(2.15) A u = f  in ~ 

admits a unique solution satis]ying the estimate 

(2.16) ]14~,,,(o.> < o~(~.){il/lI.(~.,~+t.j,) + livII~,,,,,(~>) �9 

(Here t'~a denotes the trade operator on ~fP.) 

P~ooF oF LE~a-~A 2.2. - We know tha t  there  exists a boundedly  suppor ted  func- 
t ion w e ~2'e(fP~) which satisfies the  equat ion yeaw = v and the est imate 

(2.17) I1 wll u...(,~,> < co(~,)ll vll , , , , , . , , < o , ~ )  �9 

Pu t t i ng  z - ~  u -  w, problem (.2.15) is reduced to the  following 

z e ~ ,~(fP~)  

(2.zs) ~z = / + ~w e ~ . (~ . ,  1 + Ix19 

Such a problem admits  a unique var ia t ional  solution belonging to %01o'2(f2~) 
{z e ~'e(/2~):  ya~z = 0), according to the  following 1emma which guarantees tha t  

in ~ i ' e (~ , )  the  norm of the  gradient  z - ~  [[Dz]]v(a, ) and the  norm induced b y  
~l)~'e(fP,) are equivalent .  



286 A. Lol~t~zI - C .D.  I~A~A~I: An inverse problem ~n potential theory 

I m l ~ A  2.3. - VU e ~ , 2 ( ~ )  the following estimate ho]ds: 

(2.19) I[ I~[-~ull.(.~)< 2 HVul[.(.~ 

By s tandard  regularizat ion procedures we can find ~ posit ive constant  C7(~9~) 
such tha t  the  21)~,~(9~)-norm of z can be es t imated as follows: 

(2.20) 114 u..,(.o)< v~(~){ll/II~,(...~+,.~.) + II A~ll.(..)} �9 

l~rom this and (2.17) we deduce (2.16). �9 

Pl~OOF OP LEM~A 2.3. - Es t imate  (2.19) holds for t~-----Rz; in fact,  take  u e 
Co(Rs) and consider the  iden t i ty  

+ r  + c o  

u ( x ) = -  ~ u ( t ~ ) d t =  fl)u(tx).xdt f ~ - -  

1 1 

You get 

1 R s 

Then the assertion for R 8 follows by  densi ty arguments.  
In  the general  case take  u e ql)~'2(~2~) and define 4 in the  following way:  4(x) = 

=u(x) if xe f2~,~(x)=O if x e  ~/2~. Then ~eW~,~(R 3) and D " u = D ~ t ,  so tha t  
the  assertion easily follows. �9 

The nex t  lcmma is concerned with the restr ict ion of U to 3/2, i.e, wi th  the l inear 
opera tor  

(2.21) V -~ 7 ~  U .  

L E ~ A  2.4. - i) Operator V is continuous ]rom Z~(~) onto WsI2,2(~[2) and 

(2.22) ~ (V )  ---- ~Y(U) = Z~(Y2)'; 

ii) Vv ~ Wa/2,2(3Y2) the problem 

(2.23) 
V~ = v 

admits a unique solution satis]ying the estimate 
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P~ooF.  - Le t  ~ e Z~(/2) be  a solution to the  equat ion  V@ = 0. Then ~ = U@ 

solves pb.  (2.15) wi th  ] ~ 0 and  v = 0. F r o m  l e m m a  2.2 it  follows t h a t  U~ = 0: 
therefore  s s and  (2.22) follows immedia te ly .  

Le t  us show now t h a t  pb. (2.23) has  a unique solut ion;  as a consequence we 

shall  get  :K(V) = W3/z,2(~zP). Le t  @ be a solution of (2.23); then  u ~-- U@ solves 
(2.15) wi th  ] = 0. Therefore  a posi t ive  cons tant  C~(/2) exists  such t h a t  

(2.25) 

Le t  us p u t  now 

(2.26) w(x)  = f i x  - -  yl-~@(y) d y  , Vx e ~9 . 

The pa i r  (w, @) is a solution to the  p rob lem 

(2.27) 

w ~ W~,'(~2) 

Aw = -- 4 ~  

(@, Av)L,(z)= 0,  

8Jw 8r 
~ - ~  = ~ - ; ,  

in Q 

j = 0 , 1 .  

F r o m  (2.27) we deduce t ha t  w is a solution to the  var ia t iona l  p rob lem:  

w e W*,'(12) 

(2.2S) (Aw, A v ) v ( . ) =  0 ,  Vv e Wo~'"(~) 

b~w ~Ju 

As ~ is of class c ~,1 and the  norms ~ -~  [t~ll~,(~) and ~ -~  II~II~',*<~> are equiva lent  
in W2'2(/2) n W~'2(/2), we get  f r o m  (2.25) t h a t  

(2.29) 

:Next we deduce t h a t  @ is g iven b y  the  formula  

= - -  (4~) - 1 A w ,  

so t ha t  i t  satisfies e s t ima te  (2.24). As we did a t  the  end of the  proof  of l e m m a  2.1 

we can now prove  t h a t  (w, @) solves p rob lem (2.27). �9 
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I~EMA]CK. -- Sn the sequel we shall use the  p roper ty :  V is a continuous operator 
]rom W~,s([2) to W'+312,2(~9) (0 < s < 1/2). This assertion is a consequence of the 
cont inui ty  of Rp. U (Ra is the restr ict ion operator  to ~9) f rom W~,2($9) to W~+2,~(~9). 

