A Generalization of Von Neumann’s Assignment Problem
and K. Fan Optimization Result (*).

Ezio MarcHT (Campinas, Brasil) - PABLO TArRAZAGA (San Luis, Argentina) (**)

Summary. — In this paper we generalize the assignment problem in higher dimensions, referring
at to another study by the outhors. The hide-and-seek game, which is intimately related to
the assignment problem, is extended, and an elegant result due to K. Fan aboul exirema is
generalized.

1. — Introduction.

It is well known that Birkhoff’s result on doubly stochastic matrices, which ap-
peared in [1], has produced a great number of appliations in many areas. In parti-
cular, voN NEUMANN, in [7], besides giving a very interesting and elementary proof
of Birkhoff’s theorem applied it to obtain a very elegant solution of the assignment
problem via the hide-and-seek two person game. He indicated the wish to extend
the study to more than two dimensions. However, he pointed out explicitly the serious
difficulties. The authors of this paper, in [5], have attacked and solved the general
problem of extremals for « matrices » in any number of dimensions. The aim of this
paper is to generalize the assignment problem in higher dimension, referring it to
our other study just cited. Therefore, the hide-and-seek game, which is intimately
related to the assignment problem, is adequately extended.

Related with it a very elegant result due to K. Fax [4] about extrema is generalized
in the same direction and is proved in a much more simpler way. .

2. — General hide-and-seek game in %-dimensions,

Let N,=N={1,2,..,n} be a set, for i =1,2, ..., k. We define the general
hide-and-seek game in k-dimension as a zero-sum-two-person game

k
F={UNZ-,N’~";A}.

f=1
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k
The hider, the second player, choses a place (i, ...,1%) € N* = X N, where he
g=1

k
will hide. The seeker choses an « Hyperplane» i, e |J N,:
i=1
It ¢, = ,, then the second player pays A(%,; ¢, ..., 4;); otherwise, the payoff will
be zero. We can thus, write the payoff function as
AT5 0y ey B) = allyy ey T) 0,7,
where §,7 is Kronecker’s delta.
We assume for reasons of simplicity that the payoff function is strictly positive.
The mixed extension

|

Ca'

f:{ Ni,l'\?”‘;E}

1

1

has the value of the game

. -~ .
Flyenend yoenylic

v = min max > gy ey T Yy g ey G2)
yeN*® irE‘U Ni
=1

where 4, indicates that the sum over 7, € N, is omitted.

We are now interested in the actual computation of v and in the mixed optimal
strategies of the second player. Let us introduce the followings sets, considered
already in [5].

U’;_—_{w:Nk»R:w(il,...,ik)>0 S @iy i) =1
i,,...,’ﬂ,,...,ik

for each 4, N, and each r =1, ,k}

where R stands for the reals. This is the set of (%, ») — stochastic matrices.

n

V’Cza;:{Nk—>R:w(i1,...,ik)>0 > X(Gy ey )<l
B3penesirgeeesin

for each 4, € N, and each r =1, ..., k} .
‘We have a first result:

LEMMA 1. = VE = {w: @(iy, ..., %) >0 and there is z€ Ur: 2>},

Proo¥. — The set at right is obviously included in V*. On the other hand,
for a given » € VE, let

T.(0) = {?Z,e Noi S @iy e i) < 1} .

- - -
[PFPIN IPTN 3 3

Now consider the sum

k
N(@) = 3 |I()]

r=1
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where | | indicates the cardinality. If ¢ U%, then we have N(x) > 0. In other words,
thereisan? =1, ..., n such that I_(x) > 0. In such a case, for each r, we have I,(x) > 0,
gince

> iy, ey ) = D Bl ey ) <m.

. . £
F1geas sl G frvessdeyennyin

Now define
=1-— max max > By ey in)

r=1,...,k irelz) Bygenns é;""}ik

which is strictly positive. With this we construct

k
) . 2ty ey ) + & for only one (..., 4) e X L(z),
XE(/Ll’ reey ’l’k) = . r=1

gy ovy n) otherwise .

It follows directly from its definition, that , € UE, and #,>» and N(z)> N(x,).
Hence, we can repeat the procedure, obtaining a finite sequence

<o, <(2,), < <(@)0), =
N@)> N@,)>..>N@)=0.
Therefore Z € U and #<Z (g.e.d.).

