An Existence Theorem for Compressible Viscous Fluids ().

ArBERT0 VALLI (Povo, Trento)

Sunto. — S¢ dimostra un teorema di esistenza (locale nel tempo) per il sistema di equazioni che
descrive il moto di un fluido viscoso comprimibile.

Compressible viscous fluids have been studied by several authors in the last
thirty years. The first result was a 'uniqueness theorem proved by GRAFFI [4] in
1953 for barotropic fluids, i.e. fluids for which the pressure p depends only on the
density p. Then in 1959 SERRIN [14] proved a uniqueness theorem for general fluids
in a bounded domain.

With regard to the Cauchy problem in R3, an existence theorem was proved
in 1962 by NAsH [12]; independently ItAva [5], [6] and Vor’PERT - HUDJAEV [20]
obtained existence theorems in other classes of functions (the latter work, however,
studies a set of equations that is physically correct only for barofropic fluids).

These existence results are all local in time. In 1980 MATSUMURA - NISHIDA [9],
[10] proved that the solution exists for all time for small initial data.

With regard to the initial-boundary value problem, an existence theorem was
proved in 1976 by SoLoNNIKOV [16], for barotropic fluids with constant viscosities.
The solution is found in the class W', ¢ > 3 (see for instance LADYZENSKAJA - So-
LONNIKOV - URAL'CEVA [7] for the definition of this space). In the general case
TANI [17] obtained an existence theorem for bounded or unbounded domains, the
solution belonging to Hglder spaces. Finally, BoHM [1] has extended the result
of SOLONNIKOV to more general cases and Ton [18] has proved the existence of a
weak solution (however both these authors modify a little the correct physical case).

Also these results are local in time. No global result is known for the initial-
boundary value problem in dimension greater than one.

In this paper we prove an existence theorem (local in time) for some initial-
boundary value problems which are physically reasonable. The equations are written.
in the general form, and the solution is found in Sobolev spaces of Hilbert type.
The proof is based on the method of successive approximation, and is rather simple
in concept. One must however make some straightforward but tedious calcula-
tions, due to the unavoidable complexity of the system of equations. The basic
estimates are obtained by using some well-known theorems of LIoNs - MAGENES [8]

(*) Entrata in Redazione il 21 luglio 1981.
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and in this way our result turns out to be strictly related to the general theory of
parabolic equations.

1. - Statement of the problem and main results.

Let £ be a bounded connected open subset of R3, locally on one side of its
boundary I". Set Qr= 10, T[ x £ and 2, =10, T[ xI'. The equations that we want

to study are
0 [ : 4 (v V)v— b] =—Vp + ; [Dw(uDyv) -+ Dy(puVor)] +
—l—V[(C—gy)div v] in @,

9 .
5%-{—d1v(g@):0 in Qr,

(3]
<

I

QD

00 op .
0 [%_ﬁ @.vo] = —05hdivo + S D(Di) + o +

(1) +4 3 D+ Do+ (G @ivor im0,
oy =% , on 2r,
b =0 on 2r,
S— in £,
Drimo = 00 in £,
- in 2,

where the velocity v = v({, ©), the density o = p(¢, ©), and the absolute temperature
§ = 0(t, #) are the unknowns; b = b(¢{, x) is the external force fleld per unit mass
and r = 7{t, #) is the heat supply per unit mass per unit time; v, = 4,(2), go= go{%) > 0,
and 6, = 0,(@) are the initial data; and % = @(t, ), § = (t,y) are the boundary
data, defined for ye I

Moreover we counsider the following constitutive equations

{1.2) p=7p(e,0), ¢r=7rlo ),
M:‘d(9765v)>07 C:Z(dez'u)>05 X:Z(Q,B,’U)>0,

which express how the pressure p, the specific heat at constant volume ¢y, the coef-
ficients of viscosity u and {, and the coefficient of heat conductivity y depend on
the unknowns g, 6 and v.