To this purpose observe first the  equat ion 

(2.30) U~(x) ----f [x -- y] -~(y)  dy , 

where 5 ( x ) =  p(x) if x e ~9, ~ ( x ) =  0 if x e C~9. 
~ o r e o v e r  f rom the  Cl-regulari ty of #2 we deduce tha t  W~'2(#2) = W~'2(#2) (0 < 

< s < 1/2) and the  m~pping Q -* ~ is continuous f rom WS'~(#2) to WS'2(Rs). Then, 
taking lemma 2.1 into account and using representa t ion (2.30), we can easily ver i fy  
tha t  U maps continuously W~s(~) into W2+J'2(R s) (j -~ 0, 1). Therefore / ~  U maps 

continuously W~S(~9) into W2+J"z(#2) (j ---- 0, 1). Final ly  by  interpolat ion we deduce 

the  assertion. 

3. - The inverse problem. 

Recalling the  results of section 2 we can state  t ha t  the  set of functions 

(3.1) g(v)  = {e e L~(~): V~ = v}, 

where v e Ws/2,~(3f2), is a convex closed unbounded  set in L~(~9). 
In  this section we will consider the  problem of finding a funct ion in K(v) mini- 

mizing some functional.  We restr ict  our a t t en t ion  to the  funct ional  

( 3 . 2 )  z 0 ( e )  = �9 

RE~ARK. -- Notice tha t  other  functionals would be more interest ing for applica- 

t ions: e.g. the  to ta l  mass f~(x) dx or the to ta l  energy f2(x)~(y)]x-- y]-ldx dy. But  

in the  first case the  knowledge of the potent ia l  v on 8f2 completely determines the  
value of the  funct ional  (this is a consequence of the  Gauss divergence theorem).  
In  the  la t ter  case i t  is known (at least to physicists) t ha t  the  min imum of the  
funct ional  does not  exist  in L~($9): the  whole mass (or the  whole charge) concen- 

t ra tes  on ~ (s). 

We go on observing t ha t  the  existence and the  uniqueness of the  min imum of 
(3.2) is guaranteed  by  a well-known theorem of funct ional  analysis. Therefore  our 

(8) When D is the half-space x3 > 0 we can easily verify this assertion; for the minimal 
function Q must satisfy a non-homogeneous Wiener-Hopf integral equation, whose unique 
solution is a Dirae mass supported on the plane x3----0. 
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considerations will be mainly  concerned with the  dependence of the minimizing 
funct ion  on v. 

THEOREM 3.1. - Vv ~ W~/~,~(~/2) the problem 

(3.3) ~ ~ K(v) , Jo(~) = minimum 

admits the unique solution ~ = ~o(v), where ~o(v) is the unique (harmonic) solution to 
problem (2.23). I t  depends linearly on v and satis]ies the estimate 

(3 .+  [[eo(+~) - eo<Vl)II.(~> < c ( ~ ) I I v ~ -  v~[I ~.,<0~> 

for every v~, %a W3/2,2(a~9). 

P g o o r .  - Notice first t ha t  K(v) is a l inear affine closed manifold. For,  by  taking 
lemma 2.4 into account,  K(v) can be decomposed as follows: 

(3.5) /i:(v) = L~(y2) �9 + Co, 

where Qo = ~o(V) is the  unique (harmonic) solution to problem (2.23). Then Qo~L~(T2) 
and every  ~ e K(v) can be represented  as ~ = a -t- eo with a e L~r(~) ~. I t  follows 

immedia te ly  tha t  Jo(~)>Jo(~0), V~ E K(v);  then  ~o is the  unique funct ion minimiz- 
ing Jo on K(v). Since ~o is the solution to pb. (2.23), f rom (2.24) we get esti- 
mate  (3.4). �9 

Es t ima te  (3.4) is unsat is factory f rom a pract ical  point  of view, since the L2-norm 
of the  densi ty  depends on the  norm of some derivat ives of the  potential .  We wish 
now to improve this es t imate  in order  to obtain a dependence of the type  

(3.6) [[ Co(V2)- Qo(vl)L:(~)</([Iv1- v:[[:,<~:)), 

where ]: _R+-+/~+ is a continuous funct ion vanishing at  the  origin. 

As is known in m a n y  similar cases, such a goal m a y  be of ten achieved b y  a 
convenient  res t r ic t ion of the class of admissible solutions Q. 

LEM~A 3.1. - Let ~o = ~o(v) be the solution to pb. (3.3) with v ~ Ws/2,~(~Y2). Then 
~o(V) satisfies the estimate 

(3.7) II~o(v)ll-+> < C(s, ~,T.~ ,.,..~/(~+2~)i~.i1281(3+2s) 
.qI~,OV~.qlW,,=(D) u L 2 @ ~ )  

Vs e (0, 1/2), where C(s, f2) is a positive constant depending only on s and ~.  

Then for any  given posit ive constant  E let  us define the set 

F r o m  lemma 3.1 we get immediate ly  the theorem:  

1 9  - A n n a l i  eli M a l e m a t l c a  
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T]~E0n:~[ 3.2. - For any given E ~ R+, let ~o(V,) and ~o(v~) be any pair o] solutions 
to problem (3.3) belonging to H ( E ) ;  then the ]ollowing estimate holds: 

(3.0) tleo(V.) - ~o(~)11~,(.)< c(s,  ~ ) (~ ) ' :< '§176  ,~-':<'§ ~ l l Z ' ( ~ )  , Vs e (O, 1 1 2 )  . 

