Some Fixed Point Theorems for Convex Contraction Mappings
and Mappings with Convex Diminishing Diameters. - I (*).

VASILE I. ISTRATESCU

Summary. — In this paper we consider several classes of mappings related to the class of con-
traction mappings by introducing a convexity condition with respect to the iterates of the
mappings. Several fiwed point theorems are proved for such mappings. Further, in a similar
way we consider a related class of mappings satisfying a convexity condition with respect to
diameters of bounded sets. In the last part we consider classes of mappings on PM-spaces
(probabilistic metric spaces of K. Menger) and some fimed point theorems are given for such
classes.

0. — Introduction.

Let X be a complete metric space with the metric d. In the recent years a great
number of papers present generalizations of the well known Banach-Picard contrac-
tion principle. Some of these generalizations refer to results containing the Schauder
fixed point theorem. The purpose of the present paper is to consider a generaliza-
tion of the contraction principle by introducing a « convexity » condition concerning
the iterates of the mapping. We think that this condition may be adapted for other
classes of mappings to obtain some extensions of known fixed point results.

1. — Convex contraction mappings of order 2.

Let X be a complete metric space with the metric d.

DEeFINITION 1.1. — A continuous mapping f: X — X is said to be a convex con- .
traction of order 2 if there exist @, b in (0, 1) such that for all z,y in X,

a(f2(=), () < ed(f(w), 1)) + bz, y)

and where a - b < 1.

It is obviously that this class of mappings contains the class of contraction
mappings. Concerning the fized points of mappings which are convex contraction
of order 2 we can prove the following.

THEOREM 1.2. — Any convex contraction mapping of order 2 has a fived point
which is unique.

(*) Entrata in Redazione il 9 luglio 1981,
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ProoF. — Since the uniqueness is frivial we prove only the existence.
Let x, be an arbitrary but fixed point in X and consider the orbit of », under f,
i.e., the set (f*(m,))s, [°(#0) = @. Set
k= max (@(e, (@), d(f(@0), ()
and thus for any m,
d(fz-:rd—l(mn), fam( )) < ad(me( ]cam~ (z 0)) + bd(]‘Zm—l(wo)7 fz(m—n(wo)) .

This implies the following relations:

d(f3(m0), ;"2(.730)) = ad(fz(mo), f(xo)) + bd(f(mo)y 990) = k(e 4 0),
A(f*(w0), 1(wa)) = ad(f(@o), 13(w0)) + bA(f2(o), (o)) = (ak(a - b) - bk = K(a 4 D)) ,
d(fs(wo); f4(wo)) = “d(f4(xo), fg(wo)) + bd(f3(w0), 72(90'0)) =

An induction argument shows that
a(f (@) f7(x0)) < Ka - b)™

Since

A{fm=@), 1(@0) < ad(f*=2(wy), 17 (@o)) + ba{fn=3(an), 20=(ao))
we geb that

d(f*m=t(wo) 1™(x0)) < K(a + D)™

Now sinee for m <,

aA(f(we), [*(@o)) < A(fr(@y), [ (wo)) + .o A d(f o), (o))

from the above estimates we obtain that (f*(z,)) is a Cauchy sequence in X. Indeed,
it m = 21 then

(o), 17(w0)) < Bla -+ b) -+ ke + b)' + k(e + b)Y + k(e + b) 14 .. =
< 2k(a -+ b)t-1j(1—a—b)

and a similar estimate holds if m = 21 4 1. Since & 4 b is in (0, 1) we obtain that
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(f*(xy)) is a Cauchy sequence in X. Let o* = lim fr(w,). Since f(#*) = lim fr+1(z,)
we get that o* = f(a*).

We give now an example to show that there exist mappings which are convex
contractions of order 2 and are not contractions.

