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S u n t o .  - Viene comi~iuta un'analisi completa del problema della bi/orcazione di Hop/ relativa 
ad arbitrarie riecole !~erturbazioni del secondo membro di un'equazione di]#renziale in t~ ~, 

=/o(P). Gli autovalori di ]o(0) soddis]ano una condizione di non risonanza. I risultati 
sono ]orniti i~ termini delle l~ropriet~ di stabilit~ di ~n sistema dinamico 2iano convenien- 
temente assoeiato all'eq~azione impcrturbata. 

] .  - I n t r o d u c t i o n .  

We are interested in obtaining an analysis of the bifurcating periodic orbits 
arising in the generalized Hopf bifurcation problems in R ~. The existence of these 
periodic orbits has often been obtained by using such techniques as the Liapunov- 
Schmidt method or topological degree arguments (see MA~SDE~ and 3IoC~A]CE~ [8] 
and HALE [6], and their references). Our approach, on the other hand, is based 
upon stability properties of the equilibrium point of the unperturbed system. AN- 
])~om~ov et a~. [1] showed the fruitfulness of this approach in s tudying bifurcation 
problems in R 2 (for more recent papers see !~EG~I~I and SALVADO~I [9] and B E ~ -  
FELD and SALVADORI [2]). In  the case of _~2, ia contrast to tha t  of /~ ,  n > 2, the 
stability arguments can be effectively applied because of the Poincar6-Bendixson 
theory. Bifurcation problems i n / ~  can be reduced to tha t  of/~2 when two dimen- 
sional invariant  manifolds are known to exist. The existence of such manifolds 
occurs, for example, when the unperturbed system contains only two purely imagi- 
nary  eigenvMues. 

In  this paper we shall be concerned with the general situation in R" in which 
the unperturbed system may  have several pairs of purely imaginary cigenvMues. 
To be more precise, let us consider the differential system 

(1.1)  :~ : Io(p) ,  
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where foe C~[B~*(ao), R"], ]o(0) = 0, and B'~(ao) : {p a2~": llPI1 <no}. Assume the ffaco- 
bian matr ix ]'o(0) has two purely imaginary eigenvalues ~= i and that  the remaining 

~2 ~--~ eigenvalues ~ ~=~ satisfy 2~=/: mi, m = 0, •  .... 
For  those ] ~ C~[B~(ao), R~], ] ( 0 ) =  0, which are close to ]o (in an appropriate 

topology) consider the per turbed system 

(1.~) p =/(p). 

We are interested in determining the number  of nontrivial periodic orbits of (1.2) 
lying near the origin and having period close to 2n for those ] close to ]o. 

In  approaching this problem, we will consider for any positive integer k the 
following property:  

(a) (i) there exist a neighborhood N* of ]0, an a~ > 0 and a number  ~ > 0 such 
tha t  for every ] ~ N* there are at most /c non-trivial periodic orbits of (1.2) 
lying in B~(a~) whose period is in [2~ - -  ~ ,  2~ + ~ ] ;  

(if) for each integer j, 0 < j < k ,  for each a~s(0,  a~), for each ~2~(0, 5~) and 
for each neighborhood N of I0, N c N*, there exists ] E N such that  (1.2) has 
exactly ~ nontrivial periodic orbits lying in B'~(a~) whose period is in [ 2 z -  ~ ,  

(iii) for any /~ e (0, ax), 5 e (0, 6~) there exists a neighborhood 37 of ]o, 37 r N*, 
such that  if ] e_Y and if y is a periodic orbit of (1.2) lying i n  B'(a~) whose 
period is in [ 2 ~ - -  6~, 2z + 6~], then y lies in B'*(a) with period in [ 2 z - -  6, 
2z~ + 3]. 

In  contrast  to (a) another proper ty  which we will consider is: 

(A) For  any neighborhood N of /o, for any integer j > 0, for any a > 0 and for 
any 6 ~ 0 there exists / e  N such that  (1.2) has j nontrivial periodic orbits 
lying in B~(a) whose period is in [2~ - -  (5, 2~ § 6]. 

In  1~, AN~)~o~ov et al. [1] proved that  proper ty  (a) ((i), (if)) is a consequence 
of the origin of (1.1) being h-asymptotically stable or h-completely unstable where h 
is an odd integer and k = (h - -  1)/2. The origin of (1.1) in R ~ is said to be h-asymp- 
totically stable (h-completely unstable) ii h is the smallest positive integer such that  
the origin of (1.2) is asymptot ical ly  stable (completely unstable) for all ] for which 
] ( P ) -  re(P) ~ o(]]P[[J~); tha t  is h is the smallest positive integer such that  asymptot ic  
stabil i ty (complete instability) of the origin of (1.1) is recognizable by  inspecting 
the terms up to order h in the Taylor expansion of ]o (see NEGRI~I and SALVA])O]~I [9] 
for further information on h-asymptotic  stability).  In  a recent paper BERNt.'LLD and 
SALVA])0RI [2] in R 2 extended the results of Amq)~o~ov et al. [1] by  proving prop- 
er ty  (a) is equivalent to the h-asymptotic  stabil i ty (h-complete instability) of the 
origin of  (1.1) (where again /~ = (h - -1 ) /2 ) .  I t  was also shown tha t  proper ty  (A) 
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is equivalent to the ease in which the origin of (1.1) is neither h-asymptotically stable 
nor h-completely unstable for any positive integer h. 

