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VASILE I. ISTI~J~TESCU 

S u m m a r y .  - In  this paper we consider several classes o/mappings related to the class o/ con- 
traction mappings by introducing a convexity condition with respect to the iterates o/ the 
mappings. Several ]ixed point theorems are proved/or such mappings. ~urther, in a similar 
way we consider a related class of mappings satis/ying a convexity condition with respect to 
diameters of bounded sets. I n  the last part we consider classes o/ mappings on PM-spaces 
(probabilistie metric spaces o] K.  Menger) and some ]ixed point theorems are given/or such 
classes. 

O. - I n t r o d u c t i o n .  

Let  X be a complete metric space with the metric d. I a  the recent years a great 
number of papers present generalizations of the well known Banach-1)icard contrac- 
t ion principle. Some of these generalizations refer to results containing the Schaader 
fixed point theorem. The purpose of the present paper is to consider a generaliza- 
tion of the contraction principle by introducing a (( convexity ~) condition concerning 
the iterates of the mapping. We think tha t  this condition may  be adapted for other 
classes of mappings to obtain some extensions of known fixed point results. 

1.  - C o n v e x  c o n t r a c t i o n  m a p p i n g s  o f  o r d e r  2 .  

Let X be a complete metric space with the metric d. 

DEFII~ITION 1.1. - -  A continuous mapping /: X - +  X is said to be a convex con- 
tract ion of order 2 if there exist a, b ia (0, 1) such tha t  for all x, y in X, 

d(/2(x), p(y)) =< ad(/(x),/(y)) + bd(x, y) 

~nd where a + b < 1. 

I t  is obviously tha t  this class of mappings contains the class of contraction 
mappings. Concerning the fixed points of mappings which are convex contraction 
of order 2 we can prove the following. 

THEOICE~ 1.2. - A n y  convex contraction mapp ing  of order 2 has a ]ixed poin t  
which is q~ni'que. 

(*) Entrata in Redazione il 9 luglio 1981. 
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PlCOOF. - Since t he  un iqueness  is t r iv i a l  we p r o v e  on ly  t he  exis tence.  

L e t  xo be  an  a r b i t r a r y  b u t  f ixed po in t  in X and  consider  t h e  o rb i t  of x0 unde r  ], 

i.e., t h e  set  (]~(Xo)):, ]~ -= Xo. Set  

and  thus  for  a n y  m, 

k = m a x  (d(Xo, i(Xo)), 

d(Z''+~(Xo),/2"'(Xo)) =< ,~d(/~n'(Xo), P"-~(Xo)) 2:- 5d(f~"~-~(Xo), l~(~ �9 

This  impl ies  t h e  ~ollowing re la t ions :  

d(p(Xo), i~(Xo)) =< ~(/-'(Xo),/(Xo)) 2:- 5d(/(Xo), xo) =< k(~ 2:- b), 

d(]4(xo), P(xo)) g ad(p(xo), P(xo)) 2:- bd(p(xo), ](xo)) <= (ak(a 2:- b) 2:- bk = I~(a 2:- b)) , 

d(p(Xo), t~(xo)) =< aa(P(Xo),/~(Xo)) 2:- ba(f~(Xo), l~(Xo)) =< 
=< ak(a 2:- b) 2:- bk(a 2:- b) = k(a 2:- b)~. 

�9 * * * * * * * * * * * * * * * * * * * * * *  . . . . . . . . . . . .  | 1 7 6  

A n  inducLion a r g u m e n t  shows t h a t  

d(/~,~+l(Xo),/~'~(Xo)) < k(a 2:- b)o~. 

Since 

d(/2"'-~(Xo), ]~'~(Xo)) ~ ad(]~('~-~')(Xo), ]2"~-~(Xo)) 2:- bd(/2~-3(xo), f~('~-l)(Xo)) 

we get  t h a t  

d(/~,~-l(Xo), i~,.(Xo)) <= k(~ 2:- b) ~ �9 

~7ow since for  m < n, 

d(/,,~(xo),/,,(Xo)) =< d(S~(Xo), ?,~+l(Xo)) 2:- ... 2:- d(/~-~(Xo), tn(Xo)) 

f r o m  t h e  a b o v e  e s t i m a t e s  we o b t a i n  t h a t  (]"(x0)) is a Cauchy  sequence  in X.  Indeed ,  

if m--~ 21 t h e n  

d(/n(Xo), fn(Xo) ) g ]~(a 2:- b) 1 2:- ~(Ob 2:- b) 1 2:- k((~ 2:- b) 1+1 2:- k ( a  2:- b) 1+1 2:- ...  g 

<= 2k(a 2:- b) ~'1/(1 - -  a - -  b) 

and  a s imi lar  e s t i m a t e  holds  if m = 21 2:- 1. Since a 2:- b is in (0, 1) we o b t a i n  t h a t  
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(]'(xo)) is a Cauchy sequence in X. Let  x*----lira ]~(Xo). Since ](x*)~-lira ]"+~(Xo) 
we get  t h a t  x*---- ](x*). 

