
On the First Eigenvalue of the Clamped Plate (*). 

GIo~GIO TALE~I  (Firenze) 

Summary. - We find a lower bound/or the ratio between the first eigenvalue of any homogeneous 
thin plate G, which is clamped on its boundary, and the first eigenvatue of the spherical 
clamped plate having the same measure as G. I n  two dimensions, our bound is about 0.98. 

1. - In troduct ion  and  s t a t e m e n t  o f  results .  

We are concerned with the  following eigenvalne problem: 

[ A~u - -  ,~u = 0 in  G, 
(i .1) 

l u = [Du I = 0 on the  boundary  ~G of G. 

Here  G is any  open bounded subset of n-dimensional euclidean space R ' ;  

(2.2) d - -  z 
i=1  

is the  Laplace operator  and /1~ its square; 

(1.3) D -= g rad ien t .  

We set 

(1.4) ~(G) ---- the first (lowest) eigen~Talue of problem (1.1); 

(1.5) d~* ~--the ball  having the same ~-dimensional measure as G .  

Our aim is to find a lower bound for the  rat io 

;~(G) 
(1.6) )4r 

(*) Entrata in Redazione il 12 giugno 1981, 
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As is well known and easy to see, 

(1.7) 
. F 1 "I-4/ , ,  

where m stands for n-dimensional measure, 

(1.8) (7.--- u-~//'(1 § n/2) 

is the measure of the n-dimensional unit ball, j ,  is the smallest positive root of the 
equation: I~(z)J~(z) - -  I (z )J:(z)  = 0 (v = (n/2) -- 1; i r, J = Bessel functions). For 
instance, in dimension n ~ 2 one has: ~(G*)• G)2= 1029.9959 .... 

A conjecture has been made by a number of authors (see Payne [11]), that  the 
ratio (1.6) is bounded from below by 1. In other words, one might expect that  for 
homogeneous clamped plates with fixed measure the spherical plate has the lowest 
frequency of vibration. A result towards a proof of such a conjecture has been ob- 
tained by SzEG5 [13] (see also [12]), who proved that  the inequality: 

(1.9) ~(~) ~ ~(G*) 

holds for those domains G for which a principal eigenfunction is free from nodal lines 
(similar, but in a sense weaker, results were obtained by ttODY~EVA [10], via an 
extension of a method by Cav~A~T [5]). Szeg6's proof, which was originally written 
in dimension n = 2, can be easily carried out in any dimension n >_ 2 (as well as 
rephrased in a completely rigorous function-theoretic setting). Unfortunately, the 
absence of nodal lines seems to be a crucial hypothesis for SzegS's argument, and 
no criteria are available for deciding whether a given domain fulfils or not such a 
hypothesis. As a matter of a fact, both theoretical and numerical devices have 
shown that  clamped plates, whose principal eigenfunctions do change their sign, 
actually exist. COF:F~AS~-DUFFIN-SHAFFEI~ [4] proved that  the first eigenvalue and 
the principal eigenfnnctions of a ring-shaped damped plate have multiplicity two and 
a diametral nodal line if the outer radius is I and the inner radius is < 0.001311 774 
(parallel results for an infinite strip are in DVFFI~ [6]). Numerical results by 
BA~E~-R~ISS [1] and HACKBUSClt-HoFYIANN [8] strongly indicate that  the principal 
eigenfunetion of a square clamped l~late changes its sign. Indeed COF~VIA~ [2] has 
proved, by extending a method of [3], that  any eigenfunction of a square clamped 
plate oscillates infinitely many times on any ray issuing from a corner. 

Our results can be summarized in the following way. A constant c~ exists such 
that the inequality 

(1.1o) ;r >_ c.;~(G*) 
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holds ]or any bounded domain G in t~ '~. Such a constant is explicitly computable; the 
values of c~ for small dimensions n are given by the following table: 

~b r 

2 
3 
4 
5 
6 

0.977 68 
0.73910 
0.652 42 
0.609 25 
0.583 94 

I t  will be clear f rom our proof tha t  c~ is >_ 0.5 for all n. Incidental ly,  our method  
shows tha t  (1.10) can be replaced by  (1.9) provided the nodal  set of a first eigen- 

funct ion u is e i ther  empty  or a locus of s ta t ionary points of u. 
The author  wishes to t hank  dr. M. G. G)~se~o,  who made  the  numerical  par t  

of the present  work. 