The problem in R" was first considered by CHAFES [5]. Using Liapunov-Schmidt 
method he obtained a determining equation ~v(~, j) = 0 where ~ is a measure of the 
amplitude of the bifurcating periodic orbits of (1.2) and ] represents the right hand 
side of (1.2). By assuming tha t  the multiplicity of the zero root of ~o(., ]o) is a finite 
number k, he proved tha t  property (a) holds for this k. 

Our goal in this paper  is to relate the number k in property (a) with the condi- 
tional asymptotic  stability properties of the origin for a differential system which is 
close in some sense to the unperturbed system (1.1). These stability properties are 
precisely the h-asymptotic stability or the h-complete instabili ty of the origin for a 
particular differential equation (Sh) i s  R z. The construction of (S~) as well as the 
reeognization of the h-asymptotic stabili ty (h-complete instability) of the origin 
of (S~) can be accomplished by solving linear algebraic systems. Indeed these sta- 
bility properties can be recognized by applying the classical Poincar6 procedure 
(see [9] or [10]). Again we have k ~- (h--1) /2 .  

Thus the number k can be determined using elementary algebraic techniques. 
The analysis of our problem is completed by observing tha t  when the origin for (S~) 
is neither h-asymptotically stable nor h-completely unstable for every h > 0 then 
property (A) holds. 

The main ingredients of our analysis are: (i) the construction of a quasi-invariant 
manifold X~ for the nnpertm'bed system (1.1); (ii) the use Of the Poinear6 map 
along a particular set of solutions of (1.1) which are initially close to X~. 

In  conclusion, the quanti tat ive problem of determining the number of bifm'cat- 
ing periodic solutions of the perturbed system (1.2) can be reduced to an analysis 
of the qualitative behavior of the flow near the origin of a two dimensional system 
appropriately related to the unperturbed system (1.1). In addition an algebraic. 
procedure allows for a concrete solution to the problem. 

Finally we remark tha t  an announcement of our results was presented at  a Con- 
ference in Trento, I t a ly  [3]. 

2 .  - R e s u l t s .  

We will use the following topology on the space C~[B~(ao),/~]: define a func- 
tion Ill HI mapping C| R -] into R as 

x ~ 
,2o 2 (1 + ii]11, ,) 

where IIJH(z) denotes the usual C(*)-supremum norm of / on B~(ao). Then C~ R ~] 
is a metric linear space under q[[ ]]t. For  any vector w e R ~ we shall denote by ]]wI] 
the Euclidean norm of w. 
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By an ~ppropriate change of coordinates depending on ] we may  write systems 
(1.1) and (1.2) respectively in the form 

(2.1) 

= - -  y + Xo(x, y, z) 

~/ = x 4- 15o(X, y, z) 

2 = Ao z ~- Zo(x, y, z) 

and 

(2.2) 

2 = ~x - -  ~y  + X ( x ,  y, z , / )  

ft = ~Y + fix + 15(x, y, z , / )  

= A z  + Z(x, y, z, ] ) .  

For  each fixed ], c~ and fl are constants satisfying cr = 0,/~(]o) = 1 and A is an 
( n - - 2 )  •  constant  matr ix  satisfying A(/o)----Ao. Moreover, for fixed ], X 
and Y belong to C'[B~(ao), R], Z belongs to C~ R'-2],  and X, 15, Z are of 
order gTeater than  one. The eigenvalues of Ao, {;~J}2J~ satisfy the condition tha t  
2~#  mi,  m = O, :~1, .... 

We now consider an ( n -  2) dimensional polynomial of some degree h, h > O, 
given by 

(2.3) cf(~)(x, y) -~ %(x,  y) ~- ... ~- ~ ( x ,  y ) ,  

where ~j(x, y) is homogeneous of degree j. We a t tempt  to determine %, ..., % in 
order to obtain along the solutions of (2.1) 

(2.~) 

that is, we have to satisfy 

(2.5) 

= AoTY')(x, y) + Zo(x, y, cf(~)(x, y)) @ o(x ~ + y2)~/2. 

