Nonlinear Semigroups and Age-Dependent Population Models (*).

G. ¥F. WeBs (Nashville, Tennessee) (**)

Summary. — This paper treats the nonlinear age-dependent population problem (1) o(0, a)=o(a),
ael; (2) o, 0) = F(o@, +)), t>0; (3) lim (o(t-+%, a-+h) — ot, @))/k = G{g(t, *))(@), a€l,
h~>0

t > 0, where I is the age range of the population, o(t, +) is the unknown age densily at time t,
@ 18 the known initial age distribution, and the functionals F and G are nonlinear. The
problems of existence, uniqueness, continuous dependence upon initial values, and the posi-
tivity of solutions are investigated using the method of nonlinear semigroups.

1. - Introduction.

Our purpose is prove the existence, uniqueness, and continuous dependence
upon initial values of solutions to a general nonlinear age-dependent population
model. The theory of nonlinear age-dependent population models initiated with
the work of M. GURTIN and R. MacCamy in[15] and ¥. HOPPENSTEADT in [11].
Their approach took advantage of the special form of the nonlinearities in the prob-
lem to apply the method of characteristics and to convert the equations to a system
of nonlinear Volterra integral equations. Other researchers, such as G. DIBra-
s10 [3], [4], E. SINESTRARI[24], and A. Hammovicl [9], [10], have exploited this
approach to further develope the theory. The advantages of the Volterra integral
equations approach is that the method is direct and the formulas which result
provide a useful representation of the solutions. The disadvantage is that the
method limits the nature of the nonlinearities which may be treated.

In this paper we adopt a different approach to the problem. Our method views
an age-dependent population model as a nonlinear semigroup or dynamical system
in a Banach space of initial age distributions. To solve our problem we proceed
as follows: (1) in an appropriate Banach space of initial age distributions we define a
nonlinear operator A; (2) we show that A generates a nonlinear semigroup 7(f),
t>0 in this Banach space by appealing to the general theory of nonlinear semigroups;
(3) we demonstrate that the solutions of our age -dependent population problem
are given by the semigroup T'(f), t>>0. The advantages of the semigroup approach
are that it removes the technical complexities of the proofs, allows very general
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nonlinearities in the models, and exhibits the dynamical system structure of the
solutions. Furthermore, it makes available the theory of operator semigroups in
Banach spaces for the investigation of such problems a8 numerical approximation,
agymptotic behavior, and control theory.

The organization of this paper is as follows: In Section 2 we state the results
from nonlinear semigroups theory which we will need. In Section 3 we present the
nonlinear age-dependent population problem which we will solve. In Section 4 we
state our theorems and in Section b we give their proofs. In Section 6 we make some
conecluding remarks.

— Nonlinear semigroups.

The facts stated below are taken from [1] and [2].

DEeriNiTION 2.1. — Let A be & mapping from a subset of a Banach space ¥ to V.
A is accretive provided that there exists 4, > 0 such that if 4, y,€ D(4) and 0 <
<A<l

(2.1) WL+ 24)y,— (I 4 24)5.] > |y — 9] -

THEOREM 2.1. — Suppose A is a mapping from a subset of a Banach space ¥ to ¥
and there exists w € R such that A + ol is accretive. Suppose that there exists
J.> 0 such that if 0 <7 < 4, then R(I - 14) =

If ye D(4) and >0 then

2.2) lim (I + 1/nA)-Citny &L 1)y

N=>c0

exists uniformly in bounded intervals of ¢. Moreover, the family of mappings 7'(t),
t>0 so defined is a nonlinear gemigroup with generator 4 in the sense that

(2.3) T0)=

(2.4) T(t)(ﬂ}) D(A4) for t>0

(2.8)  T(t+t,) = T(E)T({E) for t,,£,>0

(2.6) T(t)y is continuous in ¢ for fixed yeI)(A)

(2.7) 1)y (1)ys| <exp [wf]|y,—1w.[| for {0 and yi, y.€D(4).

