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S u m m a r y .  - This paper treats the nonlinear age-dependent population problem (1) ~(0, a) =~(a), 
a e I ;  (2) e(t, 0) : -F(e(t, .)), t ~ 0; (3) lira (e(t~-h, a~-h) --  ~(t, a))/h : G(e(t, .))(a), a eI ,  

h-->0 

t >~ O, where I is the aye range o] the population, ~(t, �9 ) is the unknown age density at time t, 
is the known initial age distribution, and the ]unctionals ~ and G a~'e nonlinear. The 

problems of existence, uniqueness, continuous dependence upon initial values, and the posi- 
tivity o] solutions are investigated using the method o] nonlinear semigroups. 

l .  - I n t r o d u c t i o n .  

Our purpose is prove the existence, uniqueness, and continuous dependence 
upon initial values of solutions to a general nonlinear age-dependent population 
model. The theory of nonlinear age-dependent population models initiated with 
the work of M. GUI~TIN and I~. M)~cCA~-~Y in [15] and F. HOPPENSTEADT in [11]. 
Their approach took advantage of the special form of the nonlinearities in the prob- 
lem to apply the method of characteristics and to convert the equations to a system 
of nonlinear Volterra integral equations. Other researchers, such as G. DIB~A- 
sro [3], [4], E. SI~EST]~I [24], and A. HAI~ovIc~ [9], [10], have exploited this 
approach to further develope the theory. The advantages of the Volterra integral 
equations approach is that  the method is direct and the formulas which result 
provide a useful representation of the solutions. The disadvantage is that  the 
method limits the nature of the nonlinearities which may be treated. 

In this paper we adopt a different approach to the problem. Our method views 
an age-dependent population model as a nonlinear semigroup or dynamical system 
in a Banach space of initial age distributions. To solve our problem we proceed 
as follows: (1) in an appropriate Banach space of initial age distributions we define a 
nonlinear operator A; (2) we show that  A generates a nonlinear semigroup T(t) ,  

t > 0 in this Banach space by appealing to the general theory of nonlinear semigroups; 
(3) we demonstrate that  the solutions of our age-dependent population problem 
are given by the semigroup T(t) ,  t>~O. The advantages of the semigronp approach 
are that  it removes the technical complexities of the proofs, allows very general 
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nonlinearities in the  models, and exhibits the dynamical  system st ructure  of the  
solutions, l~nrthermor% it makes available the  theory  of operator  semigroups in 

Banaeh  spaces for the  investigation of such problems as numerical  approximation,  
asympto t ic  behavior,  and control  theory.  

The organization of this paper  is as follows: I n  Section 2 we state  the  results 
f rom nonlinear semigroups theory  which we will need. In  Section 3 we present  the  
nonlinear age-dependent populat ion problem which we will solve. In  Section r we 
state  our theorems and in Section 5 we give thei r  proofs. In  Section 6 we make  some 
concluding remarks.  

2. - Nonlinear semigroups. 

The facts s ta ted below are t aken  f rom [1] and [2]. 

D:EI~I~ITIO~ 2.1. - Le t  A be a mapping f rom a subset of a Banach  space Y to Y. 

A is accretive provided that there exists ~o> 0 such that if y~, y~D(A) and O < 

< ~  <~.o 

(2.1) ll(Z + ~X)y~- (z + ~A)y2]I > ]lY~-- y~ll. 

TI~Ol~Eg 2.1. - Suppose A is a mapping f rom a subset of a Banach  space Y to Y 
and there  exists co ~ R such tha t  A @ o)l r is accretive. Suppose tha t  there  exists 
~ > 0 such tha t  if 0 < ~ < ~ then  _R(I @ AA) = Y. 

I f  y e D ( A )  and t > 0  then  

(2.2) l im (I + 1/nA)-(rt~l+l)y d~ T(t)y  
n- - ->  CO 

exists uniformly in bounded intervals of t. lVloreover, the family of mappings T(t), 
t > 0  so defined is a nonlinear semigroup with generator  A in the  sense t h a t  

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

T(o)  = z 

T(t)(1)(A))cD(A) for t>O 

T(tl + t2) = T(tl)T(t2) for t~, t2>O 

T(t)y is continuous in t for fixed y e D ( A )  

]lT(t)y~--T(t)y211<exp[~ot]]]yl--y21] for t>O and y~, y2eD(A) .  

