On the First Eigenvalue of the Clamped Plate (*).

G1orGI0 TALENTI (Firenze)

Summary. - We find o lower bound for the ratio between the first eigenvalue of any homogéneous
thin plate G, which is clamped on ils boundary, and the first eigenvalue of the spherical
clamped plate having the same measure as G. In two dimensions, our bound is about 0.98.

1. — Introduction and statement of results.

We are concerned with the following eigenvalue problem:

{ A —Ju=0 in G,
(1.1)

w=|Du|=0 on the boundary 0G of G.
Here @ is any open bounded subset of n-dimensional euclidean space R*;

2

5 3
(1.2) A= gl-a—m—

© o

is the Laplace operator and A2 itg square;
(1.3) - D = gradient .
We set

(1.4) A(@) = the first (lowest) eigenvalue of problem (1.1);

(1.5) G* = the ball having the same n-dimengional measure as & .

Our aim is to find a lower bound for the ratio

MG
(1.8) ;T(E*l) .

(*) Entrata in Redazione il 12 giugno 1981,
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Ag is well known and easy to see,

S e
(.7 16 = it g-mie |

where m stands for n-dimensional measure,
(1.8) Cp=m"?/I'(1 + n/2)

is the measure of the n-dimensional unit ball, j, is the smallest positive root of the
equation: I;(z)Jv(z) ~—Iv(z)J;(z) =0 (v=(n/2) —1; I,J = Bessel functions). For
instance, in dimension » == 2 one has: A(G*) X (area G)%= 1029.9959....

A conjecture has been made by a number of authors (see Payne [11]), that the
ratio (1.6) is bounded from below by 1. In other words, one might expeet that for
homogeneous clamped plates with fixed measure the gpherical plate has the lowest
frequency of vibration. A result towards a proof of such a conjecture hag been ob-

tained by Szmeo [13] (see also [12]), who proved that the inequality:
(1.9) ME) = MG*)

holds for those domains @ for which a principal eigenfunction is free from nodal lines
(similar, but in a sense weaker, results were obtained by HODYREVA [10], via an
extension of & method by CoURANT [5]). Szegd’s proof, which was originally written
in dimension » = 2, can be easily carried out in any dimension #» > 2 (as well as
rephrased in a completely rigorous function-theoretic setting). Unfortunately, the
absence of nodal lines seems to be a crucial hypothesis for Szegd’s argument, and
no criteria are available for deciding whether a given domain fulfils or not such a
hypothesis. As a matter of a fact, both theoretical and numerical devices have
shown that elamped plates, whose principal eigenfunections do change their sign,
actually exist. CoFFMAN-DUFFIN-SHAFFER [4] proved that the first eigenvalue and
the principal eigenfunctions of a ring-shaped clamped plate have multiplicity two and
a diametral nodal line if the outer radius is 1 and the inner radius is < 0.001311 774
(parallel results for an infinite strip are in DUFFIN [6]). Numerical results by
BAUER-REISS [1] and HACKBUSCH-HOFMANK [8] strongly indicate that the principal
eigenfunction of a square clamped plate changes its sign. Indeed CoFFMAN [2] has
proved, by extending a method of [3], that any eigenfunction of a square clamped
plate oscillates infinitely many times on any ray issuing from a corner.

Our results can be summarized in the following way. A constant ¢, ewists such
that the inequality

(1.10) AMG) = ¢, MG *)
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holds for any bounded domain G in R". Such a constant is explicitly computable; the
values of ¢, for small dimensions n are given by the following table:

7 ey
2 0.977 68
3 0.73910
4 0.65242
5 0.60925
6 0.583 94

It will be clear from our proof that ¢, is> 0.5 for all n. Incidentally, our method
shows that (1.10) can be replaced by (1.9) provided the nodal set of a first eigen-
funetion # is either empty or a loecus of stationary points of u.

The author wishes to thank dr. M. G. GASPARO, who made the numerical part
of the present work. '

2. — A symmetrization argument.

