
An Existence Theorem for Compressible Viscous Fluids (*). 

ALBERTO VALLI (POVO, Trento) 

S t m t o .  - S i  dimostra un teorema di esistenza (locale nel tempo) per il siste~na di equazioni che 
descrive il moto di ~n ]tuido viscoso comprimibile. 

Compressible viscous fluids have been studied by  several authors in the last 
t h i r t y  years. The first result  was a uniqueness  theorem proved by  GICAFFI [4] in 
1953 for barotropic  fluids, i.e. fluids for which the pressure p depends only on the 
density @. Then in 1959 SEg~I~ [14] proved a uniqueness theorem for general fluids 
in a bounded domain. 

Wi th  regard to the Cauchy problem in R 5  an existence theorem was proved 
in 1962 by  :NAsIt [12]; independent ly  ITAYA [5], [6] and VOL'PE]~T - HUDJAEV [20] 
obtained existence theorems i~a other  classes of functions (the lat ter  work, however, 
studies a set of equations tha t  is physically correct only for b~rotropic fluids). 

These existence results are all local in time. In  1980 M A T S U ~  - :NISmDA [9], 
[10] proved  tha t  the solution exists for all t ime for small initial data. 

Wi th  regard to the ini t ial-boundary value problem, an existence theorem was 
proved in 1976 by  SOLONNI]~OV [16], for barotropic fluids with constant  viscosities. 
The solution is found in the class W~ '~, q > 3 (see for instance LADYZENSKAJA - SO- 
LO~N~:KOV - U~AL'CEVA [7] for the definition of this space). In  the general case 
TANI [17] obtained an existence theorem for bounded or unbounded domains, the 
solution belonging to H61der spaces. Finally, B6H~ [1] has extended the  result 
of SOLOI~I~'IKOV tO more general cases and ToN [18] has proved the existence of a 
weak solution (however both  these authors modify a little the correct physical case). 

Also these results are loc~l in time. :No global result  is known for the  initial- 
boundary  value problem in dimension greater than  one. 

In  this paper  we prove an existence theorem (local in time) for some initial- 

boundary  value problems which are physically reasonable. The equations are wri t ten 
in the general form, and the solution is found in Sobolev spaces of Hilbert  type.  
The proof is based on the method of successive approximat ion,  and is ra ther  simple 
in concept. One must  however make some straightforward bu t  tedious calcula- 
tions, due to the unavoidable complexi ty of the system of equations. The basic 
es t imates  are obtained by  using some well-known theorems of LioNs - MAGE:NES [8] 

(*) F~ntrata in Redazione il 21 luglio 1981. 
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and in this way our result  turns out to be str ict ly related to the general theory  of 
parabolic equations. 

1. - Statement of  the problem and main results. 

Let  ~ be ~ bounded connected open subset of R 3, locally on one side of its 
boundary  F. Set Q r ~  ]o, T[• and Z~r~ ]0, T[ •  The equations tha t  we want  
to s tudy are 

(1.1) 

0V 
+ (v.V)v--b = --  Vp + ~ [D~(#DT:v) + Dk(#Vvk)] + 

7c 

] + V  ~ - - g / ~  die v in Qz,  

@ 
+ die  (pv) = 0 in QT, 

cvQ + v. v0] 
~t 

~p 
= - -  0~-~ div v + ~D,(ZD~O ) + 9r + 

k 

+ ~ ( D k v ~ + D , v k ) ' + ( ~ - - 2 # ) ( d i v v ,  ' 

OIF --~ 0 

Vlt= o ~ V 0 

~l~=o ~-" ~)o 

Oit=o ~ 0o 

i n  QT 

oi1 ~ T  

in Y2, 

in tg ,  

in 9 ,  

where the velocity v = v(t, x), the  density ~ = o(t, x), and the  absolute tempera ture  
0-~  O(t, x) are the unknowns;  b = b(t, x) is the external  force field per unit  mass 

and r = r(t, x) is the heat  supply per unit  mass per unit  time;vo = vo(x), ~o= ~o(x) > O, 
and 0o = Oo(x) are the  initial data ;  and ~-~ ~(t, y), 6 = 6(t, y) are the boundary  

data,  defined for y E F. 
Moreover we consider the following const i tut ive equations 