This implies for every j ~ {1, ..., h}, ~vj has to satisfy the partial  differential equation 

(2.6) ~v~ -ov~ y = AoW + ~;, ~y ~x 

where Us is aa ( n -  2) dimensional homogeneous polynomial of degree j depending 
oll the functions 9sl, ...,~vj_l: Under the assumptions on Ao, (2.6) has a unique 
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solution and can be solved recursively by observing tha t  ~t(x ,  y ) =  0 (see for 
instance BIBIKOV [4]). 

The two dimensional surface z ~ ~(~)(x, y) is tangent  at the origin to the eigen- 
space corresponding to the eigenvMues •  This surface will be called a quasi- 
invariant  manifold of order h. 

Given any h > 0 define the following two dimensional system 

(s~) 
= - y + Xo(x, y, ~(~)(x, y)), 

= x + Yo(X, y, ~(,o(x, y ) ) .  

(This is the system referred to in the introduction.) 
We distinguish the two possible cases: 

I. There exists h > 1 (and then h must  be odd) such tha t  x------y- 0 is either 
h-asymptotically stable or h-completely unstable for (S~). 

I I .  Case I does not hold. 

We are now able to state our main result. 

THEO~]~ 1. - In  ease I property (a) holds with 1~ -= ( h -  1)/2.  Ir~ case I I ,  prop- 
erty (A) holds. 

I f  all the eigenvalues of A0 have real part  not equal to zero, then for every h ~ 1 
(2.1) admits  a C ~+1 two dimensional center manifold which w i l l b e  denoted by  H~,. 
We notice tha t  if z = q)(x, y) is the equation of this center manifold, we can write 

(2.7) ~(x~ y) ~- ~(~')(x, y) + o(x 2 -{- y2)~l~ . 

As a consequence of Theorem 1 the following result holds. 

COROLLAI~Y 1. - -  Suppose tha t  the eigenvMues of Ao have real part  different 
than  zero. Then: (i) if there exists an h (and h must  be odd) such tha t  the origin 
of the unperturbed system (2.1) is either h-asymptotically stable or h-completely 
unstable on H~ (that  is with respect to initial points on H~) then (a) holds with 
k ~ ( h -  1)/2, (ii) if for every h > 1 the origin for the unperturbed system (2.1) 
is neither h-asymptotically stable nor h-completely unstable on H~ then  (A) holds. 

Under some more particular hypotheses on the eigenvalues of ]~(0) the stability 
properties in Theorem 1 can be expressed in terms of the unperturbed system (2.1) 
without  any explicit involvement of HT,. This can be proved by the extension of 
the Poiacar~ procedure [10] given by LIAeV~ov [7]. Precisely the following result 
holds. 

COrOLLArY 2. -- Suppose all the eigenvalues of Ao have negative real part.  
Then (i) if the origin of the unperturbed system (2.1) is either h-asymptoticM]y 
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stable or h-unstable (in the whole) then (a) holds with/~ ~ (h --  1)/2 ; (ii) if for every 
h > 1 the origin for the unperturbed system (2.1) is neither h-asymptotically stable 
nor h-unstable, then (A) holds. 

Notice tha t  we are using the concept of h-unstable whose definition is analogous 
to t ha t  of h-complete instability. A similar theorem can be stated when ]~(0) has 
two purely imaginary eigenvalues ~=i and the remaining eigenvalues have positive 
real part.  

3. - Prel iminary propositions.  

Using ~he t ransformation 

= z - -  ? ~ ) ( x ,  y ) ,  

we eau rewrite the unperturbed system (2.1) as 

(3 .1 )  

Y ( h )  l ~  

# = x + v(7,)~ ~o ~ ,  Y, ~) 

= "o  '~' Y, ~) 

where ~oV(h)~,~, y, 0) = Xo(x, y, ?(~'(x, y)), ~o~(~'(~,~, y, 0) = Yo(x, y, ~o(~((x, y)). F rom (2.4) 
we observe tha t  wa)t --o ~x, y, 0) is of order greater t han  h. Analogously we can write 
the perturbed system (2.2) as 

(3.2) 

:~ = ~ x  - -  [3y + X(~)(x,  y ,  ~, /) 

= A~ d- Wc~~ Y, ~, ]) 

where Xr y, 0, ]) = X(x, y, ~r y), ]), Y(~'(x, y, 0, ]) = Y(x, y, ~(~)(x, y), ]) and, 
for '  fixed ] , X %  Y %  W ~ are of order >2 .  Let  us set / 0 = [ 2 ~ , 2 ~ - 4 - 6 ]  for 
any ~ > 0. We now give the following proposition. 

P~oPosI~IO~ 1. - There exist e, d, 15 > 0 and a neighborhood 2go of ]o such t h a t  
whenever ], 2go slid (w, y, .~)e 7, where y is any T-periodic orbit of (3.2) lying in 

B~(e) with T ~ 10, then !Ir <L(x  + y~). 