We give now an  example  to show tha t  there  exist  mappings  which are convex 

contract ions of order 2 and  are not  contractions.  

EXAMPLE 1.3. -- Le t  X = [0, 1] with the  usual me t r i c  and define ]: X - + X  by  
the  relat ion 

](x) = ( x ~ +  �89 

and it  is obviously t h a t  this is continuous and not  a contraction.  
I f  x, y are a rb i t r a ry  in X we have~ 

]~(x)--]~(y) -= (x~+y:) /4(] (x) - - / (y ) )  § 1/8(x §  

and thus  ] is a convex contract ion of order 2. 

We  consider now a more  general class of mappings.  

DEFI~ImlO~ 1.4. - Le t  X be a complete metr ic  space with  the  metr ic  d. A con- 

t inuous mapp ing  ]: X -> X is said to be  convex contract ion of order n if there  exists  
the  posit ive constants  ao~ ...~ a,~_z in (0~ 1) such t h a t  the  following conditions hold:  

1) n o §  ... § a~_l<  1; 

2) for all x, y in X, 

d(]~(x), /.(y)) <= C~od(X, y) + aid(/(x),/(y)) + . . .  + a._ld(/.-l(x), 1~-~(y)) . 

The theorem 1.2 m a y  be extended to this class of mappings  and since the  proof  
is essentially the  same as for theorem 1.2, we ment ion  it only. 

TIzEOI~E)~ 1.5. - I] ]: X - +  X is a convex contraction o] order n then there exists a 
/ixed point o] ] and this is ~tnique. 

As is well known some results about  contract ion mappings  were extended to 

larger classes of continuous mappings ,  among t h e m  we ment ion  the  class of contrac- 

t ive mappings.  For  the  reader convenience, we recall the  definition of this class 

of mappings .  The m app i ng  S: X -~ X is said to be  contract ive  if for all x, y in X, 
x r y, d(Sx, Sy) < d(x, y). 

~u consider now the  corresponding class of mappings  suggested b y  the  class 
of convex contract ion mappJings of order 2. 

DEt~I2<ITIO~ 1.6. - A continuous mapping  ]: X--> X is said to be convex contrac- 
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t i r e  of order 2 if there  exists the  constants  a0 and a~ in (0, 1) such t h a t  the following 

conditions hold: 

1) a o ~  a ~ =  1; 

2) d(/~(x), /2(y)) < aod(x, y) ~- ald(/(x), /(y)) 

for all x, y in X. 
A well known result of V. V. Nn~u [10] says tha t  if / is a contract ive map- 

ping defined on a compact  metr ic  space X then  / has fixed points in X. The fol- 
lowing result  is an extension of ~emyt sk i ' s  result. 

T~E0~E~f 1.7. - i]  /: X---> X is a convex contractive mapping o/ order 2 and X 
is a compact metric space then there exists a unique point x* in X such that/(x*) ~ x*. 

PnooF.  - Le t  x0 be an ~rbi t rary point  in X and consider the orbit  of xo u n d e r / ,  
X co i . e ,  the  sequence ( . )o,  x.+~ = / ( x , ) ,  n = 0, 1, 2, .... Since the  space X is compact  

there  exists a subsequenee (nj) such tha t  for some point  x* in X,  

x* = lira/"~(xo) �9 

The cont inui ty  of / implies tha t  the following relations hold: 

/(x*) -~ lira/%+1(Xo) , 

/2(x*) = lira/'*+~(x0), 

/a(x*) = lim/%+3(Xo). 

Le t  us consider the  funct ion defined on X by  the formula 

<x)  = (d(x, S(x)), d(S(x), S~ 

which is clear a continuous function. Since / is convex contract ive of order 2 we 

obtain t ha t  u is nonincreasing with respect to /, i.e., 

u(/(x)) =< u(x). 

Now the  cont inui ty  of u and the  above formulas for x*,/(x*),  p(x*) and /a(x*) 
imply tha t  u(x*) ----- u(/2(x*)) : u(p(x*)). Now if u(x*) is strictly positive then  the 

p roper ty  of / to be convex contract ive mapping of order 2 implies tha t  

u(x*)  = uU (x*) ) < n(x*)  . 

