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Sunto. ~ Viene compiuta un’analisi completa del problema della biforcazione di Hopf relativa
ad arbitrarie piccole perturbazioni del secondo membro di un’equazione differenziale in R»,
= fo(p). QU autovalori di ,(0) soddisfano una condicione di non risonanza. I risultati
sono fornitt in termini delle proprieta di stabilita di un sistema dinamico piano convenien-
temente associato all’equazione imperturbata.

1. — Introduction.

We are interested in obtaining an analysis of the bifurcating periodic orbits
arising in the generalized Hopf bifurcation problems in R”». The existence of these
periodic orbits has often been obtained by using such techniques as the Liapunov-
Schmidt method or topological degree arguments (see MARSDEN and McCRAKEN [8]
and HALE [6], and their references). Our approach, on the other hand, is based
upon stability properties of the equilibrium point of the unperturbed system. An-
DRONOV ¢t al. [1] showed the fruitfulness of this approach in studying bifurcation
problems in R? (for more recent papers see NEGRINI and SALVADORI [9] and BERN-
FELD and SALVADORI [2]). In the case of R? in contrast to that of R», n> 2, the
stability arguments can be effectively applied because of the Poincaré-Bendixson
theory. Bifurcation problems in E” can be reduced to that of R? when two dimen-
sional invariant manifolds are known to exist. The existence of such manifolds
occurs, for example, when the unperturbed system contains only two purely imagi-
nary eigenvalues.

In this paper we shall be concerned with the general situation in R* in which
the unperturbed system may have several pairs of purely imaginary eigenvalues.
To be more precise, let us consider the differential system '

(1.1) = fo(p),
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where fy€ C°[B"(a,), B"], fo(0) = 0, and B"(a,) = {p € R": |p|| <a,}. Assume the Jaco-
bian matrix f(')(O) has two purely imaginary eigenvalues ¢ and that the remaining
eigenvalues {4,}777 satisfy 2,5= mi, m =0, +1, ...

For those fe C°[B*(a,), B*], {(0) = 0, which are close to f, (in an appropriate
topology) consider the perturbed system

(1.2) P =)

We are interested in determining the number of nontrivial periodic orbits of (1.2)
lying near the origin and having period close to 2z for those f close to f,.

In approaching this problem, we will consider for any positive integer & the
following property:

(a) (i) there exist a neighborhood N* of f,, an a,> 0 and a number ¢, > 0 such
that for every fe N* there are at most & non-trivial periodie orbits of (1.2)
lying in B"(a,) whose period is in [27 — §,, 2 + &4];

(ii) for each integer j, 0 <j<k, for each a,€ (0, a,), for each d,€ (0,9;) and
for each neighborhood N of f,, N ¢ N*, there exists fe N such that (1.2) has
exactly j nontrivial periodic orbits lying in B"(a,) whose period is in [27 — d,,
27+ 0,5

(iii) for any 4 e (0, a,), 6 € (0, d,) there exists a neighborhood N of f,, N c N%,
such that if fe N and if y is a periodic orbit of (1.2) lying-in B"(e,) whose
period is in [27% — &, 27 4 6,], then y lies in B*(@) with period in [27— 9,
27 + 4).

In contrast to (a) another property which we will consider is:

(A) For any neighborhood N of f,, for any integer j > 0, for any a > 0 and for
any 0 > 0 there exists f € N such that (1.2) has j nontrivial periodic orbits
lying in Br(a) whose period is in [2x— 6, 27 + 6]

In R2, ANDRONOV ef al.[1] proved that property (a) ((i), (ii)) is a consequence
of the origin of (1.1) being h-asymptotically stable or h-completely unstable where
is an odd integer and % = (h — 1)/2. The origin of (1.1) in R" is said to be h-asymp-
totically stable (h-completely unstable) if % is the smallest positive integer such that
the origin of (1.2) is asymptotically stable (completely unstable) for all f for which
1(p) — folp) = o(||p|*); that is % is the smallest positive integer such that asymptotic
stability (complete instability) of the origin of (1.1) is recognizable by inspecting
the terms up to order 4 in the Taylor expansion of f, (see NEGRINT and SALVADORI [9]
for further information on k-asymptotic stability). In a recent paper BERNFELD and
SALVADORI [2] in R? extended the results of ANDRONOV et al. [1] by proving prop-
erty (a) is equivalent to the h-asymptotic stability (h-complete instability) of the
origin of (1.1) (where again k = (h—1)/2). It was also shown that property (A)
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is equivalent to the case in which the origin of (1.1) is neither A-asymptotically stable
nor h-completely unstable for any positive integer .