2. - A s y m m e t r i z a t i o n  argument .  

We shall use the following var ia t ional  character izat ion of the first eigenvalue: 

(2.1a) 

(2.15) 

(2.1c) 

Fur the rmore  we set: 

i(G) = minimum of the  Rayleigh quot ient  

~ G 

under  the  const ra int :  ~ e W~'2(G). 

(2.2) u = a principal  e igenfunct ion ,  

i.e. u will s tand for any  minimizer from W~'"~(G) of the l~ayleigh quot ient  (2.1b). 

Here  W~'~(G) denotes the closure of Co(G ) ( =  the collection of all infinitely differen- 
t iable functions,  which vanish in a neighbourhood of Rn \G )  under  the topology of 

the Sobolev space W2'2(Rn). Thus the boundary  conditions: u ~ [1)ul = 0 on ~G, 
are included into the constraint  (2.1c). Well-known theorems on elliptic equations 
ensure tha t  u is C ~ in (the interior of) G; moreover,  no non-negligible subset of G 
exists where u is ei ther  constant  or harmonic.  

Notat ions and objects, which we shall deal with~ are listed in the following table. 
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~+ = max (u, 0) posi t ive par t  of u 
u_ = -  rain (u, 0) negative par t  of u. 

spr tu+ support  of u+, the  closure of {x e G: u(x) > O} 
spr tu_  support  of u_, the closure of (x e G: u(x) < 0}. 

G,k 
(sprt u+)* 
(spr~u_)* 
~((~) = c . ~ -  

see (1.5) 
the  bal l  having the same measure as sprt  ~+ 

L = radius of G* 
m(sprtu+) = G a u 
m(sprt  u_) = C. b ~ 

r  

a(t) = m{x e G: u(x) > t} 
~(t) = m{x e ~: ~t(z) < -  t} 

(Au)~_, (Au) 5 

O <  s - +  (A~)~_(m(V) - -  s )  

0 < s ~ (au)*_(m(G) - -  s) 

l ( s )  = ( z t u ) * ( s )  - (Au)~(m(G) - s) 

g ( s )  = ( ~ u ) ~ ( s )  - (A~)*_(m(G)  - s )  

a = radius of (sprtu+)* 
b = radius of (sprint_)* 
(a/L)" + (b/L)" = 1 .~. 
measure of the unit  ~-ball. 

dis tr ibution function of u+ 
distr ibution function of ~_, t > 0. 

decreasing rearrangements  of (Au)+, (Au)_. 

increasing rearrangements of (Au)+, (Au)_. 

= (3u)*__(s) 
if O < s < m ( x e G : A u ( x ) < O } ,  

= - ( z ~ ) $ O ~ ( ~ )  - ~) 
if m{x e G: Au(x )<O}< s<m(G) ,  

= 0 otherwise; 
/ ( s )  = - -  g ( m ( ~ )  - -  s ) .  

the  signed rearrangemeat  of Au such tha t :  
(i) g(s) decreases as s increases in [O,m(G)]; 
(ii) length {s e [0, m(G)]: 9(s) > t} = 

= m(z e G: 3u(x) > t}, 
length {s e [0, m(G)]: g(s) < - -  t} = 

= m{z e G: 2~(x) < - -  t}, 
for every t > 0 (see figure). 