This is a contradict ion and thus u(x*) = 0 and x* is a fixed point  for /. I t  is 

obviously t ha t  x* is the unique fixed point  of /. 
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I n  a similar way we can prove the  following result which extends a result  of 
EDELSTEIN [2] : 

TttEOREI~ 1.8. -- Let ]: X--> X be a convex contractive mapping el order 2 and 
suppose that any orbit (]'(x)), x ~ X,  has a limit point ~. Then ~ is the unique fixed 
point el ]. 

We consider now a class of mappings suggested by  the class of convex contrac- 
t ion mappings and some localization conditions. 

DEFI~XTION 1.9. - A  continuous mapping ]: X-->X is called locally convex 
contract ion of infinite order if there  exists a sequence of positive numbers  (a~)~ in 
(0, 1), % §  a ~ §  a ~ §  ... < 1, and for each x e X  there  exists an integer n -= n(x) 
such tha t  for all y E X,  

d(l.(x), in(y)) < aod(X, y) + a d(i(x), i(Y)) § ... + i .-l(y)) . 

REMARK 1.10. -- I f  al---- a i + l =  0, i ---- 1, 2, 3, ..., then  th i s  class coincides with 
the class considered by  SE~GAL [12]. 

An easy modification of the proof in the SE~GAL paper  [12] gives us th6 fol- 
lowing result :  

T~:E0~EM 1.11. -- I] ]: X -+  X is a locally convex contraction el in]inite order then 
there exists a unique point x* in X such that ](x*) -~ x*. 

2. - Two-s ided  c o n v e x  contract ion  mappings .  

We consider now another  class of mappings suggested by  the class of mappings 
satisfying the following condition: the  mapping S is defined on a complete metric 
space X and for some a, b in (0, 1) the following conditions are satisfied: 

1) a §  

2) for all x , y  in X, 

d(Sx, Sy) ~ ad(x, 8x) + bd(y, 8y) 

holds. We note  tha t  there  exist a number  of papers in which results about  this 
class of mappings are presented. 

Our class is considered in the  following definition. 

DEFINITION 2.1. - A continuous mapping ]: X - > X ,  defined on a complete 
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metric  space X is ,said to be a two-sided convex contract ion mapping if there exist 
a~, as, b~, b~ in (0, 1) such tha t  the  following inequalities hold: 

2) d(]2(x), ]2(y)) <= a~d(x,/(x)) 4- a:d(](x), ]2(x)) 4- O,d(y, ](y)) 4- b~d(/(y), ]2(y)) 
holds for all x :~ y in X. 

A related class of mappings is considered in the  following definition. 

DEFI_~I~IO_~ 2.2. - A continuous mapping f: X --> X is said to be of convex type  2 
if there  exist the positive numbers  Co, el, a~, a2, b~, b~ such tha t  the  following ine- 
qual i ty holds: 

d(/2(x), ]~(y)) : cod(x, y) + c~d(/(x), f(y)) 4- ald(x, /(x)) 4- a~d(](x), /2(y)) 4- 

+ b~d(V,/(V)) 4- b~d(/(V),/~(y)) 

for all x v ~ y  in X ( c o + c ~ + a ~ + a ~ + b ~ + b 2 < l ) .  
I t  is clear t ha t  the  class of mappings considered in the  Definition 2.2 is larger 

t han  the classes oi mappings considered in the  Definitions 1.1 and 2.1. 
Concerning the problem of fixed points for mappings considered in the Defini- 

t ion 2.1 we have  the  following result. 

Tm~o~n~, 2.3. - Hor any two-sided convex contraction mapping there exists a unique 
]ixed point. 

PgooF.  - Le~ Xo be an a rb i t ra ry  point  in X and consider the orbit  of xo under ]. 

Set 

k ---- max  (d(xo,/(Xo)), d(](Xo), P(xo))) 

and then we get 

~(t3(xo), lS(xo)) <= a~d(xo, l(Xo)) + a,d(l(x~ 1~(Xo)) + blg(l~(~o), /(xo)) + b~(i:(Xo), l~(xo)) 

and thus 

d(/~(x0), p(xo)) <= (a~ + b~ + a~)/(1- b~)k . 