Let n = n(y) be the unit outward normal vector to I. We prove the following
result
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THEOREM A. - Let I'e C*; b € H>Y(Qr), r € H¥Y(Qr,); ¥ € HV>"4( Xy ) with T-n = 0
on Xy, 0 H=(Z,); voe HN(RQ), oo HYQ), 8,€ HY(Q); e C3, &re O° with 0 < &, <
<Cy<Cy; i€ O with i>fi,> 0, 0% 7€ C* with 7>7,> 0. Suppose that the data
satisfy the compatibility conditions (see Remark 3.1). Then there ewist T,e10, T,],
ve H ¥ Qy), 0 € C[0, Th]; HY(Q)) with 0> 0 in Qr, 0 € H¥*Qr) such that (v, g, 0)
is a solution of (1.1) in Qg .

For the definition of the spaces H"*(Q), see for instance LIONS - MAGENES [8],
chap. 4.

Other boundary value problems are considered in Remark 3.3.

Uniqueness of the solution is proved in [19] (see also GRAFFI [4] and SERRIN [14]).

2. — Proof of Theorem A for constant coefficients,

In this section we suppose that the coefficients f, £, ¥ are constant. Consider
the operators

9 1,1\ ?
Ty 0 G '
(22) Lz’,, :—_'a—t' —l— vV 9
1 %
B TE maw Y Sat e,

where ¢,(x ):EV(QO( )y 60(56)).
One starts from (v, 6,, ;) and obtanns (vn, By 0n) from (v,_,, 6,,_1, 0a_1) by sol-
ving these problems: ‘

1 1 .1 .
Tulon) = ( - *) [ﬂA”n—l + (C + —ﬂ) v div @n_l] +
@na o 3
(2'4) + b— (v"“llv)vn—l”— ) Vpn_l =Lpa + b in QT ,
Vnir = v o ZT’
vnlt=o == 170 in Q ,
- - i E.\2
Ls(en) - (Qn_len_l_'éo—c;) }'A a1+ _n—:;QT_l lzk (Dkvn—l + 'Di'un-—l) +
1 _ 2 ]
o ““5*")‘d1V”n—1)2-vn_1-ven_1_
2.5 -
. L |
 Qnalus Ons =55~ 25 BV O+ = =G, in @y,
Pur =" on Xy,

B0 = 0o in 2,
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Lz,'vﬂ(Q'n) = —0n-1 div (2 in QT ,

(2.6 .
) ; Onit=o = Q¢ m .Q,
where
p,{t, 2) = ?(@f(ta %), Hj(ty w)) y ca’“, %) = %(Qj(ty a’)y Bj(t, w)) y
op; op . . X
5%(15, x) Ea—f;(g,.(t, z), 0,(t, ®)), for each j>0.
Set
(2.7 102,70 + |9 ]0s2, 200w+ Héléwz,ﬂlz,n”i‘ 172,07+
Lo Lo F ,
+ oolls + 10o]s -+ [vos =7 < T
(2.8) gi=4infgy(r) >0, @§,=2 SUp 9,(%) ,
Q 9]
where |-/, and |-,  , denote the usual norms in H*Q) and H™(Qy) (or H(2y)).

From now on each constant ¢, C;, 0}, C;, C;, K, and each instant 7,.,,j>0,
will depend at most on the data of the problem 2, T, 7, D, &, i &, 7, 0o, 0o, 5.
Other possible dependences will be explicitly pointed out.

We want to prove that there exist 7), = T,(F) e ]0, T,] and a constant ¢, such
that

(2.9) sup [0a(t) s + |Vnlser, + 10nlper, < CoFy  m>1,
10,741

(2.10) 0<@<onll,?)<@ 0 @r, n>0.