(1.2) P = ~(e, O), c~ = ~(q, O), 

= ~ ( ~ , 0 ,  v ) > 0 ,  ~ = ~ ( q , O , v ) > o ,  7 ,=~(~ ,0 ,  v ) > 0 ,  

which express how the pressure p, the specific heat  at  constant  volume cv, the coef- 
ficients of viscosity /~ and ~, and the coefficient of heat  conduct ivi ty  Z depend on 

the unknowns o, 0 and v. 
Le t  n = n(y) be the unit  outward normal vector  to F. We prove the following 

result 
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T~IE01CE~I A. - Let F e C4; b e H~,x(Qro), r e H2,~(QTo); ~ e H'/~,m(Z'z~ with ~ .n  = 0 
on Xr~ 0 e Hm'T/'(2:ro); voe HS(9) ,  eoe Hs(D), 00e H3(9); ~ e C5 ~ , e  C ~ with 0 < ~ <  
< cv < c~ ; fi e C a with fi > fi~ > O, ~ ~ C ~, ~ e C a with ~ > 2 ~ > 0 .  Suppose that the data 
satis/y the compatibility conditions (see t~emark 3.1). Then there exist T~e]0, To], 
v e H~,~(Q%), e e C~ Ha(/))) with e > 0 in Qr~, 0 e H'.~(Q@ such that (v, e, 0) 
is a solution oJ (1.1) in  Q%. 

For the definition of the spaces H*'~(Qz),see for instance LIo~s-  ~V[AGENES [8], 
chap. 4. 

Other boundary value problems are considered in l~emark 3.3. 
Uniqueness of the solution is proved ia [19] (see also Glch~sI [4] and Snl~l~I~ [14]). 

2. - P r o o f  o f  T h e o r e m  A for cons tant  coeff icients .  

In this section we suppose that the coefficients fi, ~, ~ are constant. 
the operators 

(2.1) .L~ -- ~t ~o(x) hA + ~ -}- fi 

(2.2) Z z . , = ~  + v .V,  

Vdiv ~ + A ( x , D ) ,  

(2.3) Za -- ~t ~o(x-fCo(x) ZA -~ ~ @ B(x,  D),  

Consider 

where co(x) --  gv(~o(X), Oo(x) ). 
One starts fl'om (vo, Oo, qo) and obtains (v,,, 0. ,  Q,) from (v~_~, 0,,_~, ~,_~) by sol- 

ving these problems: 

(2.4) 

(2.5) 

l o ) [ f i A v ~ - ~ - / @  + l f i )  V divvy_l] + 

1 
-1- b -- (v,,_l . V ) % _ ~ - - - -  Vp~_~ -- F~_~ H- b 

Vn~i ~ ~ 

V n l ~  o ~ q2 o 

L3(o~) = o/~Ao~_l + 

1 + 
n-i Cn_i 

i n  QT 

o n  ~ T ,  

in  ~2, 

OnIF ~ 

O,H~=o --= Oo 

r ~ Gn_l 
qn_iCn_l -- 

in O~, 

on ~ , ,  

ill ~2, 
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(2.6) 

where 

@nlt=o : @o in .(2, 

p,(t, x) - N ~ ( t ,  x), offt, x ) ) ,  c~(t, x) =_ ~ ( e / t ,  x), o/ t ,  x ) ) ,  

~P~ (t, x) - ~ ~0 ----~O(e~(t,x),O~(t,x)) , for each i > 0 .  