We shall use the following variational characterization of the first eigenvalue:

(2.1a) A(G) = minimum of the Rayleigh quotient
-1
(2.1b) f(Au)Zdw(fuzdm) ,
G G
(2.1¢) under the constraint: u e W3*G).

Furthermore we set:
(2.2) % = a principal eigenfunction ,

i.e. w will stand for any minimizer from W2*(@) of the Rayleigh quotient (2.15).
Here W2?(G) denotes the closure of 0°(@) (= the collection of all infinitely differen-
tiable functions, which vanish in a neighbourhood of B*\G) under the topology of
the Sobolev space W%%(R+). Thus the boundary conditions: = [Du|= 0 on 06,
are included into the constraint (2.1¢). Well-known theorems on elliptic equations
ensure that » iy C* in (the interior of) G; moreover, no non-negligible subset of &
exists where  is either constant or harmoniec.

Notations and objects, which we shall deal with, are listed in the following table,
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%, = max (u, 0) positive part of »
u_ = — min (%, 0) negative part of u.
sprt., support of w,, the closure of { € @: u(z) > 0}
spréw_ support of u_, the closure of {x € G': u(x) < 0}.
G* see (1.5)
(sprt w,)* the ball having the same measure as sprtu,
{sprtu_}*
m(@) = C, L L = radius of G*
m(spréu,) = C,a" a = radius of (sprtu.,)*
m(spréw_) = C,b" = radius of (sprtu_)*
(@/L) + BLp =1 ~—o
c, measure of the unit n-ball.
aft) = m{w e G: u(x ) > t} distribution function of u,
B(t) = m{z e G: u(z) < —1t} distribution function of u_, > 0.
(dw)i, (du) decreasing rearrangements of (duw),, (du)_.
0< 5~ (du)}(m(6) —s) .
0< s — (Au* (m(6) — ¢ increasing rearrangements of (Au),, (du)_.
1) = (du)(s) — () (m(@) —s) | = (du)i(s)
if 0<s < m{we G: du(z) < 0},
= — (du)f(m (G)~s)
if m{z e @: du(r) <0} < s<m(F),
= 0 otherwise;
f(s) = — g(m(G) — s} .
g(8) = (4u)3(s) — (du)L{(m(G) — ) the signed rearrangement of A such that:
(i) g(s) decreases as s increases in [0, m(G)];
(ii) length {s € [0, m(®)]: g(s) > I} =
~m{weG Aula) > t},
length {s € [0, m(&)]: g(s) < —1} =
=m{zw € G: dulz} < —1},
for every ¢ >0 (see figure).

We start our proof by applying lemmas 1 and 2 from [14] to the positive and
the negative part of 4. We obtain:

n? G’i’“cx(t)z"zmé [—&/(8)] f (— Au) dz
uw(@)>1t
n? Ci/nﬂ(t)Z—Z/né [— B'(#)] f (Au) dw

wlw)<—1

(2.3)

for almost every ¢ > 0. A short proof of inequalities (2.3) is sketched in the Ap-
pendix. On the other hand, theorem 378 and a continuous version of theorem 363
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A #s8) = (du)(s) ~ (Au)z (m(@)~ s)

—
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Figure 1

from. [9] give:

f(—Au) do = f (Aw)_ o — f (Au), do <

ulz) >t ulx)>1 u(x)>t
a(t) a(t) a{t)

J‘(Au)’i(s) ds —f(/_lu)i (m(G) — s) ds =ff(s) ds,
0 0 0

and analogously:
B
Au dx _{fg(s) ds .
w(@)<—4 0
Then we have:
*(t)
W 02 < [— o (1)]a) 2" f(s) ds

(2.4) 0

n? OF" < [— B'()]B(5) 22/ g(s) ds

(4]

for almost every ¢ > 0.
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Integrating both sides of (2.4) gives:

«(0) r
n? O < fr'2+2"" dr|f(s) ds
A &) 0
25) A(0) r
n?: O < fr"“zl“ drlg(s) ds,
Bl 0

for f(—— o (1)) dt gf (— de(t)) and f(~— g'(t)) dt < ... thanks to the monotonicity
of « and f. Here the following property:

e

(2.6) f f(s)ds  and f g8)ds =0 for 0 <r< m(@)
0

0
plays a role. Proof of (2.6): [0, m(@)}or ——>f f(s) ds is a coneave function, for f(s)
0

decreases as s increases; such a funection wvanishes at both ends of the interval
[0, m(@)], as formulas (2.12)-(2.14) below show; hence it must be nonnegative.
Inequalities (2.5) hold for all £ > 0. In terms of rearrangements of #, and u_
they read as follows:
ul (@) =u} (Calolr) < v(e)

for every « from (sprtu,)*,

(2.7) R
ut (@) =" (C, o) < w(@)

for every z from (sprtu_}*.

Here the left-hand sides are the spherically symmetric rearrangements of w,_ and u_,
and the (spherically symmetric) functions v and w are defined by:

Cna™ r
> 0¥ y(x) = fr‘“zl"’ drifer')dr’,
Cnlz)® 0
28) Cub™ '
n® C2yp(2) = fr““”" drfg(r’) ar' .
Cle|™ 0

In the derivation of (2.8) one should keep in mind the following property (to-
gether with the analogous one for «_):

a(u’ (s)) < 8 < aful(s)—0),
a consequence of the standard definition

wh(s) = 1inf {t > 0: a(t) < s} = sup {t > 0: a(t) > s} .
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Let us list some crucial properties of v and w:

(2.9a) o@)=0 if g|=a, wx) =0 Iif |z =0;
(2.96) Do(w) = Dw(w) =0 if jo| = L;
(2.90) f (Av)® dow = f (Aw)? dw =f(Au)2dw;

[e]<L laj<L @

hence in particular v and w are in W22(G*),
Properties (2.9a) are obvious. Ingredients for the proof of (2.95) and (2.9¢) are

the formulas
Cnlx|®

nGn%(w)z—ml-” f f(s) ds

0

(2.10) Colef?

o
n(),,a—t%(w) = — |@|-" f g(s)ds

0
(which follow at once from (2.8)), and the equations
(2.11) — dv(x) = {(Culef) , — Aw(x) = g(C,|z[")

(which follow from (2.10) and the customary formula

o=t e o)

for the laplacian of spherically symmetric funections). On the other hand, the
definition of f implies:

m(@) oca oo
(2.124) f #(s) ds = f (duw)* (s) ds — f (Au)*, (s) ds
0 0 (1]
=|(du)_ do —|{(du), de = —| du dz ,
Jiaw- o=, de =]
and:
m(G) S

(2.130) [ 1512 ds = [[(Auy’, ()7 ds + [T(A0)* (9172 @5 = [(Au)® da
0 0 0 G

analogously:
m(@)

(2.120) f g(s) ds = f Au do
0 é
m{&)

(2.13b) g(s)¥ds = | (du)2 dz .
Joorae=]
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From. (2.11) and (2.13) one gets (2.9¢). From (2.10) and (2.12) one gets (2.95),
provided the basic equation

(2.14) f(Au) de =0
é

is taken into account. Equation (2.14) is a consequence of the boundary conditions

for u: in fact, Gauss-Green formulas show that the laplacian A% of any function u

from W2*@) must be orthogonal to any (square integrable) harmonie funetion.

Thus the proof of (2.115) consists essentially of the following remark: the gradient

of a spherically symmetric W>2-function vanishes on the boundary of a ball if and

only if the laplacian of that function has mean value zero on the same ball.
From (2.7) and (2.9¢) we infer

(2.15) Z(G)‘lz(f(Au)zdfv)_l{ f (i) da - f(ui)zdw}§
@

(sprt w.,)* (sprt u.)*
| vrde { wrde
|z|<a laj<b
<
= f (Av)ﬁd:v+ [ (Aw)2dex’
le]<L |e]<L

hence we are in a position to draw the main conclusions of this section.