P ~ o o s  o~ LE~Vr• 3.1. - B y  tak ing  Fourier  t ransforms and using HOlder 's  ine- 

qual i ty  (with indexes p = (3 + 2s)/3 and p'-= (3 + 2s)/(2s)) we easily deduce the 
es t imate  

(3.~o) ~<~ (8~NrO[181(8+2s) . (i~ 2s/(8+2s)  

which holds for any  q)~ WsI~-+~,2(R~). 
Le t  now v be an a rb i t r a ry  funct ion in W3/2+s'2(8~'~) and let v, (r = :1, ..., 2r be  

the  funct ions associated with  v as in ~E~AS [5], pg. 89. Each  of these funct ions 

is defined on the  square  A = {x~R2: O<.<xr j-= 7~, 2}. Proceeding as in 57E- 
0AS [5], th.  3.9, we can p rove  t ha t  ~here exists an extension opera tor  ~: L~(z]) ---> 

--+L~(R ~) which is continuous f rom Wt,~(~) into Wt,~(R ~) (0 <t~<2). Then the  fol- 

lowing chain of es t imates  holds for any  v e W~I~+',~(8/2) (0 < s < 1/2): 

(3.11) 9 < 

( ~ c~ 6I(8+2s) Ir ii'lsl(8+2s)~ ~1~ 

2~" 2 \3/2(8-]-2s) [ 2~ r 2 ~8/(3-~2s) 
.... <..) = II ~'.II"<',) < 

(" ( r ---- w~~ Vllz'(ao) " 2 ,r=l [IVr ~ .,~'.llo II81(3+2s) I~ li2s/(3+2s) 

Final ly ,  t ak ing  l emma  2.4 into account,  f rom (2.24) and (3.11) we get the  wan ted  

es t imates :  

TT~ 118/(8+2s) T~,N2s/(8§ J 

C12(8 ,  Civil ~ [~,NII3/(3+2s) [~,[12s/(8+2s) [] 

A SPECIAL CASE: ~C2 ~ _t~8.  Let  us denote  b y  ^ the  Four ier  t r ans fo rma t ion  wi th  

respect  to x '~ -  (xl, x..). Then p rob lem (3.3) m a y  be reduced to minimizing the  no rm 

(3.12) Jo(~)(~) = [1~(~, )I1L,(~_) 

under  the  const ra in t  

(3.13) f e x p  (t[~l)~(~, t) at = 2[~[~(~) 
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ier  utmost every ~ a / ~ .  Such a problem obviously admits  a unique solution ~0(~, ") 
JL~(R_) (for a.e. ~ ~/~2). ~oreover  it  can be explicitly determined by  the method 

of L~grange multipliers or, more siraply, by  developing ~(~, .) by  ~ series of ortho- 
gon~l functions (L~guerre functions). One finds the formul~ 

(3.14) ~o(~, t) = -1 I~P exp (till) ~(~), 
7g 

which immediutely implies the chain of equations: 

(3.15) ' ~ = f . 

In  order to get un estimute of the iorm (3.9) it  suffices to restrict the clnss of 
admissible solutions of the problem (3.12)~ (3.13) to the convex set H(E) so defined: 

(3.~6) ~ ( ~ )  = {e ~ z ~ ( ~ ) :  ilD~,el[.(~,~)< ~}  (~ 

where s and E ~re given positive constants. In  fact we have 

(3.z7) [[9~,e0]]~,(~:) = ( ~ h - ~ f l ~ P  § i~(~)P a~.  
R~ 

Applying tt6]der's inequulity with exponents (3 ~- 2s)/3 and (3 ~ 2s)/(2s) to the 
integral 

~zld using (3.17) we get 

;I ~ s  ~ il s / (3  + 2s) iI ~ [I 28/(3 + 2s) / ~ 3 1 ( 3  + 2s) II ~ ]l 2s/(3 + 2s) 

Thus we obtuin the finul est imate vulid for ~o(%) and ~o(V~) belonging to H(E):  

4. - R e f o r m u l a t i o n  o f  the  problem.  

As we saw in the previous section, un estimute of the form (3.6) (namely (3.9)) 
is obtuined by  construining u-priori the soh t ion  to some udmissible set, in our case 
by  bounding a-priori some derivative of the solution. This suggests to reformulate 

(8) We put (D%)"(~)=(i~)~(~), ~e/~+. 
A 

(9) (D~'e0) (~, x3) = (i~)~o(~, x~). Notice that (3.16) implies v ~ W812+8'~(/~). 
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problem (3.3) in such a way as to introduce explici ty  this constraint.  On the  other  
hand  we shall tolerate  some error  on the  measured data.  Thus we will consider a 

new funct ional  J(~) instead of Jo(~), whose min imum g, looked for on some closed 
bounded  seC, automat ical ly  will satisfy the  constraint  and V5 will differ f rom v b y  a 

small qnan t i ty  (in L2-norm). l~ow the  d~ta of the  new problem will be: the  
measured potent ia l  % the  numbers  e (an est imate of the error on the measured poten- 
tial) and E (an est imate  of the a-priori bound for the  der ivat ive  of 5). 

