Quasi-Invariant Manifolds, Stability, and Generalized Hopf Bifurcation (*).

S. R. Bernfeld (Arlington, Texas) (${ }^{1}$) - P. Negrini (Camerino, Italia) (${ }^{(}$) L. Salvadori (Trento, Italia) (${ }^{1}$)

Sunto. - Viene compiuta un'analisi completa del problema della biforcazione di Hopf relativa ad arbitrarie piccole perturbazioni del secondo membro di un'equazione differenziale in R^{n}, $\dot{p}=f_{0}(p)$. Gli autovalori di $f_{0}^{\prime}(0)$ soddisfano una condizione di non risonanza. I risultati sono forniti in termini delle proprietà di stabilità di un sistema dinamico piano convenientemente associato all'equazione imperturbata.

1. - Introduction.

We are interested in obtaining an analysis of the bifurcating periodic orbits arising in the generalized Hopf bifurcation problems in R^{n}. The existence of these periodic orbits has often been obtained by using such techniques as the LiapunovSchmidt method or topological degree arguments (see Marsden and MoCraken [8] and Hale [6], and their references). Our approach, on the other hand, is based upon stability properties of the equilibrium point of the unperturbed system. ANdronov et al. [1] showed the fruitfulness of this approach in studying bifurcation problems in R^{2} (for more recent papers see Negrini and Salvadori [9] and BernFELD and Salvadori [2]). In the case of R^{2}, in contrast to that of $R^{n}, n>2$, the stability arguments can be effectively applied because of the Poincaré-Bendixson theory. Bifurcation problems in R^{n} can be reduced to that of R^{2} when two dimensional invariant manifolds are known to exist. The existence of such manifolds occurs, for example, when the unperturbed system contains only two purely imaginary eigenvalues.

In this paper we shall be concerned with the general situation in R^{n} in which the unperturbed system may have several pairs of purely imaginary eigenvalues. To be more precise, let us consider the differential system

$$
\begin{equation*}
\dot{p}=f_{0}(p), \tag{1.1}
\end{equation*}
$$

(*) Entrata in Redazione il 19 maggio 1981.
$\left.{ }^{(}{ }^{1}\right)$ Research partially supported by U.S. Army Research Grant DAAG-29-80-C-0060 and by C.N.R. (Italian Council of Research) contr. 79.00696.01.
${ }^{(2)}$ Work performed under the auspices of the National Group of Math, Phys. of C,N,R.
where $f_{0} \in C^{\infty}\left[B^{n}\left(a_{0}\right), R^{n}\right], f_{0}(0)=0$, and $B^{n}\left(a_{0}\right)=\left\{p \in R^{n}:\|p\| \leqslant a_{0}\right\}$. Assume the Jacobian matrix $f_{0}^{\prime}(0)$ has two purely imaginary eigenvalues $\pm i$ and that the remaining eigenvalues $\left\{\lambda_{j}\right\}_{j=1}^{n-2}$ satisfy $\lambda_{j} \neq m i, m=0, \pm 1, \ldots$

For those $f \in C^{\infty}\left[B^{n}\left(a_{0}\right), R^{n}\right], f(0)=0$, which are close to f_{0} (in an appropriate topology) consider the perturbed system

$$
\begin{equation*}
\dot{p}=f(p) \tag{1.2}
\end{equation*}
$$

We are interested in determining the number of nontrivial periodic orbits of (1.2) lying near the origin and having period close to 2π for those f close to f_{0}.

In approaching this problem, we will consider for any positive integer k the following property:
(a) (i) there exist a neighborhood N^{*} of f_{0}, an $a_{1}>0$ and a number $\delta_{1}>0$ such that for every $f \in N^{*}$ there are at most k non-trivial periodic orbits of (1.2) lying in $B^{n}\left(a_{1}\right)$ whose period is in $\left[2 \pi-\delta_{1}, 2 \pi+\delta_{1}\right]$;
(ii) for each integer $j, 0 \leqslant j \leqslant k$, for each $a_{2} \in\left(0, a_{1}\right)$, for each $\delta_{2} \in\left(0, \delta_{1}\right)$ and for each neighborhood N of $f_{0}, N \subset N^{*}$, there exists $f \in N$ such that (1.2) has exactly j nontrivial periodic orbits lying in $B^{n}\left(\alpha_{2}\right)$ whose period is in [$2 \pi-\delta_{2}$, $\left.2 \pi+\delta_{2}\right] ;$
(iii) for any $\bar{a} \in\left(0, a_{1}\right), \bar{\delta} \in\left(0, \delta_{1}\right)$ there exists a neighborhood \bar{N} of $f_{0}, \bar{N} \subset N^{*}$, such that if $f \in \bar{N}$ and if γ is a periodic orbit of (1.2) lying in $B^{n}\left(a_{1}\right)$ whose period is in $\left[2 \pi-\delta_{1}, 2 \pi+\delta_{1}\right]$, then γ lies in $B^{n}(\overline{\bar{a}})$ with period in $[2 \pi-\bar{\delta}$, $2 \pi+\bar{\delta}]$.

In contrast to (a) another property which we will consider is:
(A) For any neighborhood N of f_{0}, for any integer $j>0$, for any $a>0$ and for any $\delta>0$ there exists $f \in N$ such that (1.2) has j nontrivial periodic orbits lying in $B^{n}(a)$ whose period is in $[2 \pi-\delta, 2 \pi+\delta]$.

In R^{2}, Andronov et al. [1] proved that property (a) (i), (ii)) is a consequence of the origin of (1.1) being h-asymptotically stable or h-completely unstable where h is an odd integer and $k=(h-1) / 2$. The origin of (1.1) in R^{n} is said to be h-asymptotically stable (h-completely unstable) if h is the smallest positive integer such that the origin of (1.2) is asymptotically stable (completely unstable) for all f for which $f(p)-f_{0}(p)=o\left(\|p\|^{h}\right)$; that is h is the smallest positive integer such that asymptotic stability (complete instability) of the origin of (1.1) is recognizable by inspecting the terms up to order h in the Taylor expansion of f_{0} (see Negrini and Salvadori [9] for further information on h-asymptotic stability). In a recent paper BERNFELD and Salvadori [2] in R^{2} extended the results of Andronov et al. [1] by proving property (a) is equivalent to the h-asymptotic stability (h-complete instability) of the origin of (1.1) (where again $k=(h-1) / 2)$. It was also shown that property (A)
is equivalent to the case in which the origin of (1.1) is neither h-asymptotically stable nor h-completely unstable for any positive integer h.