From (2.9) one obtains at once (see chap. 1, Theor. 3.1 and Theor. 3.2 of [8])
that v, and 6, belong to C°([0, T,]; H¥£)) and

(2.11) sSup loa® s <e{[valaoz,+ [9a0) s + {2(0)ls}
(2.12) Sup [6,(0)la <0 {100 [z, +- 1050} +- [0(0) s}

where f= dffct. Note that the constant ¢ in (2.11) and (2.12) doesn’t depend on
the length of the time interval T,.

One proves (2.9) and (2.10) by induction. First of all one has to find the existence
theorems for (2.4), (2.5) and (2.6).

LeMMA 2.1, - A(z, D) is a uniformly strongly elliptic system, with elliptic constant
23/

PROOF. — One has only to observe that for each &€ R?, 5 = o + ifi € C?

Ro 3 &.yryeil; = 3 by + i) :(2 f) + (Z £8)' >0,
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and that —(1/g,)74 is uniformly strongly elliptic with constant 24/g, (see for in-
stance MORREY [11], § 6.5 for the definition and other properties of strongly el-
liptic systems).

Observe also that the operator

44(D) = gu(@) A2, D) = — g4 —( + ) V div

is the «elasticity operator » (see for instance NECAs [13], chap. 3, Prop. 7.2). O
Let T €10, 7,]. Then one has

LEMMA 2.2. - If F,_,c H>Y Q) and the (necessary) compatibility conditions are
satisfied (see Remark 3.1), then (2.4) has a unique solution v,€ H%*Qy) and

(2.13) anglf4,2,’_l'<01{”Fn_1 “2,1,:1' 4 !fblgz,l,To+ l;l'l_)“7/2,7/4,1'.)+ ”"70 ”3 - ””n(O)HI}<
| F
<O T+ 1.
ProoF. — One applies Theor. 5.2, chap. 4 of LIONS - MAGENES [8], where H =
= H*), & = L¥L2), and A is defined by
Aw = A(z, D)w
Dy(d) = {we H|Awe H, w = 0} .

A(», D) is a unbounded closed operator in H and has the following properties (see
§ 4, (4.8) and (4.11)):
(i) Du(4) = HHL) N Hy(&);
(ii) for each we Dy(d), for each A€ C with Re A> 1, + 1 (see (4.6) for the
definition of },) one has
lwla< Ca(A + Ryl
where ¢, doesn’t depend on J.
Moreover A - / is an isomorphism from Dy(A) (endowed with the graph norm)
in H for each A C with ReA> /,+ 1.
Finally one obtains
19w + (A2 ]e = Jw® + [dw]s + [AP[wlo<
< Jwlls 4 14+ Aywls + [Af[w]s + [A][Aw]o<
<1+ 2wl + (A4 Dw]y + A4 + Hwlo+ [iiiIAWHoﬁ
< ) ke 1+ Dol I+ Bl + (54 £) 3 1l <
<Oa(1 + IM){[(A + Mwlo + (4 -+ Mwls,

where C; doesn’t depend on 2.
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Hence the result follows as in Theor. 5.3, chap. 4 of [8]. Note also that the
constant €, doesn’t depend on 7. Moreover, sinee [9,(0)],<K,(F/4), the second
estimate in (2.13) is obtained by taking C, = max (0, C,K,). 0O

From this lemma one obtains at once that v, (that is the solution of (2.4) for
n = 1) satisfies

Ioluse < Cifg = O LI+ (14 TeoB)(L+ 164+ esl2) Tl + 1801 <

' <0} {1—; + C; T F(1+ F4)} .
Then one can choose T<T,= T,(F) and obtain
(2.14) 1934 00 < CLF

LEMMA 2.3. ~ If G, ;e H¥YQ:) and the (necessary) compatibility conditions are
satisfied (see Remark 3,1), then (2.5) has a unique solution 0,¢ H%%Qr) and