THEOREM 1. — Let p be defined by:
] vrde

lei<t .
[ (Av)2 da’

|w| <1

(2.16) 0<i<1l, p(t")=max

where v runs in the collection of all functions having the following properties: (i) v is
endowed with square-integrable second order derivatives in the unit ball {x € R*: |»| < 1};
(i) o(z) = 0 on the inner sphere |x|=1t; (iii) Dv(x) = 0 on the boundary |w]=1;
(iv) v is spherically symmetric (i.e. a function of |#| only).

The following inequality holds:

< 1

) p(l)maX{p(t) Lpl—t): 0<t<1).

(2.18)

Note that the right-hand side of (2.18) does not exceed 2. In fact one may infer
from theorem 2 below that p(t) increases as ¢ increages from 0 to 1.

Proor OF (2.18). — From (2.15) we get

1

TS DI + p0r| I,
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after a straightforward dimensional analysis argument. Recall that (a/L)*+ (b/L)"= 1.
Furthermore A(G*) = L~*/p(1), since the principal eigenfunection of a spherical
clamped plate is known to be a spherically symmetric function (on the other hand,
(1.7) holds and it will be clear from section 4 that p(1) = j*). Thus (2.19) follows.

3. - Variations on a theorem by Szegd.

The result from [13] can be easily recovered with the help of our previous
arguments. Suppose in fact that a principal eigenfunction # has a constant (say
positive) sign. Then u =u,, u_ is identically zero, ¢ =1L and b=10. Thus o
vanishes on G * (together with its gradient) and we get from (2.15):

{ v2du [ (u})* do [uzdz
1 > G* > a* — G
MG = [ (doppdz= [(dw)ds [ (du)rda’
q* q ]
that is:
(3.1) ' ME*) < MG .

A curious result, which we state presently, is available too. Quite the same
procedure of section 2 (with a slight change: forget positive and negative part of u,
apply lemmas 1 and 2 from [14] directly to w, and go ahead) leads to the following
estimate: )

(3.2a) w*< U,

where u* i3 the spherically symmetric rearrangement of || and

m(G) 3

d

(3.20) Ule) = f W f h(s)ds ,
Cnluf” " 0

(3.2¢) h(s) = (du sgnw)(s) — (Ausgnu)i(m(G) —s).
An ingpection shows:
(3.3a) Ux)=0 if vcoG*,

m(@)
(3.30) A0V (@)D U ()| = I f h(s) ds] — ‘ f (dusgnu)ds| it zeoG*,

m(@ 0 a
(3.3¢) f(A U)? do — f h(s)2 ds :f(Au)zdx.
a* 0 [

18 ~ Annali di Malemalica
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Hence we have from (3.24) and (3.3¢):

(AT dw
o*
(3.4) AG) ZW

a*

The right-band side of (3.4) exceeds A(G*), provided U and DU vanish on the
boundary of G*. As (3.3) shows, the latter circumstance occurs if and only if

(3.8) f(Au sgnu)de =10,

G

On the other hand, the equation

(3.6) J (Au sgnu)do = 21im |Du|H,_,(dx)
t_ﬂ()wEG: u(z) =1}

holds. In fact Federer’s coarea formula [7] and Gauss-Green theorem give:

+ oo
€ m
o 42 Duj2 = — —
f AT dt J |Du| H,_o(de) = J‘i ul® uzdm fAu arctan — do
— oo {zeGux) =t} a

for every ¢ > 0, since w is in W2%(@) (i.e. Du vanishes on the boundary). Here H,_,
stands for the (n — 1)-dimensional Hausdorff measure.

In conclusion, one can assert that (3.1) holds if the nodal set {x € G: u(w = 0}
of a principal eigenfunction is either empty, or included in {x e @: Du(x) = 0}.