The problem in R^{n} was first considered by Chafee [5]. Using Liapunov-Schmidt method he obtained a determining equation $\psi(\xi, f)=0$ where ξ is a measure of the amplitude of the bifurcating periodic orbits of (1.2) and f represents the right hand side of (1.2). By assuming that the multiplicity of the zero root of $\psi\left(\cdot, f_{0}\right)$ is a finite number k, he proved that property (a) holds for this k.

Our goal in this paper is to relate the number k in property (a) with the conditional asymptotic stability properties of the origin for a differential system which is close in some sense to the unperturbed system (1.1). These stability properties are precisely the h-asymptotic stability or the h-complete instability of the origin for a particular differential equation $\left(\mathrm{S}_{n}\right)$ is R^{2}. The construction of $\left(\mathrm{S}_{n}\right)$ as well as the recognization of the h-asymptotic stability (h-complete instability) of the origin of (S_{h}) can be accomplished by solving linear algebraic systems. Indeed these stability properties can be recognized by applying the classical Poincaré procedure (see [9] or [10]). Again we have $k=(h-1) / 2$.

Thus the number k can be determined using elementary algebraic techniques. The analysis of our problem is completed by observing that when the origin for $\left(\mathrm{S}_{n}\right)$ is neither h-asymptotically stable nor h-completely unstable for every $h>0$ then property (A) holds.

The main ingredients of our analysis are: (i) the construction of a quasi-invariant manifold Σ_{h} for the unperturbed system (1.1); (ii) the use of the Poincare map along a particular set of solutions of (1.1) which are initially close to Σ_{h}.

In conclusion, the quantitative problem of determining the number of bifurcating periodic solutions of the perturbed system (1.2) can be reduced to an analysis of the qualitative behavior of the flow near the origin of a two dimensional system appropriately related to the unperturbed system (1.1). In addition an algebraic. procedure allows for a concrete solution to the problem.

Finally we remark that an announcement of our results was presented at a Conference in Trento, Italy [3].

2. - Results.

We will use the following topology on the space $C^{\infty}\left[B^{n}\left(a_{0}\right), R^{n}\right]$: define a function ||| |l| mapping $C^{\infty}\left[B^{n}\left(a_{0}\right), R^{n}\right]$ into R as

$$
\|f\|=\sum_{i=0}^{\infty} \frac{\|f\|^{(i)}}{2^{l}\left(1+\|f\|^{(i)}\right)}
$$

where $\|f\|^{(2)}$ denotes the usual $C^{(n)}$-supremum norm of f on $B^{n}\left(a_{0}\right)$. Then $C^{\infty}\left[B^{n}\left(a_{0}\right), R^{n}\right]$ is a metric linear space under $\left\|\left\|\|\right.\right.$. For any vector $w \in R^{n}$ we shall denote by $\left.\| w\right\|$ the Euclidean norm of w.

By an appropriate change of coordinates depending on f we may write systems (1.1) and (1.2) respectively in the form

$$
\begin{align*}
& \dot{x}=-y+X_{0}(x, y, z) \\
& \dot{y}=x+Y_{0}(x, y, z) \tag{2.1}\\
& \dot{z}=A_{0} z+Z_{0}(x, y, z)
\end{align*}
$$

and

$$
\begin{align*}
& \dot{x}=\alpha x-\beta y+X(x, y, z, f) \\
& \dot{y}=\alpha y+\beta x+Y(x, y, z, f) \tag{2.2}\\
& \dot{z}=A z+Z(x, y, z, f)
\end{align*}
$$

For each fixed f, α and β are constants satisfying $\alpha\left(f_{0}\right)=0, \beta\left(f_{0}\right)=1$ and A is an $(n-2) \times(n-2)$ constant matrix satisfying $A\left(f_{0}\right)=A_{0}$. Moreover, for fixed f, X and Y belong to $C^{\infty}\left[B^{n}\left(a_{0}\right), R\right], Z$ belongs to $C^{\infty}\left[B^{n}\left(a_{0}\right), R^{n-2}\right]$, and X, Y, Z are of order greater than one. The eigenvalues of $A_{0},\left\{\lambda_{j}\right\}_{j=1}^{n-2}$ satisfy the condition that $\lambda_{j} \neq m i, m=0, \pm 1, \ldots$

We now consider an $(n-2)$ dimensional polynomial of some degree $h, h>0$, given by

$$
\begin{equation*}
\varphi^{(n)}(x, y)=\varphi_{1}(x, y)+\ldots+\varphi_{h}(x, y) \tag{2.3}
\end{equation*}
$$

where $\varphi_{j}(x, y)$ is homogeneous of degree j. We attempt to determine $\varphi_{1}, \ldots, \varphi_{h}$ in order to obtain along the solutions of (2.1)

$$
\begin{equation*}
\left[\frac{d}{d t}\left(z-\varphi^{(h)}(x, y)\right)\right]_{z=\varphi^{(h)}(x, y)}=o\left(x^{2}+y^{2}\right)^{h / 2} \tag{2.4}
\end{equation*}
$$

that is, we have to satisfy

$$
\begin{array}{r}
\frac{\partial \varphi^{(h)}(x, y)}{\partial x}\left[-y+X_{0}\left(x, y, \varphi^{(h)}(x, y)\right)\right]+\frac{\partial \varphi^{(h)}(x, y)}{\partial y}\left[x+X_{0}\left(x, y, \varphi^{(h)}(x, y)\right)\right]= \tag{2.5}\\
=A_{0} \varphi^{(h)}(x, y)+Z_{0}\left(x, y, \varphi^{(h)}(x, y)\right)+o\left(x^{2}+y^{2}\right)^{h / 2}
\end{array}
$$

This implies for every $j \in\{1, \ldots, h\}, \varphi_{j}$ has to satisfy the partial differential equation

$$
\begin{equation*}
\frac{\partial \varphi_{j}}{\partial y} x-\frac{\partial \varphi_{j}}{\partial x} y=A_{0} \varphi_{i}+U_{i} \tag{2.6}
\end{equation*}
$$

where U_{j} is an $(n-2)$ dimensional homogeneous polynomial of degree j depending on the functions $\varphi_{1}, \ldots, \varphi_{j-1}$: Under the assumptions on $A_{0},(2.6)$ has a unique
solution and can be solved recursively by observing that $\varphi_{1}(x, y)=0$ (see for instance Bibikov [4]).

The two dimensional surface $z=\phi^{(h)}(x, y)$ is tangent at the origin to the eigenspace corresponding to the eigenvalues $\pm i$. This surface will be called a quasiinvariant manifold of order h.