ExampLE 1.3. — Let X = [0,1] with the usual metric and define /: X — X by
the relation

fl@) = @+ )2

and it is obviously that this is confinuous and not a contraction.
If z,y are arbitrary in X we have,

o) — fy) = (2 + 92)/4(f(@) — f(y)) + 1/8(@ + y)(z— y)

and thus f is a convex contraction of order 2.
We consider nhow a more general class of mappings.

DEFINITION 1.4. — Let X be a complete metrie space with the metric d. A con-
tinuous mapping f: X — X is said to be convex contraction of order » if there exists
the positive constants a,, ..., 4,y in (0, 1) such that the following conditions hold:

1) ag-+ ... —]- Uy << 1;
2) for all ¢,y in X,

afr(@), (1)) = aod(@, y) + ad(f®), {@) + ... + @ d(f* @), f~1y)) -

The theorem 1.2 may be extended to this class of mappings and since the proof
is essentially the same as for theorem 1.2, we mention it only.

TueorEM 1.5. — If f: X — X s a convex contraction of order m then there ewists a
fized point of f and this is unique.

Ags is well known some results about contraction mappings were extended to
larger classes of continuous mappings, among them we mention the class of contrac-
tive mappings. For the reader convenience, we recall the definition of this class
of mappings. The mapping §: X — X is said to be contractive if for all #, y in X,
w7y, d(Sz, Sy) < d(z, y).

We consider now the corresponding class of mappings suggested by the class
of convex contraction mappings of order 2.

DEFINITION 1.6. — A continuous mapping f: X — X is said to be convex contrac-
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tive of order 2 if there exists the constants @, and a, in (0, 1) such that the following
conditions hold:

1) ay+ a;=1;
2) d(f* @), (1)) < ad(@, y) + a:d(f(@), 1(3))

for all #,4 in X.

A well known result of V. V. NEMYTSKI [10] says that if f is a contractive map-
ping defined on a compact metric space X then f has fixed points in X. The fol-
lowing result is an extension of Nemytski’s result.

THEOREM 1.7. — If f: X — X is a convex contractive mapping of order 2 and X
is a compact metric. space then there exists a unique point x* in X such that f(x*) = x*,

PROOF. ~ Let x, be an arbitrary point in X and eonsider the orbit of z, under f,
i.e., the sequence (#,)o, Fnsa= f(@,), » =0,1,2,.... Since the space X is compact
there exists a subsequence (nj) such that for some point z* in X,

o* = lim f"(z,) .
The continuity of f implies that the following relations hold:
f@*) = lim f%*(w,)
fo(*) = lim f***(m,) ,
f3(@*) = lim f"*3(z,) .
Let us consider the function defined on X by the formula
u(w) = mas (d(z, (@), d(f(@), *@)))

which is clear a continuous function. Since f is convex contractive of order 2 we
obtain that « is nonincreasing with respect fo f, i.e.,

Now the continuity of # and the above formulas for x*, f(«*), f2(z*) and f3(2*)
imply that u(z*) = u(f2(z*)) = u(f*@*)). Now if w(z*) is strictly positive then the
property of f to be convex contractive mapping of order 2 implies that

u(w®) = u(f2(a*)) < u(z*) .

This is a contradiction and thus u(z*) = 0 and «* is a fixed point for f. It is
obviously that #* is the unique fixed point of f.
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In a similar way we can prove the following result which extends a result of
EDELSTEIN [2]:

THEOREM 1.8. ~ Let f: X — X be a convexr coniractive mapping of order 2 and
suppose that amy orbit (f*(»)), » € X, has a limit point &. Then & is the unique fized
point of f.

We consider now a class of mappings suggested by the class of convex contrac-
tion mappings and some localization conditions.

DEriniTiOoN 1.9. — A continuous mapping 7: X - X is called locally convex
contraction of infinite order if there exists a sequence of positive numbers (a,)s in
0,1), 49+ a4 a4 ... <1, and for each xe X there exists an integer # == n(x)
such that for all y e X,

(@), 1)) = ad(@, y) + a:d(f(2), (y)) + ... + a.d(f**(x), f4y)) -

REMARK 1.10. - If @, = a,.,=0,7=1,2,3,..., then this class coincides with
the class considered by SEHGATL [12].