W e  s t a r t  our  p r o o f  b y  a p p l y i n g  l e m m a s  1 a n d  2 f r o m  [14] to  t h e  p o s i t i v e  a n d  

t h e  n e g a t i v e  p a r t  of u. W e  o b t a i n :  

(2.3) 

t* 
2 21r~.ld\2-2/n I n O~ ,~w _ [ - -  ~'(t)]  (-- Au)  dx 

, )  
u ( z ) > t  

2 ~/r~ 2 -  2In c .  ~ ( t )  _ [ - ~ ( t ) ]  ( A u )  dx 
J 

~(z) < - t 

for  a l m o s t  e v e r y  t > 0. A sho r t  p roo f  of i n e q u a l i t i e s  (2.3) is s k e t c h e d  in  t h e  A p -  

p e n d i x .  On  t h e  o t h e r  hand~ t h e o r e m  378 a n d  a c o n t i n u o u s  ve r s i on  of t h e o r e m  368 
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g(s) = (Au):(s)- (Au)*_(.~(a)- ~) 

g 

I 
I i ~ - -  I 

! \ ,  I 

Figure 1 

8 

f r o m  [9] g ive :  

f (--Au) dx--: f (Au)_dx-- f (Au)+dx~ 
u(~)>t u(~)>t u(:~)>t 

~(t) ~(t) 

f(~)* (s)ds-f(d~)~(m(~)- s) ds 
o o 

a n d  ana logous ly :  

T h e n  we h a v e :  

(2.4) 

~(t) 

u ( ~ ) < - ~  o 

r 

2 ~/,~ ~,(t)]~(t)-2+2/~ff(s ) n C~ <_ [-- ds 
o 
P(t) 

o 

~,(t) 

=f/(s)  ds , 
o 

for  a l m o s t  e v e r y  t > O. 
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(~.5) 

Integrating both sides of (2.4) gives: 

c,(o) 

~ ~i~ f drf](s) ds n C~ t<_ r -2+2/~ 
~(t) o 

:(o) 

f r f n C~ t <  r -~+~/~d g(s) ds, 
[~(t) o 

for f . . .(-- ~'(t)) dt ~_f... (-- d~(t)) and f . . .(-- fi'(t)) dt < ... thanks to the monotonicity 
of , and ft. Here the following property: 

f](s) ds and tg(s) do >_ 0 for 0 ~_ r ~ m(G) (2.6) 
0 0 

plays ~ role. Proof of (2.6): [0, m(G)] ~ r-+f/(s) ds is a concave function, for ](s) 
0 

decreases as s increases; snch a function vanishes at both ends of the interval 
[0, m(G)], as formulas (2A2)-(2.14) below show; hence it must be nonnegative. 

Inequalities (2.5) hold for all t > 0. In terms of rearrangements of u+ and u_ 
they read as follows: 

(2.7) 
for every x from (sprt u+) *,  

_ . *  ( ol io) _< 

for every x from ( s p r t u ) * .  

Here the left-hand sides are the spherically symmetric rearrangements of u+ and u_, 
and the (spherically symmetric) functions v and w are defined by: 

Gnu n 

a,,l~I" o 
(2.8) 

Gab n f 

~ b 2 c ~ / n w ( z )  = f r -2+2/n drfg(r') dr' . 
c~J~l ~ o 

In the derivation of (2.8) one should keep in mind the following property (to- 
gether with the analogous one for u_): 

_<s 0 ) ,  

a consequence of the standard definition 

u§ = in~ (t ~ 0: . (t)  < s) = sup (t >__ o: . ( t )  >_ s } .  
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Let  us list some crucial properties of v and w: 

(2.9a) v(x) = O if lxl = a , w(x) = 0 if [xI = b; 

(2.9b) Dv(x) = Dw(x) = 0 if ixl = L ;  

(2.90) f (Av)~dx = f (Aw)2dx=f(Au)~dx; 
I~I<L I~]<L a 

hence in part icular  v and w are in W2,~(G*). 
Properties (2.9a) are obvious. Ingredients for the proof of (2.9b) and (2.90) are 

the formulas 

(2.1o) 

nC~x](X)=-- Ix l~-n  f ](s) ds 
0 

c,t~p 

nr f g(s)ds 
0 

(which follow at once from (2.8)), and the equations 

(2.11) - ~ v ( x )  = ] ( c . l x i o ) ,  - ~ ( x )  = g ( C . j x l - )  

(which follow from (2.10) and the customary formula 

~ ~v 

for the laplacian of spherieMly symmetric  functions). On the other hand,  the 
definition of ] implies: 

inCa) 
(2.t2a1 f ](s) ds 

0 

and:  