3. — Nonlinear age-dependent population models.

Let X be a Banach space with norm | |. Let 0<r<+ oo and let I = [0, ] if
r << - oo and I ==[0, oo) if ¥ = <4 co. Denote by L' the Banach space L* (I; X)
with norm || |;.. Let ¢>0 and denote by Cs the Banach space of continuous fune-
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tions ¢ from I to X such that [exp[cale(a)| is bounded for a €I, and the norm
of (s is given by

lols = sup lexp [oalp(a)], ¢eC,.

We define nonlinear operators # and @ as follows:

(3.1) F:0,NL'->X and there exists a constant [F'|such that for all g, g€ 0, I,
[E () — (@) | < [F |1 — @2 12

(8.2) @: 0s—> Cs for some constant o > [F'| and there exists a constant |G| such
that for all g€ Cs, [Hep) — G@:)[o<|G|los— @slo-

Our problem is to find a function ¢ from [0, co)XI to X satisfying
(33) ol0,0)=9la), acl
(3.4) ot 0)=F(o(t, ")), >0

(3.3) Do(t,a) = G(o(t, *))(a), >0, e € I, where ¢ is given in Cs, o(?, -) € Cs for
t>0, and D is defined by

Do(t,a) =lim (o{t -+ h, a + h) —g(t, a)) [h.

>0+

4. — Statement of the theorems,

We define
(4.1) M = {peCs: ¢(0) = Flp)}
4.2) A4:0;—0s, Ap=¢ —@g), DA ={peM:¢cls}.

THEOREM 4.1. — Let (3.1), (3.2), (4.1), (4.2) hold, and let w = ¢ 4 |¢]. The fol-
lowing are true:

43) BRI+ 14)=0s for 0 <i<12w
4.4) A + ol is accretive
4.5) DA)=M.

Let X, be a closed cone X (see[19], p. 14) and define

(46) C,,={pel,:p@)eX, forallacl}
@7 M,=0,.NnM.
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THEOREM 4.2. — Suppose the hypothesis of Theorem 4.1 and in addition suppose

48) P(0,,)cX,
(4.9) there exists a positive constant o such that (¢ 4 «I)(C,,)cC,, .

Then for 0 <1 <1/20 + &), (I + 74)C, ,)cC, , .

THEEOREM 4.3. — Let the hypothesis of Theorem 4.1 hold. Then A is the generator
of a nonlinear semigroup 7(?),{>0 in M as in Theorem 2.1. If, in addition (4.8)
and (4.9) hold, then T()(M,)c M, for all ¢>0.

THEOREM 4.4. — Let the hypothesis of Theorem 4.1 hold. Let ¢ € M and define
the funetion o from [0, co)XI to X by g(f, @) = (T(#)¢)(a),t>0,acI. Then p
satisfies (3.3), (3.4), (3.5). If (4.8) and (4.9) hold and ¢ € M, then o(t,a) e X, for
all £>0 and ael. If the mapping G satisfies

(4.10) @: L*— L* and there exists a constant K such that for all ¢, g, L,
HG(‘pl) - G((PZ)HLI <KH% - (pzﬂz;l

then g is the unique continuous funetion from [0, co)X I to X which satisfies (3.3),
(3.4), and (3.5).

5. — Proofs of the theorems.

We first give

Proor oF (4.3). - Let 0 <A <1/w and let p e 0;. We observe that ¢ € D(4)
and (I 4+ A4)p = v if and only if

61 pla) = exp[—a/A[F() + [exp[B/AG()0) + po)/7) @] .
0

Fix a point £ € X and define the mapping K, from (s to Oy by

(5:2)  (Kap)@) = exp[—a/2)[w + [exp [B/21(G@)0) + p0)/2) @] .