The problem in R» was first considered by CHAFEE [5]. Using Liapunov-Schmidt
method he obtained a determining equation (&, f) = 0 where £ is a measure of the
amplitude of the bifureating periodic orbits of (1.2) and f represents the right hand
side of (1.2). By assuming that the multiplicity of the zero root of (-, f,) is a finite
number k, he proved that property (a) holds for this %.

Our goal in this paper is to relate the number % in property (a) with the condi-
tional asymptotic stability properties of the origin for a differential system which is
close in some sense to the unperturbed system (1.1). These stability properties are
precisely the h-asymptotic stability or the h-complete instability of the origin for a
particular differential equation (S,) is" Rz The construction of (8,) as well as the
recognization of the h-agymptotic stability (h-complete instability) of the origin
of (S,) can be accomplished by solving linear algebraic systems. Indeed these sta-
bility properties can be recognized by applying the classical Poincaré procedure
(see [9] or [10]). Again we have k = (h— 1)/2.

Thus the number % can be determined using elementary algebraic techniques.
The analysis of our problem is completed by observing that when the origin for (S,)
is neither h-asymptotically stable nor h-completely unstable for every & > 0 then
property (A) holds.

The main ingredients of our analysis are: (i) the construction of a quasi-invariant
manifold X, for the unperturbed system (1.1); (ii) the use of the Poincaré map
along a particular set of solutions of (1.1) which are initially close to X,.

In conclusion, the quantitative problem of determining the number of bifurcat-
ing periodic solutions of the perturbed system (1.2) can be reduced to an analysis
of the qualitative behavior of the flow near the origin of a two dimensional system
appropriately related to the unperturbed system (1.1). In addition an algebraic.
procedure allows for a concrete solution to the problem.

Finally we remark that an announcement of our results was presented at a Con-
ference in Trento, Ttaly [3].

2. - Resultsv.

We will use the following topology on the space C*[B*(a,), R"]: define a func-
tion || i mapping C*[B~(a,), B~] into B as

=3 e
o214 [f[®)

where ||f| denotes the usual 0'»-supremum norm of f on B*(«,). Then C°[B"(a,), R*]
is & metric linear space under || ||. For any vector w &€ R* we shall denote by [l]
the Euclidean norm of w.
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By an appropriate change of coordinates depending on f we may write systems
(1.1) and (1.2) respectively in the form
&=—y +Xo(wayaz)
(2.1) y= @+ Yo(@,9,2)

¢ = Ayz + Zyx, 9y, 2)
and

&= ow — Py + X(@, 4,2 /)
(2.2) g=oy + pr + Y@, 9,2/

= Az + Z(#,y, %) .
For each fixed f, « and 38 are constants satisfying «(f,) = 0, f(f)) =1 and A is an
(n— 2) X (n — 2) constant matrix satisfying A(f,) = 4,. Moreover, for fixed f, X
and Y belong to C°[B~(a,), R], Z belongs to C°[B*a,), B"?], and X, ¥, Z are of
order greater than one. The eigenvalues of A,, {4,}7-7 satisfy the condition that
Zj# m’&-, m = 0, :l:l, ees e

We now consider an (n — 2) dimensional polynomial of some degree A, k> 0,
given by

(2.3) (@, y) = @u(@, Y) + -+ @@ ),

where @;(#, ¥) is homogeneous of degree j. We attempt to determine ¢, ..., ¢, in
order to obtain along the solutions of (2.1)

Id
(2.4) %%@—wmamﬂ = o(@? + y*)*2,

2=¢™ (2,)
that is, we have to satisfy

_ DM (x 7 de™(x,
(2.5) %;—y) [— + Xol@, y, 9@, )] + %ﬂ [+ Tof2, y, ¢P(z, )] =
= Ay, y) + Zo(7, Y, 9@, 9)) + 02 + Y22,

This implies for every j e {1, ..., h}, ¢, has to satisfy the partial differential equation

2P TP
(2'6) ay & 8r y — AO(pJ + U77

where U, is an (n — 2) dimensional homogeneous polynomial of degree j depending
on the functions ¢i,...,@,_;: Under the assumptions on Ay, (2.6) has a unique
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solution and can be solved recursively by observing that gy (z,y) =0 (see for
instance BIBIKOV [4]).

