Periodic Solutions of Nonlinear Integral Equations (*).

M. N. IspAam

Summary. ~ The existence of a continuous periodic solution of the system

[
o) = f(1) + f o(t, s, ©(s)) ds ,

i8 studied using Horn's fiwed point theorem as the basic iool. First it is assumed that the
solutions are bounded in some sense and that they depend continuously on initial functions.
Then the required boundedness of solutions are obtained for special cases of q. Also, a few
sufficient conditions are provided to ensure the continuous dependence of solutions on initial
functions.

1. - Introduction.

The purpose of this paper is to show the existence of a econtinuous periodic
solution of the nonlinear integral system

¢
1) () = §(t) +fq(t, s, m(8)) ds, teR =/ (— oo, o),

where z, f, and ¢ are vectors in R». Throughout the paper we assume that the fol-
lowing assumptions hold:

(A1) f is continuous in te R, f{(t + T) = f(#) for some T > 0;

(42) q is continuous in (%, s, #) for — oo < <t < o0, # € R*, and ¢(t, s, x) = 0
if s>1;

(43) ¢t + T, s+ T,2) = q(, 8, 2);

(A4) q satisfies a local Lipschitz condition in ; i.e., for each N > 0 and for
each bounded set £ c R there exists an M > 0 such that

la(t, s, @) — q(2, s, $2)|<le1— @, |

whenever — N<s<i{<N and both », and «, are in Q;

(*) Entrata in Redazione il 10 novembre 1986.
Indirizzo dell’A.: Department of Mathematics, University of Dayton, Dayton, Ohio 45469.
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(45) There exists a continuous decreasing function g: (— oo, 0] — [1, co),
g(0) =1, g(r) - oo a8 r —>— oo, such that for each continuous initial
function @: (— oo, 0] — R satisfying |p(s)|<yg(s) for some y > 0,

jQ(t’ 8y ‘P(s)) ds ,

— Qo

is eontinuous for ¢>0.

Assumptions (41)-(45) ensure that for each continuous initial function ¢, there
exists a unique continuous solution w(t, 0, ) = (i, ) on an interval [0, ) for some
o> 0. The function x(t, ¢) = ¢(t) on (— oo, 0]. If the solution remains bounded
then o = co. These are well known results on existence, uniqueness and continua-
tion of solutions of nonlinear Volterra integral equations (cf. MILLER [13]).

At first the postulation of g in (45) seems severe. However, if (1) has a fading
memory in the sense of BURTON [2, p. 282] then the existence of such a g is assured.
Agsuming (1) to have a fading memory is realistic because an equation representing a
real world situation should remember its past, but the memory should fade with
time.

The following lemma gives sufficient eonditions for the continuity of

0
ffl(t1 Sy ‘P(S)) ds

stated in (45). A proof of this lemma is available in BURTON [3].

LemmA 1. — Suppose for each y > 0 there exists a continuous function @,: [0, co) —
~> [0, o) such that [¢:(— oo, 0] — R*, ¢ is continuous, |p(s)|<yg(s), t>0] imply

() l‘l(t: 8 ¢(3))I<07(t“‘ $)

and

14
(i) ny(t— 8) ds < oo .
0
Then for such ¢, f q(t, s, p(s)) ds is continuous for ¢>0.

The following is an example which satisfies the conditions of Lemma 1.

BxampLe. ~ Let q(t, s, ¢(s)) = a(t — s)h(s, p(s)) where |a(F)]<p(1 - #)-* for >0
and |h(t, )| <owx? uniformly in ¢; @ and h are continuous. Then for |p(s)|<yg(s) we
have |g(¢, s, ¢(s))|<oBy2(1 + t — s)~2g2(s). Let g(s) = 1 -+ |s|. Since >0, s<0, one
has (L 4 t— s)~2(1 -+ [s|)2<1. Thus, |q(¢, s, ¢(8))|<ofp2(d + ¢ — s)2
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Wo emphasize that g is selected by examining ¢ of (1). Having selected g, let
(Y,|-|,) = Y be the Banach space of continuous functions ¢: (— oo, 0] — R for
which

lplo = sup {|p(s)l/g(s): — 0o < <0}
exists and is finite.