An ecasy modification of the proof in the SEHGAL paper [12] gives us the fol-
lowing result:

TaroREM 1.11, - If f: X -+ X is a locally convexr contraction of infinite order then
there exists a unique point x* in X such that f(a*) = x*.

2. ~ Two-sided convex contraction mappings.

We consider now another class of mappings suggested by the class of mappings
satisfying the following condition: the mapping § is defined on a complete metric
space X and for some a,b in (0,1) the following conditions are satisfied:

1) e +b<1;

2) for all 2,4 in X,
&(Sw, 8y) = ad(z, 8x) -+ bd(y, Sy)

holds. We note that there exist a number of papers in which results about this
class of mappings are presented.
Our class is congidered in the following definition.

DErFINITION 2.1. ~ A continuous mapping f: X — X, defined on a complete
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metric space X is said to be a two-sided convex contraction mapping if there exist
a1, @z, by, by in (0, 1) such that the following inequalities hold:

1) a4 ax - b+ b < 1;

2) d(f* (@), 1*(y)) = ad(w, (@) + a:d(f(@), 12(®)) + b.d(y, f(¥)) + bd(f(w), F*(®))
holds for all x5~y in X.
A related class of mappings is considered in the following definition.

DEFINITION 2.2. — A continuous mapping f: X — X is said to be of convex type 2
if there exist the positive numbers ¢, ¢, d,, @5, by, b, such that the following ine-
quality holds:

A @), 12(y)) = eod(@, y) + erd(f(®), 1)) - ard(z, {(@)) + a.d(f(®), 2(y)) +
+ bid(y, 1®) + ba(F(w), ()

for all x5y in X (¢ + & -+ ay + @, 4+ by + b << 1).
It is clear that the class of mappings considered in the Definition 2.2 is larger
than the classes of mappings considered in the Definitions 1.1 and 2.1,
Concerning the problem of fixed points for mappings considered in the Defini-
tion 2.1 we have the following result.

THEOREM 2.3. — For any two-sided convex contraction mapping there exists a unique
fized point.

ProoF. — Let z, be an arbitrary point in X and consider the orbit of z under f.
Set

% = max (d(:co, f(o)), (f(o), fz(mo)))
and then we geb
d(fz(w(,), fﬁ(wo)) = fl’ld(wo; f(wo))+ aad(f(%)y jz(%)) + bld(fz(wo)y f(wo)) + bﬁd(fz(wo)a fs(wo))

and thus
d(fz(wo)y ]‘3(000)) S{o+ b+ a)/1 — b))k .

Similarly we obtain the following relation,

d(f?’(mo); f4(970)) = {a,-} a4 b)/(1— b))k
and an induction argument shows that for all m,

d(jm(wn), fmﬂ(mﬂ)) = ((“1 + as+ b1 — bz))mﬂk .
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From these estimates we obtain that (f*(w,)) is a Cauchy sequence.

Then it is clear that x*==lim f*(x,) is a fixed point for f and clear is the
unique point with this property.

In a similar way we can prove the following result about the fixed points for
the mappings considered in the Definition 2.2.

THEOREM 2.4. ~ If f: X - X is a mapping of convexr type 2 then there exists a
unique fized point of f.

We note that we can consider a class of mappings related to the class of genera-
lized contractions. For the reader convenience, we recall that a mapping f: X - X
defined on a metric space X is said to be generalized contraction if there exists a
function « on X with walues in [0,1) sueh that for all #,y in X the following
inequality holds:

AUf(@), 1(y)) = alx)d(w, y) .

The class we consider is introduced as follows.