Set 

(2.7) 

(2.8) 

"b ~ i  ~ Oi J il~,,,~.~-,I A,/~,,/.,~.~- [I [ , ,~ . ,~ .T  !irll..,,~o+ 
F 

+ II eo!h + iJ0oll~ + !J~o 5 ~ u < + oo,  

gt ~ �89 ins ~o(X) > 0 ,  g~ ------ 2 sup ~o(x), 

where ii "i1,r and il'Jl ..... ~ denote the ns .a l  .orms in H~(~) and m'*(Q~) (or H*,*(.r~)). 
From now on each constant  c, C~, C~, Cj, Cj, Ks and each instant  T~+~,j>~O, 

will depend at  most  on the da ta  of the problem ~C2, To, r, p, cv, fi, ~, 7~, ~o, 0o, %. 
Other possible dependences will be explieitly pointed out. 

We want  to prove tha t  there exist /'1 = T~(F) ~ ]0, To] and a constant  6% such 
that 

(2.9) 

(2no) 

sup If~.<t)[]~ + ;Iv.[i~,.~,~+ o.'1 ~ CoF , ,i [ 4 2,T1 ~ 
[0 ,  T J  

o<&<~o . ( t , x )<g~  in ~)~,, n > 0 .  

From (2.9) one obtains at  once (see chap. 1, Theor. 3.1 and Theor. 3.2 of [8]) 
tha t  v, and 0, belong to C~ T j ;  H~(~)) and 

(2.11) 

(2n2) 

~ C  V I sup ijv.(t)lh~. {if .f,,..,~,+ ]lv.(o)![, + J[~.(o)h}, 
[ 0 , T j  

sup O.(t)p!,<e{l!o.h,~,~+ I1<(o)[',~ + ,lO.(o)h}, 
[ 0 , Y J  

where / ~  ~]/~t. _Note tha t  the constant e in (2.11) and (2.12) doesn't  depend on 
the length of the t ime interval T~. 

One proves (2.9) and (2.10) by induction. First  of all one has to find the existence 
theorems for (2.4), (2.5) and (2.6). 

- A(x, 1)) is a LEM3'IA ~.1. uni]ormly strongly ell@tie system, with elliptic constant 

2f~/&. 

PROOF. - One has only to observe tha t  for each ~ ~ R s, ~ = ~ + ifi ~ C 3 
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and tha t  --(1/Qo)fiA is uniformly strongly elliptic with constant 2fi/5~ (see for in- 
stance M0m~EY [11]~ w 6.5 for the definition and other properties of strongly el- 
liptic systems}. 

Observe also tha t  the  operator 

AI(D) ~ @o(x)A(x, D) = - - f iA  - - (~  -~ �89 V div 

is the (( elasticity operator ~) (see for instance NE~AS [13], chap. 3, Prop. 7.2}. [] 
Let  T e ]0, To]. Then one has 

LE)I~A 2 . 2 . -  I] .F._~s H2,1(Q~) and the (necessary) compatibility conditions are 
satis]ied (see Remark 3.1), then (2.4) has a unique solution v ~  H4,~(Qr) and 

PRoof .  - One applies Theor. 5.2, chap. 4 of L i o n s -  MAGE~ES [8]~ where H = 
= H~-(9), JC -= L~(f2)~ and A is defined b y  

A w  = A(x,  D)w 

D, (A)  ~- (w e HIAw e H, w~r= 0} . 

A(x,  D) is a unbounded closed operator in H and has the following properties (see 

w a, (4.s) and (4.11)): 

(i) Dn(A) = H f f g )  (~ H~(~);  

(ii) for e~eh w ~ D, (A) ,  for each )~ e C with Re ~ > 20 -7 1 (see (4.6) for the 
definition of )~o) one has 

1~ ' ~.)Wilo o < c~l] (~  ~ , 

where C~ doesn' t  depend on ~. 

5~Ioreover A ~- )~ is ~n isomorphism from DH(A) (endowed with the graph norm) 
in H for each 2 ~ C  with R e A ~ 2 0 ~ l .  

