
Periodic Solutions of Nonlinear Integral Equations (*). 

M. ~7. ISLA~ 

Summary. - The existence of a continuous periodic solution o] the system 

t 

x(t) -~ /(t) +Jq(t, s, x(s)) ds , 
- - o o  

is studied using Horn's ]ixed point theorem as the basic tool..First it is assumed that the 
solutions are bounded in some sense and that they depend continuously on initial ]unctions. 
Then the required boundedness o/ solutions are obtained ]or special cases o/ q. Also, a Jew 
su]]icient conditions are provided to ensure the continuous dependence o] solutions on initial 
]unctions. 

1 .  - I n t r o d u c t i o n .  

The purpose of this paper  is to show the existence of a continuous periodic 
solution of the nonlinear integral system 

t 

(1) x(t) = / ( t )  +fq( t ,  x(,)) de, t e R = ( -  
- - o o  

where x, ], and q are vectors in /~- .  Throughout  the paper we assume tha t  the fol- 
lowing assumptions hold:  

(A1) ] is continuous in t e R ,  ](t + T ) = / ( t )  for some T >  0; 

(A2) q is continuous in (t, s, x) for --  ~ < s < t  < o% x ~ 1~,~ and q(t, s, x) = 0 
if s > t ;  

(A3) q ( t +  T , s +  T , x ) = q ( t , s , x ) ;  

(A4) q satisfies a local Lipschitz condition in x; i.e., for each s > 0 and for 

each bounded set ~2 c ~ there exists an M > 0 such tha t  

Iq(t, 8, x l ) -  q(t, 8, x~)l< MJxl-  x~l 

whenever --  h r < s < t < 2r and both  xl and x2 are in f2; 

(*) Entrata in Redazione il 10 novembre 1986. 
Indirizzo dell'A. : Department of Mathematics, University of Dayton, Dayton, Ohio 45469. 
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(A5) There  exists a continuous decreasing funct ion g: ( - - ~ ,  0 ] - +  [1, ~ ) ,  

g(O) ----- 1, g(r) ---> ~ as r --->-- oo, such t h a t  for each continuous ini t ial  
]unction 9: ( - - ~ ,  0]- ->R" satisfying IqD(s)]<?g(s) for some y > 0, 

0 

fq( t ,  s, 9(s)) ds , 
- - r  

is continuous for t~> 0. 

Assumptions (A1)-(A5) ensure t h a t  for each continuous initial funct ion 9, there  
exists a unique continuous solution x(t, O, 9) = x(t, 9) on an in terval  [0, a) for some 

> O. The  funct ion x(t, 9) = 9(t) on (-- ~ ,  0]. I f  the solution remains bounded 
then  a = c~. These are well known results on existence, uniqueness and continua- 
t ion of solutions of nonlinear Volterra integral  equations (cf. MILLV.R [13]). 

At  first the postulat ion of g in (AS) seems severe. However ,  if (1) has a fading 
memory  in the sense of Bv~To~ [2~ p. 282] then  the existence of such a g is assured. 
Assuming (1) to have a fading memory  is realistic because an equation representing a 
real world s i tuat ion should remember  its past,  bu t  the m e m o r y  should fade with 
t ime. 

The  following lemma gives sufficient conditions for the cont inui ty  of 

0 

fq(t, s, 9(s)) as 
- - c o  

s ta ted in (A5). A proof of this lemma is available in B~-RTO~ [3]. 

L ~ A  1. - Suppose for each r > 0 there  exists a continuous funct ion Qv: [0, cr -+ 
--> [0, c~) such t ha t  [9: (-- ~ ,  0] -+_R ~, 9 is continuous, ]9(s)]<?g(s), t > 0 ]  imply 

and 

(i) Is(t, s, 9(s))f <Q~(t -  8), 

(ii) 
t 

f Q v ( t -  s) ds < ~ .  

0 

Then for such 9, fq(  t, s, 9 ( s ) )ds  is continuous for t>O. 
- -oo  

The following is an example which satisfies the  conditions of Lemma 1. 

EXAiV~LE. -- :Let s(t, s, 9(s)) = a ( t - -  s)h(s, 9(s)) where + t)-~ for t >o 
and ]h(t, x) [<~x  2 uniformly in t; a and h are continuous. Then for ]9(s)]<yg(s) we 
have Iq(t, s, 9(s))[<~fl~,2(1 + t - -  s)-4g2(s). Le t  g(s) = 1 + ]s I. Since t > 0 ,  s < 0 ,  one 

has ( !  + t ,  s)-~(1 :k Is[)~<l. Thud, Is(t, a, 9(s))i<m~r~(1 + t - -  s)-~. 
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We emphasize  t h a t  g is selected b y  examining q of (1). Hav ing  selected g, let  
(Y, 1" I~) = Y be the  Banach  space of cont inuous funct ions 9: (--  c% 0] - ~ / ~  for 

which 

Mo[~ = s u p  {Iq~(s)l/g(s): - ~ < s < 0 }  

exists  and  is finite. 

DEFII~ITION 1. -- Solutions of (1) are g-uni]orm bounded if for each B ~ >  0 there  

exists ~ B2 > 0 such t h a t  [~ e Y, 19[~ < B~,t> 0] imply  Ix(t, ~o)[< B2. Clearly, B~ > B~. 

DEFI~ITI0~ 2. -- Solutions of (1) are g-uniJorm ultimate bounded for  a bound  B > 0 
if for each B 3 > 0  there  exists a K > 0  such tha t  [~0~:g, [q~]~<Bs, t>K]  imp ly  

Ix(t, ~ ) l <  B .  