Given any $h>0$ define the following two dimensional system

$$
\begin{align*}
& \dot{x}=-y+X_{0}\left(x, y, \varphi^{(h)}(x, y)\right), \tag{h}\\
& \dot{y}=\quad x+X_{0}\left(x, y, \varphi^{(h)}(x, y)\right) .
\end{align*}
$$

(This is the system referred to in the introduction.)
We distinguish the two possible cases:
I. There exists $h>1$ (and then h must be odd) such that $x \equiv y \equiv 0$ is either h-asymptotically stable or h-completely unstable for $\left(S_{h}\right)$.
II. Case I does not hold.

We are now able to state our main result.
Theorem 1. - In case I property (a) holds with $k=(h-1) / 2$. In case II, property (A) holds.

If all the eigenvalues of A_{0} have real part not equal to zero, then for every $h>1$ (2.1) admits a 0^{h+1} two dimensional center manifold which will be denoted by H_{h}. We notice that if $z=\varphi(x, y)$ is the equation of this center manifold, we can write

$$
\begin{equation*}
\varphi(x, y)=\varphi^{(k)}(x, y)+o\left(x^{2}+y^{2}\right)^{n / 2} . \tag{2.7}
\end{equation*}
$$

As a consequence of Theorem 1 the following result holds.
Corollary 1. - Suppose that the eigenvalues of A_{0} have real part different than zero. Then: (i) if there exists an h (and h must be odd) such that the origin of the unperturbed system (2.1) is either \bar{h}-asymptotically stable or h-completely unstable on H_{h} (that is with respect to initial points on H_{h}) then (a) holds with $k=(h-1) / 2$, (ii) if for every $h>1$ the origin for the unperturbed system (2.1) is neither h-asymptotically stable nor h-completely unstable on H_{h} then (A) holds.

Under some more particular hypotheses on the eigenvalues of $f_{0}^{\prime}(0)$ the stability properties in Theorem 1 can be expressed in terms of the unperturbed system (2.1) without any explicit involvement of H_{h}. This can be proved by the extension of the Poincaré procedure [10] given by Liapunov [7]. Precisely the following result holds.

Corollary 2. - Suppose all the eigenvalues of A_{0} have negative real part. Then (i) if the origin of the unperturbed system (2.1) is either h-asymptotically
stable or h-unstable (in the whole) then (a) holds with $k=(h-1) / 2$; (ii) if for every $h>1$ the origin for the unperturbed system (2.1) is neither h-asymptotically stable nor h-unstable, then (A) holds.

Notice that we are using the concept of h-unstable whose definition is analogous to that of h-complete instability. A similar theorem can be stated when $f_{0}^{\prime}(0)$ has two purely imaginary eigenvalues $\pm i$ and the remaining eigenvalues have positive real part.

3. - Preliminary propositions.

Using the transformation

$$
\zeta=z-\varphi^{(h)}(x, y)
$$

we can rewrite the unperturbed system (2.1) as

$$
\begin{align*}
& \dot{x}=-y+X_{0}^{(h)}(x, y, \zeta) \\
& \dot{y}=x+Y_{0}^{(h)}(x, y, \zeta) \tag{3.1}\\
& \dot{\zeta}=A_{0} \zeta+W_{0}^{(h)}(x, y, \zeta)
\end{align*}
$$

where $X_{0}^{(h)}(x, y, 0)=X_{0}\left(x, y, \varphi^{(h)}(x, y)\right), Y_{0}^{(h)}(x, y, 0)=Y_{0}\left(x, y, \varphi^{(h)}(x, y)\right)$. From (2.4) we observe that $W_{0}^{(k)}(x, y, 0)$ is of order greater than h. Analogously we can write the perturbed system (2.2) as

$$
\begin{align*}
& \dot{x}=\alpha x-\beta y+X^{(n)}(x, y, \zeta, f) \\
& \dot{y}=\alpha y+\beta x+\Psi^{(n)}(x, y, \zeta, f) \tag{3.2}\\
& \dot{\zeta}=A \zeta+W^{(h)}(x, y, \zeta, f)
\end{align*}
$$

where $X^{(h)}(x, y, 0, f)=X\left(x, y, \varphi^{(h)}(x, y), f\right), Y^{(h)}(x, y, 0, f)=Y\left(x, y, \varphi^{(h)}(x, y), f\right)$ and, for fixed $f, X^{(h)}, Y^{(h)}, W^{(h)}$ are of order $\geqslant 2$. Let us set $I_{\delta}=[2 \pi-\delta, 2 \pi+\delta]$ for any $\delta>0$. We now give the following proposition.

Propostition 1. - There exist $\varepsilon, \delta, L>0$ and a neighborhood N_{0} of f_{0} such that whenever f, N_{0} and $(x, y, \zeta) \in \gamma$, where γ is any T-periodic orbit of (3.2) lying in $B^{n}(\varepsilon)$ with $T \in I_{\delta}$, then $\|\zeta\| \leqslant L\left(x^{2}+y^{2}\right)$.

Proof. - Choose $\varepsilon_{1} \in\left(0, a_{0}\right), \delta_{1}>0$ and a neighborhood N_{1} of f_{0} such that: (i) $\operatorname{det}\left(I-e^{A T}\right) \neq 0$ for $f \in N_{1}$ and $T \in I_{\delta_{3}}$; (ii) the solution of (3.2) through the initial point $\left(0, x_{0}, y_{0}, \zeta_{0}\right),\left(x\left(t, x_{0}, y_{0}, \zeta_{0}, f\right), y\left(t, x_{0}, y_{0}, \zeta_{0}, f\right), \zeta\left(t, x_{0}, y_{0}, \zeta_{0}, f\right)\right)$ exists and lies in $B^{n}\left(a_{0}\right)$ for all $\left(x_{0}, y_{0}, \zeta_{0}\right) \in B^{n}\left(\varepsilon_{1}\right), f \in N_{1}$ and $t \in\left[0,2 \pi+\delta_{1}\right]$. Here I is
the $(n-2) \times(n-2)$ identity matrix. Condition (i) can be satisfied for f close to f_{0} and δ_{1} small because our assumption on the eigenvalues of A_{0} implies that $\operatorname{det}\left(I-e^{2 \pi A_{0}}\right) \neq 0$.