3. - Nonlinear age.dependent population models. 

Let  X be a Banaeh  space with norm ]] []. Le t  O < r < + o o a n d l e t  I = [ 0 ,  r] if 
r < - } - c ~  and I = [ O ,  oo) if r = - 4 -  co. Denote  by  /~  the  Banach  space L ~ ( / ; X )  
with norm ]l I]~ 1. Le t  ~ > 0  and denote by  C~ the  Banach  space of continuous fune- 
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t ions ~ from I to X such tha t  ]lexp[aa]q~(a)H is bounded for a a I ,  and the norm 
of Ca is given by 

W e  

(3.~) 

(3.2) 

O u r  

(3.3) 

(3.~) 

(3.5) 

asZ 

define nonlinear operators ~ and (~ as follows: 

F: Co ~ " L I ~ X  and there exists a constant  IF I such tha t  for all ~ ,  (p~ Co n Z ~, 

G: C ~  Ca for some constant  a > IFt and there exists a constant  IG] such 
tha t  for all qD~q~e C~, IIG(qD~) --  G(q)u)Ila< IGHlq)I- cfg[la. 

problem is to find a function ~ from [0, c o ) X I  to X satisfying 

~ ( O , a ) = ~ ( a ) ,  a e I  

q(t, 0) = ~(q(t, . ) ) ,  t > 0  

D~(t,a) = G(~(t, .))(a), t>O, a a I ,  where ~ is given in Ca, ~(t, . ) a  Ca for 

t~>O, and  D is defined by 

D~(t, a) = lira (o(t + ~, a § ~) - e(t, a)) /~.  
h-->0 + 

4. - S tatement  o f  the  theorems.  

We define 

(4.1) i = {~ e Ca: ~(0) = F(~)} 

(4.2) A:  Ca ---> Ca, Acp -= ~ ' - -  G(q~), D(A) = {q~ ~ M: qYe C~}. 

T ~ o ~ . ~  4.1. - I~et (3.1), (3.2), (4.1), (4.2) hold, and let c9 ~ a -}- IG]. The fol- 

lowing are t rue:  

(4.3) 

(4.4) 

(4.5) 

Let  

(4.6) 

(4.7) 

/~(I -k ~A) = Ca for 0 < 2 < ~/2 co 

A ~ (9I is accretive 

D(A) = M .  

X+ be a closed cone X (see [19], p. 14) and define 

Co,+ : (q~eCo:q~(a) e X +  for all a e I }  

M+ = r n M .  



~6 G. F. WE~B: Nonlinear semlgroups and age-dependent, etc. 

THEO~E~ 4.2. - Suppose the hypothesis of Theorem 4.1 an4 in ~ddition suppose 

(4.8) /v(C~,+) c X+ 

(4.9) there exists a positive constant  ~ s~ch that (G + o~I)(C~,+)c Q+ . 

Then for 0 < A < 1/(2(o ~- c~), (I ~- ~A)-*(C~,+) c C~,+. 

THEO~EH 4.3. -- Let  the hypothesis of Theorem 4.1 hold. Then A is the generator 
of a nonlinear semigronp T(t), t>O in M as in Theorem 2.1. If ,  in addition (4.8) 
and (4.9) hold, then T(t)(M+)c M+ for all t~>0. 

Tm~o~E~ 4.4. - Let  the hypothesis of Theorem 4.1 hold. Le t  90 e M and define 
the function ~ from [0, o o ) •  to X by ~(t ,a)~ (T(090)(a),t>0, a e I .  Then 
satisfies (3.3)~ (3.4), (3.5). I f  (4.8) and (4.9) hold and ~ e M+, then  ~o(t, a )~  X+ for 
all t~>0 and a e I .  I f  the  mapping G satisfies 

(4.10) G:L~-->L ~ and there exists a constant  K such tha t  for all ~0~,90~eL ~, 

tl G(90~) --  G(902 ) il~. < K[190~ --  90211~. 

then ~ is the unique continuous function from [0, c o ) X / t o  X which satisfies (3.3), 
(3.4), and (3.5). 

5. - Proofs of the theorems. 