I n  general, wi thout  fu r ther  restrictions on the  parameters  e and E, our problem 
will have no solution. We shall give a compatibi l i ty  relat ion between the  da ta  in 
order a solution to exist. 

Now~ let us pose exact ly  the  new problem: it  will be more convenient ,  for tech- 
nical reasons, to b reak  it  into two steps. 

Firs t  we consider the problem (P1): 

(P1) ]or every ]ixed 

(4.1) (~, v, ~, ~) e ~+ x ~ ( r ,  ~)x~+ x~+ 

minimize the functional 

on the whole space W".~(~(2) (0 < s < 1/2). 

Here  we have  pu t  
\x/,~ 

(f 
~Px.O 

and we have denoted by  F any  submanifold of 8,..'9 whose dimension m ay  be 2, 1 
I 

(in this  case we suppose /~  is a 5ordan curve of class C 1) or 0 / in this case we sup- 

pose /~  consists of a finite number  of p o i n t s , / '  ~- 0 {@}t; # is the  measure induced 
J = 0  / 

o n / 7  by  the  three-dimensional  Lebesgue measure if d im/~  ---- 1 or 2 ; if d im F ~- 0, 

we put ,  for instance, #{@} = 1 (j = 17 ..., n). 
l~otice tha t  we allow here the  exper imenta l  measurements  v(x) to be performed 

on a submanifold P of 8~2; moreover  v(x) does not  coincide, in general~ with the  

value of the  potent ia l  Vo(x) on F. 
We shall prove the existence and uniqueness of a solution @ ~ ~(~, v, s, E) to 

the  problem (P1). Of course this solution, depending on the  given paramete r  4, 
might  be such tha t  VO is markedly  far  f rom the  exper imenta l  value v. Thus we 

are led to consider the  second step. 

(P2) /or every ]ixeg 

(4.4) (% s, E) ~ L~(F, #) x.g+ x.R+ 
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mi.~mi~e the ]un~tion +1-+ II~(+1, v, ~, E)I[ .+)  o .  the set 

E 2 (4.5) A(v, ~,/;) = {+1 e/7+: E-~I~(+1, v, ~, )lw,.,<~) + ~-~[I V~(Z, v, ~, E) - -  vIl~,<,,~ ) ~  <1} . 

Now, if there  exists a minimal funct ion ~5(+10, v, e, E), it necessarily satisfies the 
est imate 

(4.6) 

i.e. we allow the experimental  measurements  to be far f rom the potent ial  V~ no 

more than  ~ given quan t i ty  s in L~-norm. ~oreove r  the given parameter  E is a 

measure of the a-priori bound  for the  derivative of the solution. 

We shall prove that ,  under  suitable restriction on the dgta (v, s, E), problem 

(P2) admits  a unique solution continuously depending on v in the Z2-norm. 

T~E0~E~ 4.1. - Problem (P1) admits a unique solution ~ = ~(+1, v, ~, E), which 
depends linearly on v and satisfies the estimates 

(4.7) 

(4.S) 

H v ~ g ,  v, ~, E)I[.(~,, ) < ]lv[[.<~,~) 

[]~g, +, ~, E)[[~:.:<:)< ~(+1, ~, E, s, ~)]]vt].(~+) (10). 

RE~A~K. - The solution ~(+1, v, s, E) is ~lso continuously differentiuble with 

respect to its arguments.  The estimates for the derivatives can be obtained by  
s t ra ightforward calculations. 

P~ooF oF T~EORE~ 4.1. - Notice that ,  if +1 ~ 0 or v ---- 0, the functional  J ob- 

viously at tains its min imum at ~ = 0. Thus let us assume +t > 0 und v ~: 0. F r o m  
definition (4.2) we get  

(4.9) J(Q) > rain (1, 2 

Then there exists a closed ball S(O, r )c  W~.2([2) with centre at  ~ : 0 and radius 
r > 0 such tha t  

(4.10) Ini  J(Q) ~ Inf J(0) .  
qeS(O,r) e~W~'~(Q) 

The existence of the min imum now follows f rom the p roper ty :  if {~} r S(0, r) weakly 

converges to a funct ion Q e S(0, r), then there exists a subsequence {~,} strongly 

converging to ~ in Z:(Y2) for which 

(4.11) lim J(~.~) > J ( ~ ) .  
k-->§ co 

(10) The dependence of ~ on )., e, E will be detailed in the proof of the theorem. 
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(4.14) 

where 

(4.15) 

The uniqueness of the  minimum and its properties follow from the fact  that 

The minimal function @ satisfies the  equation 

(4.12) J'(@)h = 0 ,  Vh ff W",2(9). 

Eq. (4.12) may  be wri t ten in the form 

(4.13) ~(h, ~, 2) ---- (h, @)L~(~) + 2B(h, @) = 2e-~(Vh, v)L,(r.~ ) , Vh e W~,~(9). 