Final ly one obtains 

< ( x §  IA])l[~~]~ § [](A + 2~)~]I~. + IAIll(A + ~)Wi]o § I,~lliSw]io< 

<(1+ [Zl)([~[h§ [[(A§163247 IAli](A+A)wll0§ g # §  g iAitlwl]~< 
<C.(~ + l~[)li(A + ~)~l]o + ][(A + ~)w][~, 

where Ca doesn't  depend on ). 
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Hence the result follows as in Theor. 5.3, chap. 4 of [8]. ~ o t e  also that  the 
constant  C~ doesn't  depend on T. Moreover, since ]]b,(O)II~<K~(F/4), the second 
estimate in (2.13) is obtained by  taking C~------ max (C~, C]K O. [] 

From this lemma one obtains at  once tha t  v~ ( that  is the  solution of (2.4) for 
n ----- 1) satisfies 

' / /~ v 2 (1 11~ol]:)(1-~ N0o]]: ~orl:)( ]]Oo]/g)]/< 
.$ 

Then one can choose T<T~ = T~(F) and obtain 

(2.14) [I v~ I[ ~,~,~' < ( 7 ~  .. 

L E n A  2.3. - I] G,_~e H:,~(QT) and the (necessary) compatibility conditions are 
satis]ied (see Remar]~ 3.1)~ then (2.5) has a unique solution O,~ Hd,~(QT) and 

PROOF. - One has only to observe that  B(x, D) is uniformly strongly elliptic, 
with elliptic constant 2~/~2~5~, and apply Theor. 5.3, chap. 4 of [8]. Moreover, one 
has [t0~(0)II~<K2(F/4), and then the second estimate in (2.15) is obtained by  stak- 
ing C'e~ max  (C~, C~K~). [] 

Hence, as before, one obtains tha t  0~ s~tisfies 

,I [I 11 
+ Z H0oli~(1 + ,(~o1,~ + (,0oll~)(Ivol,~] + c;llrlI2,~,~} 

, ,[_F + c;lirl[~,~,~] 

and by  choosing T <  T~ = Ta(F) one has 

(2.16) ]101 [],,2,~, < c~F ,  

:LEM)IA 2.4. - Let v, be the solution el (2.4) determined in Lemma 2.2. Then (2.6) 
has a unique solution ~ L~(0, T; H~(~)) and 

T T 

0 0 
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PRooF. - Since v,  aHd.2(Q,z), then (see [8], chap. 1, Theor. 3.1) 

~ e  co([o, ~]; H~(.~)) c co(j0, r ] ;  c~(.q)). 

Hence the existence of a unique solution ~ follows from the method of character- 
istics (observe tha t  v ,~.nw= ~.n  = 0 on E~). 

Le t  now ~ be a multi-index with 1:r Then one has 

by adding in z and integrating by parts the term 

it follows 

l d  
2 ~ ]le'(t) 1[* 13~ c [I]v.(t)118 '~1 ~.(t)[i] -}- '.[ o,,_l(t) div v.(t)1[8 Hq.(t) i[~] 

By Gronwall's lemma one obtains easily (2.17). [] 
From (2.17) one sees tha t  if T < T 2  

Y T 

0 0 

~tence there exists T4 = T,(F) such tha t  if T < m i n ( T 2 ,  Td) one obtains 

(2 .18)  sup  [101(t)[13 ~<-F �9 
[0,5 r] 

5'Ioreover, let U~(s, t, x) be the solution of 

dUl(s, t, x) 
as - v~(s, U1(s, t, x ) ) ,  Ul(t, t, x) = x; 

then  from the explicit formula for Q1 

t 
g 

el(t, x) = ~oo( Vl(0, t, x ) ) - - j  ~o( U~(s, t, x)) div v~(s, Ul(s, t, x)) ds 
0 
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it  follows tha t  in Qz one has 
t 

~l(t, X)< ~ {1 §  Hdivv,(s),lL~(o)ds}< -~{1 + T'/~cC~F}, 
0 

e,(t, .) > 2&--~ T'/~eC~ F . 