We now want to determine $\left(x_{0}, y_{0}, \zeta_{0}\right) \in B^{n}\left(\varepsilon_{1}\right), f \in N_{1}$ and $T \in I_{\delta_{1}}$ which satisfies the condition

$$
\begin{equation*}
\zeta\left(T, x_{0}, y_{0}, \zeta_{0}, f\right)=\zeta_{0} \tag{3.3}
\end{equation*}
$$

From the third equation in (3.2) it follows that (3.3) is equivalent to the equation $F\left(x_{0}, y_{0}, \zeta_{0}, T, f\right)=0$ where

$$
\begin{aligned}
F\left(x_{0}, y_{0}, \zeta_{0}, T, f\right)=\left(I-e^{A T}\right) \zeta_{0}-\int_{0}^{T} e^{A(T-s)}[& W^{(h)}\left(x\left(s, x_{0}, y_{0}, \zeta_{0}, f\right)\right. \\
& \left.\left.y\left(s, x_{0}, y_{0}, \zeta_{0}, f\right), \zeta\left(s, x_{0}, y_{0}, \zeta_{0}, f\right), f\right)\right] d s
\end{aligned}
$$

Since $W^{(h)}$ is of order $\geqslant 2$ in (x, y, ζ) for each f, we have $F\left(0,0,0,2 \pi, f_{0}\right)=0$ and $\operatorname{det} D_{\xi_{0}} F\left(0,0,0,2 \pi, f_{0}\right)=\operatorname{det}\left(I-e^{2 \pi A_{0}}\right) \neq 0$. Then by the implicit function theorem there exist $\varepsilon \in\left(0, \varepsilon_{1}\right], \delta \in\left(0, \delta_{1}\right], N_{0} \subset N_{1}$, and $\sigma \in C\left[B^{2}(\varepsilon) \times I_{\delta} \times N_{0}, R^{n-2}\right], \sigma(0,0,2 \pi$, $\left.f_{0}\right)=0$, such that
(α) For every $\left(x_{0}, y_{0}, \zeta_{0}\right) \in B^{n}(\varepsilon), T \in I_{\delta}$, and $f \in N_{0}$, (3.3) holds if and only if $\zeta_{0}=\sigma\left(x_{0}, y_{0}, T, f\right)$.
(β) $\left\|\sigma\left(x_{0}, y_{0}, T, f\right)\right\| \leqslant L\left(x_{0}^{2}+y_{0}^{2}\right)$ for some constant $L>0$ and for all $\left(x_{0}, y_{0}\right) \in B^{2}(\varepsilon)$, $T \in I_{\delta}, f \in N_{0}$.

Property (β) can be obtained by choosing appropriately $\varepsilon, \delta, N_{0}$, because of the following argument. The function σ is C^{∞} in $\left(x_{0}, y_{0}\right)$, and its derivatives are continuous in all variables x_{0}, y_{0}, T, f. For any $T \in I_{\delta}$ and $f \in N_{0}$ we have $F(0,0,0, T$, $f)=0$ and $\sigma(0,0, T, f)=0$. Moreover $\operatorname{det} D_{\xi_{0}} F(0,0,0, T, f)=\operatorname{det}\left(I-e^{A T}\right) \neq 0$ (because of (i)) and $D_{x_{0}} F(0,0,0, T, f)=D_{y_{0}} F(0,0,0, T, f)=0$, which implies $D_{x_{0}} \sigma(0,0, T$, $f)=D_{y_{0}} \sigma(0,0, T, f)=0$. In particular consider any T-periodic solution of (3.2) lying in $B^{n}(\varepsilon)$ with $T \in I_{\delta}$ and $f \in N_{0}$ and denote its orbit by γ. Since (3.2) is autonomous, condition (3.3) is satisfied for any point $\left(x_{0}, y_{0}, \zeta_{0}\right) \in \gamma$. Thus Proposition 1 immediately follows from (α) and (β).

The substitution

$$
\begin{equation*}
x=r \cos \theta, \quad y=r \sin \theta, \quad \zeta=r v \tag{3.4}
\end{equation*}
$$

into (3.2) gives a system which we write as

$$
\begin{equation*}
\frac{d r}{d \theta}=R^{(h)}(\theta, r, v, f), \quad \frac{d v}{d \theta}=\frac{A}{\beta} v+\eta^{(h)}(\theta, r, v, f) \tag{3.5}
\end{equation*}
$$

where $R^{(h)}, \eta^{(h)} \in C^{\infty}$. The solution of (3.5) for which $r(\theta) \neq 0$ for all θ are the orbits of corresponding solutions of (3.2). Moreover, the origin is a solution of both (3.2) and (3.5). We denote by $\left(r\left(\theta, c, v_{0}, f\right), v\left(\theta, c, v_{0}, f\right)\right)$ the solution of (3.5) passing through $\left(0, c, v_{0}\right)$. When the solutions $(r(\theta), v(\theta))$ of (3.5) are known, the corresponding solutions of (3.2) can be completely determined by solving the equation

$$
\frac{d \theta}{d t}=\Theta(\theta, r(\theta), v(\theta), f)
$$

where Θ is greater than some positive number in a neighborhood of the origin in R^{n-1} and for f close to f_{0} : Every 2π-periodic solution of $(3.5)(r(\theta), v(\theta))$ represents a periodic orbit of (3.2) whose period T is given by

$$
\begin{equation*}
T=\int_{0}^{2 \pi} \frac{d \theta}{\Theta(\theta, r(\theta), v(\theta), f)} \tag{3.6}
\end{equation*}
$$

For any $\varepsilon>0$ we $\operatorname{set} P(\varepsilon)=\left\{(r, v) \in R^{n-1}, r \geqslant 0, r^{2}+\|v\|^{2}<\varepsilon^{2}\right\}$.
We now introduce for system (3.5) property (a^{\prime}) which corresponds to property (a) for system (3.2).
(a') (i) There exist a neighborhood N^{*} of f_{0} and an $\varepsilon_{1}>0$ such that for every $f \in N^{*}$ there are at most k nontrivial 2π-periodic orbits of (3.5) lying in $P\left(\varepsilon_{1}\right)$.
(ii) For each integer $j, 0 \leqslant j \leqslant k$, for each neighborhood N of $f_{0}, N \subset N^{*}$, and for each $\varepsilon_{2}>0$ there exists $f \in N$ such that (3.5) has exactly j nontrivial 2π-periodic orbits lying in $P\left(\varepsilon_{2}\right)$.
(iii) For any $\bar{\varepsilon} \in\left(0, \varepsilon_{1}\right)$ there exists a neighborhood $N_{\bar{\varepsilon}}$ of $f_{0}, N_{\bar{\varepsilon}} \subset N^{*} \operatorname{such}$ that if $f \in N_{\bar{\varepsilon}}$ and if γ is a 2π-periodic orbit of (3.5) lying in $P\left(\varepsilon_{1}\right)$ then γ lies in $P(\bar{\varepsilon})$.

The solutions of (3.5) are the representation in polar coordinates of the orbits of the solutions of (3.2). It is not clear a priori that (a^{\prime}) implies (a) because these properties involve neighborhoods of the origin in (r, v)-space and of the origin in (x, y, ζ)-space respectively while the substitution (3.4) is singular at $r=0$. Nonetheless we can prove the following proposition.