The bilinear form B (defined below) is continuous on W~,~(D) and W~,~(tg)-elliptic: 

B(h, @) = E,-~(h, @)~,.~(~)+ e-~(gh, V@)~,(r,,) 

P 
(h, @)w,,,(~)=|Ix - -  y]-3-2~[h(x) - -  h(y)J.[@(x) - -  @(y)] dx dy 

~2xs  

From the equation, valid for every h ~ W',2(s9), 

- - 2  2 = Vh[[~ , ( r ,~)  (4.16) ~(h, h, ;0 lihI[~..(~) + ;~E [hI~,.,(~)+ ~-2[[ 2 

we immediately dednce est imate (4.7). 
To prove (4.8) notice first tha t  the  norms 

tihIl~= Ilhll.~.,~<.) 
2 2 1/2  iihlk= ([[vhlk, m.)+ Ihl~.,(~)) 

~re equivalent  in W~,2(~Q) (see e.g. NEOns [5] for similar arguments) .  Then from 
(4.16) we get the est imate 

(4.17) ~5(h, h, 2 ;0 > IIhll~,<.> + 2 m i n (  E-2, e-=)e( s, SO)llhll~".'(-e), Vhe  W',2(.C2). 

From this inequali ty and (4.13) we deduce 

(4.18) [1 + 2 min(E- ' ,  e-2)e(s, f2)]ll~(2, v, e, E)[I~,(~)< 

- - 2  , 2 

Then we have 

) 
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Prom (4.13), (4.17), (4.18), (4.19) one obtains the chain of inequalities 

(~.~0) IIg(z, v, ~, ~)iI~..,(,)<max ( E~  -~, ~)~(~, 9)-~[]~11-(~.,)• 

• [[ vs(~, s, ~, E)II~..(r., ) < max (E~e-~, ~)e(s, 9)--11l V H ]IVHLs(/-.~t)[I~(~, ~, e, ~)IlL'(')< (I1) 

<e  -~ max (E~e -s, 1)c(s, sO)-~e0(Y2)2~/~[1 + 2 min (E -s, s-~)c(s~ [2 -~/~ )] �9 

We conclude by  observing tha t  (4.8) follows immediately from (4.20). [] 

Let  us consider now problem (P2). I t  will be convenient to s tudy  first the prop- 
erties of the function r  •  #) •  • defined as follows 

(4o2z) , ( z ,  ~, ~, ~ )  = E-~I~(x,  v, ~, ~)i~.~(~) + ~-'~1[ v g ( L  v,  ~, ~ )  - v [ t~(~ . ,  ) . 

The main properties of q5 are listed in the next  lemma 4.1. In  particular it is proved 
--g 2 tha t  ~5, as a function of 2, is decreasing from the value e 1[ I1.( ,.)(attained at 

2 = 0) to some limiting value called W(v, e, E). 
Notice tha t  the equation ~(2, v, s, E) = 1 is just  the equation of the border of 

the set A(v, e, F,) (defined by  (4.5)) on which we ~ze looking for the minimum of 
the function 2 -+ 1]~(2, v, s, E)IIL~(~ ). Since this minimum, if it exists, it is a t ta ined 
at  the border of this set, f rom the stated properties of ~ we immediately derive the 
conditions on (v, s, E) which guarantee the existence of the minimum. 

LE~aWA ~.1. - Yunvtioqv ~ ,  de]ined by (4.21), is continuously di]]erentiable ~q~ its 
arguments a~d has the properties: 

i) ~(2, v , s , E ) > 0  <=>v~O; 

) if) ~ -  (2, v, e, E) = - -  2ff~ -~  (2, v, e, E ) , - ~  (2, v, e, E), 2 an~ 

- ~  (2, v, e, E) < 0 <::> v ~ 0 ; 

- -2  t 2 iii) ~5(0, v, e, E) = e II~ll-(~,~, 

iv) T(v, ~,/~) = ~ n m  ~(X, v, ~, E) = 

2 L ( / ; M '  = E-~IS(+  ~ ,  v, ~, F)I,~.,,(.) + s-~l lVS(+ 0% v, ~, ~) - v' ~, 

where 5(+ 0% v, e, E) is the soh~tion to ~he variationa~ equation 

(4.:~2) 
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Moreover the l imit ing value T has the ]ollowing properties: 

~ T  
vi) ~ (% s~ E)  < 0 <::> v :/: constant.  V1 (~); 

~ T  ~ . 
vii) ~ (% s, is) -~ - -  2 E  -~ 15(-4-~, v, s, E)]w.,'.(~), 

~ T  
viii) ~ (v~ s~ is) < 0 ~:> v r constant.  V1 . 

PROOF. -- ~ 0 s t  of the above statements  i) to viii) are readily verifiable: thus  the 
proofs of some assertions ~re omitted.  

i): ~(2, v, s, E) = 0 ~ ~(2, v, s, is) = c = constant,  v = cV1 => e(h, 1)L,(a), 

V h e W ' , ~ ( D ) ~ e = 0 ~ v - - - - 0 .  Conversely v = 0 ~ ( 2 , 0 ,  s, i E ) = 0 ~  r  s, 
~) = o. 

ii): it  is a consequence of (4.13) and (4.14) (substi tute there h = (~/~2)(2, v~ 
e, is), ~ = ~(2, v, e , E ) )  and of the  following equations where we replace h by 
@/~2 (2, v, s,/~) 

) (4.23) ~ h, ~ (2, ~, s, is), 2 = - -  B(h,  g(2, v, s, is)) + e-~(Vh, ~)~*(r. ,)= 

= 2-~( h, g(L v, s, ~))~,(~) ,  Vh e N ' . ' ( ~ ) .  

