
A Generalization of Von Neumann's Assignment Problem 
and K. Fan Optimization Result (*). 

EzIo lg~CHI (Campinas, Brasil) - P~BLO TA~AZAG~ (San Luis, Argentina)(**) 

Summary. - I n  this paper we generalize the assignment problem in higher dimensions, referring 
at to another study by the authors. The hide-and-seek game, which is intimately related to 
the assignment problem, is extended, and an elegant result due to K.  Han about extrema is 
generalized. 

1 .  - I n t r o d u c t i o n .  

I t  is well known that  Birkhoff's result on doubly stochastic matrices~ which ap- 
peared in [1], has produced a great number of appliations in many areas. In parti- 
cular, vo~ I ~ E ~ A ~ ,  in [7], besides giving a very interesting and elementary proof 
of Birkhoff's theorem applied it to obtain a very elegant solution of the assignment 
problem via the hide-and-seek two person game. IIe indicated the wish to extend 
the study to more than two dimensions. However, he pointed out explicitly the serious 
difficulties. The authors of this paper, in [5], have attacked and solved the general 
problem of extremals for (( matrices ~> in any number of dimensions. The aim of this 
paper is to generalize the assignment problem in higher dimension, referring it to 
our other study just cited. Therefore, the hide-and-seek game, which is intimately 
related to the assignment problem, is adequately extended. 

Related with it a very elegant result due to K. FA~ [4] about extrema is generalized 
in the same direction and is proved in a much more simpler way. 

2.  - G e n e r a l  h i d e - a n d - s e e k  g a m e  i n  k - d i m e n s i o n s .  

Let N ~ = N =  (!, 2, ... , n} be a se~, for i = l ,  2 , . . . ,k .  We define the general 
hide-and-seek game in k-dimension as a zero-sum-two-person game 

k 

(*) Entrata in Redazione il 4 ottobre 1978. 
(**) IMECC, UNICA1VIP, Campinas, S.P., Brasil; University of San Luis, San Luis, 

Argentina. 
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The hider~ the second player, choses ~ place (i~, ..., i~)e ~ =  X-hr~ where he 
i=l 

will hide. The seeker choses an (( I typerplane ~> i~ ~ U ~v~. 
i = l  

If  i~ = i~, then the second player pays A(~; i~, ..., i~); otherwise, the.payoff  will 
be zero. We can thus, write the payoff function as 

A(~,; i~, ..., i~) = ~(i~, ..., i~) ~ 5  " 

where ~5,  is Kronecker 's  delta. 
We assume for reasons of simplicity t ha t  the payoff function is strictly positive. 
The mixed extension 

i- 

has the value of the game 

v =  min m a x [  ~ ot(i~, . . . ,  i~)y(i~, . . . ,  i~)] 
~" l i~  . . . . .  ~, . . . , i~,  ! 

where ~ indicates t ha t  the sum over i~ e N~ is omitted. 
We ~re now interested in the actual computat ion of v and in the mixed optimal 

strategies Of the second player. Let  us introduce the followings sets, considered 
already in [5]. 

U~ = {x: N~ -> R:  x(i~, ..., i~)>0 ~ x(i~, ..., i~) = 1 
Q , . . . , ~ r , . . . , i ~  

for each i~ e hT~ and each r---- 1, ... ~k} 

where R stands for the reals. This is the set of (k, n) - -  stochustic matrices. 

f 
I~  = x: ~ --> R:  x(i~, ..., i~)>0 ~ X(i~, ..., i~ )< !  

t ^ 
i1~. . .~r~. . .~k 

for e a c h  i~ ~Y~ and each r = 1, . . .~k~. 

We h~ve ~ first result:  

s s ~ A  ! . -  v~ = {~: ~(i l ,  ..., i ~ ) > o  a~d th~r~ i8 ~ e v i :  ~ > x } .  