( 2 . 1 3 a )  

analogously: 

(2.12b) 

re(a) 

f /(s)~ d8 
0 

(2.13b) 

co oo 

0 0 

(7 ~ (t  

co oo 

0 0 G 

~n(G) 

f g(s) ds --= f ~u dx , 
~.(a) 

0 q 
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From (2.11) and (2.13) one gets (2.9v). F rom (2.10) and (2.12) one gets (2.9b), 
provided the basic equation 

(2.14) ](An) dx = o 
q 

is taken into account. Equat ion (2.1~) is a consequence of the boundary  conditions 
for u:  in fact, Gauss-Green formulas show tha t  the laplacian Au of any  function u 
from W2o'~(G) must  be orthogonal to any  (square integrable) harmonic function. 
Thus the proof of (2.11b) consists essentially of the following remark:  the gradient 
of a spherically symmetric W2'2-funetion vanishes on the boundary of a ball if and 
only if the laplacian of tha t  function has mean value zero on the same ball. 

F rom (2.7) and (2.9e) we infer 

(2.15) 
6t (sprt u+)* (sprt u-)* 

S v~dx ~ w~dx 
< [~l<a Ixi<b 
= ~ x  § ; (Aw)~dx' 

[~]<~ [~]<~ 

hence we are in a position to draw the main conclusions of this section. 

T.~mo]~E~ 1. - l e t  p be de]fried by: 

S ~ d x  
(2.16) 0 < t ~ l ,  p(t ~ ) = m a x  S ( - - A v )  ~ d x '  

[~i<1 

where v runs in the collection o] al~ ]unctions having the ]ollowing properties: (i) v is 
endowed with square-integrable second order derivatives in the unit ball (x ~ R": Ix l < :l} ; 
(if) v ( x ) =  0 on the inner sphere ]xJ = t; (iii) D v ( x ) =  0 on the boundary Ix]-~ 1; 
(iv) v is spherically symmetric (i.e. a function of lx l only). 

The ]ollowing inequality holds: 

(2.18) 
2 ( G * )  / 1 ~. (1)  max~.p(t)~ §  o < t <  1}. 

~Tote tha t  the right-han(t side of (2.18) does not  exceed 2. In  fact  one may  infer 
from theorem 2 below tha t  p(t) increases as t increases from 0 to 1. 

P~zoo~ o~ (2.18). - From (2.15) we get 

1 
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after a straightforward dimensional analysis argument, l~ecall that (a/L)"~ - (b/L)~= 1. 
~urthermore ~ ( G * ) =  L-4/p(1), since the principal eigenfunction of a spherical 
clamped plate is known to be a spherically symmetric function (on the other hand, 
(1.7) holds and it will be clear from section 4 that  p(1) = j~-4). Thus (2.19) follows. 

3. - Var iat ions  on  a theo rem by SzegiL 

The result from [13] can be easily recovered with the help of our previous 
arguments. Suppose in fact that a principal eigenfunction u has a constant (say 
positive) sign. Then u--=u+, u_ is identically zero, a = Z and b ~ 0. Thus v 
vanishes on ~G* (together with its gradient) and we get from (2.15): 

1 dx f (u$) dx 

2(G*) 2 j , ( A v ) 2 d x ~  I ( A u p d x  I ( A u ) ' d x '  
q 

that  is: 

(3.1) 2(G*) _~ ~(G). 

A curious result, which we state presently, is available too. Quite the same 
procedure of section 2 (with a slight change: forget positive and negative part of u, 
apply lemmas 1 and 2 from [14] directly to u, and go ahead) leads to the following 
estimate: 

(3.2a) u*_~ U,  

where u*  is the spherically symmetric rearrangement of ]u] and 

m(~) 

(3.2b) V(x) = f dr f ~2 C~i~r~-21~ h(s) ds , 
c,I~i" o 

(3.2e) h(s) = (Au sgn u)*_(s) --  ( Au sgn u)~( m( G) - -  s ) . 