PROOF.-  Choose sl~(O, ao), d~> 0 and a neighborhood 5rl of ]o such tha t :  
(i) det ( I - - e  Ar) ~ 0 for ] ~ N ~  and T e l o ;  (ii) the solution of (3.2) through the 
initial point (0, xo, Yo, ~o), (x(t, xo, Yo, to, ]), y(t, xo, Yo, ~o, ]), ~(t, xo, Yo, to, ])) exists 
a~d lies in B"~(ao) for all (xo, Yo, ~o)s B'(st), ] s aV1 and t e [0, 2z q- ~1]. Here I is 
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the ( n -  2) •  ( n -  2) ident i ty  matrix. Condition (i) can be satisfied for f close to ]o 
and ~ small because our assumption on the eigenvalues of Ao implies tha t  
det ( I -  e 2"~0) :/: 0. 

We now want  to determi~ue (Xo, Yo~ to) e B~(s~), ] e 2Y~ and T ~ I& which satisfies 
the condition 

(3.3) t (T ,  Xo, Yo, ~o, /) = to.  

From the third equation in (3.2) it follows tha t  (3.3) is equivalent to the equation 
/~(Xo, Yo, to, T, ]) ---- 0 where 

T 

~(Xo, Yo, ~o, T, ]) : ( I -  eAT)~o--~eA(T-s)FW(h)(X(S , Xo, Yo, to, ]), 
o 

y(s, xo, Yo, to, f), ~(s, xo, Yo, r  ds .  

Since W (1~) is of order ~>2 in (x, y, t) for each /, we have F(0, 0, 0, 2s, 1o) ---- 0 and 
det Dr 0, 0, 2~, ]o) = det ( I -  e 2~~ :/: 0. Then by the implicit function theorem 
there exist s ~ (0, s~], 6 ~ (0, ~] ,  _A%c _ATe, and a s C[B2(s) •  • a(0, 0, 2~, 
]o) ~ 0, such tha t  

(~) 

(3) 

For every (Xo, yo,~o)~B~(s), T E I ~ ,  and /e2Yo, (3.3) holds if and only if 
to = ~(Xo, yo, T , / ) .  

]la(xo, Yo, T, ])I] <L(x~ -F y2o) for some constant L > 0 and for all (xo, Yo) ~ B:(s), 
T e l o ,  / e N o .  

Proper ty  (fi) can be obtained by choosing appropriately e, ($, No, because of the 
following argument. The functioI1 a is C ~ in (Xo, Yo), and its derivatives are conti- 
nuous in all variables xo, Yo, T, ]. For nay T e Io and ] e No we have F(O, O, O, T, 
]) ---- 0 and a(0, 0, T, ]) = O. Moreover det Dr , O, O, T, ]) -~ det (I - -  e ~ )  =/= 0 (be- 
cause of (i)) and Dxy(O , O, O, T, ]) -~ DvoF(O, O, O, T, ]) = O, which implies D~oa(O, O, T, 
]) = Dv~ O, T, ])-~ O. In  particular consider any T-periodic solution of (3.2) 
lying ia B'(e) with T e I~ and ] e No and denote its orbit by  y. Since (3.2) is auto- 
nomous, condition (3.3) is satisfied for any point  (Xo, Yo, ~o) ~ y. Thus Proposition 1 
immediately follows from (~) and (fi). 

The substi tution 

(3.4) x = r cos 0,  y = r sin 0,  t = rv 

into (3.2) gives a system which we write as 

dY 
(3.5) d-3 - - - -  /~(h)(0, r, v, ]) , dv A 

dO - ~ v + V(h)(O, r, v , / )  
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where R (~), ~7(~)e C ~. The solution of (3.5) for which r(O) V= 0 for all 0 are the orbits 
of corresponding solutions of (3.2). 5foreover, the origin is ~ solution of both (3.2) 
and (3.5). We denote by (r(O, c, re, ]), v(O, c, re, ])) the solution of (3.5) passing 
through (0, c, %). When the solutions (r(s v(O)) of (3.5) are known, the correspond- 
ing solutions of (3.2) can be completely determined by  solving the equation 

dO 
~-St = o ( o ,  r(O), ~(0), ~) . 

where O is greater than  some positive uumber in a neighborhood of the origin in 
]7 ~'~-~ and for ] close to ]0: Every  2z-periodic solution of (3.5) (r(O), ,v(0)) represents a 
periodic orbit of (3.2) whose period T is given by  

(3.6) 

27~ 

T ~-- 0(0, r(0), v(O), ])" 
0 

We now introduce for system (3.5) property  (~') which corresponds to prop- 
er ty (a) for system (3.2). 

(a.') (i) There exist a neighborhood 2/* of i0 and an s~ > 0 such tha t  for every 
] ~ 2/* there are at  most k nontrivial 27~-periodie orbits of t3.5) lying in P(e~). 