Using this result, and introducing the set E(UZ) of all the extremals of U¥, we
have

THEOREM 2. — For the mixed exiension I' of the general hide-and-seek game

. . 1
v = min o(¢)= min — :
veeB(UY) v eB(U}) Y (%7 very Tx)

Trseensit (g +ey U)

and y° is an optimal extremal if v(e) = v, where

. ) Oy eeey® 3 .
Poliay eny Bn) = M) Yo(Tay ooy ) -

v(e)

Proor. — It is clear that v > 0, therefore, if 7 is an optimal mixed strategy for
second player, we have

2 06(7;1, '--ﬂ:k)g(iu ---aik)<v

. -
2T PO 3
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for each %,: Then defining

o , By g erey )G (Bgy erey ®
Gy veey ) = —222 k)@y( 19 003 lc)’

it holds that # & V*: But, by lemma 1, there exists a ¥ € U*: y>7. Define

= v

Z(iyy eney b)) = m?(il, ceny Bz)
PRIT)

Then we have z2>§ and we want to prove that indeed this is an equality. Let

b = Z G(lxy ovry in) z 7(Iila wey b <1

G1geensit T gnensin

for Z = 0Z € N*, and

max Z 0Ty ooey ) 2(iyy euey Bg) =00

k N 2 .
’irEUN{ Vg serey trsessyll
1=%

From here, 6 must be equal one, because otherwise § would not be optimal. There-
fore, the fact that Z>#, implies § = Z € N and consequently y = 7 € U~.

Now, the first transformation gives j € U:. But, therefore 7 is a convex combina-
tion of extremals:

j= > A7
v*eEUR
which gives
s . v(e) o .
Yo(Byy eney bg) = 06—_____(1'1, ”~ ik)y (B1y eeey B2)
a point y° € ﬁ, where
1

v(e) =

YTy very Bs) )
G150ensi %Gy ovy T)

On the other hand, we have

S iy, ey 56 Yliny ey ) = 0(6) >0

. Fad .
Fyseerslryeensin

for ¢,, which implies that

. . 1
v = min ¢(e} = min — — .
Fer(UY TR CHUTRI)
I R PR Y|

Moreover, %° is optimal and extremal if v(e) =v (q.e.d.).
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3. — A simple class of extremals in U]: the diagonals.

With the result just considered in the previous paragraph, we are going to study
some general assignment problems in the next section. But for this we need some
simple facts about the most simple class of extremals in U* namely: the diagonals.
These are the natural generalization in the higher dimensional case of the diagonals
of doubly stochastic matrices. For completeness, we repeat here some definitions
given by the authors in [5], where the set of extremals is investigated more completely.

An element x & UF is said to be a diagonal if

[H(i,) N S(@)| =1
for each i, e N, r=1, ..., k. Here
H(@) = {(byy .., tu) € N¥1 4, = 4}

and S(z) stands for the support of #. A diagonal z € D¥ is an extremal vertex of UF.
Thus the set of diagonals DY c E(UE).

Given a diagonal, it is clear that (s, ..., 4;) is either one or zero. Moreover, its
projection on the face (1, r), that is to say

iy b)) = ¥ Bbyy ey by)

iz,...,’ir,...,ik

is clearly a diagonal in UZ, which determines uniquely a permutation ¢* on N. There-
fore, a diagonal in U® determines a set of permutations ¢?, ..., ¢*. Defining

1 i iy = 0%(3), vy b = 0*(3) ,

2 P .
sy ey ) = { 0  otherwise
H

we have that 7" & DE. Therefore the set of diagonals are in one to one correspon-
dence with such a set of permutations.

A further representation of the set D¥ can be given by the set of all permutations
ov2, ¢*%, ..., 0%~V where g2~V indicates a permutation induced by a diagonal in U2
of the face Ny_y 4

We say that a (k, »)-matrix (that is to says a #: N* — R), is P-constant on diagonals
if P is a set of non-overlapping diagonals covering N* Furthermore, for each diagonal
ze P, 2|8(z) is constant,

Now, we have the following result concerning the convex hull K(DF) of diagonals:

TEBOREM 3. — A (k, n)-stochastioc mairiz © € K(DE) if and only if © = > x;, where
each x; is Piconstant on diagonals for some P;. jes
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Proor. — We will firstly show that there exists a partition of the set of diagonals
Py, Py, ..., P, such that for each j =1, ..., ¢.

US@) =Nt and S@,) N Sw,) =0

2€Py

for each ,, @, € P;. Here, § indicates the empty set.
Indeed, consider the set of permutations on N, o(1), ¢(2), ..., o(n) defined by

o(@)(j) =j + i —1modn

for j e N. Therefore let #(o(¢)) be a diagonal on N X N with values one on (%, o(4)(k))
and zero otherwise. From here S(w(a(i))) N S(w(a(;i))) = 0 when 7+ 4, and

U S(eot@) = ¥x ¥

il

which gives us a partition P, = {0¢(1), ..., o(n)} for the doubly stochastic case. At
this point, we loosely write « permutations » or « diagonals », indifferently, since
there i3 a one-to-one correspondence between them.