DEFINITION 2.5. — A continnous msapping f: X— X is called of generalized
convex type 2 if there exist the positive functions on X, ¢y(,), ¢i(,), a4(,), @a(s), ba(,),
bs(,) such that the following inequalities hold:

1) a(®) + (@) + (@) 4 ay(®) + i) 4 ba(2) < 15

2) d(f*w ))<Oo(x )+ W(2)df(@), ) + a(@)d(w, f@)) -
+“2( ((w @) -+ bu(@)d(y, 1)) —I—b( Ya(f ), 1*))- '

It is clear that for some appropriate functions ¢, e,, b;, the class of mappings
considered in the Definition 2.5 reduces to the mappings considered above.

We close this section with some remarks about a result in [14] about the fixed
points of certain self maps of an interval.

First we note that the arguments in the proof of Theorem 1 in [14] gives also
the following result.

TarorEM 2.6. — Let f: [a, b] — [a, b] with the property that a,b are in f([a, b]).
Suppose that for some positive v, s, r - s = 1 the following inequality hold:

f(@) = f)| = rle— f(@)] + sly — fiy)] .

Then the midpoint of [a, b] is a fized point of f.

Also, the same arguments (essentially the use of the fact that [a, b] is a convex,
closed and bounded subset in an uniformly convex space) permits us to give the
following result.
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THEOREM 2.7. — Let C be a closed, convexr and bounded subset in an uniformly
convex Banach space X. Suppose that f: ¢ — C is a continuous mapping satisfying
the following conditions:

1) for some #,s8 @n [0,1), # + s =1, [f@) ~ f(y)] = rle— )] + sly — f@)l,
@,y in C;

20 cf(0)

Then f has a fized point in O.

We note that it is not difficult to see that any point of ¢ which is the midpoint
of a diametral segment of ¢ (we call a segment [, y] z, ¥ in C diametral if |2 — y| =
= diam ((¢)) is a fixed point of f.

3. ~ Fixed point theorems for mapping with convex diminishing diameters.

Let X be a complete metric space with the metric d. For any subset M of X
we consider the diameter d(M) defined as sup (d(x, ), %, y € M) and we say that a
set in X ig bounded if its diameter is finite.

If /: X — X is a contraction mapping then it is obvious that for any bounded
set M in X, d(f(M)) < kd(M) where k is the contraction constant of f (i.e., a(f(x)
1) < kd(w, ).

‘We consider now a class of mappings suggested by the class of convex contrac-
tion mappings of order » as well as of the class of mappings satisfying the above
inequality with respect to diameters.

DEpPINTIION 3.1. — A mapping f: X — X is said to be with locally convex
diminishing diameters of infinite order if there exists a sequence of positive num-
bers (a.)y’, > @,<<1, and for each bounded set M in X there exists an integer
n = n(M) such that the following inequality holds:

A(f(M)) = aod( M) + ard(f(I)) -+ ... + easd(fr(ID) .

If a,= a;..=0,%=10,1,2, ..., then we say that f is with locally power diminish-
ing diameters.

LeMMA 3.2. - If g, T: X - X is a continuous mapping satisfying the property
that there exists k €[0,1) and for each x € X there exists an integer n = n(x) with
the property that for all y € X, d(f"(«), /(%)) < kd(w, y) then f is with locally power
diminighing diameters.

We temark that the mappings with the property stated in the Lemma 3.2
were considered in Sehgal’s paper [12].
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ProOF. — Let us consider an integer m such that 2-k»< 1. If M is a bounded
set in X then pick a point # in M and consider the following sequence of integers:
ny = n(x), By=["x), = n(z), B, = ["(2), ...,

om = n(mm—l)y P f”"ﬁl(xm)?

Now if ¥,z are arbitrary points in M we have,

d(f"1+"'+“'"(y), f”1+"'+”'”(z)) é d(;f”’+"'+”'n(w), fn1+...+nm(y)) +
__[_ d(f"‘+"'+”M(x), fnri—-..-l-nm(z)) é kd(]‘"1+"'+""'"1(ao), fn,+...+nm_1(y)) +
L Bd(frttane(g), frtedimee)) < L < knd(@, y) + krd(z, 2) < 2-kmd( M)

and the assertion of the Lemma is proved.
For the fixed point theorem which follows we suppose that the metric space X
is bounded.