Then there exists T~ = Ts(F) such tha t  if T < m i n  (2'=, T,) one obtains 

(2.19) ~l<e~(t, z ) < ~  in QT. 

Hence one chooses T~<min  (T~, Ta, T4, Ts) and Co>l  + C'1 + C~, and obtains 
(2.9), (2.10) for n = 1. 

Suppose now tha t  (2.9), (2.10) are satisfied for each j<n- -1 .  We have to 
obtain them for the index n. One has only to estimate the norms o f / v  and G,_, 
in //~,~(Qz). The first estimate is obtained by  a straightforward calculation. Set 

11"11~;~ = I['h0(o.~,.~(,~)), 1 < ~ <  + o% ~>0; one has 

(~.2o) ]IF._,II~,,,~.<2I[F._,I[~;~ + [Ig,~II~;o< 

<c~{ e,-e~ l>.-,li~;, + _~fl:~-~,,-, , l}v._,ll=;~ + 
I po 

+ eoe.-~ tooa 

I 
t 

] (1§ o._,[l~,,+ilvo._,li~;~). + lI%_,ll~,;~lle,,_,II~,, + ~ ~;, v 
w 

II 1 II _-~--0._1 (ll~.-~]f~;~+ Ilo._,ll~;,) + �9 (ll~._,ll,;, + IIo._,rj~;,) + e.-1 ,;, 

+ Ile~ + [ro~176 + llo._,]t=;,)}. + (1 

I~ one observes tha t  ~ . _ ~ L i p  ([0, T] ; /D(O))  and tha t  

from (2.9) and (2.10) it follows tha t  

Hence from (2.13) 

II F,,_, II,,,,T < C,(F)T'~, .  

tlv.l/,,,,T< c; {-~ + C,(F)r'/,} 

and when T < T , =  T,(F) one has 

llv.lI,,~,T< c ~ .  
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On the other hand one obtains 

(2.2~) IIG._,IT~,a,~<21IG~_~II~=:., + II0~_~[k=o< 

<Clo{ ~~176 Z~-le~-~ 

1 II ~._i,J ~ + ,[vo._,IXL~)] + + ~ -;2 [llv"-xll~;allv"-x[]c~ + I[v"-l[12;'II~ l]v ' 

+ II%_~[],~,(]Io,~-,[k;~ + [10,~_IL..~)+ IIo~_lll~;~lle~_11k;1 + 

+ I[%-~liooatlO.-~ll~;~(lIOn-~ll~;o + IlO.-~lk;o)+ []v,~-,I[~;2 HO,,_II/=;=-~ 

If one observes that  c~_~ L~(0, T; H~(f))), 0._~ e Co(J0, T]; H~(/2)) (from 
Theor. 3.1, chap. 1 of [8]), and that by interpolation 

Oo_le L~(o, T; r e ( o ) ) ,  

i.e. 0._le C1/2([ 0, T]; H2(O)), it follows by some calculation that  

- -  112 ll~._iIX~,,,m<c,(~)r + - '  c,(~')llrll~,l,~ . 

Hence from (2.15) one obtains that  

[]On]'4,e,m< C~ {~--~ C~(F)TII~-~- C~(F)I]r[,2,1,m} 

and when T < Ts = Ts(L~) one has 

Now we can obtain also the estimate for Q.: from (2.17) it follows 
T T 

9 0 

Hence there exists T9 = T,(F) such that if T < m i n  (TT9 T~), then 

sup II e.(t)Ik < F .  
t O , T ]  
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5~[oreover from the explicit formula for @~, it follows that  in Q~ 

and 

Hence one can find T~o = T~o(F) such that  if T < m i n  (T~, T~o) it follows that 

Finally, one chooses 

(22.2) 

consequently, (2.9) and (2.10) are proved in QT,. 
We can prove now the convergence of the successive approximations. From 

Theor. 4.1, chap. 1 in [8] it follows that  Hd,~(Q.~) is continuously embedded into 
H3/~(0, T~; Hs/~(~)), which is compactly embedded in C~ T~]; H~(t2))from Ascoli - 
Arzel~'s and Rellich's theorems. 