We first give 

P]~ooF OF (4.3). - Le t  0 ~ A % 1/o and let ~ ~ C~. We observe t ha t  ~0 ~ D(A) 
and (I -~ ~A)90 ~ ~o if and only if 

0 

!~ix a point x e X and define the  mapping K~ from C~ to C~ by 

0 

I f  901, 90~ ~ C~, then  

exp [oral I[ (K~ 90~)(a) - -  (K~90~)(a)fl 

< exp [ - -  a(1 - -  G2)/k]fexp [b(1 - -  G2)/Z] IG lit90,-- ~2]I. db < IO III~,- 90~I1~k/(1 - ~z) 
0 
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Thus~ 

Since :;[co < 1) K~ is a strict contraction from C~ to C,~: By the Contraction Mapping 
Theorem there is a unique point ~ e  C~ such that K , ~ =  ~ .  Observe that  for 
x~ x~ff X 

(5.3) exp Ida] II~,(a) - ~,(a)II 

~<exp [ - - a ( 1 -  o').)I,,I,[ [Ix,--x,[[ + fexp  [ b ( 1 -  d~t)/,Tt] [d l [ I~ . -  q~..!I~db] 
0 

< V , -  ~,It + aI~t l l f~,-  f , ,!I4(:  - ~1  

and hence 

(~.4) l i i , , , -  ~,,ll < i i x , -  x, tI O- - ;.,~)/(1 - ; , ~ ) .  

Define the mapping k from X to X by k(x)= F(~f~), xeX.  If ~ ,  x~eX, then 
(3.1) and (5.4) yield 

r 0 a 

0 0 

< Ifl[aV,- x~.II + ~lelIIf~,- e~,II.l(~ - ~a) ~] 

Since ~o < �89 and ~ > IFI, k is a strict contraction from X to X~ an4 thus there 
exists a ~mique point xo e X such that k(xo) ~- Xo : F(~.) .  Hence, ~0 is the unique 
solution of (4.10) and so ( I -~  ~A)~ . -~  W. 

P~oor  or  (4.4). - Let 0 < ; t  < (~--!zvl)/tFleo and let y~, y~eC~, ~,q~2eD(A) 
such that (I + ~A)~  = ~ ,  i = 1~ 2. I t  suffices to show that  

(5,5) I ] ~ , -  w~]l~> ~,- e~]l~(1 - ~ ) .  

First observe from (5.1) an4 (3.1) that  

i!F(~,) - F(~)I]  < IF i flint(a) - -  q~(a) I] da 
0 r 

< l~lfexp [ -  a/22{tlF(~,) -- F(W)II 
0 
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a 

-I-fexp [btX][tr exp E--'~b:]llml-- 9:11<, + exp [-- ~'b]l191-- V:II<,tZ] db} d<~ 
0 

-1- X[l~lllm~-m, tl<, -1- II~,1- w~ll<,/X]l(1 - z~)<D.  

Now solve this inequal i ty  to obtain 

(5.6) IIF(m,)-z~(9o)ll < lZ~'l(zlGIl]9~-m:ll<,-F I I~,~-~,I I~)1(1-I~lX)(]--  z<D,~. 

From (5.1) and (5.6) we obtain 

exp r,~<~] II (m~(<~) - 9~(<~))II <exp  E -  ~1Z]{11-~(91) --~(m:)l l  
a 

-t-fexp [b/X-- <'b]l-1~ll191-- m4l<' -t- ll~',-- 't':ll,/X] db} 
0 

< e x p  [--  a/X][lt~l/(1 - -  IFI~) ~ + (exp In(1 - -  (~X)/X] - -  1)] 

Since 2 < (a--I-FI)/IFI<,~ < (~-IFI) / IS~l  ~, we have IFI/(1 - I~lX) o- < 1 ,  ana thus 

Hence, 

exp I-~'a'lIl~l(a) - -  9~(a)ll < l-~ IGI I Ig , - -  9.I1~-I- {1~1-- ~,:Ii-1/(1 - m ) .  

1Vow solve this inequal i ty  to obtain (5.5). 