THEOREM 3.3. — Let f: X — X be a mapping with locally power diminishing diame-
ters. Then there exists a unique point x* in X such that f(o*) = z*.

Proor. — Since the uniqueness is obvious we prove only the existence. To this
end we consider the following sequence of sets:

X2f(X)2f(X)2...2/(X) 2 fr+(X)2...

and we remark that lim d(f*(X)) = 0. This clear implies that lim d(f»(X)) = o0.
Indeed, we consider the sequence of sets:

X, = ™(X), m= n(X), ny=n{X;), X,= f("Xy), ...

and we get immediately that

(X, < d(X).

Thus lim d(X,) = 0 and this implies obviously that lim d(f*X)) = 0.

In this case by the Cantor’s theorem we get that N f+(X) = (2%).

We note also that from this relation we have that for any « € X, lim f(x) exists
and is #*. Of course if f is supposed to be continuous then z* is a fixed point of f.
In the general case we consider the set

G = (w*7 f(@*), f3(a*), )

7 = Annali di Matematica
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and from the above result @ is closed. Obviously @ is invariant for f and the image
of @ through f is exactly ¢. Now if & confains more than one point we obtain a
contradiction since f is with locally power diminishing diameters.

Thus @ = {#*) and this is the unique fixed point for f.

We prove now a fixed point theorem related to Nemytski’s result.

THEOREM 3.4. — Let X be a compact metric space with the metric d. Suppose that
f: X — X is a continuous mapping such that for any tnvariant set M in X, M with
the property that d(M) = 0, d(f(M)) < d(M). Then { has a fived point in X.

ProoF. — We congider the family § of all closed subset of X which are invariant
under f. We define a partial order on this family by the inclusion. It is easy to see
that with this order we can apply the Zorn’s Lemma. Thus we can consider a set F
which is a minimal element and we show that F reduces to a point. Suppose that
this is not so and we consider that sequence of closed sets (f*(F)) and we remark
that it is decreasing. Set My= N f*(F). Then M, is nonempty, invariant under f
and of course MRCF. If ¥ is not equal to M, then thiz contradicts the definition
of F. Thus we must have F = M.

If d(F) = 0 then d(f(¥F)) < d(F) and then f(F) is a closed subset of X which is
invariant under f and smaller than F. This is a contradiction with the definition
of F. Thus d(F) = 0 and the theorem is proved.

COROLLARY 3.5. — Let X be as above and §: X — X be a continuous mapping such
that for some integer m, and for each subset of X with the diameter nongero, d(f~(M)) <
< d(M). Then f has a unique fized point in X.

4. ~ Convex contraction mappings in generalized metric spaces.

First we recall the notion of generalized metric space. We consider for this the
extended real line which consists of all points of the real line and two points denoted
by — oo and 00 with the usual order relation — oo < # < oo.

DEFINITION 4.1. — A function d: X x X — R, (the extended real line) where X
is an abstract set, is called a generalized metric if the following properties hold:

1) d(@, y) = d(y, x);

2) d(z,y) = 0 if and only if 2 = y;

3) d(w,2) < Az, y) + d(y, 2) (if d(w,y) = oo or d(y,s) = oo then we consider
Az, y) + d(y, 2) = o),

hold for all =, 9,2 in X.
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A set X with a generalized metric is called, after Luxemburg, a generaliZed
metric space. Of course we can define in this sefting all notions known in the
theory of metric spaces.

The following result presents a fixed point theorem for a class of mappings on
generalized complete metric spaces.