Now we construct all the other partitions, just by giving a permutation 7. Ineded,
define z(i) as the permutation

where o(i) € P,: It is easy to see that P, = {zr(1), ..., 7(n)} is another suitable parti-
tion. Now if 7 = o(j) € P, for a given j, then

t(@)(k) = o(i)(o(j)(k)) = o(3)(mod,(j + k—1)) = mod, (¢ 4 j + &k —2),

and, taking I ==mod, (? + j—1), we get o(l) = 7(¢), which implies that for any
cyclic permutation z, P, is invariant. The same holds for any P,. Therefore we have
(n —1)! suitable partition P, in the case & = 2.

Now, in the general case when k>2, consider the faces (1,#). Consider in each
face the set of cyclic permutations ¢7(1), ..., 6"(n) given already above, then by picking
0%(15), 0%(1y), ..., 6*(éx) We construct a diagonal o7 '(e)-*(®) - We have

S (@i o)) ( §(5E W) — g

if ¢, 5= 7, for some r. Furthermore,

U (o ) — NE

(igseensil)ENg X0 X N
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From here, we have
P’g _ {wai(i:):...:ak(ék) (igy very B) € Ny X .. XNk}

and [P¥| = »*1 Asin the case k = 2, it i3 easy to see that any other partition can
be given by permutations 7% ..., %

Pl = g0 L) e NyX W XN
Again, if 7% = ¢%(4,), ..., v* = ©*(i;) then
k __ Pk
Pa*(i,),..n,a"(ik) - 'Pc .

Therefore, since are exactly (n!)t-* diagonals in UF we get [(n — 1)!]+* different
permutations P*

72,...,7% "

Now, if € K(DF), then it is a convex combination of diagonals

T = 2 Ay = E 2 As; = . E 331’,...,1"
T geeesT

i ¥ .
jeJ LA 26?’;3’.“’170

where #, . is clearly P¥  .-constant on diagonals.
Vice-versa, if € U* and

r = z xz’,...,'zk
2,70

where ¥, . is P& .-constant on diagonals, then

Ty, .ot = Z wr’,...,r'c(d) Xt
dEPI;x,“_’rk
where
X‘ﬂ,-..,rk(d) = th’.”:rk(il, ceey ik) in (?:1’ very ik) c d.
From here

z= 3 [ > wtz,..‘;f"(d)]XTe"“’tk: S I Xt

2
z2,.,., 7% deP’;a’_“,Trc Tt,,,., 7"

where in the last sum the coefficients are convex because xe Ur  (q.e.d.).
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4. — A variant of the game,.

Here we are going to consider a slight modification of the hide-and-seek game-
presented in the first paragraph. We are concerned with a subelass of extremals,

the diagonals.
These will permit us to study the generalized assignment problems given in the

next seection.
Using the result given above, we can modify Lemma 1, obtaining the result given

in the following Lemma.
Let p* be the set of k-matrices >0 such that

v = Z mr’,...,-ﬂﬂ
=, R

where @, . is Pl s-constant on diagonals.
LEMMA 4. — Vpr = PPN VE = {zc P*: there is a 2z K(D}): 2>4}.

Proor. —- Let X be an element of Vpr, then

= Z wra,...,rk
i
72,..,7

where @, 18 Pl .-constant on diagonals.
Let I,(z) be the same set introduced in the proof of Lemma 1. Again, if a I,(x) # 9,
all of them are non-empty. Therefore by taking the same &, define

W(lyy weey b)) & I (Ggy eery Bp) € (@7 se57")
Bo(lyy eoey @) = for only one 72, ..., 7%,
B(Tyy ey ix) otherwise .

It is immediate that », € K(DF) and #,>®. The reason that here the process ter-
minates with only one step is due to the fact that all the .. . are Pl .-constant

on diagonals. The remaining inclusion is trivial (q.e.d.).
We now deduce the mixed extension of the general hide-and-seek game. Let

A
fDﬁ={UNw2a5E}

where X, C Nt is the set of probabilities

X= 3 X(v .., 1
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where
1
2 E\(2 5.} — —_— i1y eeey Irc” F2
(12 oory T®) (g ovey B2) = 6(d) TR for (iyy ..., 9)€de P,

Obviously 2, is compact and convex,
We have the following result which can be proved following the lines of Theo-

rem 2, using Lemma 4
THEOREM 5. — For the extension I'p:

v(D}) = min max E(y, ¢,) = minv(5*) = min 1
e .pk - ) .
VeI eUN y'eDy ,..,7 z (X ee(Byy very i2))
fe=r (13000 o TRYES(2T230209TH)

On the optimal mixed strategies for the second player, the transformation
a( ) () = v(DX)§(+) sends X, to v(D¥). Moreover, the coefficients o(d) satisfy

1
¢(d) |
Z’,.-Z.,rk deP;‘:z,__' * (il,-gk)ed Ot(Byy ony Ug)

because x € N*,
In the case that k = 2, both Theorems 2 and 5 give von Neumann’s result.