Proposition 2. - Property (a^{\prime}) implies (a).
Proof. - Without loss of generality we may assume $\varepsilon_{1}<1$. Define the mapping $\Psi:(x, y, \zeta) \rightarrow(r, v),(x, y) \neq(0,0)$, given by the substitution (3.4), that is $r=\left(x^{2}+y^{2}\right)^{\frac{1}{2}}$ and $v=\zeta /\left(x^{2}+y^{2}\right)^{\frac{1}{2}}$. Then $\Psi^{-1}\left(P\left(\varepsilon_{1}\right)\right) \subset B^{n}\left(\varepsilon_{1}\right)$ since $r^{2}+\|v\|^{2}<\varepsilon_{1}^{2}$ implies $r^{2}+\|\zeta\|^{2}=$ $=r^{2}\left(1+\|v\|^{2}\right) \leqslant r^{2}+\|v\|^{2}<\varepsilon_{1}^{2}$. Each 2π-periodic solution of (3.5) lying in $P\left(\varepsilon_{1}\right)$ corresponds in polar coordinates to the orbit of a periodic solution of (3.2) lying in $B^{n}\left(\varepsilon_{1}\right)$ whose period is included in some interval $I_{\delta_{1}}$. Let ε, δ, L and N_{0} be the con-
stants and the neighborhood of f_{0} defined in Proposition 1 and assume $\varepsilon_{1}<\varepsilon$. In view of (3.6) and the observation $\Theta\left(\theta, 0,0, f_{0}\right) \equiv 1$, we may choose δ_{1} and N^{*} such that $\delta_{1}<\delta$ and $N^{*} \subset N_{0}$. Let $a_{1}=\varepsilon_{1} /\left(1+L^{2}\right)^{\frac{1}{2}}$. If $f \in N^{*}$ and γ is any periodic orbit of (3.2)
 if $(x, y, \zeta) \in \gamma$ and $r=\left(x^{2}+y^{2}\right)^{\frac{1}{2}}$, then $(r, v)=\Psi(x, y, \zeta)$ satisfies

$$
\|r\|^{2}+r^{2}=\|\zeta\|^{2} r^{-2}+r^{2} \leqslant\left(1+L^{2}\right) r^{2}<a_{1}^{2}\left(1+L^{2}\right)<\varepsilon_{1}^{2} .
$$

Thus property (a) (i) follows from (a^{\prime}) (i).

Proof of (a) (ii). - Pick any $\bar{a}_{2}<a_{2}<\varepsilon_{1}\left(1+L^{2}\right)^{\frac{1}{2}}$ and $\widetilde{N} \subset N^{*}$ such that for every $f \in \tilde{N}$ we have: (1) the periodic orbits of (3.2) lying in $B^{n}\left(a_{2}\right)$ which correspond to the 2π-periodic orbits of (3.5) lying in $P\left(a_{2}\right)$, have period in $I_{\delta_{2}}$. This follows by using (3.6) and the fact that $\Theta\left(\theta, 0,0, f_{0}\right)=1$. (2) $f \in \tilde{N}$ implies that all the 2π periodic orbits of (3.5) lying in $P\left(\varepsilon_{1}\right)$ lie in $P\left(\bar{a}_{2}\right)$. This can be done in view of (a') (iii). In view of (a^{\prime}) (ii) pick $f \in \widetilde{N}$ such that (3.5) has exactly $j 2 \pi$-periodic orbits lying in $P\left(\bar{a}_{2}\right)$. If γ is any periodic orbit of (3.2) lying in $B^{n}\left(a_{2}\right)$ whose period is in $I_{\delta_{2}}$ then $\Psi(\gamma) \subset P\left(\varepsilon_{1}\right)$. In view of (2) $\Psi(\gamma) \subset P\left(\bar{a}_{2}\right)$. This completes the proof of (a) (ii).

Proof of (a) (iii). - Assume $\bar{a}_{1}<\bar{a}<\varepsilon_{1} /\left(1+L^{2}\right)^{\frac{1}{2}}$ and $\bar{N} \subset N^{*}$ such that conditions (1) and (2) above hold with \tilde{N} replaced by \bar{N} and δ_{2}, \bar{a}_{2} and a_{2} replaced by $\bar{\delta}, \bar{a}_{1}$, and \bar{a} respectively. If $f \in \bar{N}$ and γ is a periodic orbit of (3.2) lying in $B^{n}\left(a_{1}\right)$ with period in $I_{\delta_{1}}$, then $\Psi(\gamma) \subset P\left(\varepsilon_{1}\right)$ which implies $\Psi(\gamma) \subset P\left(\bar{a}_{1}\right)$. Then in view of (1) and (2) $\gamma \subset B^{n}\left(\bar{a}_{1}\right) \subset B^{n}(\bar{a})$ with period in $I_{\bar{\delta}}$. This completes the proof of Proposition 2.

A solution $(r(\theta), v(\theta))$ of (3.5) that exists on $[0,2 \pi]$ will be called a $(2 \pi, v)$ solution if $v(2 \pi)=v(0)$. Every 2π-periodic solution is obviously a $(2 \pi, v)$; thus in order to find the 2π-periodic solutions, we only need to inspect the set of ($2 \pi, v$) solutions. This leads us to consider the following Proposition.

Proposition 3. - There exist $\varepsilon>0$ and a neighborhood N of f_{0}, and a function $\tau \in C\left[[0, \varepsilon) \times N, R^{n-2}\right], \tau(\cdot, f) \in C^{\infty}$ and $\tau(0, f)=0$ for $f \in N$, such that for every $\left(c, v_{0}\right) \in P(\varepsilon)$ and $f \in N$ the solution of (3.5) through $\left(0, c, v_{0}\right)$ is a $(2 \pi, v)$ solution if and only if $v_{0}=\tau(c, f)$. The c-derivatives of τ are continuous in (c, f).