DerinttIoN 1. — Solutions of (1) are g-uniform bounded if for each B;> 0 there
exists a B, > 0 such that [pe ¥, |p|,< By, t>0] imply [z(t, ¢)| < B,. Clearly, B,>B,.

DEFINITION 2. ~ Solutions of (1) are g-uniform wltimate bounded for s bound B > 0
if for each B;> 0 there exists a K >0 such that [pe ¥, |p|,<B;, t>K] imply
lz(t, @)| < B.

DEeFINITION 3. — Solutions of (1) depend continuously on initial fumctions in a
set U c Y if for each ¢ > 0 and J > 0 there exists a d > 0 such that [¢, y € U with
lp —~ |, << 8] imply [P — Py|,<< e where Po(t) = a(t + J, ¢) for — co << 1<0.

HorN’s THEOREM [9). — Let C,c C,c O, be conver subsets of a Banach space Z,
with C, and O, compact and C; open relative to C,. Let P: 0, — Z be a continuous
mapping such that, for some integer m > 0,

Pi(C)cC,, 1<j<m—1,
and

P(C)c @y, m<j<2m—1,

where P7 is the j-th iterate of P. Then P has a fixed point in C,.

In [2, 4] Burton studied the existence of a periodic solution of a nonlinear
integrodifferential system by using Horn’s theorem as the basic tool. In the present
paper we show that the existence of a periodic solution of a nonlinear infegral
gystem can be shown by using essentially the same techniques that have been used
by Burton. The existence of a continuous periodic solution of (1) is shown in Theo-
rem 1 where it is assumed that the solutions are g-uniform bounded and g-uniform
wltimate bounded and that the solutions depend continuously on initial functions.
‘We provide a few sufficient conditions to ensure these boundedness for special cases
of ¢ in Theorems 2 and 3. In Theorem 4 we show the continuous dependence of
solutions on initial funetions under suitable conditions.

Horn’s theorem is also used by AriNo and HaDDOCK [1] for periodic solutions
of differential equations with infinite delay. LEITMAN and Mizer [11] and MILLER
and MIcHEL [14] are two excellent papers on the pericdic solutions of nonlinear
integral equations. Howover, the equations, assumptions, and techniques of these
papers are completely different from those of the present paper.
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2. — Periodic solution.

LeMmA 2. — If 2(¢) is & solution of (1) on [0, co) then z(¢ - T') is also a solution
of (1) on [0, oo).
The proof of Lemma 2 is a simple calculation.

Lemma 3. — Suppose the function g of (A5) also satisfies the following property:
for each H > 0 there exists a u > 0 such that g(s — H)<ug(s) on (— oo, 0]. Then
for M >0, L> 0, and H > 0, the set

C={peY:|ps)<M Vs —H), |pu) — )| <Llu—o]}

is compact and convex.

A proof of Lemma 3 is available in BURTON [2, page 170].

The proof of Theorem 1 is similar to the proof of Theorem 4.3.5 of BURTON [2]
but there are some significant differences in assumptions. Therefore, we provide
the proof of Theorem 1.

THEOREM 1. — Suppose (41)-(45) hold and the function g of (A5) satisfies the
condition of Lemma 3. Suppose also the following assumptions hold:

(@) Solutions of (1) are g-uniform bounded and g-uniform ultimate bounded;

(b) If U is any bounded subset of Y then solutions of (1) depend continuously
on initial funections in U;

{¢) For each a > 0 and each H > 0 there exists an L;{«, H) > 0 such that if
@: (—oo, 0] - B», ¢ is continuous and I(p(s)]<oc\/g(s—H), then

{ J?Q(u, 8, @(3)) ds -fq(v, 8, @(8)) ds’ <Iy|u— o]

for u, v>0;

(@) For each f > 0 there exists an L,(3) > 0 such that if y: [0, co) = R», ¥ is
continuous and |y(s)]<f, then

lﬂWﬁﬂ@»%—ﬁ@ﬁw@hﬂ<%m_ﬂ
0 0

for u, v>0;

(¢) There exists an L,> 0 such that

|f(w) — f(0)| < Lolu — |

for u, v in R.
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Then (1) has a continuous 7-periodic solution on R.