Similarly we obtain ~he fo]lowing relation, 

d(/3(Xo), ]'(xo)) =< (al + a~ + bl)/(1 --  b~) 

and an induction argument  shows tha t  for all m~ 

d(l,~(x,), ?~+l(Xo)) =< ((a~ + a.. + b,)]0 -- b~))~-~k. 
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From these estimates we obtain tha t  (]~(Xo)) is a Cauchy sequence. 
Then it is clear tha t  x*--: lim]~(Xo) is a fixed point for ] and clear is the 

unique point with this property. 
In  a similar way we can prove the following result about the fixed points for 

the mappings considered in the Definition 2.2. 

T~EO~E~ 2.4. - I] /: X--> X is a mapping o/ convex type 2 then there exists a 
unique ]ixed point o/ ]. 

We note tha t  we can consider a class of mappings related to the class of genera- 
lized contractions. For the reader convenience, we recall tha t  a mapping ]: X - ~  X 
defined on a metric space X is said to be generalized contraction if there exists a 
function ~ on X with walues in [0, 1) such tha t  for all x, y in X t h e  following 
inequality holds : 

,~(/(x), /(y)) <= ~(x)d(x, y) . 

The class we consider is i[ntroduced as follows. 

DEFINITION 2 . 5 .  - A continuous mapping ]: X - - > X  is called of generalized 
convex type  2 if there exist the positive functions on X,  Co(,), c~(,), a~(,), as(,), bl(,), 
b2(,) such tha t  the following inequalities hold: 

]) co(x) § el(x) § a~(x) + as(x) § b~(x) § b~(x) < 1; 

2) d(]~(x), ]2(y)) <= Co(X)d(x, y) ~- b,(x)d(](x), ](y)) -[- al(x)d(x, ](x)) + 
-~ a~(x)d(/(x), ]~(x)) + b~(x)d(y, ](y)) -~ b~(x)d(/(y), ]2(y)). 

I t  is clear tha t  for some appropriate functions e~, a~ b~, the class of mappings 
considered in the Definition 2.5 reduces to the mappings considered above. 

We close this section with some remarks about a result in [14] about the fixed 
points of certain self maps of an interval. 

First  we note tha t  the arguments in the proof of Theorem 1 in [14] gives also 
the following result. 

T~EO~E~r 2.6. - Let ]: [a, b] -~ [a, b] with the Property that a, b are in ]([a, b]). 
Suppose that ]or some positive r, s, r ~- s = 1 the ]olIowing inequality hold: 

[/(x) -- ](y)[ ~ r[x--  ](x)l + sly -- ](Y)[ . 

Then the midpoint o] [a, b] is a ]ixed point o/ ]. 

Also, the same arguments (essentially the use of the fact tha t  [a, b] is a convex, 
closed and bounded subset in an uniformly convex space) permits us to give the 
following result. 
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Tm~o~E~ 2.7. - Let C be a closed, convex and bounded subset in an uniformly 
convex Banaeh space X .  Suppose that ]: C--> ~ is a continuous mapping satisfying 
the following conditions: 

t )  r some r, s in [0, 1), r -Jv s = 1, /if(x) --  ](Y)ll ~ rlt x -  ](x)t[ -~ silY --  ](Y)II, 
% y in C; 

2) ](r 

Then ] has a fixed point in C. 

We note  t ha t  it  is not  diflictflt to  see t h a t  any point  o~ C which is the midpoint  
of a diametral  segment of C (we call a segment Ix, y] x, y in C diametral  if I l x -  Y]I ~- 
~-- diam (C)) is a fixed point  of ]. 

3. - Fixed point theorems for mapping with convex diminishing diameters. 

Let  X be a complete metr ic  space with the  metric d. For  any subset 21/ of X 

we consider the  diameter  d(M) defined as sup (d(x, y), x, y e M) and we say tha t  a 
set in X is bounded if its diameter  is finite. 

I f  /:  X --> X is a contract ion mapping then  i t  is obvious t h a t  for any bounded 
set M in X ,  d(f(M)) ~ kd(M) where k is the  contract ion constant  of / (i.e., d(f(x) 
](y)) ____ kd( , y)). 

We consider now a class of mappings suggested by  the  class of convex contrac- 
t ion mappings of order n as well as of the  class of mappings satisfying the above 

inequal i ty  with respect to diameters.  

DEFINITION 3.1. - A mapping ]: X--> X is said to be with locally convex 
diminishing diameters of infinite order if there  exists a sequence of positive num- 
bers (a,)~, ~ a ~  1, and for each bounded  set M in X there  exists an integer 

n ~ - n ( M )  such t ha t  the  following inequal i ty  holds: 

< aod( ) § + ... + 

I f  a l =  a , + l =  0, i = 0, 1, 2, ..., then  we say tha t  f is with locally power diminish- 

ing diameters.  