THEOREM 4.2. — Let (X, d) be a complete generalized metric space and f: X - X
be a mapping satisfying the following properties:

1) d(f2(x)1 f2(?/)) = ad(@, y) + bd(f(w)y f(?/)), a+b<1, z,yin X;

2) for any point x € X there exists an integer n such that d(f*w), f~'(x)) and
a(f*+\(w), f*2(w)) are less that oo;

3) if f(@) ==, [(y) =y then d(z,y) < oo
Then there exists o unique point v*e X such that x* == f(z*).

ProoF. — Let z, be an grbitrary point in X and consider the orbit of #, under f.
Then the property 2 assures the existence of an integer n such that d(f*(z,),
fri{mo)) < oo, d(fr (), fr+2(2,)) < co. Then according to the property 1 we get that

d(f+>(@), f42(ae) = ad(f*(@o), () 4 b (a0), 743(a) < ka4 b)
where

k= max (A(f(z,), f~(@,)), d(f*(0), f*2(xs))) -

Further we obtain that

A(f*+4(mo), fr+4(x0)) < k(a + b)

..............................

d(;f71+2m(mu)’ ]tn+2m+1) < kia + b)m
A(fren=2(my), frrom(m,)) < kla + b)™.
An induction argument shows that these are true for all integers and from

thege estimates we obtain that the sequence (f“(xo)) is in fact a Cauchy sequence.
Then o* = lim f*(,) is a fixed point for f and the theorem is proved.



100  Vasme I. ISTRATESCU: Some fiwed point theorems for comvew, ete. I

5. — Sequences of convex contraction mappings.

If /: X — X is a convex contraction mapping of order 2, i.e., a continuous map-
ping satisfying the relation

d(f*(@), 1*(y)) = ad(f(=), 1(y)) + bd(z, y)

then we say that f is an (a, b)-convex contraction mapping.
THEOREM 5.1. — Let (f,)T be a sequence of (a, b)-convex contraction mappings de-
fined on a complete metric space X with the metric d. If (@,)7 s the sequence of fiwed
point of (1,), i.6., Tu={.(2,) and the sequence (f,) converges pointwise to a mapping f

which is continuous then lim x, ewists and is a fized point for f.

PRrOOF. — Since the sequence (f,) converges pointwise to f we get that f is an
(a, b)-convex contraction mapping. Let z be the fixed point of f. Then we have,

d(z, @) — (2, f2(2)) = A, 2(2)
and f, being an (a, b)-convex contraction mapping,
A(@a, 12(2) < d(f2l@n), £2(2)) = ad(@a, Ta(2)) 4 bd(a, 2)
and thus
d(@a, 2) = (d(2, 72(2)) + ad(@n, [a(2))) /(1 — D) .
Further we get,
A, 2) = (L — b) (A2, 722) + a(dl@a, ) + dle, F2(2)))
and then
(0, 2)(1 — af(1— b)) < 1{(1 = b)d(z, 12(2)) + a(L — b)d(z, 1a(#)) -

The pointwise converegence of the sequence (f,) implies now that im d(z,, 2) = 0.
This proves our assertion.

THEOREM 5.2. — Let (f.)° be a sequence of mappings converging uniformly to an
(a, b)-convex contraction mapping f. If (x.)7 is a sequence of fiwed points of the map-
pings in the sequence then lim w, exists and is a fized point of f.
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ProoF. — Let 2z be the fixed point of f. If #, is a fixed point of f, then we have
AUy &) < A, 12(20)) + Af2@), 12(2)) < A2, F2(w0)) + ad(f(w,), 2) + bd(@n, 2)
and thus

d(@,, 2) < 1)1 — b)- (@(wn, f2(@,))) + ad(f(2,), &) < 1/(1 — B)(a(f-(za), F2.))) +-
+ a(d(f(@a); faln)) + bd(fulaa), 2))

and from the uniform convergence and f.(¢) — 2, fa(z) — 2, lim d(x,, 2) = 0 and the
assertion is proved.

6. — Mapping with diminishing probabilistic diameters on PM-spaces.

In 1942 K. MENGER initiated the study of probabilistic metric spaces [9]. A
probabilistic metric space (briefly a PM-space) is a space in which the distance bet-
ween two points is described by a probabilistic distribution.