(ii) For  each integer j, O<~j<k, for each neighborhood N of ]0, 2/c7V*, and 
for each e2> 0 there exists ] E2/  such tha t  (3.5) has exactly j nontrivial 
2z-periodic orbits lying in P(e~). 

(iii) For  any  g~(0 ,  e~) there exists a neighborhood ~ of ]o, :VTcN* such 
tha t  if ] e 2/~ and if y is a 2z-periodic orbit of (3.5) lying in P(e~) then y 
lies in P(g). 

The solutions of (3.5) are the representation in polar coordinates of the orbits 
of the solutions of (3.2). I t  is not clear a priori tha t  (a') implies (a) because these 
properties involve neighborhoods of the origin in (r, v)-spaee and of the origin ia  
(x, y, ~)-spaeo respectively while the substi tution (3A) is singular at r = 0. ~Ton- 
eth~less we can prove the following proposition. 

P~oPoslmxo~ 2. - Proper ty  (a') implies (a). 

P~ooF. - Without  loss of generality we may  assume el < 1. Define the mapping 
7J: (x, y, ~) -+ (r, v), (x, y) :~ (0, 0), given by  the substitution (3.4), tha t  is r = (x ~ + y~)�89 

= . ~ implies r 2 ~-II~II ~ =  a n d  v $/(x' ~- y')�89 Then 7s-l(P(s,)) c B'(e,) since r -~ + t[v[i '< e~ 
= r:(1 + ll ll:)<r: + II I1:<  aeh 2~-periodie solution of (3.5) lying in_P(~)cor- 
responds in polar coordinates to the orbit of a periodic solution of (3.2) ly ing in 
B"(e~) whose period is included in some interval S~. Let ~, ~, L and No be the con- 
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stunts and the neighborhood of fo defined in Proposition I and assume ~ <  s. In  view 
of (3.6) and the observation 0(0, 0, 0, ]0) = 1, we may  choose ~ und/V* such that  ~ <  
and / Y * c ~ . .  Let  a l =  s~/(1-[-L~) ~. If  f e N *  and y is any periodic orbit  of (3.2) 
lying in B"(a~) whose period is in I~ ,  then by  Proposit ion I T(y) c P(s~). Indeed 
if (x, y, ~) e y and r -= (x ~- + y~)�89 then (r~ v) = T(x, y, ~) satisfies 

Thus proper ty  (a) (i) follows from (a') (i). 

P~ooF OF (a) (if). - Pick any Y~< a~< s~(1 + L~) �89 and _~ c N* such that  for 
every f e / ~  we have: (1) the periodic orbits of (3.2) lying in B'(a~) which correspond 
to the 2z-periodic orbits of (3.5) lying in 2(a,), have period in 1%. This follows by  
using (3.6) and the fact  that  0(0, 0, 0, ] , ) =  1. (2) ] e _~ implies tha t  all the 2~- 
periodic orbits of (3.5) lying in P(s~) lie in P(5~). This can be done in view of (a') (iii). 
In  view of (a') (if) pick ] e ~ such that  (3.5) has exactly ] 2z-periodic orbits lying 
in P(~2). I f  y is any periodic ,orbit of (3.2) lying in B~(a2) whose period is in I ~  then 
W(y) c .P(s~). In  view of (2) T ( y ) c P ( ~ ) .  This completes the proof of (a)(if). 

P~ooF OF (a) (iii). - Assume ~ <  ~ < s~/(1 + L2) �89 a n d / V  c/V* such that  condi- 
tions (1) and (2) above hold w i t h / ~  replaced b y / V  and bP, a2 and a~ replaced by  
~, ~ ,  and 5 respectively, I f  / e /V and y is a periodic orbit of (3.2) lying in B"(ax) 
with period in I ~  then T(?) c P(e~) which implies W(y) c _P(~x). Then in view of (1) 
and (2) y c B~(~x) c B~(~) with period in I~. This completes the proof of Proposit ion 2. 

A solution (r(O), v(O)) of (3.5) tha t  exists on [0, 2z] will be called ~ (2z, v) solu- 
tion if v(2z) ~ v(0). Every  2~z-periodic solution is obviously a (2~, v); thus in order 
to find the 2~-periodic solutions, we only need to inspect the set of (2z, v) solutions. 
This leads us to consider the following Proposition. 

P~oPosI~Io~ 3. - There exist s > O and a neighborhood 2r of ]o, and a function 
e C[[0, e) •162 1~'-~], ~(., ]) ~. C ~ and ~(0, 1) ---- 0 for ] e ~V, such tha t  for every 

(c, Vo) e/~(e) and ] e N the solution of (3.5) through (0, c, vo) is a (2g, v) solution if 
and only if vo---- v(c, ]). The c-derivatives of v are continuov.s in (c, ]). 