LE~vi~t 3.2. - If g, T:  X--> X is a continuous mapping satisfying the proper ty  

tha t  there  exists k e [0, 1) and for each x e X there  exists an integer n --~ n(x) with 
the  proper ty  tha t  for all y e X ,  d(/~(x), ]~*(y)) <= kd(x, y) then  f is with locally power 

diminishing diameters.  
We remark that the mappings with the property stated im the Lemmu 3.2 

were considered in Sehgal 's paper  [12]. 



VASILE i .  ISTI~-TESCU: Some ]ixed point theorems ]or eonvex~ etc. ! 97 

P~ooF.  - Le t  us consider ~n integer m such tha t  2. k ~ < 1. I f  M is a bounded  

set in X then  pick ~ point  x in M and consider the  following sequence of integers:  

n~ = n ( x ) ,  x~ = / " ( x ) ,  n~ = n ( x 0 ,  x~ = F ' (x~ ) ,  . . . ,  

n~  = n ( x ~ _ : ) ,  x~+~ = l~'~ . . . .  

Now if y, z are a rb i t r a ry  points in M we have~ 

d(y...+',o(~),/~,+...+"-,(z)) =< d(/o,+...+"o(x),/-,+...+-o(y)) § 

§ d(/-,+...+~o,(x), y-..+",o(z)) =< kd(/"'+'''+ ..... (x),/~'+'"+ ..... (y)) § 

§ kd(] ~'+'''+ . . . .  (x), 1~:+"'+ . . . .  (z)) ~ ... <= k~d(x, y) § k'=d(x, z) <= 2 .k~d(M)  

and the  assert ion of the  L e m m a  is proved.  
For  the  fixed point  theorem which follows we suppose t h a t  the metr ic  sp~ce X 

is bounded.  

TI:EO~Ea 3.3. - Let f: X --> X be a mapping with locally power diminishing diame- 
ters. Then there exists a unique point x* in X such that f(x*) = x*. 

PnooF.  - Since the  uniqueness is obvious we prove  only the  existence. To this 

end we consider the  following sequence of sets: 

2; ?_ i ( x )  ?- ]2(x)  ~ ... ?- ] , ( x )  D ] ,+:(x)  ?_ ... 

and we r em ark  t ha t  l im d ( / ~ ( X ) ) :  O. This clear implies t ha t  lira d(]~(X))-~ O. 
Indeed~ we consider the  sequence of sets: 

x :  = ]"~(x), .~ = n (x ) ,  n~ = n(x : ) ,  x2 = ]("~x:), ... 

and we get immedia te ly  t h a t  

d ( x , )  <= k~d(X) . 

Thus lira d(X~)-~ 0 and this implies obviously t ha t  l im d ( ] " ( X ) ) =  O. 
In  this case b y  the  Cantor 's  theorem we get t ha t  (~ ] ' (X)  ~- (x*). 
We note  also t h a t  f rom this relation we have  t h a t  for any  x G X,  l im/~(x) exists 

and is x*. Of course if ] is supposed to be continuous then  x* is a fixed point  of /. 
I n  the  general  ease we consider the  set 

(~ = (x*,  / ( x* ) ,  /2(x*) ,  . . .)  

7 - . A n n a [ i  d i  M a l e m a t i c a  
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and f rom the above result  G is closed. Obviously G is invar ian t  for ] and  the  image 
of O th rough  ] is exac t ly  G. Now if G contains more  t h a n  one point  we obta in  a 
contradic t ion since ] is wi th  locally power  diminishing diameters .  

Thus G = (x*) and this is the  unique fixed point  for ]. 

We  p rove  now a fixed point  theorem re la ted  to  N e m y t s k i ' s  result.  

T~EORE~'[ 3.4. - Let X be a compact metric space with the metric d. Suppose that 
]: X--~ X is a continuous mapping such that ]or any invariant set M in X ,  M with 
the property that d(M) =/= O, d(](M)) < d(M). Then ] has a ]ixed point in X .  

Pl~oos. - We  consider the  fami ly  3 7 of all closed subset  of X which are invar ian t  

~mder ]. We  define a par t ia l  order on this family  by  the  inclusion. I t  is easy to see 

t h a t  with this order we can app ly  the  Zorn 's  Lemma .  Thus we can consider a set F 

which is a min imal  e lement  and  we show t h a t  /~ reduces to a point .  Suppose t h a t  
this is not  so and we consider t h a t  sequence of closed sets (]%/~)) and  we r emark  

t ha t  it is decreasing. Set MF = (3 ]~(/;). Then  MF is nonempty ,  invar ian t  under  ] 

and of course M~_c ~ .  I f  F is not  equal  to  MF then  this  contradicts  the  definition 

of xv. Thus we n m s t  have  F =  M~. 
I f  d(/~) :/: 0 then  d(](t')) < d(/~) and  then  ](_~) is a closed subset  of X which is 

invar ian t  under  / and smaller t h a n  /~. This is a contradict ion with  the  definition 

of /~. Thus d(/~) = 0 and  the  theorem is proved.  