The two dimensional surface 2z = ¢®(z, y) is tangent at the origin to the eigen-
space corresponding to the eigenvalues 4-¢. This surface will be called a quasi-
invariant manifold of order 4.

Given any %> 0 define the following two dimensional system

&= —y Xo(wy Yy M (2, y)) ’

(Ss) .
y= &+ Yo(wy Yy oM (2, ’l,/)) .
(This is the system referred to in the introduction.)
We distinguish the two possible cases:

1. There exists 2> 1 (and then » must be odd) such that # =y = 0 is either
h-asymptotically stable or h-completely unstable for (8,).

II. Case I does not hold.

‘We are now able to state our main result.

THEOREM 1. — In case I property (a) holds with & = (A —1)/2. In case II, prop-
erty (A) holds.

If all the eigenvalues of 4, have real part not equal to zero, then for every h > 1
{2.1) admits a O*! two dimensional center manifold which will be denoted by H,.
We notice that if 2 = g(x, y) is the equation of this center manifold, we can write

(2.7) pla, y) = (@, y) + ol - y*)> .

As a consequence of Theorem 1 the following result holds.

COROLLARY 1. — Suppose that the eigenvalues of 4, have real part different
than zero. Then: (i) if there exists an & (and k must be odd) such that the origin
of the unperturbed system (2.1) is either h-asymptotically stable or h-completely
unstable on H, (that is with respeet to initial points on H,) then (a) holds with
k= (h—1)/2, (ii) if for every h> 1 the origin for the unperturbed system (2.1)
is neither A-asymptotically stable nor h-completely unstable on H, then (A) holds.

Under some more particular hypotheses on the eigenvalues of f,(0) the stability
properties in Theorem 1 can be expressed in terms of the unperturbed system (2.1)
without any explicit involvement of H,. This can be proved by the extension of
the Poincaré procedure [10] given by LIAPUNOV [7]. Precisely the following result
holds.

CorOLLARY 2. — Suppose all the eigenvalues of A, have negative real part.
Then (i) if the origin of the unperturbed system (2.1) is either h-asymptotically
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stable or h-unstable (in the whole) then (a) holds with & = (h — 1)/2; (ii) if for every
h > 1 the origin for the unperturbed system (2.1) is neither h-asymptotically stable
nor h-unstable, then (A) holds.

Notice that we are using the concept of k-unstable whose definition is analogous
to that of k-complete instability. A similar theorem can be stated when f(0) has
two purely imaginary eigenvalues +¢ and the remaining eigenvalues have positive

real part.

3. — Preliminary propositions.

Using the transformation
L=2— oW w,y),
we can rewrite the unperturbed system (2.1) as

£ =—y + XP@y,L)
(3.1) ?/ = x 4 Yga)('% Y, £)
Z - AOC -+ Wﬁ,’”(% Y, C)

where Xi;h)(ma Y, 0) = Xo(% Y, W(h)(x’ ?/))7 Y(nh)(xy Y, 0) = Yo(a"y Y, QDW(“: ?/)) From (2.4)
we observe that W{(z, y, 0) is of order greater than ». Analogously we can write
the perturbed system (2.2) as

& =oax — fy + XD, y,L f)
(3~2) y =ay + ﬂCG -+ Y(h)(x, Y, C7 f)
Z:: = AC + W(h)(wa Y, C) f)

where Xm)(% Y, 07 f) = X(ma Y, 90"”('70’ @/)y f)a Y(h)(% Y, 07 f) = Y(my Y, (P(h)(w; ?/)7 f) a,nd,
for fixed f, X®, ¥®, W& are of order >2. Let us set Is= [27 — 4, 2n + J] for
any 6 > 0. We now give the following proposition.

ProPosITION 1. — There exist £, §, L > 0 and a neighborbhood XN, of f, such that
whenever f, N, and (%, y, {) € y, where y is any T-periodic orbit of (3.2) lying in
Br(e) with T eIs, then ||| <L(®*-+ y?).