An inspection shows: 

(3.3a) U(x) = 0 if x e 3G*, 
re(G) 

inca) o q 

(3.3e) f u) '  dx = f h(s)  ds = f dx . 
G* 0 

if x e ~ G *  

18 - A n n a l i  eli M a f e m a t i e a  
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Hence we have from (3.2a) and (3.3e): 

j. (A U?  dz 

(3.4) 2(G) > f U~dx 

The right-ban4 side of (3.4) exceeds 2(G*), provided U and ./)U vanish on the 
boundary  of G*. As (3.3) shows~ the lat ter  circumstance occurs if and only if 

(3.5) f(Au sgnu) dx = 0 .  
q 

On the other hand~ the equation 

(3.6) --f (Ausgnu)dx= 21imt.o f lDul Z._ (ax) 
a ( z ~ q :  u ( z )  = t} 

holds. In  fact  Federer~s coarea formnla [7] and Gauss-Green theorem give: 
+ c o  

- co { x ~ q : u ( ~ )  = t} q q 

for every e > 0~ since u is in W2,2(G) (i.e. Du vanishes on the bonndary).  Here H~_x 
stands for the ( n -  1)-dimensional Hausdorff measure. 

In  conelusion~ one can assert tha t  (3.1) holds if the  nodal  set (x ~ G: u(x) -~ 0} 
of a principal eigenfunction is either empty~ or included in {x ~ G: Du(x)-= 0}. 

4. - A one-dimens ional  problem. 

T~Eo~E~ 2. - Let p be de/ined by (2.16) and let 0 < t < 1. 

(4.1a) tX/"p(t) -~/4 

is the smallest positive root z ot the equation: 

(4.1b) tP(z) ~- 1 .  

Here: 

(4.2) P(z) = 1 

ang m =- hi2 --  1. 

~hen 

i~--~ § J~(~)j ~ [I~(~) J~(z)] 

2 m _+ I l 
- tI,.(t) dt~ ~--1 z L - , , -  , , | J~(t) 

J 
0 
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1 0  P(z) 

z 

l~iguro 2 

As is easy to check~ P(z) ~ 1 if 0 < z < j~,l; P(z) decreases monotonical ly  f rom 
co to - - c o  if z increases f rom j~,l to jm,~ (j~,~-~ k-th positive zero of J~). The 

behaviour  of P(z) for n = 2 is shown in fig. 2. 
Using theorem 2, the functions 

(a.3) p(t) ann q(t) --- p(t) § p(1 - t )  
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have  been eva lua ted  numer ica l ly  for 2 _< n ~ 6. The graphs  of p and  q are p lo t ted  

in fig. 3 for n -  2. Other  results  are summar ized  in the  following table .  

lO S X max q(t) ~ 10 a • ~,(1) 
[=  103 xq(0.5)] 

9.582 08 
4.206 63 
2.21236 
1.29876 
0.822 09 

9.800 81 
5.69154 
3.39100 
2.13172 
1.407 83 

P~ooF oF Tm~O~E~ 2. - Since all t r ia l  funct ions involved in (2.16) are spherical ly 
symmetr ic ,  we are faced b y  the following one-dimensional  p rob lem:  

1 

;[~" + (( .  - 1)/r)u ']*r ' -~ ar 
0 

t - -  m i n i m u m  
I u ' r  ~-~ ar 

0 

under  the  const ra in ts :  

u(r) = o 

1 

f [u* + ( u ' )  ~ -{- (u' Jr)~]r~-~ dr < cx~ , 
0 

at r = t ,  u ' ( r )=O at r = l .  

Let: 

u = a minimizing func t ion ,  

,u4= the  m i n i m u m  value of the  re levant  func t iona l .  

The pair  u, # mus t  sat isfy the  Euler  equat ion of the  problem,  t h a t  is: 

1 t 

f[ +o 1 ][ f r u' q g " + ~ c /  r ~- ldr=#4 u~r~-ldr 
o 0 

for all tes t  functions ~0 such t h a t :  

1 

f[~* + (~")~ + (~o'/r)~] r'-~ ar < ~ ,  
o 

~ ( t )  = ~o'(1) = o .  
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0.o098o081 ~ - - -  q(t) = p(t) + p ( 1 -  t) 

. . . . . . . . . . . . . . . . . . . . . . . .  i 0.009 582 08 
. . . . . . . . . . . . . . . . . . . . .  I . . . . . . . . . . . . . . . . . . . . . .  