Moreover we have 

--~2 (2, v, s, is) = 0 -r (by (4.17)), g (2, v, s, E) = 0 <=:> (by (4.28)) , 

B(h ,  ~(2, v, s, is)) = s-~(Vh, v)L~(r,s), Vh s W~.~(~Q) -<::> (by (4.18}}, 

(h, ~(2, v, s, IS))L,r 0 ,  Vh s W',~(~) - ~  g(2, v, e, is) = 0 r (Vh, v)L,(r,s)= 0 ,  

Vh e W',2(~Q) <:> v = 0 (remember tha t  VWs,  s(~) is dense in Z2(F, #)). 

iv): as 2 -+ ~b(2, v, s, is) strictly decreases if v # 0, then  the limit k~(v, e, is) 
exists and is finite. To prove the assertion it suffices to show tha t  ~(2, v, e, E) -* 
--* ~(d- c%v, s, is) in W',2(~) as 2 -+ + c~. By substracting (4.14) from (4.22) one 
gets the equation 

(4.24) B(~,  ~(2, v, ~, E ) - - ~ ( +  ~ ,  v, ~, E))  = - -  ;.-l(h, ~(2, v, ~, i s ) ) . ( . ) ,  

Vh ~ W , , 2 ( ~ ) .  

(1~) 1 stands for the constant function which equals 1 in ~. 
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From (4.24), (4.14) and (4.8) one derives the inequali ty 

(4.25) I]5(4, v, ~, E) - 5 ( +  ~ ,  v, ~, E)II~. , , ( . )<max (E~ ~)~-~(~, ~, ~, s, ~)llvh,(~,~). 

I t  implies the assertion, since ~(., s, E, s, [2) is bounded. �9 

l % E ~ x .  - l~otice tha t  from (4.22) it  follows tha t  

(4.26) 5(+ 0% VI,~,E) = 1,  V(s,E) e ~ + X R +  

snd, as a consequence, 

(4.27) ~(constant. V1, e, E) ---- 0 ,  V(e, ]~) e 2~+ x /~+.  

Le t  us consider now the equation 

(4.2s) ~(~, v, ~, E) = 1 .  

L E p t A  4.2. - i) I /  e > []vH~,(r,~)there is no value o/ ~ satis]ying eq. (4.28); 

ii) i/ e = Iiv]]~,(r,~) eq. (4.28) is satisfied only /or ). = 0; 

iii) i/ 0 < e < nvi]L,(r,~) there exists one (and only one) value o/ ~ satis/ying eq. 
(4.2s) i / /  

(4.29) W(v, s, E) < 1 .  

In  other words eq. (4.28) is uniquely solvable with respect to ~ i]] the triplet (v, e, E) 
is an element o/ the set D so de/ined 

(4.30) D = { ( v , e , ~ ) e L ~ ( r , ~ ) • 2 1 5  ~ ( v , ~ , ~ ) < x } .  

o 

Moreover the/unction ~(v, e, E), implicitly de]ined by (4.28), belongs to C~ ~ C~(D) (~3). 

PROOF. - I t  derives obviously from properties i) to v) of the previous 1emma. �9 

In  the next  lemma we want  to s tudy  more closely the compatibil i ty relation 
(4.29). Therefore let us consider the  equation 

(4.31) ~(v ,  e, ~ )  = 1 .  

L E ~ I ~  4.3. - Eq. (4.31) is uniquely solvable with respect to E i / ]  the pair (v, e) is 
an element of the set A, where 

(4.32) A = ((v, ~) e L~(r, ~) • 0 < ~ < ~(v)} 

(la) ~ stands for the in~erior of D. 
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and 

- - 2  
(4.33) e(v) = If (V1, v)L,(r,,)" 1t V1 II~(r,~)" V1 - -  vil~o(r,, ) . 

Moreover the ~unetion y~(v, e)7 implicitly de]ined by (4.31)7 belongs to C~ ~ C~(~) 
and the Junctiofo ~ --. F(v, e) is strictly decreasing in (07 g(v)) and vanishes when e = g(v). 

I~ENA~IC. - The  gene ra l  b e h a v i o u r  of t he  

fig. 1. 

I 

1 
! 

W<l I 

0 ~(~,) 

f unc t i on  e--~ ~0(v, e) is i l l u s t r a t ed  in 

in this regio~, 
the solution is 

I v ', L:(c, ,~) 

Fig. I. 

Not i ce  t h a t ,  as e --* 0+~ t h e n  ~ ->  + c~; h o w e v e r  i t  m a y  h a p p e n  t h a t  the re  

exis ts  a f ini te  l imi t  for  special  ((~ v e r y  r egu la r  ~>) v (see t h e  e x a m p l e  gt  t h e  end  of t h e  

sect ion) .  I n  p a r t i c u l a r ,  w h e n  v = V1, t h e n  g(v) = 0 a n d  the  cu rve  in fig. 1 reduces  

to  t he  pos i t i ve  ha l f -ax i s  e = O, E > O. 
I n  gene ra l  no t ice  t h a t  g(v) is t h e  n o r m  of t he  p r o j e c t i o n  of v a long  the  direc-  

t i on  of t he  vec to r  o r t h o g o n a l  to  V1 be long ing  to  t he  p l a n e  con ta in ing  v a.nd V1. 

T h u s  we h a v e  

e(v) < Ilvlb<,).  

I n  p a r t i c u l a r  7 w h e n  ~2 is a ba l l  and  _P = ~ ,  we  ge t  

i(v) = l la r i thmet ie  m e a n  of v on t h e  sur face  of the  ba l l  - -v i ler ( r , ,  5. 