P~ooF. - The set a t  r ight is obviously included in V~. 
for ~ given x ~ V~, let 

I~(x) : l i ~  N~: : x( i , ,  ..., ik) < 11 �9 
t ^ ) 

Now consider the sum 

:V(x) = Z Iz~(~)l 

On the other hand,  
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where ] I indicates the cardinali ty.  I f  x ~ U~, then  we have  Z~(x) > 0. In  other  words, 
there  is an ~ ---- 1, ..., n such t ha t  IT(x) > 0. In  such a ease, for each r, we have  L(x) > O, 
since 

x(i~, . . . ,  i~) = ~ 5 x(i~, . . . ,  i~) < n .  
Q~'"~ ~ i~..,,.~"r~...,i~ 

~ o w  define 

s = l - -  m ax  m ax  ~ x(i~,. . . , i~),  
r=l , . . . ,k  i~Ir(~) i~,...,~%...,i~ 

which is s t r ict ly positive. Wi th  this we construct  

t k X~(i~,... ~ i~) = x(i~, ..., i~) ~- s for  only one (i , , . . . ,  i~) e~=~X L(x ) ,  

x(il, ..., ik) o therwise .  

I t  follows direct ly f rom its definition, t h a t  x~ ~ U~, and x~>x and N ( x ) >  N(x~). 
Hence,  we can repeat  the  procedure,  obtaining a finite sequence 

x < x ~ ,  <(x~j~,  <. . .<((x~ , ) . . . )~ ,  = 

iV(x) > N ( x ~ )  > ... > ~ ( ~ )  = o .  

Therefore 5 e U~ and x < ~  (q.e.d.). 
Using this result,  and introducing the  set E(U~) of all the  extremals of U~, we 

have 

T I t E O ~  2. - For the mixed extension F o] the genera~ hide-and-seek game 

1 
v =  min v(e)= min 

-~eE(~) ~'eE(v~) ~ ~(i~,. . . , i~) 
...... ~ ~(i~, . . . ,  i~) 

and y* is an optima~ extremai i] v(e) =: v, where 

y~(i , ,  . . . ,  i~) - ~ ( i , ,  . . . ,  i~) 
~(e) y~(i~, . . . ,  i~) . 

P~ooF. - I t  is clear t ha t  v > 0, therefore,  if ~ is an optimal  mixed s t ra tegy lor  
second player~ we have 

~, ~( i l ,  . . . ,  i~)~( i l ,  . . . ,  i ~ ) < v  
~l,..,~,...,~k 
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for each i~-. Then defining 

~(i~, . . . ,  i~) = 
~(i~,  . . . ,  i~) f f ( i~,  . . . ,  i~) 

i t  holds tha t  ff e V~, But,  by  lemma 1, there exists ~ ~ e U~: y ~> y. Define 

~ ( i , ,  . . . ,  i~) - v ~(i~,  . . . ,  i~ ) .  
~(i~, ..., i~) 

Then we have z > f f  and we want  to prove tha t  indeed this is an equality. Let  

o = 5 ~( i , ,  . . . ,  i~) ~ ~ ( i ,  ..., i ~ )< l  
i~,...fix ~i,...,i~ 

for Z = OZ e _ ~ ,  and 

m~x ~ ~ ( i l ,  . . . ,  i~) z ( i l ,  . . . ,  i~) = Ov 

1 = r  

From here, 0 must  be equal one, because otherwise ff would not  be optimal. There- 
fore, the f~ct tha t  Z ~> if, implies ff = Z e 1V "% ~nd consequently y = ff e U~, 

l~ow, the first t ransformation gives ff e U~. But ,  therefore ff is a convex combina- 
t ion of extremals: 

which gives 

N 

a point y~ e N~, where 

~ =  Z L y  ~ 

y~( i l ,  . . . ,  i~) - -  
v(e) 

~ ( i l ,  . . . ,  i~) 

v(e) = 

On the other hund, we h~ve 

-~ " i ~ )  y ( h ,  . . . ,  , 

-~ i i~) " Y ( ~ , ' " ,  

. . . . . .  ~ ~( i~ ,  . . . ,  i~) 

~(i~, . . . ,  i k ) y ~ ( i l ,  . . . ,  ik)  = v (e )>~v  
^ 

for i t ,  which implies tha t  

1 
v = min v ( e ) =  min - ' "  i~)" 

Y (~1, ..., 
~1 . . . . .  ~ • ( i l  ~ " ' "  ' 

Moreover, y~ is optimal and extremal if v(e)  = v (q.e.d.). 
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3. - A simple dass  of extremals in U~: the diagonals. 