Proof. - As in the proof of Proposition 1 we choose $\varepsilon_{1}>0$ and a neighborhood N_{1} of f_{0} such that (i) $\operatorname{det}\left(I-e^{2 \pi A / \beta}\right) \neq 0$ for $f \in N_{1}$; and (ii) the solutions ($r\left(\theta, c, v_{0}, f\right)$, $v\left(\theta, c, v_{0}, f\right)$) of (3.5) exist and belong to $P\left(\alpha_{0}\right)$ for all ($\left.c, v_{0}\right) \in P\left(\varepsilon_{1}\right), f \in N_{1}$ and $\theta \in[0,2 \pi]$. From the second equation in (3.5) it follows that the condition $v(2 \pi, c$, $\left.v_{0}, f\right)=v_{0}$ is equivalent to the requirement that $F\left(c, v_{0}, f\right)=0$, where

$$
F\left(c, v_{0}, f\right)=\left(I-e^{2 \pi A / \beta}\right) v_{0}-\int_{0}^{2 \pi} e^{A(2 \pi-s) / \beta}\left[\eta^{(h)}\left(s, r\left(s, c, v_{0}, f\right), v\left(s, c, v_{0}, f\right), f\right)\right] d s
$$

We recognize that $F(0,0, f)=0$. Now we prove $\operatorname{det} D_{v_{0}} F\left(0,0, f_{0}\right)=\operatorname{det}\left(I-e^{2 \pi A_{0}}\right)$. To see this observe that since $D_{v} \eta^{(h)}\left(\theta, 0,0, f_{0}\right)=0$ we only need to prove that $\left(\partial r / \partial v_{0}\right)(\theta$, $\left.0,0, f_{0}\right)=0$ for $\theta \in[0,2 \pi]$. (Recall that $\eta^{(h)}$ may have linear terms in r.) Since $R^{(n)}\left(\theta, 0, v, f_{0}\right) \equiv 0$, then for any v_{0} the solution $\left(r\left(\theta, 0, v_{0}, f_{0}\right), v\left(\theta, 0, v_{0}, f_{0}\right)\right)$ of (3.5) satisfies $r\left(\theta, 0, v_{0}, f_{0}\right) \equiv 0$ for $\theta \in[0,2 \pi]$. Thus $\left(\partial r / \partial v_{0}\right)\left(\theta, 0,0, f_{0}\right)=0$ and consequently $\operatorname{det} D_{v_{0}} F\left(0,0, f_{0}\right)=\operatorname{det}\left(T-e^{2 \pi A_{0}}\right) \neq 0$. Therefore the conclusion of Proposition 3 follows from the implicit function theorem and the fact that $F(0,0, f)=0$.

Denote by $(r(\theta, c, f), v(\theta, c, f))$ the $(2 \pi, v)$ solution of (3.5) passing through $(0, c, \tau(c, f))$. Because of Proposition 3 we can write

$$
\begin{align*}
& r(\theta, c, f)=u_{1}(\theta, f) c+\ldots+u_{n}(\theta, f) c^{h}+o\left(c^{h}\right) \\
& v(\theta, c, f)=v_{1}(\theta, f) c+\ldots+v_{n-1}(\theta, f) c^{n-1}+o\left(c^{n-1}\right) \tag{3.7}
\end{align*}
$$

where $u_{1}(0, f)=1, u_{i}(0, f)=0$ for $i>1$ and

$$
\begin{equation*}
v_{i}(0, f)=v_{i}(2 \pi, f) \quad \text { for } i \geqslant 1 \tag{3.8}
\end{equation*}
$$

Consider now the displacement function relative to the $(2 \pi, v)$ solutions which is defined in a right interval of $c=0$ and in a neighborhood of f_{0} as

$$
\begin{equation*}
V(c, f)=r(2 \pi, c, f)-c \tag{3.9}
\end{equation*}
$$

Then the 2π-periodic solutions of (3.5) correspond to the zeros of $V(c, f)$.
We now prove the following result.
Proposition 4. - Assume the origin of $\left(\mathrm{S}_{h}\right)$ is either h-asymptotically stable or h-completely unstable. Then h is odd, $h>1$, and

$$
\begin{equation*}
\frac{\partial^{i} V}{\partial c^{i}}\left(0, f_{0}\right)=0, \quad i=1, \ldots, h-1 \quad \text { and } \quad \frac{\partial^{h} V}{\partial c^{h}}\left(0, f_{0}\right) \neq 0 \tag{3.10}
\end{equation*}
$$

Proof. - Substitute (3.7) into the second equation in (3.5) for $f=f_{0}$ and equate coefficients of $e^{i}, i=1, \ldots, h-1$. Since $\eta^{(h)}\left(\theta, r, 0, f_{0}\right)$ is of order $>h-1$ in r we find that $v_{i}\left(\theta, f_{0}\right) \equiv 0$ for $i=1, \ldots, h-1$. Indeed

$$
\frac{\partial v_{1}}{\partial \theta}\left(\theta, f_{0}\right)=A_{0} v_{1}\left(\theta, f_{0}\right)
$$

implying

$$
\nu_{1}\left(\theta, f_{0}\right)=\nu_{1}\left(0, f_{0}\right) e^{A_{0} \theta}
$$

Condition (3.8) and the fact that $\operatorname{det}\left(I-e^{2 \pi A_{0}}\right) \neq 0$ implies that $v_{1}\left(0, f_{0}\right)=0$ and
consequently $\nu_{1}\left(\theta, f_{0}\right) \equiv 0$. Then we have

$$
\frac{\partial v_{2}}{\partial \theta}\left(\theta, f_{0}\right)=A_{0} v_{2}\left(\theta, f_{0}\right)
$$

and as before $v_{2}\left(\theta, f_{0}\right) \equiv 0$. Continuing in this manner we obtain $v_{i}\left(\theta, f_{0}\right) \equiv 0, i=1$, $\ldots, h-1$. Thus in order to compute the functions $u_{i}\left(\theta, f_{0}\right)$ we may put $v=0$ into the first equation in (3.5) for $f=f_{0}$. We then obtain the equation

$$
\frac{\partial r}{\partial \theta}=R^{(n)}\left(\theta, r, 0, f_{0}\right)
$$

which is precisely the equation in polar coordinates of the orbits of $\left(\mathrm{S}_{h}\right)$. Since $x=y=0$ is either h-asymptotically stable or h-completely unstable for (S_{h}) we have that h is odd and

$$
u_{1}\left(\theta, f_{0}\right)=1, \quad u_{i}\left(2 \pi, f_{0}\right)=0, \quad i=2, \ldots, h-1, u_{h}\left(2 \pi, f_{0}\right) \neq 0
$$

(see [9] for more details), thus implying (3.10) holds.
Finally we have the following result concerning the roots of $V(c, f)$ for f close to fo.

Proposition 5. - Assume the origin of $\left(\mathrm{S}_{h}\right)$ is either h-asymptotically stable or h-completely unstable. Then there exist $\bar{c}>0$ and a neighborhood \bar{N} of f_{0} such that: (1) $V(c, f)$ is defined for any $c \in[0, \bar{c}]$ and $f \in \bar{N}$; (2) for every $c_{1} \in(0, \bar{c})$ there exists a neighborhood $N_{c_{1}} \subset N$ such that for $f \in N_{c_{1}}$ all the roots of $V(c, f)$ lying in $[0, \bar{c}]$ lie in $\left[0, e_{1}\right)$.