10~ooF. - As in the proof of Proposit ion 1 we choose el > 0 and a neighborhood 
N1 of ]o such tha t  (i) det (I  - -  e 2"~/z) ~: 0 for f e N1; and (if) the solutions (r(O, c, vo, 1), 
v(O, e, vo, 1)) of (3.5) exist and belong to -P(ao) for all (c~ vo) e/~(e0,  ]ehr~  and 
0 e [0, 2~]. F rom the second equation in (3.5) it follows that  the condition v(2z, c, 
vo,/)----vo is equivalent to the requirement that  F(c, Vo, ] ) ~  0, where 

2z~ 

%, ]) = ( I -  e ~"a'~)v0-f ea(2"-s)/P[~(h)(s, r(s, c, %, 1), v(s, c, Vo, ]), 1)] ~(c~ ds.  
0 

8 - A n n a l l  d l  Matematica 
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We recognize tha t  F(0,  0, ]) = 0. :Now we prove det D,7 (O  , 0,1o) = det ( I - -  e~m). To 
see this observe tha t  since D,~(h)(O, 0, 0, ]o) = 0 we only need to prove tha t  (~r/~Vo)(O, 
0, 0, f o ) =  0 for 0 e [0 ,  2~]. (Recall t ha t  ~(~) m ay  have linear terms in r.) Since 
Rr O, v, fo) -~ O, then  for any  Vo the solution (r(O, 0, vo, ]o), v(O, 0, %,/o)) of (3.5) 
satisfies r(O, O, vo~ fo) =-- 0 for 0 e [0, 2~]. Thus (~r/~vo)(O, 0, 0, ]o) ---- 0 and consequently 
det D v p ( 0 ,  0, ]o) = det ( I - -  e e~A.) =/= 0. Therefore the conclusion of Proposi t ion 3 
follows from the implicit funct ion theorem and the fact  t ha t  F(0,  0, f ) =  0. 

Denote  by  (r(0, c, ]), v(O, c, 1)) the (2~, v) solution of (3.5) passing through 
(0, c, ~(c,/)). Because of Proposi t ion 3 we can write 

(3.7) 
r(O, c, 1) 

~(0, c, ]) 

= u~(O, ] ) c  + ... + u~(O, ])c~ + o(c~) 

= v~(O, ]) c + ... + ~_~(0, ]) c ~-~ + o(e~-~) 

where ul(0, f) = ! ,  u,(0, f) = 0 for i >  1 and 

(3.s) ~,,(o,I) = v,(2~,]) for i > 1 .  

Consider now the displacement funct ion relat ive to the  (2z, v) solutions which 
is defined in a right interval  of c ----- 0 and in a neighborhood of ]o as 

(3.9) V(c ,  I) = r (2=,  c, 1) - -  c . 

Then the 2~-periodic solutions of (3.5) correspond to the zeros of V(c, f). 
We now prove the following result. 

PI~0POmTI0~ 4. - Assume the origin of (Sh) is either h-asymptoticMly stable or 

h-completely unstable. Then h is odd, h ~ 2, and 

~*v ~ v  (0, Io) # o (3 .20)  ~ - j  ( o , / o )  = o ,  r = 2, . . . ,  it - - 1  a n d  - ~  . 

P~.ooF. - Subst i tu te  (3.7) into the second equat ion in (3.5) for ] = fo and equate  
coefficients of c ~, i ---- 1, ..., h - -  1. Since ~(h)(0, r, 0, ]0) is of order > h - -  1 in r we 
find tha t  v~(O, ]0) =--- 0 for i = 1, ..., h - -  1. Indeed  

-~--~ (o, to) = Ao,,(O, 1o), ~0 

implying 

~1(0, /o)  = ~1(o, /o)  e A~176 �9 

Condition (3.8) and the fact  t ha t  det ( I -  e 2~~ r 0 implies tha t  vl(0, f o ) =  0 and 
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consequently v~(0, ]o)=--0. Then we have 

~-V (0, to) = Ao~,~(O, 1o) 

and as before v~(0,/o) ~ 0. Continuing in this manner  we obtain v~(O,/o) ~ O, i = 1, 
..., h ~ l .  Thus in order to compute the functions ~(0,/o) we m ay  put  v----0 

into the first equation in (3.5) for / - - ] o .  We then  obtain the equation 

~-6 = R(~)(O, r ,  o , / o )  

which is precisely the equation in polar coordinates of the orbits of (S~). Since 
x = y = 0 is either h-asymptotically stable or h-completely unstable for (S~) we 

have tha t  h is odd and 

u~(O,/o) = 1 ,  u , ( 2 ~ , / o )  = o ,  i = 2,  . . . ,  h - -  1,  u ~ ( 2 ~ , / o )  # 0 

(see [9] for more details), thus implying (3.10) holds. 

Final ly  we have the following result concerning the roots of V(c,/)  for / close 
to fo. 