With  the result  jus t  considered in the previous paragraph,  we are going to s tudy  
some general assignment problems in the  nex t  section. Bu t  for this we need some 

simple facts about  the  most  simple class of extremals  in U~ namely:  the  diagonals. 
These are the  natura l  generalization in the  higher dimensional case of the diagonals 
of doubly stochastic matrices.  For  completeness, we repeat  here some definitions 

given by  the ~uthors in [5], where the set of extremals is invest igated more completely. 
An element  x ~ U~ is said to  be a diagonal if 

n l - -  

for each i, e 2/~ r = 1, ..., k. Here  

and S(x) stands for the support  of x. i diagonal x e D~ is a~ ext remal  ve r tex  of U~. 
Thus the  set of diagonals D~ c E(U~). 

Given a diagonal, i t  is clear t ha t  x(i~ ..., i~) is ei ther one or zero. ~Ioreover, its 
project ion on the face (1, r), tha t  is to say 

i , )  = x(i , . . . ,  

is clearly a diagonal in U~ ~ which determines uniquely  ~ permuta t ion  a~ on N. There- 
fore, a diagonal in U~ determines a set of permuta t ions  a~ ..., a~. Defining 

1 if i~ = a~(i), ..., i~ = a~(i), 

�9 ~",...,~ .. . ,i~) = o otherwise 

we have tha t  x "~'''' '~ e D~. Therefore the  set of diagonals are in one to one correspon- 
dence with such a set of permutat ions .  

A fur ther  representa t ion of the  set D~ can be given by  the  set of all permuta t ions  

~1,2 ~4,3 ..-, a~-~.~, where a2~-~,2~ indicates a permuta t ion  induced by  a diagonal in U~ 
of the  face N~_,.~. 

We say t ha t  a (k, ~)-matr ix ( that  is to says a x: iV �9 -~ R), is F-constant on diagonals 

if P is a set of non-overlapping diagonals covering N k. Fur thermore ,  for each diagonal 
z ~ P ,  x[S(z) is constant .  

Now~ we have the following result  concerning the convex hull K(D~) of diagonals: 

T~EO~]~ 3. - A (k, n)-stochastie matrix x e K(D~) if and only if  x = ~ xi, where 
eavh xj is _P ~-constant on diagonals for some P~. ~J 
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1)BOOF. -- We will firstly show tha t  there  exists a par t i t ion of the set of diagonals 
2P,, s ..., 2~, such t ha t  for each ~ ~- 1, ..., t. 

U S ( x ) = - ~ *  and S(x~)c~S(z~)=O 
zCP~ 

for each xx, x~ e /~ j .  Here,  0 indicates the  empty  set. 

Indeed,  consider the  set of permutat ions  on 3T, a(1), a(2), ..., a(n) defined b y  

a(i)(j) = j 4- i - -  1 mod n 

for j e iV. Therefore let x(a(i)) be a diagonal on N X N  with values one on (k, a(i)(k)) 
and zero otherwise. F r o m  here S(x(a(i)))N S(x(a(j))) = 0 when i ~  ~, and 

u = 

which gives us ~ par t i t ion  Po : {a(1), ..., a(n)} for the doubly stochastic case. At  
this point,  we loosely write (( permuta t ions  ~) or (( diagonals ~), indifferently, since 
there  is a one-to-one correspondence between them.  