(2-15) l%9n114,2,w< Gs{n Gn_l H'Z,I,T + nén7/2,7/4,T0+ 1190”3 + ”671(0)”1}<Cé {F/2 + ” Gn-1 ”2,1,2‘}'

PrROOF. — One has only to observe that B(x, D) is uniformly strongly elliptic,
with elliptic constant 27/¢,0,, and apply Theor. 5.3, chap. 4 of [8]. Moreover, one
has ﬂﬁ )1 <K,(F[4), and then the second estimate in (2.15) is obtained by stak-
ing Cs= max (C;, C,K,). O '

Hence, as before, one obtains that 6, satisfies

|
ol

ool =+ 0] 160s +

+H—H 100l (1 + ool + (|e.)n§)nm|3] + g;“,,;}‘m} -

: F
101 ]5,00< Cg {—é -+ O, T2 [

{ + C T1/2F2(1+ Fey 4 Orlr|,,, T}7

and by choosing T < T,= T(F) one has
(2.16) 101422 < Cs F
since [ls10—0 as T — 0+,

LEMMA 2.4. ~ Let v, be the solution of (2.4) determined in Lemma 2.2. Then (2.6)
hos a uwique solution p,e L“( 0, T'; H¥L)) and

@11)  sup feu0)lo<exp o f e llsdr){ileollercTll@mt)dwv @}z
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PROOF. — Since v,& H%*@y,), then (see [8], chap. 1, Theor. 3.1)
v, ([0, T1; H3(Q)) c C°([0, T]; CYD)) .

Hence the existence of a unique solution g, follows from the method of character-
istics (observe that v,-n,=7n =0 on Zy).
Let now « be 3 multi-index with |«|<3. Then one has

f (% D“Qn) Dandm = —f D“('Dn . VQn) DaQndw ——f _Dl"(@n_l div q;n) D“Qn da ;
Q 0o o

by adding in « and integrating by parts the term
— f v, V(Do0,)2dis
2

it follows

IR
| &

lea® s <ellvat)]s [@nt) 3 + [@us(f) div oa(t)[s]@alt) [s] -

X

1

By Gronwall’s lemma one obtains easily (2.17). O
From (2.17) one sees that if T< T,

(0,71

T T
sup au(t) s < exp (e f Joy(7) nsdr) ool {1 +of o) Mr} <
’ ’ <exp (cO1 BT 2) g, [l3{1 + cCLFT"2} .

Hence there exists T, = T,(F) such that if T<min(T,, T,) one obtains

(2.18) sup [0.(#) [ < F .
10,113

Moreover, let U,(s, ?, ) be the solution of

dU (s, ¢, ; ,
__1_(33;.’__) === ?71(89 U1(3, t, 0?)) , Ul\t, t’ ,1;) = x;
then from the explicit formula for p,

¢
oulty ) = 0o Uy(0, t, ) — J“go( Usls, 1, @) div vy(s, Us(s, t, #)) ds
0
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it follows that in @, one has

. ¢
Ql(t, J/‘) < -0—22{1 +f ”dIV IDI(S)HL“‘(!)) dS} < %2-{1 + TI/ZOG{F} s
0
ou(t, ©)>23, -% Ti2e0LF .

Then there exists T;= T;(F) such that if 7 <min(7,, T;) one obtains
(2.19) <ot #)<@; in Qp.

Hence one chooses Ty <min (Ty, Ty, Ty, T5) and Cy>1 + C; -+ C4, and obtains
(2.9), (2.10) for n = 1.

Suppose now that (2.9), (2.10) are satisfied for each j<n—1. We have to
obtain them for the index ». One has only to estimate the norms of ¥, ;, and &, _,
in H%1Qy). The first estimate is obtained by a straightforward calculation. Set
Il = [+ 1 oo, s B2y s 1<g <+ 00, k>0; one has

(2.20) ”Fn—l ”2,1,T<2 “Fn_1 ”2;2 -+ ”Fn_l ”2;o<

T Un_ 1 N
< Os{ Q_Q““‘Q“i [Pnlese =+ |5 @nsf] [P ]ooss +
€00n_1 |[oos2 n—1 251
Og——0n_ .
+ sl [Dn_1f2s2 + |Pnslleosa [Pn_tlaia +
B00n_1 [oos2 .