Proor. — For B> 0 of Def. 2 find B,> B and K;> 0 such that |p|,<B implies
[z(t, ¢)| < B, for t>0 and |2(t, p)| < B for t>K,|. For B, find B,> B, and K> 0
such that |p|,<B, implies [|x(f, ¢)| < B, for >0 and |»(f, ¢)] < B for ¢>K]. Find
H > 0 with BV g(— H) = B,. Consider L,(B, H) of (¢), L,(B,) of (d), and L, of (e).
Let L =L, L, L,. Let

Co={peX: [p(s)|<B Vyls), [p(w) — p(v)|<Lju—v|}>
Co={pe¥: |p(s)|<B V(s — H), |p(u) — p(v)| <Lju—of},
Oi={peX:|pl,< B;}N C,.

Using Lemma 3 one sees that C,, C;, and O, satisfy the necessary properties
for Horn’s theorem. For ¢ € C, let Pp = x(t + T, ¢) for — co <<t<0. The map P
is continuous by (b). It follows from Lemma 2 that Pig = #(t 4+ jT, ¢). Indeed,
by Lemma 2, both x(t - T, ¢) and w(t, Pp) are solutions of (1) on [0, o). Notice
that both have the same initial function Pp. Thus, by the uniqueness of solutions
we have: 2(t + T, ¢) = (i, Pp). Now, P*¢p = P(Py) = x(t + T, Pg) = a(t + 2T, ¢).
Continuing this process one obtains P/ = x(t 4 j7, ¢). Let m > 0 with mI > K | H.
In Lemmsa 4 we show that P/(C,) c C, for all §, and P(C,) c C, for j>m. Therefore
by Horn’s theorem there exists a ¢ in €, such that P¢ = ¢ which implies »(t + T,
) = x(t, p) as required.

LeuwmA 4. — Consider the sets €, C,, C,, the map P?, and the number m defined
in the proof of Theorem 1. Then P/(C,)c C, for all j, and Pi(C,) c O, for j>m.

Proor. — First we show that for p e 0;
[P/g(u) — Plo(v)|< Lju — v]

for u, » € (— oo, 0].
Since Pig(t) = a(t + jT, ¢),

[Pigp(u) — Pro®)| = le(u + §T, ¢) — z(v + T, ¢)| .
Suppose u + jT<0 and v 4 jT<0. Then

lw(e + T, ) — a(v + i1, 9)| = |p(w + §T) — p(v + jT)|<Lju— o|

by definition.
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Suppose =+ jT'>0 and v+ §T'> 0. Then
lw(u + i1, @) — a(v + §T, @)|<|f(w + jT) — f(v + jT)|

+ qu(u + 3T, 5, @(s)) ds -—fOQ(v + 3T, s, g(s)) dé"

u+§T v+§iT

fq(u + §T, s, %(s, @)) ds —fq(v + §T, s, x(s, ¢)) ds
0 0

. +
<Iglu — v| + Lylu — v| + Lylu — v| = Lju— v| .
Suppose # + jT >0 and v + jT< 0. Then
(o0 + §T, ) — a0 + T, )] = lalu + T, ¢) — 9o + §T)]

<lw(u + iT, ¢) — (0, )| + |p(0) — p(v + jT)]
<I{u 4+ 4Ty + L{(— v — jT) = Lu— Lv = Lju — 9|.

This proves that
[Pip(u) — Pip()|< Lu— v
for all u, v €(— oo, 0].
To show that Pi(0;)c G, for all j, it now remains fo show that

|Pig(s)| = |u(s + jT, )| <B V(s — H)

for all §, and — jT<s<0, i.e.,

|, )| < B Vg(t—jT— H) for all j, and 0<t<jT. We know that j@(t, @) < By
for 0 <t<jT for any j. Also, for 0<t¢<jT we have —j7T — H<t —jT— H<—H.
So, B\/g(t—jT——H) >B \/g(—— H) = B;. Thus, we have

lo(t, )| < BVgt —jT—H) for allj, and O<t<jT.
To show that Pi(C;) c C, for j>m, we need to show that

|Pig(s)| = la(s + iT, p)|<B Vg(s) for —oo< s<0,
ie., v
lo(t, @)|<B Vgt —jT) for —oo< t<jT .