Let I be the closed unit interval and A denote the set of all nondecreasing, left-
continuous funetions on R such that F(0) = 0 and the range is a subset of I. H will
denote the function defined via

0 z=0,
H(n) =
1 «>0.

A ftriangular norm (briefly a ¢-norm) is a function 7 mapping I XI into I which
i associative, nondecreasing in each place and satisfies 7'(a,1) == a for each a € I. A
t-norm will be called l.c. t-norm if it is left continuous. Some {-norm of importance
to us are:

T,(a, b) = maximum (e + b — 1, 0)
Prod (a, b) = ab

Min (@, b) = minimum (a, b) .

In A we consider an order relation F < ¢ if F(z) < G(x) for all se R and F < &
if F'< ¢ and F 5= @. A triangle function (briefly a ¢-function) is a function mapping
A x4 into 4 which is associative, commutative, non-decreasing in each place and
satisfies ©(F, H) = ¥ for each Fe 4.

In what follows we shall assume that the {-functions satisfy the condition

() sup (¢(F, F), F<H) = H .
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If T is an le. -norm then the mapping 7 defined via
(¥, @)(@) = sup (T(F(as), g(bz)), a + b = 1)

is an l.e. {-funetion.

A probabilistic metric space is an ordered pair (S, F) where § is an abstract set
and 5 is a mapping from § X 8§ into R whose value F(p, ¢) at any pair (p, q) s idenoted
by F,, and the following conditions are satisfied:

1) }ci_r)rc}chq(m) =1 for all p,q in §;
2) for all p,qe 8, F,,= H if and only if p = ¢;
3) Foo=F, for all p,ge 8,

and either for some f-norm 7'

4,) Folo + y) = T(F, ), F.(y)) for all pg,reS and all #,y=0, or for
some t-function z;

4,) F,, = o(F,, I',) for all p-q,re .

Suppose that (8, F) satisfies the axiom 4,,) with the {-norm 7 be a continuous
funetion. If 4 is a nonempty subset of S then the function

D(w) = sup ( int Fm(t))
i<z ‘p,q€4
is called the probabilistic diameter of 4. (It is easy to see that D, is in A.)
A topology on a PM-space is defined as follows: if p e S then an (e, 4)-neigh-
bourhood is the set U,(e, ) defined via

U,le, Z) = (Qa qge Sa Fm(s) >1— /1)

and a sequence of points (p,) C § is a Cauchy sequence if ¥ — H (pointwise). A
PM-space is said to be complete if every Cauchy sequence is convergent.

Now we consider on a PM-gpace in which 4,,) is satisfied a class of mappings
containing as a special case the contraction mappings of SEHGAL [11]. We recall
that a mapping f: 8§ — § on a PM-space is said to be a contraction mapping if there

exists k€ (0,1) such that for all p, ¢ in 8, Fipue(®@) = Fplalk).

DurFiNtTION 5.1. — Let (S, &) be a PM-space satisfying 4,,) and 7' be a continuous
mapping. A map f: 8§ — 8 is said to be with diminishing probabilistic diameters
if for each bounded set A in §,

Dyo(®) = D4(x]k)

for all ze R and where & e (0, 1).
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We recall that a set M in a PM-gpace is said to be bounded if
sup D) =1

and semibounded if the above sup is in (0, 1), unbounded if D = 0.

From just the definition of mappings in the Definition 5.1 it is clear that any
contraction is in this class.

Concerning the fixed points for such mappings we have the following results.

THEOREM 5.2. — If f: 8 — 8 is a mapping with diminishing diameters then it has
at most one fized point.