Hence there exist subsequences v,~ and 0.~ which converge in C~ T~]; H~(~9)). 
Analogously, one obtains that  ~)% and 0.~ converge in C~ T1]; L2(~9)). 

Moreover~ from (2.6) we obtain that  

sup IlOo(t)il~ <cc~F~, 
[0,T1] 

hence or, is bounded in H3/4(0, T1; H~/4(~)) (see chap. 1, Theor. 4.1 and Theor. 9.6 
of [8]), which is compactly embedded in C~ T1]; H~(zg)). Analogously, we prove 
that  ~, is bounded in H~14(0, T1; H514(tg)), which is compactly embedded in 
co([0, T1]; H~(p~)). 

Hence we can pass to the limit in the space C~ T1]; L2(~)) in (2.4), (2.5) and 
(2.6), and we find a solution (v, @, O) of problem (1.1), such that v e Hd,2(QT,), 0 
e H',~(QT1), @ e L~(O, T~; H~(~)), and moreover 

]]vHd.~T~< C~E, ]i0[!4,~,T~< CgF, sup []@(t)l[~<~F, 0 < ~<@(t,x)<~2 in Q~. 
[0,T~] 

Observe also that, from the uniqueness theorem (see [19]), the whole sequence 
(v,~, @~, 0.) converges go the solution (v, @, O) of problem (1.1). 

Finally, one can see that  @ e C~ T~]; H3(.Q)). In  fact, the representation for- 
mula for ~(t, x) can be written as 

t 

@(t,~) = qo(U(O,t,x))--fq(s, U(s,t,x)) divv(s, U(s,t ,x))ds (2.23) 
0 
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o r  

(2.24) 
t 

x)= [-fdiv+, x)) 
0 

(see for instance ITAYA [5], or SOL0~IK0V [16]). 
Since U(s, t, x) e C~ T1] x[0,  T1]; H~(f2)) (as in Botmat~G~o~ - BREzIs [2], 

Lemma A.6), and for each s, t ~ [0, T~], U(s, t, x) is a C ~ diffeomorphism from .Q 
on D, with U ( 3 ~ ) r  39, one obtains easily tha t  ~ e  C~ s H~(~Q)) (see also 
BovlcGuIG~orr BlCEZIS [2], Lemmas A.3, A.4, A.5). 

Observe also that  is in f ~o(x) > 0, then from (2.24) it follows tha t  every solution 
t9 

of (1.1)~ in QT is positive in Qz, for each T >  0. 

3. - P r o o f  o f  T h e o r e m  A in the  genera l  case .  

Suppose now tha t  fi, ~, ~ belong t o  C 3, with fi>fi~> O, ~>0, ~ > ~ >  O. 
Consider the operators 

-~ Ot Oo(x) [Dk(/~oDkw) + D,~(/~oVw;:)] + V 

(3.2) L 2 , ~ + v ' V ,  

(3.3) 15~ _= ~t Oo(X)eo(X) ~ D'~(z~ =-- ~ § t~(x, D) , 

8w 
= et § _if(x, D) w, 

where /~o(x) -- fi(~o(x), Oo(x), vo(x)), So(x) ~ ~(~o(x), Oo(x), %(x)), go(x) ~ 2(~o(x), Oo(X), 
Vo(~)). 

The terms _F~... 1 and G~_I become respectively 

(3.4) F._ ,  _- D,: [(Z._I - -  ~o)D~v~_l -+- ( # ~ _ , - # o )  # . - d  § 

2 2 . 