COIr165 3.5. -- Let X be as above and ]: X---> X be a continuous mapping such 
that ]or some integer m, and /or  each subset of X with the diameter nonzero~ d(/, '(M)) < 
< d(M). Then ] has a unique ]ixed point in X .  

4. - Convex contraction mappings in generalized metric spaces. 

Firs t  we recall the  not ion of generalized metr ic  space. We  consider for this the  

extended real line which consists of all points  of the real line and  two points  denoted 

b y  - - c o  and  00 with the  usual  order relat ion - -  c~ _< x <_ oo. 

DEFINITION 4.1. -- A funct ion d: X •  ~ R  e (the ex tended  real line) where X 

is an abs t rac t  set, is called a general ized metr ic  if the  following propert ies  hold: 

I )  d(x, y) = d(y, x); 

2) d(x, y ) - =  0 if and  only if x = y; 

3) d(x, z) ~ d(x, y) .5 d(y, z) (if d(x, y) = oo or d(y, z) = r t hen  we consider 

d(x, y) -5 d(y, z) = oo), 

hold for all x, y, z in X. 
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A set X with a generulized metric is called, af ter  Luxemburg,  a generaliz'ed 
metric space. Of course we can define in this setting all notions known in the  

theory  of metr ic  spaces. 
The following result presents a fixed point  theorem for a class of mappings on 

generalized complete metric spaces. 

T~Eolr  4.2. - .Let (X, d) be a complete generalized metric space and ]: X - + X  
be a mapping satis]ying the ]ollowing properties: 

1) d(p(x), ]~(y)) <= ad(x, y) q- bd(](x),/(y)), a q- b < 1, x, y in X;  

2) /or any point x ~ X there exists an integer n such that d(]"(x), ]"+~(x)) and 
d(fl*+~(x), ]~*+~(x)) are less that c~; 

3) /~ ](x) : x, ](y) -~ y then d(x, y) < ~ .  

Then there exists a unique point x*e  X such that x * =  f(x*). 

P~ooF. - Let  Xo be an arbi t rary  point  in X and consider the orbit  of xo under  ]. 
Then  the proper ty  2 assures the existence of an integer n such tha t  d(/"(xo), 
]*+~(Xo)) < c~, d(]~+~(xo), ]~+~(xo)) < oo. Then according to the proper ty  1 we get t ha t  

d(f~+~(Xo), ]~+~(xo)) = ad(]~'(Xo), ]~+~(xo)) q- bd(]~'+~(Xo), ]~+~(xo)) G k(a q- b) 

where 

k = m a x  (d(i  (xo), 1~247 

Further we obtain tha t  

d(/~+~(Xo), ]~ < k (a+  b) 

d(]~+4(xo), /~+5(Xo)) G k(a q- b) 2 

. , , . . . o . . . . .  . . . . . . . .  * . . . .  . o  o o . 

d(]'+2m-l(xo), ]~+~(Xo)) ~ k(a + b) ~ . 

An induction argument  shows tha t  these are t rue for all iutegers and from 
these estimates we obtain that the sequence (]~(xo)) is in fact a Cauchy sequence. 

Then x * =  lira ]~(xo) is a fixed point  for ] and the theorem is proved. 
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5. - Sequences of  convex contraction mappings. 

I f  f: X - +  X is a convex contract ion mapping of order 2, i.e., a continuous map- 

ping satisfying the relation 

d(/2(x), ]2(y)) ~ ad(/(x), ](y)) + bd(x, y) 

then  we say tha t  f is an (a, b)-convex contract ion mapping. 

TltEOI~)I 5.1. - Let (]~)~ be a sequence of (a, b)-convex contraction mappings de- 
fined on a complete metric space X with the metric d. I f  (x.)~ is the sequence of fixed 
point of (f.), i.e., x . -= ]~(x.) and the sequence (f~) converges pointwise to a mapping f 
which is continuous then lira x .  exists and is a ]ixed point for ]. 