P~OOF OF (4.5). - Define the  subspace Cso of C, by  Q,o 
and define Ao: C~, o -> C~, o by  

= {~ e c . :  v(o) = o} 

Ao9  9' D(Ao) : {9 e Co, o: 9 ' e  C,,o) 

Then~ - -  Ao is the  infinitesimal generator of the strongly continuous linear contraction 
semigroup To(t), t>~O in Co, o given b y  To(t)9(a) = 9 ( a -  t) lot  a > t  and To(t)9(a) = 0 
for 0 < a K t .  Fur ther ,  for X > 0  and ~psCr o, 

,(5.7) (s + ~Ao)-l~(~) =fe~p [(b @)/X] ~(b)/X db.  
0 

I t  is well known (e.g. [31], p. 241) tha t  

(5.8) lim (I  ~ XAo)-lW = W for ~11 ~p e C,,o. 
2~-->0 
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Let ~o e M, let 0 < g < 1/2oh and let q~;.eD(A) such that  (I § gA)~0~ = ~. From 
(5.1) and (5.7} we have that  

~t 

~z(a) = exp [-- a/,~]F(~) ~ j e x p  [(b --  a)/~] G(~o~)(b) db 
0 

+ (z + ~to)-~(~- ~(o))(~) + (1 - exp [ -  al@ ~(o). 

Thus, 

exp [aaJ(q~(a) --  ~(a)) ~- exp [aaJ{exp [-- a/~J[F(~) --  ~(~o)] 

+fexp E(b - -  ~)/~] a (~ ) (b )  a~ + (Z + ~Ao)-~(~ - -  V(0))(~) - -  (~ - -  ~(0)) (a)} 
0 

and so 

~Tow solve this inequality to obtain 

(5.9) I1r vll~<(~/(~- trl))(~[1~11]r 
+ [[~(o)[[~]/(1 - ~ )  + [[(z + ~Ao)-~(~ - -  ~(o))  - -  (~ - -  ~(o)H~) �9 

Observe that  (5.9) implies that  [[~[]6 is bounded independent of 2 in (0, 1/2~). :Now 
use (5.8) and (5.9) to argue that  lira ~ = ?, and hence conclude that  ~o e D(A). Z-->O+ 

I~et ~ ~D(A) so that  there exists a sequence {~%} such that  ~.(0) ~ ~(~.) and 
{~.} converges to ? in C~. By the continuity of 2~ we have that  ~(0) = ~(?) and 
hence ? e M. 

P~oo~ oF Tm~.o~v.~ ~.2. - The proof of Theorem 4.2 is very similar to the proof 
of (4.3). Let 0 < 2 < 1 / ( 2 c o ~ a )  and let F~C~,+. Then F e D ( A )  such that  
(1 § hA)~ = ? if and only if 

(5.10) f(a) ~--- exp [-- a(1 § ~cr §  [b(1 -}- ~zt)/)~][(G + 0{.~) (~0) (b) + 

0 
+ ~(b)/~] ab}. 

Let x e X+ an4 by (4.9) we may define a mapping J ,  from C~,+ to C~,+ by 

(J~g)(a) = exp[- -  a(1 § azr § j e x p  [b(1 § 2cr § ~I)(z)(b ) § ~(b)/,~Jdb}. 
o 

For g~, Z~ ~ C~, + 

- A n n a l t  eli  M a t e m a t i e a  
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Since ~o~ < 1, (IGI -t- a) ~/(1 d- ~ ( a -  a)) < 1, and hence J ,  is a strict contraction 
from Q +  to Co,+. Le t  g~ be the unique point of Q +  such tha t  J , g ,  = Z~. Observe 
t ha t  for x~, x~ e X+ 

((exp [('a]llx~:(a) - x~:(a)ll < l lX l -  x.~ll -I- ~(lat -I- ~ ) I I x . , -  x:,llo/(1 -1- ,~(~ - <~)) 

and hence 

(5.1i) 

By (~.8) we m a y  define a mapping j from X+ to X+ by j(x) = I~(Z,). 
I f  x ~ , x 2 s X + ,  then  (3.1) and (5.11) yield 

i l j(x~)-j(x~)[I < IF l f l lzda) - X~=(a)ll da 
0 

< XlFtEl lx,- x:ll -I- (IGI-I- ~<)llz~,-x~,U<,/(1-4- ,~(~<- <,)) <d 

Since IFI/a < 1 and 2 < 1/(2(o d- g), we see tha t  j is a strict contraction from X+ 
to X+. Thus, there exists a unique point xoe X+ such tha t  xo ~ j(xo)-~ EOcs). 
Hence, ~ ~ Z~o is the unique solution of (5.10) and Z~oe C~,+. 