+ ( 2 t  1 j 

1 
- -  (~_1" V)vo_l - - - -  Vpo_.I, 
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2 

#,,-1 ~'.-1 --  ~'/z,~_l (div V.__I) 2 - -  (.D~v._~ + D,vLJ~ + c._~@._, __1[_ 2e" IOn 1~  i 
- -  ~ - -  i,k 

-- v~_l' V0._I 1 0._1 div v~_l + e._1 ' 
@n-lCn_i 

where #j(t, x) ~ fi( ~,(t, x), O,(t, x), vj(t, x) ), and analogously for ~, and g,, j > i .  
One easily verifies that  

rail < 

and analogously for ~ - i  and Z~-l. These estimates are suiticient to obtain the 
estimates for F._I and G._~, by proceeding as in w 2. 

On the other hand, A(x, D) is a uniformly strongly elliptic system, with elliptic 
constant 2fi~/&, and /~(x, D) is uniformly strongly elliptic, with elliptic constant 

Lemma 2.2 and Lemm~ 2.3 are proved in the same way (see w 4 for the proper- 
ties of zl(x, D)), and then the existence of a solution of (1.1) is obtained by suc- 
cessive approximation without any other change. 

I{E~A~I{ 3.1. -- The compatibility conditions (see Lemma 2.2 and Lemma 2.3) 
are (see [8], chap. 4, Prop. 2.2) 

(3.6) 

~ ( o ,  y) 

that  is 

(3.7) 

Volt = ~(0, y) 

: ~ {~ [D~(#o-Dkvo) + Dk(ttoVv~)] + 

V |/~o--~#o~ div Vo|~ +b(O, + F._dO, y , + 
L\ o 1  JJ 

on _P, 

(o, y) = 7o ~ [D~(mD~:vo) + 9.(mVv~)] + 

+ V [(~o--2#o)divvo]} + b(O)--(vo'V)vo--~ Vpo on F, 

where b(0) = b(0, x). 
Analogously, for the absolute temperature 0 one must require 

(3.8) 0o~r = O(o, y) 

(3.9) 90 (o, i m 
St 

_j_ ~o-- -~ttO (divvo)~__vo. VOo__~oeoOo_~_divvo + ~or(O ) ~ 8po on F,  
eo@o 

where r(0) : r(0, x). 
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I~E~AlCK 3.2. - From thermodynamics one expects tha t  (see for instance SE~-  

(3.1o) ~ > o ~P , ~ - ~ >  0 , 0 > 0 .  

One can require the  first two for the  assigned function ~, bu t  the third assertion 
must  be proved. 

F rom the maximum principle, if 0 > 0  on Zz and 0o>0 in ~ ,  and if r > 0  in ~)T, 
one obtains tha t  O(t,x)>~O in ~)z, for each T >  0. 

Moreover, if 00(x)~>20~> 0 and O(t, y)~>2~1> 0, and if r>~0 in QZo, from the 
maximum principle one obtains tha t  

O(t, x) >~ 20~ - -  eT max 0 ~-~ div v in ~)z. 
QT 

Then for T small enough,  depending on the data of the problem, one has 

O(t,x)~>0l> o in ()~. 

RE~A~K 3.3. -- In  case :~ is constant, ~--~ ~x> 0, one can solve problem (1.1) 
also for the  different boundary  conditions 

~0 ~0 
2~ g ;  = O or 2~ ~ + kO = kO , 

where k is a positive constsmt and 0 ~ Hs/~,5/4(Xz.). 
One proves Lemma 2.3 in the same way, since these boundary  valu6 problems 

for the operator /~(x, D) are still (( regular elliptic >) (see [8], chap. 4, w 4). 
Obviously, one has to rewrite the compatibil i ty conditions, which in these cases 

must  be satisfied to order i <  ~ (see [8], chap. 4, Prop. 2.2); namely, one must  
suppose tha t  

~0o _ ~0o 
~17n r =~(o,y)  or z l ~  +kOo~r=k~(O,Y). 

Finally, the maximum principle for 0 can be applied also in these cases with 
minor changes. 

4.  - A p p e n d i x .  