4. — A one-dimensional problem.
THEOREM 2. — Let p be defined by (2.16) and let 0 <<t <1. Then
(4.1a) tlinp(t)-1/s
is the smallest positive root z of the equation:
(4.1b) tP(g)=1.

Here:
(4.2) Pr)=1—

m - 1{ wt1(®) + Jm»}—l(z)} -1 _m +1 {I:n(z) . Jrln(z)} _
2 I..(2) Iul@) [ ¢ L.z J.()]

;. m-+1 2 ]
=1— ~ {zI,,, BERT) f L () J (?) dt}
0

and m = nj2 —1.
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ERC

z = 552007

TFigure 2

As is easy to check, P(z) <1 if 0 < # < ju,; P(#) decreases monotonically from
-+ 00 to —oo if # increases from jn; t0 jn s (jur= k-th positive zero of J,). The
behaviour of P(z) for » = 2 is shown in fig. 2.

Using theorem 2, the functions

(4.3) p(t) and  q(f) = p(¥) + p(1 —1)
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have been evaluated numerically for 2 <n < 6. The graphs of p and ¢ are plotted
in fig. 3 for n = 2. Other results are summarized in the following table.

3 108 x max gq(t)
1 108 xp(1) [= 10° X g(0.5)]
2 9.58208 9.80081
3 4.206 83 5.691 54
4 2.21236 3.391 00
5 1.29876 213172
6 0.82209 1.40783

ProOF OF THEOREM 2. — Since all trial functions involved in (2.16) are spherically
symmetric, we are faced by the following one-dimensional problem.:

1
{[w"+ ((n —1)fr)u2r=1dr
2 = minimum ,

i
Jurrn=tdr
L]
under the constraints:
1
frur + @+ @ mnr-ar < oo,
0
u(r)=0 atr=t, u'(r)=0 atr=1,
Let:

! % = a minimizing function ,

u*= the minimum value of the relevant functional.

The pair «, 4 must satisfy the Euler equation of the problem, that is:

1 3
f[u” -+ n—1 u’] [(p” -+ n—1 (p'] rldr = ‘u"fuq)r""‘ dr
(4] 0

r ¥

for all test functions ¢ suech that:

1
[lor+ @2+ @irplrrar < oo,



GI0RGIO TALENTI: On the first eigenvalue of the clamped plate 277

#{t) = p(t) + p1— ¢
0.009 800 81 \f PO+ a1y
0.009 582 08

0.004 900 41

T Y

Figure 3

Avppropriate choices of ¢ show that the minimizing function u satisfies the fol-
lowing differential equation:

e —14d 2 .
(de‘*“?LFZZ—r_ 4) u=0 ifo<r<t,

a2 n—1d\2 ,
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together with the following boundary conditions:

%  i§ smooth near r =20,
ury=0 at r=1¢,

o and 4"+ (n—1)(w'/r) vanish at r=1.

Integrations give:

| In) Tamy |
Alpr) Lur)  Juir) fo<r<t,
w(r) = B re — 42 pa-n ___fa-n iy <1
2 + n—2 hi<rsi;

where A, B are constants (the last term must be replaced by In (¢/r) when n = 2).
For determining A4 and B (i.e. the ratio 4/B, since « is defined up to multiplicative
constants), we have to keep in mind that «’, 4", #” have no discontinuities across
the interface r = ¢. This leads to a system of linear homogeneous equations in .4, B
which can be arranged in the following form:

{ (L —t) 124 -+ W(ut)(ut)™B =0
[1+ (n —1)t"]624 - [(ut) W' (ut) — 2m W () ut) B = 0

where:
%

W(2) = Ln(2) I s (2) + Inia(2) Inl(2) = I(2) I n(2) — Ln(2) T (2) = gf $Lu(8) Jw(s) ds .

0

Putting the determinant of the coefficients equal to zero gives the equation:

W'(Mt)] -
Wut) | '

" :1—-%[1+(Mt)

which allows one to determine u. The claimed assertions easily follow.

Appendix.
In section 2 we used the following lemma.