If ¢;, € Cs, then

exp [oa][(K..)(a) — (K.p,)(a)]

<exp[—a(l — cl)/l}fexp [6(1 — od)/2]|G @1~ @uflo B < |G ||y — @2] s 4/(1 — 64)
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Thus,

Mo — Ko@a]lo <[ s — @aflo(Ae0 — 0A) /(1 — 07) .

Since dw <1, K, is a strict contraction from €y to Us: By the Contraction Mapping
Theorem there is a unique point ¢, Cs such that K,p,= ¢,. Observe that for
2y, X

(6.3)  exploa]|p. (@) — @a,(a)] .
<exp[— all — o2)/A[ le,— @u] + [exp [B(1 — 0A)/ 4116 12, — 92,1+ d0]
<Joi— ] + 26 {lpe— pulel(L — o)

and hence

(54)  lge,— o] <l|tr— 2|1 — A0)/(1 — Jo) .

Define the mapping & from X to X by k(x) = F(p,), v X. If a,, w,€ X, then
(3.1) and (5.4) yield

k(@) — k@) < |F !jllsvxl — @, ()] da
<|F| f exp[— am[naa— @l + f exp [b(1 — 02)/2] exp [o4][6(ps) (1) — B(p.) ()] @) da
< [F[4jos— ] + 216 lp.,— pulef(1 — o) ]

<P [[Jos— ] + 16 lfm— @] /(1 — 2]

= 2 [Joy— ] (1 — 20) @) (1 — h) &

Since Aw <1 and ¢ > |F|, k is a strict contraction from X to X, and thus there
exists a unique point x,€ X such that k(%) = »,= F(p, ). Hence, ¢, is the unique
solution of (4.10) and so (I -+ 24)¢, = .

PROOF OF (4.4). — Let 0 <1< (¢ — |F)/|F|ow and let vy, p,€ Csy g1, g€ D(4)
such that (I - A4)@,= v, ¢ =1,2. It suffices to show that

(5.8) 91— Pallo> o1 — el o(1 — Aw) .

First observe from (5.1) and (3.1) that

[F(p) — Fipa)] < [F|lgi() — u(@)] da
0 r

<|F|fexp [— o/A{|F(g:) — F(g)]
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+ [exp [8/21[16| ex0 [— 0B)lps— glls + exp [— b — alof2] b} da
< [FHA|F(py) — Flg,)|

+ ALl lgs— @allo 4 19— 1:]lo/2] /(1 — J0) 0} .
Now solve this inéquality to obtain
(5.6) [ F(p) — Flgn)] <[FI(A6 lgs— pulo+ [pn—walo) (1 — [F]2) (1 — Jo) o .
From (5.1) and (5.6) we obtain
exp[oal| (ps(a) — gula) | <exp [ 0/ 2| Flgn) — Flgr)]
+ [exp (82— V[ 1G]lgs— palls + s — walo/A] @0}
<expl— a1 — [F|A) o + (explall —o7)/3] — 1)]
X [A6 s~ galls - [~ pal )/ (1 — 20) .
Since A < (o — |F))/|F|w < (¢ — |F|)/|F| o, We have [F|/(1— |F|J) o<1, and thus

exp [oa]|u(a) — @o(a)| <[2[G|l@s— gallo 4 l9p1— wal [/@ — 40) .

Hence,
los— gals <[A1Glon— galo 4 91— 9allo]/@ — A0) .
Now solve this inequality to obtain (5.5).

PROOF OF (4.5). — Define the subspace C,, of C, by C,,= {pe C,: ¢(0) = 0}
and define 4,: 0; o~ C, , by

Ayp=¢, DA,)={pe Cop: 9'€ Gu,o}’
Then, — 4, is the infinitesimal generator of the strongly continuous linear contraction

semigroup Zo(?), 1>0 in O, given by To(f)p(a) = g(a —1) for a>% and Tt p(a) =0
for 0 <a<i. Further, for 1 >0 and pe C,,,

(5.7) (I + 240 p(a) = [exp[(® — )/ p()/2.db .
0
It is well known (e.g. [31], p. 241) that

(5.8) lim (I 4 Ado)ty =19 for all peCop.