The proof of Proposition 5 utilizes Proposition 4 in order to show that for $\bar{c}>0$ sufficiently small and $c \in[0, \bar{c}]$ we have $\left|V\left(c, f_{0}\right)\right| \geqslant \mu c^{h}$, for an appropriate constant $\mu>0$. The continuity of $V(c, f)$ in c and $f=f_{0}$ allows us to conclude that for every $c_{1} \in[0, \bar{c}]$ there exists $N_{e_{1}} \subset N$, such that, for $f \in N_{c_{1}},|V(c, f)| \geqslant \frac{1}{2} \mu c_{1}^{h}$, for $e \in\left[c_{1}, \bar{c}\right]$. We leave the details to the reader.

4. - Proof of Theorem 1.

If in the transformation (3.4) we assume $r<0$ instead of $r>0$ we obtain a new displacement function $\tilde{V}(c, f)$ defined for $c<0$. We will extend the domain of V by setting $V(c, f)=\tilde{V}(c, f)$ for $c<0$. It is easy to recognize that this extended function is continuous and, for fixed f, is C^{∞} in c. In addition we observe that for any nonzero 2π-periodic solution of (3.5) there exist $c_{1}>0, c_{2}<0$ such that $V\left(c_{1}, f\right)=$ $=V\left(c_{2}, f\right)=0$.

Assume case (I). We shall prove property (a^{\prime}) holds and in view of Proposition 3 the proof of the first part of Theorem 1 will be complete.

Proof of Property (a^{\prime}) (i). - Since the origin is a solution of (3.5) for any f, an application of Rolle's Theorem, in view of (3.10), implies that there exist an $\varepsilon_{1}>0$ and a neighborhood N^{*} of f_{0} such that for any $f \in N^{*}, V(c, f)$ has at most $h-1$ nonzero roots counting multiplicity in $\left[-\varepsilon_{1}, \varepsilon_{1}\right]$. For each positive root of $V(c, f)$ there is a negative root of $V(c, f)$ corresponding to the same periodic orbit, thus there are at most $k=(h-1) / 2$ nontrivial 2π-periodic solutions of (3.5) lying in $P\left(\varepsilon_{1}\right)$ for $f \in N^{*}$. Thus property (a^{\prime}) (i) holds.

Proof of Property (a^{\prime}) (ii). - We essentially adapt to our problem a procedure used in [1]. Suppose the origin of $\left(\mathrm{S}_{h}\right)$ is h-asymptotically stable (the case in which the origin of $\left(\mathrm{S}_{h}\right)$ is h-completely unstable has a similar proof). Consider a perturbed system of (3.1) of the form

$$
\begin{align*}
& \dot{x}=-y+X_{0}^{(h)}(x, y, \zeta)+\sum_{i=1}^{j} a_{i} x\left(x^{2}+y^{2}\right)^{k-i} \\
& \dot{y}=x+X_{0}^{(h)}(x, y, \zeta)+\sum_{i=1}^{j} a_{i} y\left(x^{2}+y^{2}\right)^{k-i} \tag{4.1}\\
& \dot{\zeta}=A_{0} \zeta+W_{0}^{(h)}(x, y, \zeta)
\end{align*}
$$

where $k=(h-1) / 2, j$ is any integer, $1 \leqslant j \leqslant k$, and a_{i} are constants to be determined (the case $j=0$ follows by letting $f=f_{0}$).

We will denote by $V\left(c, a_{1}, \ldots, a_{j}\right)$ the displacement function relative to the ($2 \pi, v$) solutions of (3.5) which correspond to (4.1). We will denote by $S\left(a_{1}, \ldots, a_{i}\right)$ the first two equations in (4.1) for $\zeta=0$. Since the origin is h-asymptotically stable for $S(0, \ldots, 0)$, then from Proposition 4

$$
V(c, 0, \ldots, 0)=g_{0} 0^{h}+o\left(c^{h}\right), \quad g_{0}<0
$$

Thus for $e_{0}>0$ and sufficiently small we have $V\left(c_{0}, 0, \ldots, 0\right)<0$. There exists an $\eta_{1}>0$ such that $V\left(c_{0}, a_{1}, \ldots, a_{j}\right)<0$ for $\left|a_{i}\right|<\eta_{1}, i=1, \ldots, j$. Fix now $a_{1}, 0<a_{1}<\eta_{1}$: Then

$$
V\left(c, a_{1}, 0, \ldots, 0\right)=g_{1} e^{h-2}+o\left(e^{h-2}\right)
$$

where $g_{1}=2 \pi a_{1}>0$. This can be recognized by replacing the expression for r from (3.7) in the equation (in polar coordinates) of orbits of $S\left(a_{1}, 0, \ldots, 0\right)$ and taking into account that $u_{i}(2 \pi, f)=0, i=1, \ldots, h-3$ (see [9] for more details). There exists $c_{1}, 0<c_{1}<c_{0}$ such that $V\left(c_{1}, a_{1}, 0, \ldots, 0\right)>0$ and thus we can find $\eta_{2}>0$, $\eta_{2}<\eta_{1}$, such that for $\left|a_{i}\right|<\eta_{2}, i=2, \ldots, j, V\left(c_{1}, a_{1}, a_{2}, \ldots, a_{j}\right)>0$. Fix now $a_{2}<0$, $\left|a_{2}\right|<\eta_{2}$. Then

$$
V\left(c, a_{1}, a_{2}, 0, \ldots, 0\right)=g_{2} c^{h-4}+o\left(c^{h-4}\right)
$$

where $g_{2}=2 \pi a_{2}<0$. Then there exists $c_{2}, 0<c_{2}<c_{1}$ such that $V\left(c_{2}, a_{1}, a_{2}, 0, \ldots, 0\right)<0$ and thus we can find $\eta_{3}, 0<\eta_{3}<\eta_{2}$, such that for $\left|a_{i}\right|<\eta_{3}, i=3, \ldots, j, V\left(c_{2}, a_{1}, \ldots, a_{j}\right)<$ <0. Continuing this process we can find a set of numbers $\bar{c}_{1}, \bar{c}_{2}, \ldots, \bar{c}_{j}, c_{i}<\bar{c}_{i}<c_{i-1}$, $i=1, \ldots, j$ (and thus $\bar{c}_{i+1}<\bar{c}_{i}, i=1, \ldots, j-1$) such that $V\left(\bar{c}_{i}, a_{1}, \ldots, a_{j}\right)=0, i=$ $=1, \ldots, j$. Since $c=0$ is a root of $V\left(c, a_{1}, \ldots, a_{j}\right)=0$ of order $h-2 j$ (recall $\left.u_{i}(2 \pi, f)=0, i=1, \ldots, h-2 j-1\right)$ and for each positive root of $V\left(c, a_{1}, \ldots, a_{j}\right)$ we have a negative root, then we immediately have that the $\bar{c}_{j}, i=1, \ldots, j$, are the only positive roots of $V\left(c, a_{1}, \ldots, a_{j}\right)$. Moreover we can obtain that the \bar{c}_{i} can be made close to $c=0$ by picking c_{0} sufficiently small. This completes the proof of (a^{\prime}) (ii). The proof of (a^{\prime}) (iii) is an immediate consequence of Proposition 5.