How we construct  all the  other  part i t ions,  just  b y  giving a pe rmuta t ion  v. Ineded,  
define ~(i) as the  permuta t ion  

= 

where a(i) e t)~, I t  is easy to  see t h a t  P~ : {~(1), ..., ~(n)} is another  suitable par t i -  
tion. ~ o w  if v ~ a(j) e 2Po for a given j, then  

~(i)(k) = a(i)(a(j)(k)) = a(i)(mod,~(j 4- k - -  1)) = mod~ (i 4- j 4- k - -  2 ) ,  

and, taking I -  mod~ (i 4 - j -  1), we get a ( 1 ) =  ~(i), which implies t h a t  for any 
cyclic permuta t ion  T, Pc is invariant .  The same holds for any  P~. Therefore we have 

( n -  1)! suitable par t i t ion _P~ in the case k ----- 2. 
Now, in the general case when /~>2, consider the faces (1, r). Consider in each 

face the  set of cyclic permutat ions  an(l), ..., a '(n) given already above, then  b y  picking 
a~(i2), aS(in), ..., ak(i~) we construct  a diagonal x ~'(~') ...... *(i*). We have 

S(x~'(~,) ..... o'~u~)) n S(x "'(;~) ..... ~(7~)) = 0 

if i, va ~ for some r. Fur thermore ,  

U S(x~,(~,) ...... ~(~)) ___ .yT~, 
(i~ . . . . .  ~D~/V~ x . , .  x ~ 
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From her% we h a v e  

a n d  IP~t = ~ - ~ .  As in  the  cuse k = 2, i t  is easy  to  see t h a t  a n y  o the r  p s r t i t i o n  c s n  

be g iven  b y  p e r m u t a t i o n s  ~2, . . . 7  ~ 

~ ,  ..... ~ = {x ~'~',) ..... ~(~):  (i~, . . . ,  i~) e ~ x . . .  x N ~ } .  

---- ~ ~k(i~) then Again ,  if r ~ a2(i2) , ..., ---- 

k k P~(~,) ..... ~k(i~) = -Pc �9 

Therefor% since are  e xa c t l y  (n!) k-~ diagonals  in U~ we ge t  [ ( ~ - - : t ) ! ]  ~-~ different  

p e r m u t a t i o n s  -P~, ...... ~. 
Now, if x ~ K(D~)~ t h e n  i t  is a convex  c o m b i n a t i o n  of d iagonals  

~eJ "~,.,. ,  "~ jE.p~:l ..,v,~ T~, . . . ,~  ~ 

where  x~, ..... ~ is c lear ly  P~,, ..... ~-constan~ on diagonals .  

Vice-versu,  if x e U~ a n4  

where  x~. ...... ~ is -P~,, ..... ~-constant  on diagonals ,  t h e n  

x~.. ..... ~ =  ~: x~. ...... ~ ( d ) x  ~', ...... 

where  

x~, ..... ~(d) = x ~ ,  .~( i l ,  . . . ,  ix) in  (il,  . . . ,  i~) e d. 

F r o m  here  

x --- ~ [ ~ x~, ...... ,o(d)] X ~'' ..... ~-= ~ 2~, ~ X ~'' ~ ..... 

where  in the  las t  sum  the  coefficients are convex  because  x e U~ (q.e.d.). 
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4. - A variant of  the game.  

Here we are going to consider a slight modification of the hide-and-seek game- 
presented in the first paragraph. We are concerned with a subclass of extremals, 
the diagonals. 

These will permit  us to s tudy  the generalized assignment problems given in the 
next  section. 

Using the result given above, we can modify Lemm~ 1, obtaining the result given 
in the following Lemma.  

Let  p~ be the set of k-matrices x > 0  such tha t  

where x~,, ..... ~ is P~,,...,~-constant on diagonals. 

L ~ A  4. - V ~ =  P ~ n  V~---- {x6P~:  there is a z 6 _ K ( D ~ ) : z > x } .  