PaooF oF Tm~o~E~ 4.3. - The proof follows immediately from Theorem 2.1, 

4.1, and 4.2. 
Before giving the proof of Theorem 4.4 we establish two lemmas. The first 

lemma is a slight modification of a result of A. PLA~m in [20] and the secondlemma 
is a slight modification of a result of H. SCXWA~Z in [25], p. 222. 

L ] ~ _  5.1. - Le t  the  hypothesis of Theorem 4.4 hold and let 0 < t ~ < t 2  and 

0 < a~ < a2 < r. Then 

t~ a~ a~ t2 =I I"(0(', 
$i al al tl 

Ploo~ .  - Define for n = 1, 2, ..., t > 0 ,  and a e I  

@~(t, a) : (I  ~ 1/nA)-([*,]+l) ~o(a) . 

From Theorem 2.1 we have tha t  l im @~(t, a) ~-- @(t, a) uniformly in a and bounded 

intervals of t. For  n, m = 1, 2, ..., 

n[e:(m/~, a) - -  @ . ( ( m  - -  1 ) / ~ ,  a ) ]  = - Ae.(mln, a) 

= --alaae.(mln, a) § G(e.Cm/n, . ) ) ( a ) .  
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Then,  for a~, a~ e I ,  a~ < a~, ~ (m/n ,  a~) - -  ~.(m/n, ax) 

a2 

---- f d /dae~(m/n,  a) da 
a l  

a2 

a )  - -  

a:t 

Divide by  n and add for m ----- p ~- 1, ..., q: 

a)] + e(e~(,~/~, .))(~)} da. 

a s  a2 

r  " ) ) (a ) lnda  . 

Le t  n -> c~ such t ha t  Pin --->t 1 and q/n -~t2, and (5.12) follows. 

LEM~• 5.2. - Le t  Y be a Banach  space and let / be a f lmction f r o m R • 2 1 5  
to Y such that/123 exists and is continuous o n /~  • R • and/~3 exists on/~ • • R. 
Then  /~81 exists and equals /1~3 on /~ • R •  

P~ooF. - L e t  (r, s, t ) e R • 2 1 5  and let  s > 0. Since/128 is continuous at  (r, s, t)  
there  exists ~ > 0 such tha t  if 0"< Ihl, i/c], IJl < 8, t hen  

11/~23(r -V h, s + k, t + j)  - -  /~3(r, s, t)]] < ~ .  

Let  z e Y *  and  defme the  f lmction /~ f rom R X R X / ~  to R by  / ' = z ( / ) .  Choose 
h, k , j  such tha t  0 < [hi, ]k[, ]J] < ~ and define 

A ~=/~(r  -~ h, s + k, t + j ) - - / ' ( r  + h, s + k, t) 

- - /~(r  + h, s, t ~- j)  -~ /~(r + h, s, t ) -  ]~(r, s ~- k, t ~- j)  

+/~(r,  s + k, t) +/~(r ,  s, t ~- j) --/~ s, t) , 

u(h) =/~(r  ~- h, s + k, t -t- j) --/~(r + h, s -[- k, t) 

- -  /~(r + h, s, t -~ j) + / ~ ( r  + h, s, t) . 

B y the  Mean Value Theorem there  exists 0 e (0~ 1) such t h a t  

Ao= u ( h ) -  u(O) = hu'(O~h) 

-~ h[/~(r -~- O~ h, s ~- k, t + j) - -  /~(r -~ O~ h, s + k, t) 

- -  /~(r + O~h, s, t + j) -~- /~(r ~- O~h, s, t ) ] .  
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Define 

v(~) = / l ( r  § 0~h, s + #~, t §  - i ~ ( r  § 0~ ,  s § ~, t) 

There exists 03, 08~ (0, 1) such tha t  

A~ = #~[v(k) - v (o ) ]  = hkv ' (0~ k) 

: hkj[]~2~(r § 01h , s § 02t~ , t § Oaj)]. 

Thus 

But 

IA"lhkj - - ] ~ ( r ,  s, t) l < ~lzl 

lira lira A~/hk~ = []~8(r + h, s, t) - -  ]~3(r, s, t) ]/h . 
~-->0 k-*O 

Thus, for 0 < [h i<  

]E/Es(r + h, s, t) - t~a ( r ,  s, t)] - ] ~ ( r ,  s, t) l< ~ Iz]. 

The conclusion now follows by  the Hahn-Banach Theorem. (e.g. [23], p. 190.) 