5. — Applications to some assignment problems.

In this section we are going to discuss two generalized assignment problems and
we will relate them with the resuits already obtained in the previous paragraphs.

ProBLEM 1. — We have & groups of #-persons each and % groups of n-jobs each.
Any given group of persons corresponds uniquely to a definite a group of jobs. Say
the ¢-th group corresponds with the <-th.

The value of the ¢,-person in the j;-job, ..., the i,-person in the j,-job is

@iy Jry ooey Bry J2) -

The problem is to find assynments 7%, ..., 7% for all the groups such as to maximize
the total value

Z “('&.17 TH0y)y eey Uiy Tk(lk)) .

Byyevesiie

If we introduce a transformation given by

k I
a’(ii’ju ee0y ika 7k) + z bi, + Z Gir
r=1 r=1
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where the b’s and the ¢’s are constants, then the maximization problem is invariant.
Thus we can assume that the payoff function a be positive.
Taking
1

@by Jrg oo s Ty J1)

by Juy oy By Ju) =

the maximum value of the assignment problem is 1/v(D¥) and it is reached on a dia-
gonal by Theorem 5.

PrOBLEM 2. — Now, we have a group of » persons and % — 1 different groups of
exactly n types of jobs. A person ¢ must perform a job j,. in each group » = 2, ..., k
such that there is exactly one person performing the job 4, in each group r. Here
the value of the person ¢ performing the jobs jy, ..., Jr_y 18

a{ty Joy oo Ju) -

An assignment in this problem is a set of permutations 2, ..., % corresponding
to the faces (1,7), ¥ == 2, ..., k, as introduced before Theorem 3. The total value
for this assignment is '

S a{t, v2(i), ..., TF(9)) .

i

By a procedure analogous to the one given in problem I, Theorem 5 gives the right
answer also in this case.

6. — A generalization of K. Fan’s optimization result.

In connection with the set V2 there appear many interesting problems of max-
imization with many applieations.

One is the known extremal problem presented by K. FAN in [4], which is concerned
with the maximazation of a payoff function

on the set V2.

Here we are going to generalize the problem and give suitable caracterization
of the extremum.

Let

o) = 2 a0y, ey B)

By serasil
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be a linear a function defined on V%. Then, we have the following result which con-
siderably generalizes the corresponding one due to K. FAN in [4], which is proved
in an elegant way, based upon a strong result of convex sets. Here, we give a more
simple proof.

THEOREM 6. — For any (k, n)-matriz o, ;. , we have

% »
max f¥(z) =  min > >y,
seVE (Wigsons¥ip)ed(a) r=1 ir=1

where A(a) is the set of (Y., ..., ¥:)>0 such that y, + ..+ ¥y, >, . for each
(f1y -y T2) € N

Proor. — The problem of maximization can be expressed in a linear programing

as follows
max f¥(x)

C-2h
220

[
where O is kn X n* matrix defined on ( UxX i) X N* with values

i=7

0(7:1; il) vy ik) = 6.{,%
where 0 is Kronecker’s delta. The vector b of dimension »k X 1 has all its values equal
one. Asin [B], the set V¥ is uniquely determined by both the inequalities given above.
C-z indicates the matrix product of ¢ with the vector #. Now consider its dual
problem

min i zm: b;,vs,

v O€a r=1 i,=1

=0
where o' is the transpose of v and « is a (k, n)-matrix. Clearly there always exist a
vector satisfying the previous inequalities. But such a set is nothing else that A(a).
By the duality in linear programming (see for example NIKAIDO [6] pag. 133), both
maximum and minimum values coincide (q.e.d.).

At this point we would like to emphasize the fact that K. Fan’s original proof is
valid for the most general case considered here. Indeed, it is almost a literally transla-
tion of the case with k = 2.

With a slight modification in the above proof, using now a variant of the dual
theorem in linear programming (as for example BURGER [2] pag. 117) we obfain
the following general result, which generalizes that due to EGERVARY [3] in the case
of b= 2.

THEOREM 7. — For any (k, n)-matriz a, we have

n n
m*(a) = max f*a) = min > >y,
xeB(U%) (W55, vi)EB(R) r=1 if=1
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where now B(a) is the set of (Y; , ..., Yy) such that (y, -+ ... + ¥,)>q,
(14 oery B) € NE

We would like to indicate that one can write down the previous results in the
form of dynamic programming. For the last one, let

& for each

Ly ssey

k n
Py oyyb50)= min 3 >y,

(Wiysens¥i)EB(@) 1=1 dr=1

where y" = {y, }; ., then

mk(a) = F(y*, ..., y*; a) =

i =

= m'in[ 21 Y, +F(§ll2, cesy ?/7»; a4 — ?/1)] = min[ z yzl"[" mk—l(a_yr)] .
v L= " .
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