P~oos.  - Let  X be an element of V~i, then 

X ----- xv%. .., ~:~ 

where x~.,..., ~ i s /~ , . . . ,~ -eons tan t  on diagonals. 
Let  I,.(x) be the same set introduced in the proof of Lemma !.  Again, if a I , (x )  :/: 9, 

ull of them are non-empty. Therefore by taking the sume s, define 

x ~ ( i l ,  . . . ,  x~)  = I 
x(f1, ..., i~) -~ 

x( i l ,  ..., ik) 

if (i~, ..., i~) e S(xT', ...,;~) 

for only one ~ ,  ..., ~ ,  

otherwise.  

I t  is immediate tha t  x E K(D~) and x > x .  The reason tha t  here the process ter- 
minates with only one step is due to the fact tha t  all the x~: ...,~ ~re P~  ,...,~"'c~ 
on diagonals. The remaining inclusion is trivial (q.e.d.). 

We now deduce the mixed extension of the general hide-~nd-seek game. Let  

where ~ c N~ is the set of probabilities 

X =  ~ X(z~,...,z ~) 
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where 

1 
x ( r  . . . ,  ~ ) ( i l ,  . . . ,  i~) = c(d)~~"q, 

i~) 
~or (i~, ..., iD d ~ ~*L..., ~* �9 

Obvious ly  2:~ is compac t  and  convex.  

W e  h a v e  the  following resul t  which can be p roved  following the  lines of Theo- 

r e m  2, using L e m m a  4 

N 

T ~ v , o ~  5. - ~or  the extension IV~)~ 

v(D~) = min  m a x  E(y,  i~) = rain v(~ ~) = 1 
-~ ~ min  

ve~~ ~e U ~, v ~176 5, (1/~(i~, ..., i~)) 
~=" ~ . . . . .  ~ (i~ . . . . .  ~ ) e ~ ( x ~  . . . . .  ~ )  

On the  op t imal  mixed  strategies for the  second player ,  the  t r ans fo rmat ion  

~(.) ~(.)  = v(D~)~j(. ) sends Z~ to v(D~). ~[oreover, the  coefficients c(d) sat isfy 

1 

...... �9 d ~ .  ..... ~ (~ ...... ~) a ~ 1,  . . . ,  ik) 

because x E 2r ~. 
I n  the  case t h a t  /r ---- 2, bo th  Theorems 2 and 5 give yon  ~r result.  

5 .  - A p p l i c a t i o n s  t o  s o m e  a s s i g n m e n t  p r o b l e m s .  

I n  this section we are going to discuss two generalized ass ignment  problems and 

we will re la te  t h e m  wi th  the  results  a l ready obta ined  in the  previous paragraphs .  

1 ) ~ o ~ L ~  1. - We have  k groups of n-persons each and k groups of n-jobs each. 

Any  given group of persons corresponds uniquely  to a definite a group of jobs.  Say  
the  i - th  group corresponds wi th  the  i- th.  

The value of the  i l-person in the  j l - job,  ... ~ the  ik-person in the  j , - job  is 

a ( i l ,  Jl ,  . . . ,  i~,  i~) . 

The prob lem is to find assynments  ~ i  ... ~ ~ for all the  groups such as to maximize  
the  to t a l  w l u e  

a(il ,  ,I(il),  ..., i~, ~ ( i~ ) ) .  

I f  we introduce a t r ans fo rmat ion  given b y  

a(i~,~j~, ...~ i~, jk) q- ~ b~, @ ~ e~, 
r=l t=l 
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where the  b's and the c's are constants,  then  the maximizat ion problem is invariant .  
Thus we can assume tha t  the payoff funct ion a be positive. 

Taking 

1 
~(i~, A,.., i~, h) = 

a(i , ,  j , ,  . . ,  i~, h )  

the  max imum value of the assignment problem is l lv (D~)  and i t  is reached on a dia- 
gonal by  Theorem 5. 

P~O~LE~ 2. - Now, we have a group of n persons and k -  1 different groups of 
exact ly  ~ types of lobs. A person i mus t  perform a job ]~ in each group r = 2, ...,/~ 
such tha t  there  is exact ly  one person performing the  job j, in each group r. Here  
the value of the  person i performing the jobs j~, . . . ,  ]7~_~ is 

a(i, A, . . .  J,o). 