Consider the operator 

(4.1) _g(x,/))u ~ o~(x) [/)~(~D~u) + D~(~oVU~)] + 

14 - A n n a l i  d i  Matematiea 
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(/~o and ~o defined in w 3), which becomes 

when # and g are constant. 
One can write A in divergence form 

( X u : =  2 2 . , :  = - 2 D~(~r~D: ~) + 2 b T ~ :  ~, 
where (2 )  

2 

Consider ~he bilinear form associated to 

i~j,V,s ~8~r d 
T2 12 

and define 

(4.~) a~.(u, v) =- a(u, v) + ;~(u, v)L.(, ) . 

The form a:.(u, v) is coercive in HJo(D), for )~ e C such tha t  Re )~>)~o large enough, 
and moreover a~(u, v) is bounded in H~(~Q) for each ~ ~ C. 

In  fact, let u ~ H2(D) (~ Ho~(~); one obtains 

= _ ~/~o [div u[ ~] dx + 
J L~Oo ~o J,~ ~oo 

D 
1 1 ~-. 

(')(') ] + D, ~o r176 ~~ D,u~. dx+  lul~ex. 
:2 

Integrating' by parts one has 

.Q ~2 

hence 

5~ d 
D D 

f[ ()] f - - c ,  D(r176 ]P I lDul[uldx> ~1 IDul, d x +  
(2 T2 

- -  _ I D / Z ~  ~ I D  1 



ALB]~O V)~L~: An existence t, heorem ]or compressible viscous fluids 211 

when 2 is such that 

(4.6) l~e2> --~--~ ill \~] / l~(~)  

Observe that /zo~H~(O) and @oeH~(~2), hence 2o is finite. 
If  u ~ H~(~2), one obtains the saane result by approximation. 
Moreover, one easily verifies that 

(4.7) I%(u, v)l < e llull a( >Ilvll.z( ), 

for each u, v e H~(.Q). 
From Lax-~ilgram's lemma, given ]~L2(~),  one finds 

u e Ho~(.Q) of 
a unique solution 

510reover, -4 is a uniformly strongly elliptic system, and consequently by re- 
gularization one has that u e H2(~2) c~ H~(~), and that u e H4(~) ~ H~(~) when 
]eH2(~) .  One has only to observe that  the regularity a~i~H3(D),b '~H~(~)is  J 
sufficient to apply the standard methods (see ~or instance GIuSTI [3], chap. ~, 
w 3, 4, 5). 

Setting 

one has obtained in this way that 

(4.8) 2)je(d) = H2(n)  n H~(~2) , D, , (X)  = H4(f2) n ~ o ( n )  . 

Supposo now that u ~ Dze(X) is a solution of (~  + 2)u = ]; then 

i,e. 

(4.9) 

(.r + 2)u = (.~ + ~o)u + (4 - -  2o)u = / 

( ; l - -  2o)u = ] - -  ( ~  + 2o)u . 

Taking the scalar product in L2(~) of equatio n (4.9) with u, from (4.7) and (4..5) 
one has  

< Jl/lloIl~llo + %lluil~;(~)< illlloll~l[o § C~o~ l~(~, ~')I< 
# i  

<6+c~o.= . , l l  II l[ullo for each ~ec, :Re2>2o. 
\ boil 
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Hence,  b y  choosing the  constant  large enough, one finds 

C 

) Ioreover ,  fl 'om the  well-known elliptic a priori  es t imates  uud f rom (4.5), (4.10) 

one obtains 

(4.1~) llull~<c(Viu/Io + I[ull,,;(~))<cE!l(X+ ~)ullo + (z+ i~l)liullo]< 

where C~ doesn ' t  depend on ), 

Finally,  one observes t ha t  A is a closed (unbounded) opera tor  in ~ and in H,  

and  tha t  ~ + ~ is an isomorphism f rom Dzc(A) into J~ and f rom Dn(A) into H, for 

each /l ~ C such t h a t  Re  2 > 20 + 1. 
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