Proor. — Choose s, (0, a), ;> 0 and a neighborhood N, of f, such that:
(i) det (I —e¢*")5 0 for fe N, and T els; (ii) the solution of (3.2) through the
initial point (0, @, Yo, Co)s (x(t’ @oy Yos Cos £y Y{bs %oy Yoy Loy )y C(E Doy Yoy Gy ) exists
and lies in B*(ay) for all (@, ¥, L) € B"(sy), f€ N, and t [0, 2% + 6,]. Here I is
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the (n — 2) X (n — 2) identity matrix. Condition (i) can be satisfied for f close to f,
and 4, small because our assumption on the eigenvalues of 4, implies that
det (I — e¥™o) =£ 0.

We now want to determine (xo, %y, {) € B"(e,), f € Ny and T € Is which satisfies
the condition '

(3.3) STy @0y Yoy Loy ) = &o -

From the third equation in (3.2) it follows that (3.3) is equivalent to the equation
F(@q, Yoy Loy Ty f) = 0 where

T
F(@oy Yoy 0y Ty f) = f AT s)[W(h) 2(85 By Yoy Loy )y

0

Y(8y Zoy Yoy Loy )y £(Sy oy Yoy Loy )y f)] ds .

Since W® is of order >2 in («,y, {) for each f, we have F(0, 0, 0, 27, f;) = 0 and
det D, ¥(0, 0, 0, 27, f,) = det (I — ¢*™4) = (. Then by the implicit function theorem
there exist & € (0, &], 0 € (0, 8,], NoC N,, and o€ O[B%¢) xIs XNy, B*2], 0(0, 0, 2,
fo) = 0, such that

()  For every (@, Yo, ls) € B*e), Tels, and fe Ny, (3.3) holds if and only if
Lo = 0%y Yo, T, f).

(B)  |o(@oy yo, T, )] <L(ag -+ y3) for some constant L > 0 and for all (x,, y,) € B¥(s),
Tels feN,.

Property (f) can be obtained by choosing appropriately &, 8, N,, because of the
following argument. The function o is C° in (x,, %), and its derivatives are conti-
nuous in all variables #,, y,, T, f. For any T €I, and fe N, we have F(0,0,0, T,
f) = 0 and o(0, 0, 7, f) = 0. Moreover det D, F(0, 0,0, T, f) = det (I — ¢4%) = 0 (be-
cause of (i)) and D, F(0,0,0,T,f) = D, F(0,0,0, T, f) =0, which implies D, ¢(0,0, T,
f)= D, 0(0,0,T,f) = 0. In particular consider any 7T-periodic solution of (3.2)
lying in B"(e) with T e I, and f € N, and denote its orbit by y. Since (3.2) is auto-
nomous, condition (3.3) is satisfied for any point (%, %, {,) € y. Thus Proposition 1
immediately follows from («) and (f).
The substitution

(3.4) z=rcosf, y=wrsind, {=mrv

into (3.2) gives a system which we write as

dr dv A
(3.5) = BP0 =T k0,0
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where R®, y®e . The solution of (3.5) for which #(0) s~ 0 for all § are the orbits
of corresponding solutions of (3.2). Moreover, the origin is a solution of both (3.2)
and (3.5). We denote by (r(0, ¢, v,, f), v(0, ¢, @‘.,,f)) the solntion of (3.5) passing
through (0, ¢, %,). When the solutions {r(0), »(0)) of (3.5) are known, the correspond-
ing solutions of (3.2) can be completely determined by solving the equation

do
-C—ﬁ = @(05 7'(0)7 ’0(0), f) ‘

where © i3 greater than some positive number in a neighborhood of the origin in
R and for f close to f,: Every 2z-periodic solution of (3.5) (r(6), v(0)) represents a
periodic orbit of (3.2) whose period T is given by

n B 2n-—¢_
(3.8) T _Of ©(0, 7(0), v(8), f)

For any s> 0 we set P(e) = {(1", v) e R* 1, r>0, 7 4 [v]2< az}.
‘We now introduce for system (3.5) property (a’) which corresponds fo prop-
erty (a) for system (3.2).