A—>0
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Let ye M, let 0 <1 <1/2w, and let gse D(A) such that (I 4 14)ps= y. From
(5.1) and (5.7) we have that

93(@) = exp[— o[A] Flgs) + [exp (b — a)/A16(p:) () db
0

+ (I 4 A4 (p — 9(0)) (@) + (1 — exp [— a/2]) (0) .
Thus,

exp [oa](pa(e) — p(a)) = exp [oa]{exp [— a/A][F(ps) — F(y)]
+[exp [(6 — @)/ 21620 @ + (T + 249 (p — p(0)) (@) — (p — p(0)) (@)}
0
and so
lpa— pllo< [F|lgz— 9l + A[G{@) o/ — ad)
+ I+ 24e)2 (v — 9(0)) — (v — »(0)) o .
Now solve this inequality to obtain
(3.9)  lgr—plo<(o/(o — 1)) (LGl gals
+ [60)[o]/@ — 20) + [T + A4e) "y — (0)) — (v — »(0)]o)

Observe that (5.9) implies that |@s]s is bounded independent of 4 in (0, 1/2w). Now

use (5.8) and (5.9) to argue that Ili_{r(}+ @ =, and hence conclude that e D(4).
Let y e D(4) so that there exists a sequence {¢,} such that ¢,(0) = F(p,) and
{p.} converges to y in Cs. By the continuity of F' we have that y(0) = F(y) and
hence p e M.
ProoF oF THEOREM 4.2. — The proof of Theorem 4.2 is very similar to the proof

of (4.3). Let 0 <A<1/(2w -+ «) and let peC,,. Then @eD(4) such that
(I + Ad)p = yp if and only if

(510)  pla) = exp[—a(l + 20/2{Flg) + [exp[o(L + 2/ AI(E + D)D) +
+ p)/2) @}
Let x € X, and by (4.9) we may define a mapping J, from C, , to C,, by
o)) = exp[—a(t -+ 2/ lfo + [expTo(0 + M)A + oDH)O) + p0)/A] b}
0
For 3, xp€ 00',+

exp [oa]] (s 1) (@) — (Tux2)(@)]| < (|G + D 21— x2lo A/ (1 + Ao —0))

4 ~ Annali di Malematica
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Since Aw <1, (|G| 4+ @) /(1 + Ax—0)) <1, and hence J, is a strict contraction
from O, , to 0, .. Let y, be the unique point of C, , such that J,y,= .. Observe
that for #;, x,e X,

((exp [0a]] 1=, (@) — 2o, ()] <[ts— @] + A(|G] + @) [ 30, — 10}/ (1 + A — o))

and hence
(5.11) le,— 2o o< (L + e — 0)) [ — 2, /(1 — Aw) .

By (4.8) we may define a mapping j from X, to X, by j(@) = F(y.)-
If o, 4,6 X, then (3.1) and (5.11) yield

li@) —j@)] < |F lfll 2o, (®) — 2a,(@)] det
<A|F[[la— sl + (16]+ )] o,— 2o, o (L 4+ Uz —0)) o]
<A ||l@— @3l (01 — o) + @) /(1 — Jw) o

Sinee |Fljo <1 and A <1/(2w + «), we see that j is a strict contraction from X,
to X,. Thus, there exists a unique point @, X, such that #,= j(@) = F(x).
Hence, ¢ = y, is the unique solution of (5.10) and x,€C,

ProorF oF THROREM 4.3. — The proof follows immediately from Theorem 2.1,
4.1, and 4.2.

Before giving the proof of Theorem 4.4 we establish two lemmas. The first
lemma is 2 slight modification of a result of A. PLANT in [20] and the second lemma
is a slight modification of a result of H. ScuwArz in [25], p. 222.