P]cOPOSITIO~ 5. - Assume the origin of (S~,) is either h-asymptotically stable or 
h-completely unstable. Then there exist ~ > 0 and a neighborhood _~ of ]o such 
tha t :  (1) V(c, ]) is defined for any c E [0, ~] and ] e N ;  (2) for every c le  (0, ~) there 
exists a neighborhood ~ r  N such tha t  for / e  ~V all the roots of V(c,/)  lying in 
[0, ~] lie in [0, cl). 

The proof of Proposi t ion 5 utilizes Proposit ion 4 in order to show tha t  for ~ > 0 
sufficiently small and c E [0, ~] we have IV(c,/o)]>#d ~, for an appropriate  constant  
/~ > 0. The cont inui ty  of V(c,/)  ill C and ] ---- ]o allows us to conclude tha t  for every  

/)1 > ~/~cl, for c e [c~, a]. c l e [ 0 , ~ ]  there exists zY~ czY, such that ,  for ]eN~ , ,  IV(c, 1 h 

We leave the details to the reader. 

4.  - P r o o f  o f  T h e o r e m  1. 

I f  in the t ransformat ion (3.4) we assume r < 0 insteact of r > 0 we obtain a new 
displacement function V(c,/)  defined for c < 0. We will extend the domain of V 
by  setting V(c,/)  = V(c, ]) for c < 0. I t  is easy to recognize tha t  this extended 
funct ion is continuous and, for fixed ], is C | in c. In  addition we observe tha t  for 
any nonzero 2z-periodic solution of (3.5) there exist  c1> 0, c~< 0 such tha t  V(cl,/) ---- 
= lZ(e~, / )  _-  o. 

Assume case (I). We shall prove proper ty  (W) holds and in view of Proposi- 
t ion 3 the proof of the first par t  of Theorem 1 will be complete. 
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PRoo~ o~' Pno~E~r~  (a') (i). - Since the origin is a solution of (3.5) for any /, 

an application of Rolle's Theorem, in view of (3.10), implies t h a t  there exist an 
e~ > 0 and a. neighborhood 2/* of /o such tha t  for any / e  N*,  V (c , / )  has at  most  
h -  :I nonzero roots counting mult ipl ici ty in [--s~,  e~]. For  each positive root  of 
V(c, ]) there  is a negative root  of V ( c , / )  corresponding to the  same periodic orbit,  
thus  there are at  most  k = ( h -  1)/2 nontr ivial  2z-periodic solutions of (3.5) lying 
in P(e~) for / e  2/*. Thus proper ty  (a') (i) holds. 

P~ooF o~ P~OPERTY (a') (ii). - We essentially adapt  to our problem a procedure 
used in [1]. Suppose the  origin of (Sh) is h-asymptotically stable (the case in which 
the origin of (S~) is h-completely unstable has a similar proof). Consider a per turbed  

system of (3.1) of the form 

i 

_~ __ y § X(oh)(x, y, ~) § ~ a~x(x ~ § y~)lr 
i = 1  

(4.1) ~) = x ~- Y~)(x,  y, ~) § ~ a~ y(x  ~ § ye)~-~ 
~ 1  

= Ao~ + W~)(x, y, ~) 

where k -~ ( h - - 1 ) / 2 ,  j is any  integer, 1 <~]~<k, and a~ are constants to be determined 

(the case j = 0 follows by  let t ing / = / o ) .  
We will denote by  V(c, a~, ..., ar the displacement funct ion relative to the (2~r, v) 

solutions of (3.5) which correspond to (4.1). We will denote b y  S(al ,  ...~ at) the  
first two equations ia (4.1) for $ = 0. Since the origin is h-asymptotical ly stable 

for S(O, ..., 0), then  from Proposi t ion 4 

V(c, O, ..., O) = goc ~ § o(c~) , go< 0 .  

Thus for co> 0 and sufficiently small we have V(co, 0, ..., 0 ) <  0. There exists an 

~h > 0 such tha t  V(co, a~, ..., a~-) < 0 for laiI < ~ ,  i = 1, ..., j. F ix  now a~, 0 < a l<  ~1: 

Then  

V(c, a~, O, ..., O) ---- glc ~-2 § o(c ~-~) 

where g l =  2~ral > 0. This can be recognized by  replacing the  expression for r f rom 
(3.7) in the equation (in polar coordinates) of orbits of S(al ,  0, ..., 0) and taking 
into account  tha t  ui(2~, / )  = 0, i ~ 1, ..., h - - 3  (see [9] for more details). There 

exists c~, 0 < c1< co such t ha t  V(c~, a~, 0, ..., 0) > 0 and thus we can find ~/2> 0, 
~2< UI, such tha t  for [ait < ~ ,  i -~ 2, ..., ], V(c~, a~, a~, ..., at) > 0. F ix  now as<  0, 