(&) (i) There exist a neighborhood N* of f, and an g > 0 such that for every
f e N* there are at most % nontrivial 2z-periodie orbits of (3.5) lying in Pf(e,).

(ii) For each integer j, 0 <j<k, for each neighborhood N of f,, N c N*, and
for each &> 0 there exists fe N such that (3.53) has exactly § nontrivial
2z-periodic orbits lying in P(e,).

(iii) For any £e(0,¢;) there exists a neighborhood N. of f,, N.C N* such
that if fe N- and if y is a 2n-periodic orbit of (3.5) lying in P(e;) then y
lies in P(£).

The solutions of (3.5) are the representation in polar coordinates of the orbits
of the solutions of (3.2). It is not clear a priori that (a’) implies (a) because these
vroperties involve neighborhoods of the origin in (r, v)-space and of the origin in
(@, y, £)-space respectively while the substitution (3.4) is singular at » = 0. Non-
etheless we can prove the following proposition.

PrOPOSITION 2. — Property (a’) implies (a).

PROOF. ~ Without loss of generality we may assume ¢ < 1. Define the mapping
W (#, 9, &) = (1, 0), (#,y) 7 (0, 0), given by the substitution (3.4), that is r = (#* + y*)*
and v == /(@ + y2)f. Then ¥-1(P(s,)) c B{e,) since 72+ |v]2< &} implies >+ Icjz=
= 1)1 + ||o2) <r* + ||[v]|2< &}. Each 2n-periodic solution of (3.5) lying in P(e,) cor-
responds in polar coordinates to the orbit of a periodic solution of (3.2) lying in
B"(e,) whose period is included in some interval Is . Let ¢, d, L and N, be the con-
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gtants and the neighborhood of f, defined in Proposition 1 and assume ¢, < &. In view
of (3.6) and the observation @6, 0,0, f,) =1, we may choose §; and N* guch that 6,
and N*c N,. Let a,= &,/(1 -+ L?)%. If fe N* and y is any periodic orbit of (3.2)
lying in B"(a,) whose period is in I, then by Proposition 1 ¥(y)c P(e). Indeed
if (#,9,8) €y and r = (#* + y*)}, then (r, ) = P(z, y, {) satisfies

lol2 + r2= L2 r2 + <@ + L?) r<ay(l + %) <4f.
Thus property (a) (i) follows from (a') (i).

PROOF OF (a) (ii). — Pick any @< @,< &,(1 + L) and N c N* such that for
every f € N we have: (1) the periodic orbits of (3.2) lying in B~(a,) which correspond
to the 2n-periodic orbits of (3.5) lying in P(a,), have period in I, . This follows by
using (3.6) and the fact that 6(6,0,0,f,) =1. (2) fe N implies that all the 2n-
periodic orbits of (3.5) lying in. P(e,) lie in P(@,). This can be done in view of (a') (iii).
In view of (a’) (ii) pick f € N such that (3.5) has exactly j 2z-periodic orbits lying
in P(@,). If y is any periodic orbit of (3.2) lying in B*(a,) whose period is in I, then
Y(y)c Pley). In view of (2) ¥(y) c P(@,). This completes the proof of (a) (ii).

Proor OF (a) (iii). — Assume @,< @ < &/(1 + L*)* and N c N* such that condi-
tions (1) and (2) above hold with N replaced by N and 4,, @, and a, replaced by
8, @,, and @ respectively. If fe N and y is a periodic orbit of (3.2) lying in B*(a,)
with period in Is , then ¥(y) c P(e,) which implies ¥(y) c P(@,). Then in view of (1)
and (2) y ¢ BY@,) c B*(@) with period in I5. This completes the proof of Proposition 2.

A solution (r(8), v(0)) of (3.5) that exists on [0, 2x] will be called a (27, v) solu-
tion if v(27) = v(0). Every 2z-periodic solution is obviously a (2x, v); thus in order
to find the 2n-periodic solutions, we only need to inspect the set of (27, ») solutions.
This leads us to consider the following Proposition.

PRrOPOSITION 3. ~ There exist ¢ > 0 and a neighborhood ¥ of f,, and a function
7 € O[[0, &) XN, R~], 7(+,{) e C° and v(0,f) = 0 for fe N, such that for every
(¢,v,) € P(¢) and fe N the solution of (3.5) through (0, ¢, v,) is a (2, v) solution if
and only if v,= 7(¢, f). The ¢-derivatives of 7 are continuous in (e,f).