PROOF OF LE]'nv[A 4.5. -- F i r s t  we p r o v e  t h e  re la t ion  

(4.3~) V @ ( @ c ~ v T a ,  E ) - - > v  ill L~(ffT~t) as E - - >  @ a < ~  V ( v ~ s ) ~ 2 ( _ F ~ # ) X R + ~  
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To this purpose observe that it is easy to show (arguing as in the proof of theo- 
rem 4.1) that  the solution g(+  c~, v, e, E) to eq. (4.14) satisfies the following esti- 
mates valid for any (v, s,/~/) e L~(F, if) •  •  

(4.35) 

(4.36) 

(~.37) 

II v5 (§  ~ ,  v, ~, E)]I.<~,.)< 

E ~ ~  V 

I5(+  0% ~, ~, E) t,~.,(,,)<~-~II~[1.<~,.> �9 

From (4.14) and (1.37) we immediately deduce the relation 

(4.3s) !ira (Vh, Vg(-]- co, v, e, E) --  v)~*(r,e)= 0,  
B-->+ co 

V(h, v, e) + w,,~(t2) x.,S%P, .,) x / L .  

Recall then that VW',~(D) is strongly dense in Z~(F, #) and the set {Vg(+ c~, v, 
e, E): (e,/iJ) e B+ • is strongly bounded in Z~(F, #) for every (fixed) v sL~(F, if), 
owing to estimate (4.35). By virtue of a well-known theorem in Functional Analysis 
(see for instance YOSIDA [11], theor. 3, p. 121) from (4.38) we obtain that  

(4.39) VO(+c%v,s,.E)--~v in L~(F,#) as E--->+cc, V(v,e) eL2(F,#)• 

From (4.35) and (4.39) we easily get the following estimate, which proves (4.34): 

Nv5( + oo, +, ~, ~ ) -  vll~,(r..)<2(v - vs (  + oo, v, ~, ~), v).(~.~). 

Thus from (4.14) (with h -~ 5(+ ~ ,  v, e, E)), (4.34), (4.35) we deduce the relation 

(4.40) lira E-~l~(+cm, v,s,E)l~.,.~(~)=O, V(v,e) eZ~(F,#)• 
2J---> + co 

Finally (4.34) and (4.40) imply that  

(4.41) lim T(v, s, E) = 0,  V(v, ~) e L2(P, #) • 

The next step consists in proving that the relation 

(4.42) lim T(v, s, E) = e-~g(v) ~ 
E-->0 + 

holds for any (v, e) c Z2(/", #) • 
First we show that there exists a sequence {E~} c / L  decreasing monotonically 

to 0 as n--~ + c~ such that  for any (v, e) sL2(F, if) • 

(~.43) ~(-j- 00, % ~, J~n) -+ (V1, q3)L~.(F.It)*'.[ V~ -1 ]]L0(r,,)'l in  L~(.C2) as  ~, ~ + oo 
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We postpone for a moment the proofs of (4.43) and (4.44) and observe that  they, 
together with the monotonieity of E - *  T(v, e, E)(see  ix) in lemma 4.1), imply 
immediately relation (4.42). 

To prove (4.43) we recall that (4.36) (with a fixed pair (% e)) and the bounded- 
ness of/2 assure the existence of a function ~oe W~'~(/2) and of a sequence {E~} c R+, 
/ ~ . ~  0 as n - *  + co such that 

(4.45) ~(+ c~, v, e, E.) -~ ~o in W',*(/2) 

(4.46) ~(q- co, v, s, E~) -* q0 in L*(/2) 

as n --* + co, V(v, ~) e L~(F, #) x / t+ .  
ttence from (4.14) and (4.35) we deduce that 

(h, qo)w,,,(.)= 0 ,  Vh e W",~(/2). 

This means that 

(4.47) ~Oo = cl 

for some e ~/t .  Moreover from (4.14) (with h = 1 and E = E~) it is easy to infer 
the equation (V1, eV1 -- v)~,(r,~)= 0, which, in turn, implies 

(4.48) - 1  
o = ( V I ,  v)~,(r , , )"  [[ V I  l[L.r �9 

Observe now that (4.43) is an immediate consequence of (4.46), (4.47), (4.48). 
I t  remains to prove relation (4.44); it is implied by  (4.14) (with h ~ 5 (§  0% v, 

s, E.))  and (4.43). 
Taking now relations (4.41) and (4.42) into account and recalling the mono- 

tonicity of q~ with respect to E, it is immediate to realize that  eq. (4.31) is solvable 
for 1~ e / t+  iff the pair (% e) belongs to the set A defined by  (4.32). 

~5oreover, since (% e) e A implies v # el, Vc ~ R, from viii) and x) in lemma 4.1 
we get the inequalities (~T/~e)(v, e, E) < 0 and (~T/~E)(v, e, E) < 0, V(v, e, E) ~ A • 
The previous relations imply that  eq. (4.31) implicitly defines a unique function 
yJ: A-* / t+o  Owing to lemma 4.1 and to the implicit function theorem, it has the 
property stated in the lemma. ,, 

We can now solve problem (P2) stated at the beginning of this section. First 
we observe that the set A(v, s, E) defined by (4.5) is, due to lemma 4.2, a closed half- 
line in /~+, V(v, s, E) e D W D, D being defined by  

(4.40) D = {(v, ~, E) e L~(r, ~) x / t+  x / t+:  0 < Ilv[k~(~,,)<q. 
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More part icularly we get the following equations: 

(4.50) 
{ [9(v, e, ~),  + c~), V(v, 6, E) e D, 

A(v, e, E) = /~+, V(v, 6, E) ~ D . 