(1 + ” VQ”—I “i’;l + H Ven—l ”iﬂ,l)

. 1
+ an—l ”w;z[lvn—l “2:1 + 0

N

1|joo;2

(lonalosz 4 10ns]eeiz) +

2;1

— 0

"(lgnatllzis + 10nslais) + -1
- (14 Jonslois = [Bnsose) ([ns o2 + 18as ”m)} ,

If one observes that g,_,€ Lip ([0, T]; H*(L2)) and that
15 < T2 f oot
from (2.9) and (2.10) it follows that
1Bt on, o< Cu(F) T2,
Hence from (2.13)
Ioalne< O1{ 5+ Cumyme)
and when T'<7T,= T,(F) one has

[0nll 22 < CLF .
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On the other hand one obtains

(2.21) ” G’n—l ”2,1,1' <2 ” Gn—l»” 2;2 ‘l‘ ” G.n—l ”2;0 <

S s LR e
ol [0l s Dol lOna b (1 Fancal s+ [0, ]20] +

+ [0naf oogs ([Fnaflon + Hén—l ls1) =+ [6ns o2 [ Bns Joss +
+ “’Un_-l ”00;3 ”071—1 ”00;2 ( ”én—l ”2;0 —l_ ”6.71—1 ”2;0) + H/U"—l “°°:2 ”0”-1 ”2;3 +

[

1 . ,
+ = (001Cns+ 02_1Cn)

2 2
On-1 on—'l

+ ( - 0012 + “6"4”00;0) ”rnzzz + ”7““2;0} .

Cpa
If one observes that ¢, i€ L°(0, T; H¥RQ)), 0., € C([0, T]; HY(RQ)) (from
Theor. 3.1, chap. 1 of [8]), and that by interpolation

Lo F Dol bl slos]

b._ € L*(0, T; H(Q)),
i.e. 0,_,€ CV2([0, T']; HXR)), it follows by some calculation that
160 lanr <CoF) T2 + Co(F)|r|1,2 -
Hence from (2.15) one obtains that
Buluse <O+ OUTVT + G ]
and when 7 <T;= T4(F) one has
102l4,02< CsF .

Now we can obtain also the estimate for p,: from (2.17) it follows
T T
sup loa)ls<exp (o fou ) { uls - o Jowatr) v (0 )<
’ ¢ 0 F
<exp (¢cOLFT2) {E 4 cO{F”T”“} .
Hence there exists Ty = Ty(¥) such that if T<min(T,, T,), then

sup [lo.(t) s <F.
[0,73
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Moreover from the explicit formula for ¢,, it follows that in Q.

0ty 7)< %{1 + 2T1/200L F}
and

0ulty #) > 25, — 2. TH20C} F .
Hence one can find Ty, = Ty (F) such that if T<min (7,, T,,) it follows that
0:1<0a(t, 2)<8: In Qr.
Finally, one chooses
(2.22) T, = min {Ty, T;, Ts, Ty, Tho}, Co=1+4 C1+ Cg;

consequently, (2.9) and (2.10) are proved in @r .

We can prove now the convergence of the successive approximations. From
Theor. 4.1, chap. 1 in [8] it follows that H**@r) is continuously embedded into
H34(0, T,; H5*(£)), which is compactly embedded in C°([0, T,]; H*£)) from Ascoli -
Arzeld’s and Rellich’s theorems.

Hence there exist subsequences v, and §, which converge in 0o([0, T,1; H¥(R2)).
Analogously, one obtains that ¢, and éﬂk converge in C°([0, T,]; L*(Q)).