PROOF. — As in the proof of Proposition 1 we choose &, > 0 and a neighborhood
N, of f, such that (i) det (I — ¢**“/#) 5= 0 for f € N,; and (ii) the solutions (#(0, ¢, v,, f),
v(0, ¢, vy, f)) of (3.5) exist and belong to P(a,) for all (¢, v,) € P(e,), f€ N, and
6 € [0, 2x]. From the second equation in (3.5) it follows that the condition v(2zx, e,
oy ) = v, is equivalent to the requirement that ¥(e, v,,f) = 0, where

2n

F(e, vy, f) = (I — gznA/p)%__f eA(zn—_s)/ﬂ[n(h)(S, (85 €, Vg, )y 0(8y € Vg, f), f)] ds .
0

8 =~ dnnali di Malematica



114  S. R. BERNFELD - P. NEGRINI - L. SALVADORI: Quasi-tnvariant manifolds, efe.

We recognize that F(0,0,f) = 0. Now we prove det D, F(0,0, f,) = det (I — ¢**4). To
see this observe that since D n™(6, 0, 0, f;) = 0 we only need to prove that (9r/dv,)(6,
0,0,f,) =20 for 6§ [0,2n]. (Recall that 4™ may have linear terms in r.) Since
B®(0, 0, v, f,) = 0, then for any v, the solution (r(6, 0, v, f,), v(8, 0, v,, f,)) of (3.5)
satisfies »(0, 0, v,, fy) = 0 for 6 €[0, 2n]. Thus (or/0v,)(6, 0,0, f,) = 0 and consequently
det D, F(0, 0, f,) = det (I — ¢*™) = 0. Therefore the conclusion of Proposition 3
follows from the implicit function theorem and the fact that F(0, 0, f) = 0.

Denote by (r(6,¢, ), v(0, ¢, f)) the (27, v) solution of (3.5) passing through
(0, ¢, 7(¢, f)). Because of Proposition 3 we can write

{0, ¢, ) = ui(0, f)e + ... + uu(6, f)c* + o(c")

(8.7
o0, ¢, /) = (0, f)e + ... + vas(0, )" + o(ch?)
where #,(0,f) =1, #,(0,f) =0 for i >1 and

(3.8) {0, f) =2.2n, ) for i>1.

Consider now the displacement function relative to the (2=, v) solutions which
is defined in a right interval of ¢ = 0 and in a neighborhood of f, as

(3.9) Vie,f) =r@2m e, f)—c.

Then the 2z-periodic solutions of (3.5) correspond to the zeros of Ve, f).
We now prove the following result.

PROPOSITION 4. — Asgsume the origin of (8,) is either h-asymptotically stable or
h-completely unstable. Then # is odd, A > 1, and

s A oV
(3.10) ‘8—62'(0,]‘0)'—:0, @v———-l,...,h—,l and 5;;(0,]‘,,)#0.

Proor. — Substitute (3.7) into the second equation in (3.5) for f = f, and equate
coefficients of ¢, 4 =1,..., h—1. Since y®(0, 1,0, ],) is of order > h—1 in r we
find that v,(f,f,) =0 for ¢ =1,..., h —1. Indeed

(0, fo) = Aonn(6, fo) ,
implying
71(97 fﬂ) = "’1(0, fo) GADB .

Condition (3.8) and the fact that det (I — ¢*4) £ 0 implies that »,(0,f,) = 0 and
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consequently »(0, f;) = 0. Then we have

o
%2‘(6} fo) = Ao”z(e’ fo)

and as before »,(0, f,) = 0. Continuing in this manner we obtain »,(0, f,) =0, i =1,
ey h—1. Thus in order to compute the functions wu,(6,f,) we may put » =10
into the first equation in (3.5) for f==f,. We then obtain the equation

or
CT i R®(8, 1,0, fo)

which is precisely the equation in polar coordinates of the orbits of (8,). Since
2=y =0 i3 either h-asymptotically stable or h-completely unstable for (S,) we
have that % is odd and

w0, 70) =1, w2mfo)=0, i=2,...,°h—1, u(2m,f,)5~0

(see [9] for more details), thus implying (3.10) holds.
Finally we have the following result concerning the roots of Ve, f) for f close
to fo.