P~ooF. - Since the sequence (f~) converges pointwise to f we get tha t  f is an 
(a, b)-convex contraction mapping. Let  z be the  fixed point  of f. Then  we have,  

d(~, x~)-- d(~,/~(~)) < d ( ~ , ,  t~(~)) 

and f~ being an (a, b)-convex contract ion mapping, 

and thus 

d(x~., i~(~)) --<-- d(/~(x~), f~(~)) = ad(x~, 1~(~)) + ba(x~, z) 

d(x~, ~) = (d(~,/~(~)) + ad(x.,  I.(~)))/(1 -- b). 

Fur the r  we get, 

d(x,,, ~) __< ~/(1 - b). (a(~, 1~(~)) + a(d(xo, ~)) + d(~, i~(~))) 

and then  

d(x,,, z)(1 -- a/(1 -- b)) <= 1/(1 -- b)d(z, ]~(z)) @ a/(1 -- b)d(z, f.(z)) . 

The pointwise converegence of the sequence (/~) implies now tha t  lira d(x~, z) --- O. 
This proves our assertion. 

Tm~o~E~[ 5.2. - Let (]~)~ be a sequence of mappings converging uniformly to an 
(a, b)-convex contraction mapping ]. I f  (x~)~ is a sequence of fixed points of the map- 
pings in the sequence then lim x,~ exists and is a fixed point of f. 
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PI~OOtL - Le t  z be the  fixed point  of f. I f  x ,  is a fixed point  of f~ then  we have  

a(x~, z) <= a(x~, ]~(x~)) + a(/~(x~), ]~(~)) <= a(~o, /~(~)) + ~a(l(~), ~) + ba(~,~, ~) 

and thus 

ar ~) =< ~/(~- b).(d(~, i~(~))) + ~(i(~), ~) =< i/r - b)(~(i-r I~r + 

+ io(xo)) + 

and f rom the uniform convergence and  ],~(z) - .  z, fi,(z) --> z, lira d(x. ,  z) ----- 0 and the  
assert ion is proved.  

6. - Mapping with diminishing prohabilistic diameters on PM-spaces. 

I n  1942 K. M E . a n n  ini t iated the  s tudy  of probabil ist ic  metr ic  spaces [9]. A 
probabil ist ie  metr ic  space (briefly a PM-space) is a space in which the  distance bet-  
ween two points  is described b y  a probabil ist ie distribution. 

Le t  I be the  closed unit  in terval  and d denote the  set of all nondeereasing, left- 
continuous functions on R sudh tha t /~ (0)  ----- 0 and the range is a subset  of I .  H will 
denote  the  funct ion defined via  

I 0 x g 0 ,  
H(x) ! 1 x > O .  

A t r iangular  norm (briefly a t-norm) is a function T mapp ing  I •  into I which 

is associative, nondecreasing in each place and satisfies T(a, 1) = a for each a e I .  A 

t -norm will be  called l.e. t -norm if i t  is left  continuous. Some t -norm of impor tance  
to us are:  

T~(a, b) = m a x i m u m  (a -~ b -  1, 0) 

Prod  (a, b) = ab 

Min (a, b) = min imum (a, b) . 

I n  A we consider an order relation F G G if ~V(x) G G(x) for all x ~ R and ~ < G 

if F G G and H v~ G. A tr iangle funct ion (briefly a t-function) is a funct ion mapp ing  

A • A into A which is associative, commuta t ive ,  non-decreasing in each place and  
satisfies r ( /~ , / / )  = xv for each E 6 d .  

I n  what  follows we shall assume tha t  the  t-functions satisfy the  condition 

(,)  sup (z(~, E), F <  H) ~ .  
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I f  T is an 1.c. t-norm then  the  mapping ~ defined via 

~(/?, G)(x) = sup (T()P(ax), g(bx)), a @ b -= 1) 

is an 1.c. t-function. 

A probabilistie metr ic  space is an ordered pair  (S, 5 r) where S is an abstract  set 
and ~- is a mapping from S • S into R whose value ~-(p, q) at  any  pair  (p, q) s idenoted 
by  /%~ and the  following conditions are satisfied: 

1) l imL~(x )  = 1 for all p, q in S; 

2) for all p, q e S, ~ =  H if and only if p = q; 

3) / V  ~_Tq~ for a l l p ,  q ~ S ,  

and either for some t-norm T;  

4~) F~(x -~ y) ~ T(F~(x), ~q~(y)) for all p.q, r e S and all x, y ~ 0, 
some t-function T; 

4,) _ F ~  ~(2~,  2~q~) for all p.q, r eS .  

or for 

Suppose tha t  (S, ~)  satisfies the  axiom 4~) with the t-norm T be a continuous 
function. If  A is a nonempty  subset of S then  the function 

DA(X)=SUp( inf ~ ( t ) )  

is called the probabilistic diameter  of A. (I t  is easy to see tha t  Da is in A.) 
A topology on a PM-space is defined as follows: if p ~ S then  an (e, 2)-neigh- 

bourhood is the set U~(e, k) defined via 

G.(s ,  k) = (q, q e s ,  F~o(~) > 1 - k) 

and a sequence of points (p.) c S is a Cauchy sequence if F ~ , , - ~  H (pointwise). A 
Pill-space is said to be complete if every  Cauchy sequence is convergent.  