Moreover, from (2.6) we obtain that

Sup |on(?) o <cOLF?,

10,741

hence g, is bounded in H*4(0, T,; H*4£)) (see chap. 1, Theor. 4.1 and Theor. 9.6
of [8]), which is compactly embedded in C°([0, T,]; H*(£2)). Analogously, we prove
that ¢, is bounded in H?®4(0, T,; H¥4(R)), which is compactly embedded in
([0, T,]; OYR)).

Hence we can pass to the limit in the space C%([0, 7,]; L*(£)) in (2.4), (2.5) and
(2.6), and we find a solution (v, g, f) of problem (1.1), such that ve H**@r), 0 €
e H*(Qp ), 0 € L°(0, Ty; H¥L)), and moreover

10)er, < CLF, |6

Lo, < Oy F, suplo®)s<F, 0<pi<olt,®)<p. in Qr,.
[0,7,1

Observe also that, from the uniqueness theorem (see [19]), the whole sequence
(Vs Ony Ba) converges to the solution (v, g, ) of problem (1.1).

Finally, one can see that g e (°([0, 7,]; H¥)). In fact, the representation for-
mula for g{¢, #) can be written as

[
(2.23) olt, ) = 0o( U(0, t, @) — f o(s, U(s, t, ) divo(s, U(s, 1, x)) ds
0
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or
|1

(2.24) olt, #) = o U(0, , ) exp [— f divo(s, U(s, t, v)) ds]'
0

(see for instance ITAYA [5], or SoLONNIKOV [16]).

Since U(s, t, #) € C°([0, T,]1x[0, T,]; H¥R))} (as in BOURGUIGNON - BREZIS [2],
Lemma A.6), and for each s,¢e[0, 711, U(s,t, #) is a O* diffeomorphism from 0Q
on O, with U(2Q)c 0%, one obtains easily that g e C°([0, T,]; H¥2)) (see also
BOURGUIGNON - BREZIS [2], Lemmas A.3, A4, A.5).

Observe also that is i%f go(®) > 0, then from (2.24) it follows that every solution

of (1.1), in @ is positive in @, for each 7' > 0.

3. — Proof of Theorem A in the general case.

Suppose now that g, £, ¥ belong to. €2, with > > 0, {>0, 7> 7> 0.
Consider the operators

8 1 2 \..
61 Lw=3— 2 {g Do Ds) + DifpeTr)] - ¥ (2= o v w]}s

o ~
Eai: -+ Az, D)w,

Wher)e o) = ﬂ(@o(w)y Bo(), vo(w))y Lo(e) = E(Qo(w): Oo(), ’Uo(m))y 2ol@) = Z(Qo(m); 60(03'),
UNUARN

The terms Fi., and G,_, become respectively
1
(3.4) Fi_ = Q_ {% Dy[(ptnz — po) Divg—1 + (Uny — pho) D011 +-
o 1%

2
+ D, [(Cﬂ-l ~— Lo -3 Ha1 + ;Mo) div ”n_l]} +

On_1 ()

-+ ( ! - él—){Dk 7 Dyv) ] + D, [tn_1 D, 4-’5——1] + D, [(Cn-l —gﬂﬂ—l) div ’07‘4]} -

1

Tl

—A{0p_1 V) 0u_y —

Vpaa,
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1
3.5 Gy =—> Di(%n_ e —— 1 Di(yn n
(3.5) 1 9000; Y — Zo)-Dk0 1] + (Qn_10n_1 QOOO)D,(X D0, )
Ha1 i % Cn_l - %‘,”'n.—l .
+ 20m10ms ;k: (Dipy -+ Dyyy)® -+ ——“-—“cn_le"__l (div v,_,)?—
1 OPos .
— Uy VOn_y _~Qn_10n.~1 Ons 30 divo,_, - P

where u;(, ©) = ji(o,(t, %), 0,(, ), v;(t, #)), and analogously for ; and y,;, j>1.
One easily verifies that

[#n—1— ]| oy <(73(F)_T1/2
l#tna] oy 5 B o]} s < Cu(F)
L] i <Co(F)

and analogously for [,_, and 4,.,. These estimates are sufficient to obtain the
estimates for F,_, and G, _,, by proceeding as in § 2.