ProoF. - Let Fixf= (p, p€ S, /(p) = p) and suppose that this set contains
more than one point. Take p, ¢ in Fixf and p =~ ¢. The set

M = (p, @)

is bounded in § and consider the diameter D,. From the property of the mapping f
and the fact that p, ¢ are in Fixf we get that

Dyan(®) = Dylw) = Dyla/k)

for some £ € (0, 1). Since for each integer n we have D, (z) = Dy(x/k") and Dy = F,,
we get that F,,= H. This implies that p = ¢ and thus Fix/ contains at most
one point.

To formulate the following result first we give the following definition.

DErFINTTION 5.3. — Let f: § — 8 be a mapping with diminishing diameters and
M, be any bounded invariant subset for f in S. Define the sequence of sets (M)
via M,=f(M,_,), n=1,2,3,... and set

G}un(w) — ig.f (_DMn(w)) .
THEOREM 5.4. — If (8, F) is a complete PM-space satisfying 4,) under the triangle
function t, satisfying (%) then, either
1) f has a unique fized point in §;

2) for every bounded invariant set M,, sup Gu (@) € (0,1).

Proor. — Suppose that for some bounded invariant set M,c §, sup Gy (®) €(0,1)
and consider the sequence of sets M, = f(M,_;) and then for every z € R we have

D, @)= D,y @) =D, (afk)

= Myey
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and then

Dy (2) =2 Dy (wfk") .

Since D, is a non-decreasing funetion, the above relation implies that

lim D, (x) =1

for all x e R. Now we remark that M,2 M,2 M,2... and this holds also in the
closure with respect to the (g, A)-topology. Since for any bounded set L c 8, the
probabilistic diameter of L and Cl L are the same, we obtain that N M, = (p). Now
we show that p is a fixed point for 7. Since N M,= (p) it follows that for every
o€ My, (/*(p,))} converges in the (g, 1)-topology to p. To prove that p = f(p) we
remark that the set (p-f(p), fA(p), ...) is closed in the (g, A)-topology and invariant
for f. Since f is with diminighing probabilistic diameters, this set reduces to p.

1l
2]
(3]
[4]
(5]
(6]
7]
(8]

[9]
(101

(11]
(2]
[13]

[14]

REFERENCES

8. BanacH, Sur les opérations dans les ensembles abstrails et leurs applications aux équa-
tions iniégrales, Fund. Math., 3 (1922), pp. 133-181.

M. EDELSTEIN, On fized and periodic points under conlractive mappings, J. London Math.
Soc., 37 (1962), pp. 74-79.

R. J. EGBERT, Products and quotients of probabilistic melric spaces, Pacif. J. Math., 24
(1968), pp. 437-455.

V. I. IsvrATESCU, Some fized point theorems for convex contraction mappings and map-
pings with convex diminishing diameters, IT (in preparation).

V. 1. IstrXtEsSCU, Fived Point Theory. An Introduction, D. Reidel Publ. Comp. (1981).
V. 1. IstRATESCU, Strict convexily and complex sirict convewity (in preparation).

A. A. IvaNov, Fized points of mappings of metric spaces, J. Sov. Math., 12 (1) (1979),
pp. 1-65.

W. A. LUXEMBURG, On the convergence of successive approvimalions in the theory of ordi-
nary differential equations. II1, Niew. Archief. Wise., 6 (1958), pp. 93-98.

K. MENGER, Statistical metrics, Proe. Nat. Acad. Sei. U.S.A., 28 (1942), pp. 535-537.
V. V. Nemyrsg1, The method of fized points in analysis, Uspechi Math. Nauk, 1 (1936),
pp. 141-174.

V. M. SEHGAL, Some fized point theorems in functional analysis and probability, Ph. D.
Dissertation, Wayne State Univ. (1966).

V. M. SEHGAL, A fized point theorem for mappings with o contractive iterate, Proc. A.M.S.,
23 (1969), pp. 631-634.

H. SuerwooDp, Complele probabilistic meiric spaces, Z. Wahr, verw, Geb., 20 (1971),
pp. 117-128.

C. 8. Wowe, Fized points of certain self maps on an interval, Proc. AM.S., 42 (1974),
pp. 234-235.