0.004 900 41 

0.5 

Figure 3 

1 t 

Appropriute choices of W show thut the minimizing function u satisfies the fol- 
lowing differential equation: 

d n--1 d )2 
-d-~ ~ ~- ~ r -  dr " #~ u = O  if O < r < t , 

u-----0 if t ~ r ~ l ~  
-~ r 
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together with the following boundary conditions: 

u is smooth near r = 0 ,  

u(r) = 0 at r = t ,  

u'  and u" -{- (n - -  1)(u'/r) vanish at  

Integrations give: 

u ( r )  = 

A ( r )  -'~ I I'~(#t) J~(ttt) 
[~ I~(#r) J,~(#r) 

Fr 2 - -  t 2 r2-~ _ t~-~l  

J 

if O < _ r < t ,  

if t < r < l ;  

where A, B are constants (the last te rm must  be replaced by In (t/r) when n = 2). 
For determining A and B (i.e. the ratio A / B ,  since u is defined up to multiplicative 
constants), we have to keep in mind tha t  u',  u", u"  have no discontinuities across 
the interface r = t. This leads to a system of linear homogeneous equations in A ,  B 
which can be arranged in the following form: 

( 1 - - t - . ) t ' A  + W(# t ) (# t ) - "B  ---- 0 

[1 + (n --  1) t-"] t~A -~- [(#t) W'(lt t  ) - -  2mW(t t t )](#t ) - . ,B --- 0 

where: 

W(z) I,~(z) J~+l(z) + I,~+,(z) Jm(z) I~(z) J~(z) I ' = z = = - -  ,~(z) J,~(z) sin(s) J~(s) ds 

o 

Put t ing  the determinant  of the coefficients equal to zero gives the equation: 

W'(#t)] -~ 
t -"  = 1 - -  n 1 + (t~t) W ( ~ t )  J ' 

which allows one to determine #. The claimed assertions easily follow. 

Appendix. 

In  section 2 we used the following lemma. 

L E ~ r A .  - ,Let u be a (real-valued) function from Wlo'2(G) such that Au  is in .L~(G). 
The following inequality 

(A.la) n ~ C~/~[r ~-21n_< [-- s f (-- Au) dx 
{~a: u(x)>t} 
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holds ]or almost every t > O. Here: 

(A.lb) ~(t) = m{x e G: u(x) > t} , 

and G is any open subset of euclidean n-space. 

We present  here a short  proof of inequal i ty  (A.1). For  the sake of simplicity, 
we restr ict  ourselves to the case (which is enough for our purposes) where u is in- 
finitely differentiable. We refer to [14] for a more exhaust ive proof. 

Cauchy-Schwarz inequal i ty  yields: 

f f (A.2) IDutdx < ~ ( t ) - - ~ ( t + h )  1 i~)u]~dx 
- -  h 

t<u(x)<t+h 

for every  h > 0. Le t t ing  h - ~  0~ we get:  

(A.3) [H~_~{x e ~: u(x) = t}]~< [--  ~'(t)] 

t<u(~)~t+h 

{x~G: u(x) =t} 

for almost  every  t. In  the  derivat ion of (A.3) f rom (A.2) we have applied l%derer 

coarea formula [7] and the fact  t ha t  s< is almost  everywhere differentiable. H._x 
stands for ( n -  1)-dimensional measure. 

On the other  hand,  Gauss-Green formulas yield:  

{x~a: u(x)=t} (xe~: u(~)>t} 

for every  t such tha t  

(A.5) ~{x E G: ~(~) > t} = {x e a :  u(x) = t} , 

an equat ion which holds for almost  every  t > 0 thanks  to Sard's theorem and the 
vanishing of u on the boundary  of G. Thus (A.3) and (A.4) imply (A.1) via (A.5) 
and the isoperimetric theorem. 
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