PROPOSITION 5. — Assume the origin of (S,) is either h-asymptotically stable or
h-completely unstable. Then there exist ¢> 0 and a neighborhood N of f, such
that: (1) Ve, f) is defined for any ¢ [0, ¢] and f e N; (2) for every ¢, (0, ¢) there
exists a neighborhood N, c N such that for fe N, all the roots of V(e, ) lying in
[0, €] lie in [0, ¢,). ‘

The proof of Proposition 5 utilizes Proposition 4 in order to show that for ¢ > 0
sufficiently small and ¢ €[0, ] we have |V(e, f)|>uc*, for an appropriate constant
1> 0. The continunity of V(e, f) in ¢ and f = f, allows us to conclude that for every
¢.€[0,¢] there exists N, c N, such that, for fe N , |V(e, f)|>4uct, for ¢elo,q].
We leave the details to the reader.

4. - Proof of Theorem 1.

If in the transformation (3.4) we assume 7 < 0 ingtead of » > 0 we obtain a new
displacement function V(e, f) defined for ¢ < 0. We will extend the domain of V'
by setting V(e,f) = V(c,f) for ¢ < 0. It is easy to recognize that this extended
function is continuous and, for fixed f, is 0® in ¢. In addition we observe that for
any nonzero 2z-periodic solution of (3.5) there exist ¢, > 0, ¢,<< 0 such that Ve, f) =
= V{e, f) = 0.

Agsume case (I). We shall prove property (a’) holds and in view of Proposi-
tion 3 the proof of the first part of Theorem 1 will be complete.
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Proor or PROPERTY (a') (i). — Since the origin is a solution of (3.5) for any f,
an application of Rolle’s Theorem, in view of (3.10), implies that there exist an
g;> 0 and a neighborhood N* of f, such that for any fe N*, V(e f) has at most
h—1 nonzero roots counting multiplicity in [— ¢, &]. For each positive root of
V(e, f) there is a negative root of V{e, f) corresponding to the same periodic orbit,
thus there are at most % == (b —1)/2 nontrivial 2n-periodic solutions of (3.5) lying
in P(e,) for fe N*. Thus property (a') (i) holds.

Proor oF PROPERTY (a') (ii). — We essentially adapt to our problem a procedure
used in [1]. Suppose the origin of (S,) is h-asymptotically stable (the case in which
the origin of (S;) is h-completely unstable has a similar proof). Consider a perturbed
system of (3.1) of the form

j
Z=—y + X%h)(fﬂ, ¥, 0) + Z aiw(w2 + yz)k_1

i=1

j
(4.1) gy= o Y,y 0) + > ay@®+ yHFr

=1

é == AOC ‘TI" Wg)h)(% Y, C')

where k = (h— 1)/2, § is any integer, 1 <j <k, and 4, are constants to be determined
(the case j = 0 follows by letting f = f,).

We will denote by Ve, a,, ..., a,) the displacement function relative to the (2, v)
solutions of (3.5) which correspond to (4.1). We will denote by S(ay,..., a;) the
first two equations in (4.1) for { = 0. Since the origin is h-asymptotically stable
for 8(0, ..., 0), then from Proposition 4

Vie, 0y.00y0) = go* + 0(c"),  §o<0.

Thus for ¢,> 0 and sufficiently small we have V(c,0,...,0) << 0. There exists an
7, > 0 such that V(e,, aq, ..., a;) < 0 for |a,| <, ¢ =1,...,§. Fixnowa,, 0 < a,<< it
Then

Vies a1y 0, ...y 0) = g16% + 0(¢"™?)

where ¢, = 2ma, > 0. This can be recognized by replacing the expression for r from
(3.7) in the equation (in polar coordinates) of orbits of S(ay,0,...,0) and taking
into account that w,2m,f) =0, ¢ =1,..., h—3 (see [9] for more details). There
exists ¢,, 0 < ¢,< ¢, such that V(e a,,0,...,0) >0 and thus we can find 7,> 0,
7,<< N1, such that for |a,] < s, ¢ = 2,..., ], V(c1, @, 83, ..oy ;) > 0. Fix now a,< 0,
|a,] << %,. Then