On the other hand, A(», D) is a uniformly strongly elliptic system, with elliptic
constant 24a,/g,, and Bz, D) is uniformly strongly elliptic, with elliptic constant
271/ G-

Lemma 2.2 and Lemma 2.3 are proved in the same way (see § 4 for the proper-
ties of A(z, D)), and then the existence of a solution of (1.1) is obtained by suc-
cessive approximation without any other change.

REMARK 3.1. — The compatibility conditions (see Lemma 2.2 and Lemma 2.3)
are (see [8], chap. 4, Prop. 2.2)

(3.6) vuir = B0, 9)
ov ,
2000 = =S (DuaDew) + DTl +

Qo L%

[(:o —m)dwvo]}er(O) 4T, (0,9) on T,
that is
o0

B

0,9) = g—o{g [Dw(pto Dyv9) + Diue V05)] -+
v[(6=F ) aive] |4+ 20 — (0 Wn—2Vp on 1,

where b(0) = b(0, x).
Analogously, for the absolute temperature § one must require

(3.8) Our = 5(0 Y)
06 .
3.9) =0, ) Z Di(goDavo) + 5.~ L > (Dyvlh + Do) +-
900 OQM k
2 . 1 ¢ 1
+ Q"—aéﬂ?(alwo)z_%-veo 00 azg’d vy = o r(0) on I,

where #(0) = r(0, x).
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REMARK 3.2. — From thermodynamics one expects that (see fot instance SER-
RIN [15])

o
(3.10) >0, 5§>0, 6>0.

One can require the first two for the assigned function P, but the third assertion
must be proved.

From the maximum principle, if >0 on X and 6,>0 in Q, and if #>0 in Qy,
one obtains that 6(¢, #)>0 in @, for each T > 0.

Moreover, if 0y(x)>26,> 0 and 0(t, y)>20,> 0, and if r>0 in Qr, from the
maximum principle one obtains that :

—I—O@divv

6(t, ) >20, — T max oz’ in Qp.

Qr

Then for 7T small enough, depending on the data of the problem, one has

6(t,2)>0,>0 in Q.

REMARK 3.3. — In case ¥ is constant, 7 = j, > 0, one can solve problem (1.1)
also for the different boundary conditions
_ 00 _ of i
xlgﬁlzﬂ or xlé;l,_l—ke::ke,
where & is a positive constant and 6 EH5/2’5I4(ZT0).
One proves Lemma 2.3 in the same way, since these boundary value problems
for the operator B(x, D) are still «regular elliptic » (see [8], chap. 4, § 4).
Obviously, one has to rewrite the compatibility conditions, which in these cases
must be satisfied to order ¢ < £ (see [8], chap. 4, Prop. 2.2); namely, one must
suppose that

| _
xla%p_

a0,

60,y) or 7 il

+ Kbor = k6(0, ) .

Finally, the maximum principle for § can be applied also in these cases with
minor changes.

4. — Appendix.

Consider the operator

(4.1) ff(m, Dyn =— 1 {z [Dy(pDyw) - Dy(poVur)] + V [(Co — g‘uo) div %] ,
00(®) 1% 3