We e~n now prove *he following existence-uniqueness theorem for problem (P2): 

T~EOl~E~ 4.2. - For every (v, s, E) e D U ]Y) the ]unction 2 --* ]]~(2, v, s, E)]],.(a) 
attains its least value re(v, s, E) on A(v, s, J~) at a unique point 2o, the pair ( ~o, m(v, e~ E) ) 
being given by the ]ormulas 

[ q;(v, 6, E),  V(v, 6, E) eD 
(4.51) 20 

o V(v, ~, _~) ~ D 

[ ~(q~(v, ~, ~,), v, ~, ~,), (v, 6, ~) e 2),  
(4.5~) m(v~ 6~ E) / 0 (v, 6, E) e / 5 .  

O 0 

Moreover the/unction (v, E) --~ m(v, e, ]8) belongs to C~ L) /~;  W'.~(/2)) (~ C~(D LJJ)~; 
w,,~(~)) (~). 

PR00F 0F TI~E01~E~ 4.2. - The s ta tement  relative to )~o is an obvious consequence 
of lemma 4.2 and eq. (4.23) (~5) as well as the one relative to the function (v, E) --~ 
--> m(v, s, E), except for the continui ty o~ such a function at  the points of the set 

F~-- {(v, ~) e L~(r, ~) • (v, 6) e ~, IIv]k,(~.,)= ~, E > ~(v, ~)). 

Consider now the relations 

r v, e,/~) -~ 2 V(v, E) e F 

T(v, e, E) < 1,  V(v, .~) ~ .~8. 

As r e C~ xL~(F, if) xR+  xR+) and T e  C'(L~(F, if) x/~+ xR+),  from the implicit 
function theorem applied to the equation @(2, v, e, E ) =  1 we easily obtain t ha t  
2 ----- q0(v, E, E) -~ 0 as D 8 ~ (v, E) --~ (%, Eo) e f t .  From (4.20) we immediately deduce 
the wanted relation, i.e. 

re(v, ~, ~) = 8(~o(% ~, ~), v, ~, ~) -~ o 

in Z2(~), Ve~/~+ ~s D~E(v,.E) --~(vo,Eo)~F~. II 

(~4) D~o denotes the inCersec~ion of D wi~h the hyperpl~ne e = eo: 
(~5) Substitute there h---- (~O/a~)(~, v, e,/~). 
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A SPECIAL CASE: D-----R_ ~. Let us consider ~gain the example previously 
discussed. We can pose problem (P1) in ~ slightly modified manner: ]or every fixed 
(2, v, s, E) ~1~+ xL~(~ ~) XR+XR+ minimize the ]unctional 

Using Fourier transforms with respect to x ' =  (x~ x~) we c~n write the equation 

/~s 0 

Straightforward calculations give us the explicit formul~ for the solution to prob- 
lem (P1), namely: 

The assertions in theorem 4.1 (and in the remark following it) can be directly verified. 
Problem (P2) now consists in minimizing the function 

) _._). - 2  

R~ 

subject to the constraint 

0 2 

<I. 

Taking formula (4.53) into account, the constraint can be written in the form 

~(A, v, s, E) <1 , 

where 

q~()t, v, ~, E) = 

= ~-~f{1 - ~[4~j~I 3 + ;~(1 + s~'~E-'-I~p)][2~2I~I3 + ;~(1 + s~E-~l~p)]-~}i+(~)l  ~ d~.  

Clearly the minimal function ~ will be either 0 or ~ = ~(20, v, e, E), 4o being a solu- 
tion to the equation 

(4.54) ~(I ,  v, ~, E) = 1.  
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The propert ies  of the  funct ion  q5 l isted in l emmas  4.1~ 4.2, 4.3 can be easily 

verified. I n  par t icular ,  since ~5 is a decreasing funct ion of )., qh(0, v, e, E) = 

and  

zs) 0% v, zs) =flei,( =f2 + 

we conclude t h a t  the  necessary and suiIieient condit ion in order a unique (positive) 

root  2 of equa t ion  (4.54) to exist  is t ha t  the  t r ip le t  (v~ e, E) be  a solution to the  

inequa l i ty  

5g(v, e, E ) <  1 .  

The s i tua t ion  is p ic tured  as in fig. 1, where now g ( v ) =  livlI.(  >. 
Notice tha t ,  if v is smooth  enough, name ly  if v E WhIP,~(R~), we find a finite va lue  

lor E =  l im ~(v,e).  
~-*0+ 

~Ioreover,  when e = llvll.(  >, the  solution of (4.5~) is 2 = 0, which yields ~ = 0. 

I n  this case the  unce r t a in ty  on the  measu remen t  is so high t h a t  the  set A(v~ s, E) 

(defined b y  (4.5)) includes the  origin: thus the  null funct ion is the  solution. 

Note added in proo]s. 

I~ has been pointed out to us that N. W~CK, in Applicable Analysis, 2 (1972), pp. 195-238, 
considered a problem quite analogous to that studied here; he assumes that the potential v 
is measured on a large spherical surface contMning D rather than on the boundary of D itselL 
This paper has some contact points with Weck's. 
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