For t<0 we know that |u(t,¢)| = |@(t)| <BVg(t—H). For j>m we have jT > H
S0, t —jT < t— H. This implies that BVg(i—jT)> BVg(t — H). Thus,

(¢, p)| < BVg(t —jT) for ¢<0.
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For 0 < t< K we know that |#(t, ¢)| < B;. Also, for 0 < t< K we have —jT
<t—jT< K —jT<—H if j=m. So, BVg{t—jT)> BVg(—H) = B,. Thus,

#(t, )| < BVg(t—jT) for 0<t< K.

Finally, for K <t<jT we know that |00(t,_gv;)| < B. Also, for K<t<jT we have
K —jT<t—jT<0. So, BVg{t—jT)>BVg(0) = B. Thus,

lz(t, p)| < BVgt—jT) for K<t<jT.

This completes the proof of Lemma 4.

3. — g-uniform boundedness and g-umiform ultimate boundedness of solutions. Con-
tinuous dependence of solutions on initial functions.

LEMMA 5. — Let 2(f) and «(t) be continuous in #e R* = [0, c0). Suppose z(t)
e LYR*) and «(f) -0 a8 { = co. Then

@) m(t) = f o(t — )a(s) ds

1]

tends to zero as ¢t — oo,

Proor. - From (2) we have for it>7>0

k4 |1

m(®)] < [le(6) lat — )] ds + [[e(s)latt — 9)] ds

0

If A(o) = sup {|a(s)|: s>0} then

m®)| <At — 1 [e(s)] ds + A©0)[Ja(s)] ds .
0 7
Since A(s) - 0 as o - co we get
lim sup [m(t)| <A(0) f le(s)]| ds .
t— o0

This is true for all > 0 and the right hand side tends to zero as 7 — oco. This
completes the proof of Lemma 5.
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LeEMmMA 6. — Let a(f) € O(RT) N LY(R'). Suppose there exists a continuous de-
creasing function p: (— oo, 0] = [1, oo), p(0) = 1, p(r) —> co a8 # —>— oo with

[la@)p(— ) ds<

0

[
for some M > 0. Then w(t) =f|a(t— 8)|p(s) ds< M for te BT, and w(t) - 0 as t — oc.

The proof of Lemma 6 is frivial.
In the next theorem we assume that the resolvent of the kernel ¢ of the linear
Volterra integral equation

1
o) = ft) + f a(t — s)a(s) ds
(1]

is integrable. Results on the integrability of the resolvents can be found in GmI-
PENBERG [3, 6, 7], GROSSMAN [8], MILLER [12], and PALEY and WIENER [15].

THEOREM 2. — Let ¢(t, s, ) = a(t — s)x(s) where a(t) € C(BR*) N LY(R*). Suppose

there exists an M > 0 such that f la(s)|g(— s) ds< M. Suppose also that the fol-
lowing conditions hold: 0

(i) b(t), the resolvent of a(t), is of class L(E");

(ii) For each y > 0 and for each continuous initial function ¢ with lo(s)|<yg(s),

o
fa,(t— s)@(s) ds is continuous for £>0.

Then solutiong of

i
(3) 2(t) = 1) + [alt — 5)a(s) ds

are g-uniform bounded and g-uniform ultimate bounded.
Proor. — Consider a continuous ¢: (— oo, 0] — B» with |gp(s)|<yg(s) for some

y > 0. By (ii), (3) has a unique continuous solution x(¢, p) for £>0. Sinee b(f) is
the resolvent of a(t), the solution x(f, ¢) can be obtained by

) olty ) = 1(0) + p(®) — bt — ){f(5) + p(e)} ds

where
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Let |f(?){< N for te R, and T[b(t)| dt< L. Then using Lemma 6 in (4) we get
0
3
lo(t, ) <N + u@)] + NL + |[o(t— 9)a(s) ds|< N + yM + NL + yML
0

for ¢>0. This proves that z(t, ¢) is g-uniform bounded.
The funetion u(t) is continuous by (ii), and u(f) -0 as ¢t - oo by Lemma 6.
. Since a(t) is continuous, b(#) is continuous for £>0 (cf. MILLER {13, p. 202]). Also,
13

b(t) € L\(R*) by (i). So, by Lemma 5, [b(t — s)u(s) ds — 0 as ¢ > oo, Thus, Wwe can
0

choose the ultimate bound B = N(1 4+ L) + 1.