Ve, ay, a3, 0, ..., 0) = gac¥* + o)
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where g, = 2ma,< 0. Then there exists ¢,, 0 < ¢,<C ¢, such that V(c,, ¢, 0,,0,...,0) <0
and thus we can find 1, 0 < %,<< 7j,, such that for |a,| < 9,7 =3, ..., §, V(ey, @y, ..., a,) <
< 0. Continuing this process we can find a set of numbers ¢;, C,, ..., &;, ¢,<< €;<< 6,_y,
¢ =1,..,j (and thus ¢,,,<¢&;,¢=1,..,j—1) such that V(G,, a,,...,a;) = 0,4 =
=1,..,j. Since ¢=0 i3 & root of V(e a1, ...,a,) =0 of order h—2j (recall
u2m, f) =0, 4 =1, ..., h— 2§ —1) and for each positive root of V(e a,,..., a;) we
have a negative root, then we immediately have that the ¢,, 4 =1, ..., 4, are the
only positive roots of V{e, a4, ..., @;). Moreover we can obtain that the ¢, can be
made close to ¢ = 0 by picking ¢, sufficiently small. This completes the proof of
(a') (ii). The proof of (a’) (iii) is an immediate consequence of Proposition 5.

Thus property (a') holds and so the first part of Theorem 1 is proved.

We now show Case II follows from Case I.

For any positive integer § we assume in (3.1) » = 2§ + 1 and consider the fol-
lowing system

& =—y + XPx,y, 0) + ba(a® 4 y*) -V
(4.2) g= o+ TP@1y,0) +byla® + gt

§= AL + WPz, 9, )

where b is a constant. We then have that for the corresponding reduced system (S,)
the origin is either h-asymptotically stable or A-completely unstable if b < 0 or b > 0
respectively. Thus we- have reduced the problem to Case I. Since j and b are
arbitrary, property (A) holds, thus concluding the proof of Theorem 1.

5. —~ Proof of Corollaries.

The proof of Corollary 1 follows from (2.7) and Theorem 1 by observing that
there is an equivalence between the h-asymptotic stability (h-complete instability)
of the origin of (3.1) on H, and the h-asymptotic stability (h-complete instability)
of the origin of (S,).

ProoF OF COROLLARY 2. -~ We observe that the origin of the system (2.1) is
h-asymptotically stable if and only if the origin of (S,) is h-asymptotically stable.

Indeed if the origin of (8,) is h-asymptotically stable, there exist a constant G < 0
and a polynomial

Fz, y, () =2+ Y+ B9, 0) + ... + Fulw, 9, 0)

(F'; is a homogeneous polynomial of degree i) such that the derivative of F along
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the solutions of (3.1) can be written as
Fa, 5, £) = G(a® ~ y2)0nlz L o{m? 4 y2 + | 2)m+viz,

Moreover there exists a positive definite quadratic form in , @({), such that along
the solutions of system (3.1)

Q(wa Y, L) =— “5”2 + xuley v, &)+ 1225 9, £)

where y; is of order >3 and of order >2 in {; and y, is of order > & + 1. (See
Liapunov [7], for a detailed analysis of the above statements). Setting # = ¥ - @
we have that along the solutions of system (3.1), for x, %, { small,

@, y, §) = — | {||? + G(a? 4 y?)*+ 02 L vi(z, 9, §) + olz, ¥, {)

i=lle
<=L G 4 e 4 o, 0,0),
where ¢ is of order > h -1 and includes x,(«, ¥, {).

Then % is positive definite and its derivative along solutions of (3.1) is negative
definite. This proves that the origin of (3.1) is asymptotically stable. Hence the
origin of (2.1) is asymptotically stable too. This property holds if we perturb (2.1)
with terms of order greater than h. On the other hand this property will not hold
by appropriately choosing perturbations of order <h. Thus the origin of (2.1) is
h-asymptotically stable.

Using similar arguments we can show that if the origin of (2.1) is h-asymptot-
ically stable then the origin of (8,) is A-asymptotically stable.

Analogously we can prove the origin of (2.1) is h-unstable if and only if the
origin of (8,) is h-completely unstable. In view of Corollary 1 this completes the
proof of Corollary 2.
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