14 -~ Annali &t Matematica
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{tho and. {, defined in § 3), which becomes
1 = 1 .
(4.2) Az, Dyu = —m[ﬂAu—{—(C—!—gﬂ)levu]

when u and { are constant.
One can write A in divergence form

=Y 4,4 =— 3 D,(arD,u) -+ 2 07D,
8 758

ZJS

where

azrj = 'é: Ho 5rs 517 + ;uoazs 6r: + (Co 3 ,uo) (Sﬂv(sjs y

L T A A

Consider the bilinear form associated to A

(4.3) a(u, v) = 3 faf.;’Dj%SDiE"dx + 2 | ¥ DT da
m,r,sQ 3,8,

and define

(4.4) ay(u, v) = alu, v) + Mu, D)) -

The form a,(u, v) is coercive in H}(&), for 1 e C such that Re 2> 12, large enough,
and moreover a;(u,v) is bounded in Hy(£2) for each ieC.
In fact, let w e H¥(Q2) N HL(£2); one obtains

A, u —.f]:‘uo‘l)u[ —}—‘uazDuDuf—}-é#ldiV“P]dw'{'

0o 7 Jo

+ z [ (0 ),uoD w7y - D, (Q ),uol) w4

8

-+ D, (b{)(@o—gﬂo) Dju"ﬂs] dx -+ }.f |u|2da .
2

Integrating by parts one has

> b pwi D, dw = {‘u"[dlvu]? 2[ (g“)uDuf Di(‘?)uil),ﬂf]}dw;
J0

i,id Qo 1.9 0
Q

hence

(4.5) a;(u, u)| > Re a;(u, ) f [Du2de + Re A} ju2de —
Q

[ ( ) +%D(\O)}1D“l|u[dm> b_—zfil)u[2dm+
+{Rel —5 HD(@«>> me)_l_” (QO) ;(Q)]}!! |2 dex > QJID“lzdm

h
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when 1 is such that
2

Pt Gl =4

Observe that w,e H3(L2) and g, H¥{2), hence 4, is finite.
If we Hy(f2), one obtains the same result by approximation.
Moreover, one easily verifies that

2— 2
(4.6) Re 4> fc*[
M

(4.7) |@4(%s )| <3| %] my o9 sy

for each u, v e H ().
From Lax-Milgram’s lemma, given fe LX), one finds a unique solution
u € Hy(Q) of

a0y 0) = (f; V)paiqys, Yo e HYLQ).

Moreover, 4 is a uniformly strongly elliptic system, and consequently by re-
gularization one has that »e HXQ)N H(2), and that ue HYQ)N HYL) when
fe H*{2). One has only to observe that the regularity alie H3(£2), b7e H¥ Q) is
sufficient to apply the standard methods (see for instance Grustr([3], chap. 2,
§ 3, 4, B).

Setting

e =INQ), H=HQ),
one has obtained in this way that
(4.8) Dy(d) = H¥Q) N HYQ), Dy(d) = HYQ)N HYQ).
Suppose now that « € Dyg(4) is a solution of (4 + A)u = f; then
A+ hu =4 + du + (h— Zou =T

i.e,

(4.9) (A—2oyu=f— (A4 + A)u.

Taking the scalar product in L3(2) of equation (4.9) with u, from (4.7) and {4.5)
one has

2 — 2ol 5 = |(F, whzrcar — s,y W< [ o] o + |,y u)| <

< Ifloluls + 02,14l ey < [l [0 fo - ez, f? o, w)] <

<(1+% %)Hf“u lulo  for each AeC, Reli>Jo.
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Hence, by choosing the constant large enough, one finds

¢

1_!_MI”(A+}“)MHO VZEC, Rel>lo—{—1.

(4.10) lufo<

Moreover, from the well-known elliptic a priori estimates and from (4.5), (4.10)
one obtains

@11)  July<e(|dulo 4 [u]mye) <e[1(d + Dulo -+ (L4 [2])[ulo] <
<O A+ Nu|, VieC, Rei>l-+1,

where €, doesn’t depend on A.

Finally, one observes that 4 is a closed (unbounded) operator in J¢ and in H,
and that 4 4 A is an isomorphism from Dy(A) into J and from D4(4) into H, for
each A€ C such that Re 1> 4,4+ 1.
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