]a~l < ~2. Then  

V(c, al, a~, O, ..., O) = g~c~-4 § o(c h-4) 
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where g~= 2~a~< 0. Then there exists c~, 0 < c.~< c~ such tha t  V(c2, a~, as, O, . . . ,  O) < 0 
and thus we can find Na, 0 < ~3< ~ ,  such tha t  for [a~] < ~ ,  i = 3, ..., j, V(c~, a~,... ,  ar < 
< 0. Continuing this process we can find a set of numbers c~, c2, ..., ~ ,  c~< ~ <  v~_~9 

i = 1, ..., j (and thus ~i+~< ~ ,  i ---- 1, ..., j - -  1) such tha t  V(~, a~, ..., ar = 0, i ---- 
= 1 , . . . , ~ .  Since c = 0  is ~, root  of V(c, a z , . . . , a ~ ) - ~ O  of order h - - 2 j  (recall 
u~(2~r, ]) = 0, i = 1, ..., h - -  2 j - -  1) and for each positive root of V(c, a~, ..., a~) we 
have  a negative root,  then we immediately have tha t  the ~r i----1, ..., ~, are the 
only positive roots of V(c~ a~, ... ~a~). Moreover we can obtain tha t  the ~ can be 
made close to c-----0 by  picking co sufficiently small. This completes the  proof of 
(a') (ii). The proof of (a') (iii) is an immediate consequence of Proposit ion 5. 

Thus proper ty  (a') holds a~d so the first par t  of Theorem I is proved. 
We now show Case I I  follows from Case I. 
For  any positive integer ~ we assume in (3.1) h : 2j d- 1 and consider the fol- 

lowing system 

:~ = - -  y -4- X(oh)(x, y,  ~) .4- bx(x  2 .4- y2)(h-~)/2 

(~t.2) ~) -= x .4- :r(o~)(x, Y, ~) .4- by(x  2 .4- y2)(~-1)12 

= .Ao~ + W(oh)(x, y, ~) 

where b is a constant.  We then have tha t  for the corresponding reduced system (Sj~) 
the origin is either h-asymptotically stable or h-completely unstable if b < 0 or b > 0 
respectively. Thus w e  have reduced the problem to Case I. Since j and b are 
arbi trary,  p roper ty  (A) holds, thus concluding the proof of Theorem 1. 

5.  - P r o o f  o f  Corollaries.  

The proof of Corollary 1 follows from (2.7) and Theorem 1 by  observing tha t  
there is an equivalence between the h-asymptotic stabili ty (h-complete instability) 
of the origin of (3.1) on H~ and the h-asymptotic stabili ty (h-complete instability) 
of the origin of (S~). 

P~ooF oF COROlLArY 2. -- We observe tha t  the origin of the system (2.1) is 
h-asymptotical ly stable i f  and only if the origin of (Sh) is h-asymptotically stable. 
Indeed if the origin of (S~) is h-asymptotically stable, there exist a constant  G < 0 
and a polynomial  

F(x, y, ~) -~ x 2 § y~ § F~(x, y, ~) § ... § Fh(x, y, ~) 

(F~ is a homogeneous polynomial  of degree i) such tha t  the derivative of F along 
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the  solutions of (3.1) can be wri t ten  as 

~ioreover there  exists ~ positive definite quadrat ic  form in ~, Q(~)~ such tha t  along 
the solutions of system (3.1) 

(2(x, y, ~) : - -  I[~[1 ~ + ;/~(x, y, ~) § 7~(x, y, ~) 

where Z~ is of order ~ 3  and of order ~ 2  in ~; and Z2 is of order ~ h - ~ l .  (See 
LIAPV~ov [7], for a detailed analysis of the above statements) .  Sett ing *t -~ F § Q 
we have tha t  along the solutions of system (3.1), for x, y, $ small, 

'J)(x, y ,  ~') = --:[~'il 2 + G(x ~ -~ y2)(~+~)12 + X~(x ' y, ~) + a(x, y, ~) 

§ e(x= § § y, 
2 

where a is of order > h ~- 1 and includes Z~(x, y, $). 
Then U is positive definite and its derivat ive along solutions of (3.1) is negative 

definite. This proves tha t  the origin of (3.1) is asymptot ical ly  stable. Hence the  
origin of (2.1) is asymptot ical ly  stable too. This p roper ty  holds if we per turb  (2.1) 
with terms of order greater  t han  h. On the  other hand  this p roper ty  will not  hold 
by  appropriately choosing per turbat ions  of order <h .  Thus the origin of (2.1) is 

h-asymptotical ly stable. 
Using similar arguments  we can show tha t  if the origin of (2.1) is h-asymptot-  

ically stable then the  origin of (Sj~) is h-asymptotical ly stable. 
Analogously we can prove the origin of (2.1) is h-unstable if and only if the 

origin of (S~) is h-completely unstable. In  view of Corollary I this completes the 

proof of Corollary 2. 
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