Now we consider on a PM-space in which 4~) is satisfied a class of mappings 
containing as a special ease the  contract ion mappings of SEHGAL [11]. We recall 
t ha t  a m a p p i n g / :  S -* S on a PM-space is said to be a contract ion mapping if there 

exists k e (0, 1) such tha t  for all p, q in S, Ff(~)f(~)(x) ~ F~(x/k). 

D]~FIXlTIOh- 5.1. -- Le t  (S, 57) be a PM-space satisfying 4~) and T be a continuous 
mapping. A map / :  S -~ S is said to be with diminishing probabilistie diameters 
if for each bounded set A in S, 

for all x ~ ~ and where k e (0, i). 



VASlLE I .  ISTI~iTESOU: Some fixed point theorems for convex, etc. I 103 

We recall t h a t  a set M in a PM-spaee is said to be  bounded if 

sup D A ( x )  : 1 

an4  semibounded if the  above  sup is in (0, 1), unbounded if D ~ =  0. 

F r o m  just  the definition of mappings  in the Definition 5.1 it is clear t ha t  any  
contract ion is in this class. 

Concerning the  fixe4 points for such mappings  we have  the  following results. 

T R E o ~ I  5.2. - I f  f: ~ -:~ S is a mapping with diminishing diameters then it has 
at most one fixed point. 

P~0OF. - Le t  F ix  ] : (p, p e S, ](p) : p) and suppose t ha t  this set Contains 
more  t h a n  one point .  Take  p, q in F i x /  and p :~ q. The set 

M ---- (p, q) 

is bounded  in S and consider the  d iameter  DM. F rom the p roper ty  of the  mapping  / 
and the  fact  t ha t  p, q are in F i x /  we get t ha t  

Dj(M)(X) : -DM(X) ~ DM(X/k) 

for some k c (0 ,  1). Since for each integer n we have  D~(x) ~ DM(x/k") and D~ = / ~ q  

we get t h a t  /~q----H. This implies t ha t  p = q and thus F ix  f contains a t  mos t  
one point .  

To formula te  the  following result  first we give the  following definition. 

DEFI~ITIO~ 5.3. - Le t  ]: S -~ S be a mapping  with diminishing diameters  and 

Mo be any  bounded invar iant  subset for / in S. Define the sequence of sets (M,) 
via M~ = f(Mo_~), n = 1, 2, 3;, ... and set 

G~q(x) = inf (DM.(x)) . 

THEORE~ 5.4. -- I] (S, ~) is a complete PM-space satisfying 4~) under the triangle 
function T~ satisfying ( .)  then, either 

1) f has a unique fixed point in S; 

2) for every bounded invariant set M,,  sup Gio(x) e (0~ 1). 

Pt~oor. - Suppose t ha t  for some bounded  invar i~nt  set M 0 c S, sup G~o(X) ~ (0, :~) 

and  consider the  sequence of sets M,~ -~ f(M,_~) and then  for every x e R we have  
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and t hen  

Since D~ is a non-decreasing f lmetion,  the  above  relat ion implies t h a t  

lira D~• = 1 

for all x e R. Now we r e m a r k  t h a t  Moo_ M,O_ Mp~_... and  this holds also in the  

closure wi th  respect  to the  (6)~ Since for any  bounded  set L c S, the  

probabil is t ie  d iamete r  of L ~nd C1 L are the  same, we obta in  t h a t  ~ 2~,, = (p). Now 
we show tha t  p is a fixed point  for ]. Since c~ 2~r. = (p)  i t  follows tha t  for every  

poe Mo, (]%Po)) converges in the  (e, 2)-topology to p. To prove  t h a t  p = f(P) we 
r e m a r k  t ha t  the  set (p. f (p) ,  iS(p), ...) is closed in the  (e, 2)-topology and  invar ian t  

for f. Since ] is wi th  diminishing probabil is t ic  diameters,  this set reduces to p.  
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