Equation (3) is linear and of convolution type. Results on the existence and
uniqueness of periodic solutions of linear integral equations of nonconvolution type
are available in IspAwm [10].

THEOREM 3. — Let ¢(t, s, #) = a(t — 8)h(s, #). Let the functions ¢ and g satisfy
the properties stated in Theorem 2, Suppose (ii) of Theorem 2 and the following
conditions hold:

(i) R is continuous in (¢, #) for ¢ € R, x € R*; h(t, #) satisfies a local Lipschitz
condition in @, and |h(t, #)| <o|z] uniformly in ¢ for some « > 0;

(ii) There exists a § > 0 such that

fla(m dt<f, and of<l1.

0

Then solutions of

(3) o(t) = f(t) + f a(t — s)h(s, o(s)) ds

are g-uniform bounded and g-uniform ultimate bounded.

PrOOF. — Consider an initial function ¢ with |p(s)|<vg(s). Since k is continuous,
0
it follows from (ii) of Theorem 2 that fa(t— s)h(s, ¢(s)) ds is continuous for ¢>0.

Therefore, (5) has a unique continuous solution (i, ) on [0, 7) for some 7> 0.
We show that (¢, ¢) remains bounded on [0, 7), and the bound is independent of 7.
This will essentially imply that the solution (i, ¢) is defined on R and a(t, ¢) is
g-uniform bounded.

Let |f(f}{<N for t>0. From (5) we have for 0<i<7

12
(6) |2, )| <N + opw(t) + | lalt — s)|ju(s, p)| ds

0
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where

0
w(t) = la(t— 9)g(s) ds .

Let v(t) = {sup |»(s, ¢)|: 0<s<?, ¢ < 7}. Now, from (6) and Lemma 6 we obtain
lo(t, @)| <N + oy M - apo(t), O<t<7.

Since o(f) is nondecreasing, one readily sees that

N+l
[2(t, @) <o(t)< T—af

This proves that x(f, ¢) is g-uniform bounded.
Let V(f) = {sup |u(s, ¢)|: s>1, te R}, and V= lim V(t). Note that V(t) is non-
increasing and [x(t, ¢)|< V(). By Lemma 5 and (ii),
t 11
Lim ||a(t—s8)|V(s)ds = V,lim |la(t—s)] ds<BV,.
0

>0 0 >0

Now, sinee w(t) -0 as t — oo, a few caleulations on (6) yield

li < :
im sup [o(t, @)l < T

Thus, we can choose the ultimate bound B = N /(1 — «f) -} 1.

THEOREM 4. — Let solutions of (1) be g-uniform bounded. Let U be any bounded
subget of Y. In addition to (44), suppose q also satisfies the following: for a given
e>0 and L> 0 there exists a D> 0 such that [¢p e U, ¢ € [0, L]] imply

—D

f’Q(t, 8, @(s)) ds < e.

Then solutions of (1) depend continuously on initial functions in U.

PrOOF. — Let J > 0 and £¢> 0 be given and let p & U. It is sufficient to find a
6> 0 such that [y e U, lp — p|,< 6] imply [2(f, @) — 2(f, p)| < e for O<i<J.

Let > 0 be such that [pe U, {>0] imply |o(@¢, )| < f. For — J<s<i<J and
for 2 bounded by g, find M = M, of (44). Choose &> 0 such that 2¢, exp [M,J] < /2.
For this & and for J, find D>J of the hypothesis. Let « = max {{g(s)|: — D<s<0}.
For — D<s<i<D and for 2 bounded by «, find M = M, of (44).

Let e U and |p— y|,<< d so that k6 M,D exp [M,J] < ¢/2 where k= {max g(s):
— D<s<0}. Let x,(t) = a(f, ) and x,() = 2(t, v). Then from (1) we obtain for
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o0<i<d

0
la(t) — 22(8)] < 2, + f M, lo(s) — p(s)| ds - f Mjzy(s) — a(s)] ds < 281 4 M,Dkd
-

+fM1|501 — 2,(s)| ds .
By Gronwall’s inequality, we get

|1 () — 2(2)| < (2, + M, DEd) exp [M,J] <e.

This completes the proof of Theorem 4.
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