LEMMA. — Let u be o (veal-valued) function from WG such that Aw is in LYG)
The following inequality

(A.la) n? O ot P2 < [— o/ (1)] f (— Au) dw

{w€G: u(z) >}
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holds for almost every t>> 0. Here:
(A.1b) a(t)y = miz € G: u(z) > 1},

and G is any open subset of euclidean n-space.

We present here a short proof of inequality (A.1). For the sake of simplicity,
we restrict ourselves to the case (which is enough for our purposes) where « is in-
finitely differentiable. We refer to[14] for a more exhaustive proof.

Cauchy-Schwarz inequality yields: '

2 —_
(A.2) (% f }Du]dw) gw % f |Duj2de
t<u(x)<Li+k t<ulz)<t+h
for every h > 0. Letting b — 0, we get:
(A.3) [H,_{we6: u@) = 1< [— ()] f \Du|H,_,(d)

{zeq: u(z)=1}

for almost every ¢. In the derivation of (A.3) from (A.2) we have applied Federer
coarea formula [7] and the fact that « is almost everywhere differentiable. H,_,
stands for (m — 1)-dimensional measure.

On the other hand, Gauss-Green formulas yield:

(A.4) j \Du|H,_(dw) = j (— Au) do

{ze@: ulx) =1} {xe@: ulz)>1t}

for every ¢ such that
(A.B) dre@:u@) > ={peG: ux) =1},

an equation which holds for almost every ¢ > 0 thanks to Sard’s theorem and the
vanishing of % on the boundary of ¢. Thus (A.3) and (A.4) imply (A.1) via (A.5)
and the isoperimetric theorem.

REFERENCES

[1] L. Baver - E. L. RE1ss, Block five diagonal matrices and the fast numerical solution of
the biharmonic equation, Math. Comp., 26 (1972).

[2] C. V. CorrMaN, On the siructure of solutions to A% = Au which satisfy the clamped plate
conditions on a right angle, preprint 1980, Carnegie-Mellon University.

[3] C. V. CoFFMaN - R. J. DUPFIN, On the structure of bikarmonic functions satisfying the
clamped plate conditions on a right angle, Advances in Appl. Math., 1 (1980).



280

G1ore10 TALENTI: On the first eigenvalue of the clamped plate

[4]

[5]

(6]
(7]
(8]

[9]
[10]
[11]
[12]
[13]

[14]

C. V. CorrMax - R. J. DurrixN - D. H. SuarrEr, The fundamenial mode of vibration of
a clamped annular plate is not of one sign, Constructive Approaches to Math. Models,
Academic Press, 1979.

R. Courant, Beweis des Saizes, das von allen homogenen Membranen gegeben Umfanges
und gegebener Spamnung die kreisformige den tiefsten Grundton besitzi, Math. Z., 1 (1918).
R. J. DurrixN, Nodal lines of a wvibrating plate, J. of Math. and Phys., 31 (1953).

H. FEDERER, Curvature measures, Trans. Amer. Math. Soc., 93 (1959).

W. HacksuscH - G. HormanN, Resulls on the eigenvolue problem for the plate equation,
J. Appl. Math. Phys. (ZAMP), 31 (1980).

HARDY - LITTLEWOOD - Porya, Inegualities, Cambridge Univ. Press (1964).

V. HopYREVA, On o minimal property of the circle, Dokl. Akad. Nauk SSSR, 69 (1949).
L. E. PAYNE, Isoperimetric inequalities and their applications, SIAM Review, 9 (1967).
G. Porya - G. 8zEGD, Isoperimetric inequalities in mathematical physics, Ann, of Math,
Studies, 27 (Princeton, 1951).

G. 8zEGO, On membranes and plates. Note to my paper « On membranes and plates »,
Proc. Nat. Acad. Sci. USA, 36 (1950) and 44 (1958).

G. TALENTI, Nonlinear elliptic equations, rearrangements of funciions and Orlicz spaces,
Annali di Mat. Pura e Appl., 120 (1979).