LeEMMA 5.1. — Let the hypothesis of Theorem 4.4 hold and let 0<?, <?, and
0<a,<a,<<r. Then

a; ta

(5.12) f[@taz tal]dt+f[gt2,a—gt1, ]da—fja )(e) dt da .

a1 4y

PrOOF. — Define for n =1, 2, ..., t>0, and a el
on(ty @) = (I + 1[nd)~CnHD p(a) .

From Theorem 2.1 we have that lim o.(¢, a) = (Z, a) uniformly in a and bounded

intervals of {. For n,m =1,2,...,

nfg.(m/n, @) — g.((m —1)/n, a)] = — Ag.(m/n, a)
= — dfdag.(m/n, a) + G(ox(m/n, *))(a) .
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Then, for o, a,€ 1, 0, < @y, pu(m/n, ay) — on(Mm/n, a,)

— f d/dag,(m/n, a) da

:f{—— n[oa(m/n, a) — g ((m —1)n, a)] + G(o.(m/n, *))(a)} da .

Divide by # and add for m =p 4+ 1, ..., q:

S Lon(mfn, as)— gu(mfn, ar)ljn =

m=p+1

m=p+1

— f Lon(piny ) — oulajm, a)1da -+ f S Glontmin,))a)nda.

Let n — oo such that p/n -, and g/n —1,, and (5.12) follows.

Lemwma 5.2. — Let ¥ be a Banach space and let f be a function from RXRXR
to Y such that f,, exists and is continuous on RX R X R and f,, exists on B X R X R,
Then f,5; exists and equals f,; on RXRXER.

PrOOF. — Let (r,8,1) e BXRXR and let ¢ > 0. Since f,,, i8 eontinuous at (r, s, t)
there exists J > 0 such that if 0-<< [h}, k], || < 6, then

[fiza(r -+ By 8 4 &y & -+ ) — fras(ry 8, )| <.

Let zeY* and define the function f* from RXRXR to R by f*==z(f). Choose
h, %, j such that 0 < |h], |k], [j| < and define
Ar=fr 4 hy s + Ky ¢+ ) —f(r + by s + K, B)
— [ + By 8y 0+ §) A Fr + by 8y 8) — [y 5 + ky £ 4 )
+ fry s + By 1) 4 flry syt §) — Py 8, 1)
wlh) =f(r +hy s +ky ¢+ §) —f(r + by s + E, 1)
— 0+ hy s, 8+ )+ Fr+ by s, 1)

By the Mean Value Theorem there exigts 6 €(0,1) such that

A% = u(h) — u(0) = hu'(6,h)
= Bfi(r + 0.k, s + %, ¢+ 5) —fi(r 4+ 0,h, s + E, 7)
— i + 0,k s, 8+ §) -F filr + 0.k, 5, 1)].
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Define
?J(k) = ﬁ(/" ’[‘ 01h1 § ’I‘ ky t +.7) _ﬁ(T _I_ 61”7 § "}‘ k’ t)

There exists 0,, 0,€ (0,1) such that
A% = Wo(k) — v(0)] = hkv'(6,F)

= hk[ﬁz("' "l_ 61h7 s + 62k7 t +.7)_ iz(r + 01h7 $ +02k7t)]

= Wkj[fios(r - 0,0y 5 + 0,%, 1 - 0,5)] .
Thus

lAz/th - 123(7', 8, t)l < 8[2]

But
Lm lim A*[hlj = [fis(r -+ By 8,8) — fis(r, 5, 1)1 [0

=0 k=0
Thus, for 0 < || < 6
fog(r + by 8y t) — fog(ry 8, )] — frog(ry 85 1) [ < €f2]
The conclusion now follows by the Hahn-Banach Theorem. (e.g.[23], p. 190.)