P ~ o o r  o r  Ttmolc~.H 4.4. - The proof of (3.3) follows from (2.3). The proof of 
(3.4) follows from (2.4) and (4.5). To prove (3.5) define for t~>0, 0~<a < r ,  0~<h < 
< r - - a  

a + h  t + h  

h h 

By Lemma 5.1 

t + h  

]~(h, a, t) =f[0(s ,  a + h) - 0(s, h)] as 
h a + h  a + h  t + h  

h h h 

Then, ]13~(h, a, t) ----= @(@(t § h, .))(a § h) and L~(h, a, t) ---- @(t § h, a § h). B y  Lem- 
ma 5.2 ]281(h, a, t) exists and is ]128(h, a, t). Hence,  7123(0, a, t) = D@(t, a) ---- G(@(t, .))(a) 
and (3.5) is established. 

I f  (4.8) and (4.9) hold and 90 ~ M+, then @(t, a ) ~ X +  for all t~>0 and a ~ I  by 
vir tue of Theorem 4.3. 
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Finally, let (4.10) hold and s~ppose that  ~ is a continuous function from [0, o o ) •  
to X satisfying (3.3), (3.~), and (3.5). Let ~ =  H@-~I1 and for O<t ,O<a<r ,  
O < h < r - - a  

0 0 t a + h  t h t + h  a + h  h a + h  

0 a 0 0 t h 0 h 

Divide by h and let h ~ 0 to obtain 

t t a 

(5.13) f~(~,~)d~-f~(~,o)~ +fm,  b)a~ 
0 o O a  t a 

@ ( o ,  b) ~b < f f ll~(~(~, .))(b)- a(~(~, .))(b)iI db ~ . 
0 0 0 

From (5.13), (3.1), and (4.10) we obtain 

t r t r 

0 0 t 0 0 0 t r 

0 t r 0 0 

< (m, + x)f f~(~, b)eb ~ .  
o ~ o  

By Gronwall's Lemma f~(t i b)db = 0 for all t>O and hence ~ ( t , b ) =  0 for all 
t > 0  and b ~ I .  o 

6. - C o n c l u d i n g  r e m a r k s .  

The semigroup approach to age-dependent population models has recently been 
used by g. P~vss in [22]. In the problem treated in [22] the birth process of equa- 
tion (3.4) involves a linear ~unctional F. Thus, the abstract equation associated 
with the problem can be expressed in semilinear form. That is, the operator A in 
(4.2) can be decomposed into a linear strongly continuous semigroup generator 
and a locally Lipschitz nonlinear operator. In [22] this semilinear form is exploited 
to develop an existence theory and a theory of equilibrium solutions and their local 
stability. 

There are close similarities between age-dependent population models and func- 
tional and functional differential equations. The papers of g. DYso~ and 1~. VIL- 
LELL~-BI~SS~ST [7], [8] and o~ the author [26], [27], and [28], as well as many others, 
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t r ea t  nonlinear funct ional  and functional  differential equations, f rom a semigroup 

point  of view. l%r such equations the  generators have the  form A~ = 9'  with the 
boundary  conditions ~0(0) = iF(9) (functional equations) or ~0'(0) = F(~) (functional 

differential equations). The idea Of renorming the  Banach  spaces of initial func- 
t ions has been exploited for these equations in [8], V27]~ [28], and [21]. For  our age- 
dependent  populat ion problem the  renorming device is recessitated b y  the  fact  t ha t  
our generator  A m a y  not  satisfy an accretiveness condition in Co, bu t  does in C .  

The form of the  nonlinearities in our model  is ve ry  general~ b u t  does require a 
global Lipschitz condition. The age-dependent  model  of Gurt in  and NaeCamy and 
its extensions by  other  authors have a special form which is only locally Lipschitz. 
Another  point  of difference of our theory  is t ha t  in our model  condition (3.1) must  
be satisfied for t = 0, and thus conditions (3.4) and (3.5) are necessarily compatible. 
The methods of Gur t in  and ~{acCamy do not  require this compatibi l i ty  condition, 
bu t  ra ther  the  more general condition tha t  (3.4) holds for t > 0. In  a for thcoming 
paper  we will s tudy general age-dependent populat ion models with locally Lipschitz 
nonlinearities and wi thout  the  compatibi l i ty  condition. We will also generalize 

the  model to allow for a diffusion process to occur in the  dynamics of the population. 
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