An assignment in this problem is a set of permutat ions  ~ ,  ..., ~k corresponding 
to the faces (1, r), r----2, ...,k~ as in t roduced before Theorem 3. The to ta l  value 

for this assignment is 

a( i, "c~(i), . . . ,  "~k(i) ) . 
i 

By a procedure analogous to the one given in problem I, Theorem 5 gives the right 

answer also in this case. 

6. - A generalization of K. Fan's optimization result. 

In  connection with the set V~ there  appear  m an y  interest ing problems of max- 

imization with many  applications. 
One is the known extremal  problem presented by  K. FAY in [4], which is concerned 

with the maximazat ion  of a payoff funct ion 

i=1 i=l 

on the set V~. 

Here  we are going to generalize the  problem and give suitable caracterizat ion 

of the ext remum. 
Le t  

y ( x )  = ~,  a~ ...... ~ ,~9( i l ,  . . . ,  i~) 
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be a hnear  a function defined on V~. Then, we have the following result which con- 
siderably generalizes the corresponding one due to K. FA~ in [4], which is proved 
in an elegant way, based upon a strong result of convex sets. Here, we give a more 

simple proof. 

T I ~ E o l ~  6. - For  any  (k, n) -matr ix  a~ ...... ~, we have 

max l~(x) = min ~ Yi, 
~ V ~  (vi i , . , . ,y i~)eA(a)  r = 1 ir = 1 

where A(a)  is the set o] (y~,, . . . , y ~ ) > O  such that yq + ... + y~>~a~ ...... ~ ]or each 

(i~, ..., i~) ~ 1r 

FlCOOF. - The problem of maximizat ion can be expressed in a linear programing 

as follows 
m a x  y (x )  
G-x~<b 

~ > 0  

! 

where C is kn  • n 1~ matr ix  defined on { U  2vi} • Nk with values 
/ 

C(~,; q ,  ..., i D = ~T,~, 

where ~ is Kronecker 's delta. The vector b of dimension n k •  1 has all its values equal 
one. As in [5], the set V~ is uniquely determined by  both the inequalities given above. 
C . x  indicates the matr ix  product  of C with the vector x. Now consider its dual 
problem 

rain ~ ~ b ~ , %  
v " C ~ a  ~=1  i r = l  

v>~0 

where v' is the transpose of v and a is a (k, n)-matrix. Clearly there always exist a 
vector satisfying the previous inequalities. Bu t  such a set is nothing else tha t  A(a) .  

By the dual i ty  in linear programming (see for example NIKAIDO [6] pag. 133), both 
maximum and min imum values coincide (q.e.d.). 

At  this point we would like to emphasize the fact  tha t  K. Fan 's  original proof is 
valid for the most general case considered here. Indeed, it  is almost a hteral ly transla- 
t ion of the case with ]c = 2. 

Wi th  a slight modification in the above proof, using now a variant  of the dual  
theorem in linear programming (as for example BImGE~ [2] pag. 117) we obtain 
the following general result, which generalizes t ha t  due to EG~VXI~Y [3] in the case 
of 1~= 2. 

TILEOa~E~ 7. - ~or  any (lc, n)-matr ix  a, we have 

= max min i y,. 
~tqE(U~) (yQ . . . . .  v l~)eB(a)  r = l  i t = !  
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where now B(a) is the set o] (Y~I, "", Yi~) such that (Yil ~ ... ~- y~)>~a~ ...... ~ ]or each 

(ii, ..., ik) e N k. 
We would like to indicate  t h a t  one c~n write down the  previous results in the  

fo rm of dynamic  9rogramming.  For  the  l~st one, let 

F ( y  ~, ..., y~; a) ---- rain ~ y~ 
(Yiz ..... vi~)eB(a) ~=1 i t = l  

where y~ ----- {y~,}~,~, then  

m~(a) = F ( y  ~, . . . ,  y~; a) -~ 

----m!n y~ -t-.F(y ~, ..., y~; a - - y  1 
v UI=I  y' Q= 1 
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