PROOF oF THEOREM 4.4. — The proof of (3.3) follows from (2.3). The proof of
(3.4) follows from (2.4) and (4.5). To prove (3.5) define for {0, 0<a <r, 0<h <
<r—a

a+h t+h

hya,t) = 8,b)ds db.
ity a,) hf hfe( )
By Lemma 5.1

t+h
hlh a,1) = [To(s, @ + h) — o(s, )] ds

h a+h a+h t+h

+{lott + 1y 0) — o, 0] @b = [@(ols, )0) ds db.
h kR

Then, fia4(ky a, 1) = G(o(t 4 b, *))(@ + k) and fu(h, a,1) = o(t + &, @ + h). By Lem-
ma 5.2 fog(h, @, ) exists and is f,.5(h, @, t). Hence, f1,5(0, @, ) = Do(¢, a) = G(o(t, *))(a)
and (3.5) is established.

If (4.8) and (4.9) hold and ¢ € M, then g(f,a)e X, for all >0 and aecl by
virtue of Theorem 4.3.
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Finally, let (4.10) hold and suppose that # is a continuous function from [0, co)x I
to X satisfying (3.3), (3.4), and (3.5). Let &= [[o—gn| and for 0<t, 0<a <,
C<h<r—a

ta
[ [ree +m, 4+ m—e6,0 ]dbds

[T] t a+h t+h a+h h gtk

_f fss, dbds—” (s, b dbds—}—f ffs, dbds—fffsbdbds

Divide by % and let h — 0 to obtain

ftf(s, 8—f§(s, derfgtb
‘f §0,0)d f f [6(als, ))(B) — G(n(s, ))(B)] db ds .

From (5.13), (3.1), and (4.10) we obtain

r ¢

[et,0) @< [e(s, 0 ds+f§ db+”na (5, ))(B) — G(n(s, ))(D)
—fllF (85 ) — F(n(s, -) Hder”HG (8, ))(B) — G{yis, ))(B)] db ds

i r

db ds

|F|+K”§s b) db ds .

By Gronwall’s Lemma f & tb )db =10 for all >0 and hence £(¢,b) =0 for all
1>0 and bel.

6. - Concluding remarks.

The semigroup approach to age-dependent population models has recently been
used by J. PRUSS in [22]. In the problem treated in [22] the birth process of equa-
tion (3.4) involves a linear functional F. Thus, the abstract equation associated
with the problem ean be expressed in semilinear form. That is, the operator 4 in
(4.2) can be decompoged infto a linear strongly continuous semigroup generator
and a locally Lipschitz nonlinear operator. In [22] this semilinear form is exploited
to develop an existence theory and a theory of equilibrium solutions and their local
stability.

There are close sumlarltles between age-dependent population medels and fune-
tional and functional differential equations. The papers of J. DysoN and R. VIL-
LELLA-BRESSAN [7], [8] and of the author [26], [27], and [28], as well as many others,



54 G. F. WERB: Nonlinear semigroups and age-dependent, ete.

treat nonlinear funectional and functional differential equations, from a semigroup
point of view. For such equations the generators have the form Ag = ¢’ with the
boundary conditions ¢(0) = F(g) (functional equations) or ¢'(0) = F(p) (functional
differential equations). The idea of renorming the Banach spaces of initial func-
tions has been exploited for these equations in [8], [27], [28], and [21]. For our age-
dependent population problem the renorming device is recessitated by the fact that
our generator A may not satisfy an accretiveness condition in C,, but does in C_.

The form of the nonlinearities in our model is very general, but does require a
global Lipschitz condition. The age-dependent model of Gurtin and MaeCamy and
its extensions by other authors have a special form which is only locally Lipschitz.
Another point of difference of our theory is that in our model condition (3.4) must
be satisfied for ¢ = 0, and thus conditions (3.4) and (3.5) are necessarily compatible.
The methods of Gurtin and MacCamy do not require this compatibility condition,
but rather the more general condition that (3.4) holds for £ > 0. In a forthcoming
paper we will study general age-dependent population models with locally Lipschitz
nonlinearities and without the compatibility condition. We will also generalize
the model to allow for a diffusion process to oecur in the dynamics of the population.
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