Thus property (a^{\prime}) holds and so the first part of Theorem 1 is proved.
We now show Case II follows from Case I.
For any positive integer j we assume in (3.1) $h=2 j+1$ and consider the following system

$$
\begin{align*}
\dot{x} & =-y+X_{0}^{(h)}(x, y, \zeta)+b x\left(x^{2}+y^{2}\right)^{(h-1) / 2} \\
\dot{y} & =x+Y_{0}^{(h)}(x, y, \zeta)+b y\left(x^{2}+y^{2}\right)^{(h-1) / 2} \tag{4.2}\\
\dot{\zeta} & =A_{0} \zeta+W_{0}^{(h)}(x, y, \zeta)
\end{align*}
$$

where b is a constant. We then have that for the corresponding reduced system $\left(\mathbb{S}_{h}\right)$ the origin is either h-asymptotically stable or h-completely unstable if $b<0$ or $b>0$ respectively. Thus we have reduced the problem to Case I. Since j and b are arbitrary, property (A) holds, thus concluding the proof of Theorem 1.

5. - Proof of Corollaries.

The proof of Corollary 1 follows from (2.7) and Theorem 1 by observing that there is an equivalence between the h-asymptotic stability (h-complete instability) of the origin of (3.1) on H_{h} and the h-asymptotic stability (h-complete instability) of the origin of $\left(\mathrm{S}_{h}\right)$.

Proof of Corollary 2. - We observe that the origin of the system (2.1) is h-asymptotically stable if and only if the origin of $\left(\mathrm{S}_{h}\right)$ is h-asymptotically stable. Indeed if the origin of (S_{h}) is h-asymptotically stable, there exist a constant $G<0$ and a polynomial

$$
F(x, y, \zeta)=x^{2}+y^{2}+F_{3}(x, y, \zeta)+\ldots+F_{h}(x, y, \zeta)
$$

(F_{i} is a homogeneous polynomial of degree i) such that the derivative of F along
the solutions of (3.1) can be written as

$$
\dot{F}(x, y, \zeta)=G\left(x^{2}+y^{2}\right)^{(n+1) / 2}+o\left(x^{2}+y^{2}+\|\zeta\|^{2}\right)^{(n+1) / 2} .
$$

Moreover there exists a positive definite quadratic form in $\zeta, Q(\zeta)$, such that along the solutions of system (3.1)

$$
\dot{Q}(x, y, \zeta)=-\|\zeta\|^{2}+\chi_{1}(x, y, \zeta)+\chi_{2}(x, y, \zeta)
$$

where χ_{1} is of order $\geqslant 3$ and of order $\geqslant 2$ in ζ; and χ_{2} is of order $>h+1$. (See Liapunov [7], for a detailed analysis of the above statements). Setting $\eta=F+Q$ we have that along the solutions of system (3.1), for x, y, ζ small,

$$
\begin{aligned}
& \dot{\eta}(x, y, \zeta)=-\|\zeta\|^{2}+G\left(x^{2}+y^{2}\right)^{(n+1) / 2}+\chi_{1}(x, y, \zeta)+\sigma(x, y, \zeta) \\
& \leqslant-\frac{\|\zeta\|^{2}}{2}+G\left(x^{2}+y^{2}\right)^{(n+1) / 2}+\sigma(x, y, \zeta)
\end{aligned}
$$

where σ is of order $>h+1$ and includes $\chi_{2}(x, y, \zeta)$.
Then η is positive definite and its derivative along solutions of (3.1) is negative definite. This proves that the origin of (3.1) is asymptotically stable. Hence the origin of (2.1) is asymptotically stable too. This property holds if we perturb (2.1) with terms of order greater than h. On the other hand this property will not hold by appropriately choosing perturbations of order $\leqslant h$. Thus the origin of (2.1) is h-asymptotically stable.

Using similar arguments we can show that if the origin of (2.1) is h-asymptotically stable then the origin of $\left(\mathrm{S}_{h}\right)$ is h-asymptotically stable.

Analogously we can prove the origin of (2.1) is h-unstable if and only if the origin of $\left(\mathrm{S}_{h}\right)$ is h-completely unstable. In view of Corollary 1 this completes the proof of Corollary 2.

BIBLIOGRAPHY

[1] A. Andronov - E. Leontovich - I. Gordon - A. Maier, Theory of bifurcations of dynamical systems in the plane, Israel Program of Scientific Translations, Jerusalem (1971).
[2] S. Bernfeld - L. Salvadori, Generalized Hopf bifurcation and h-asymptotic stability, J. Nonlinear Analysis, T.M.A., 4 (1980), pp. 109-1107.
[3] S. Bernfeld - P. Negrini - L. Salvadori, Stability and generalized Hopi bifurcation through a reduction principle, Proceedings of the Conference «Nonlinear Differential Equations: Invariance, Stability and Bifurcation", Trento, May 25-30, 1980, Academic Press (to appear),

S. R. Bernfeld - P. Negrini - L. Salvadori: Quasi-invariant manitolds, etc. 119

[4] Y. Bibinov, Local theory of nonlinear analytic ordinary differential equations, Lecture Notes in Mathematics 702, Springer-Verlag, New York, 1979.
[5] N. Chafee, Generalized Hopf bifurcation and perturbation in a full neighborhood of a given vector field, Indiana Univ. Math. J., 27 (1978), pp. 173-194.
[6]. J. K. HALE, Topics in dynamic bifurcation theory, NSF-CBMS Conference, Arlington, Texas, June 16-20, 1980.
[7] A. M. Liapunov, Problème général de la stabilité du mouvement; Ann. of Math. Studies, 17, Princeton University Press, New Jersey, 1947.
[8] G. Marsden - M. McCracken, The Hopf bifurcation and its applications, Notes in Applied Math. Sci. 19, New York, Springer-Verlag, 1976.
[9] P. Negrini - L. Salvadori, Attractivity and Hopf bifurcation, J. Nonlinear Anal. T.m.A., 3 (1979), pp. 87-100.
[10] G. Sansone - R. Conti, Nonlinear Differential Equations, MacMillan, New York, 1964.