DEFI~ITION 3. -- Solutions of (1) depend continuously on initial ]unctions in a 

set U c  Y if for each e > 0 and  J >  0 there  exists a d > 0 such t h a t  [~0, V E U with  
[~o-- ~ol~< O] imply  [P~o-- P~0[~< e where Pq)(t) ~-- x(t + J, q)) for - -  o o <  t<O.  

Hom~'S cHEo~E~ [9]. - Le t  Co c C~ c C2 be convex subsets of a Banach  space Z, 
wi th  Co and C2 compact and C~ open relative to C~. Le t  P :  C~-+ Z be a continuous 

m a p p i n g  such tha t ,  for some integer  m > 0, 

and 

PJ(C1) c r l < ] < m - -  1 ,  

P~(C,) c Co, m < ] < 2 m  - - 1 ,  

where PJ is the ]- th i te ra te  of P .  Then P has  a fixed point  in Co. 
I n  [2, 4] Bur ton  s tudied the  existence of a periodic solution of a nonlinear 

integrodi]ferential sys tem b y  using Horn ' s  t heorem as the  basic tool. I n  the  present  
pape r  we show t h a t  the  existence of a periodic solution of a nonlinear integral 
sys tem can be shown b y  using essentially the  same techniques t h a t  have  been used 
b y  Bur ton.  The existence of a cont inuous periodic solution of (1) is shown in Theo- 
r em I where it  is assumed t h a t  the  solutions are g-uni]orm bounded and g-uniJorm 
ultimate bounded and t h a t  the  solutions depend continuously on initial ]unctions. 
We provide  a few sufficient conditions to ensure those boundedness  for special cases 
of q in Theorems 2 and  3. I n  Theorem 4 we show the cont inuous dependence of 

solutions on init ial  funct ions under  suitable conditions. 
Horn ' s  t heorem is also used by  ARIh-O and HADDOCK [1] for periodic solutions 

of differential equat ions wi th  infinite delay. LEITMA~- and  MxzEL [11] and  MILLER 
and MICHEL [14] are two excellent papers  on the periodic solutions of nonlinear 
integral  equations.  However ,  the  equations,  assumptions ,  and  techniques of these 

papers  are comple te ly  different f rom those of the  present  paper .  
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2 .  - P e r i o d i c  s o l u t i o n .  

L E ~ A  2. - If  x(t) is a solution of (1) on [0, c~) then  x(t + T) is also a solution 
of (1) on [0 7 c~). 

The proof of Lemma 2 is a simple calculation. 

L E n A  3. - Suppose the funct ion g of (A5) also satisfies the following proper ty :  
for each H >  0 there  exists a # >  0 such tha t  g(s--H)<#g(s) on ( - -c~,  0]. Then 
for M > 0 ,  L > 0 ,  and H > 0 ,  the set 

c -- (~ e ~: I~(s)[<MVg-(~--H), [~(u)--~(v)l<Llu--vt} 

is compact  and convex.  
A proof of IJcmma 3 is available in BURTO~ [2, page 170]. 
The proof of Theorem 1 is similar to the proof of Theorem 4.3.5 of BU~TO~ [2] 

bu t  there  are some significant differences in assumptions. Therefor% we provide 
the  proof of Theorem 1. 

T~EORV,~ 1. - Suppose (A1)-(A5) hold and the funct ion g of (A5) satisfies the 
condition of Lemma 3. Suppose also the following assumptions hold: 

(a) Solutions of (1) are g-uniform bounded and g-uniform ul t imate  bounded;  

(b) I f  U is any  bounded subset of Y then  solutions of (1) depend continuously 
on initial functions in U; 

(e) For  each a > 0 and each H > 0 there  exists an L~(~, H) > 0 such tha t  if 
~: ( - - ~ 0 ] - + R  ~, ~ is continuous and I ~ ( s ) [ < ~ / ~ ,  then  

0 0 

fq(u, s, q~(s)) ds--fq(v, s, ~(s)) ds <~511u-- v] 

for  u, v > 0 ;  

(d) For  each fl > 0 there  exists an Z~(fl) > 0 such tha t  if y: [0, cr ->/~-, y is 
continuous and [y(s)l<fl, then  

V 

fq(u, s, y(s)) ds-fq(~, s, u(s)) d~ < ~ l u - -  ~I 
0 0 

for u, v > 0 ;  

(e) There exists an L8 > 0 such tha t  

I](u)- f(~)l<41u- vl 
for u, v in /~. 
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Then (1) has  a cont inuous Z-periodic solutio~ on R. 

PROOF. -- For  B > 0 of Def.  2 find B ~ >  B and  K ~ >  0 such t h a t  @I~<B implies 

[Ix(t, 9))[ < B2 for t > 0  and  Ix(t, 9))]< B for t>K~] .  For  B2 find B , >  B~ and  K >  0 

such t h a t  19)1~<B2 implies [Ix(t, 9))] < B3 for t > 0  and  Ix(t, 9))1 < B for t>K] .  Find  
H > 0 wi th  B V/g( - H)  = B3. Consider L~(B, H) of (c), L~(B,) of (d), and .53 of (e). 
Let  ~ = L~ + L~ + L~. Let  

Co = {9) e Y: [9)(s)l<B V g - ~ ,  [9) (u) -  9 ) (v ) l<L[n- -v l} ,  

C~ {9) e 1~: ]9)(s)l<B V g - ~ - - / / ) ,  [9) (u)- -9)(v) /<Llu--vl}  , 

C~ = {9) e ~ :  I~l~< B,} r~ ~ .  

Using L e m m a  3 one sees t h a t  Co, C~, and C~ sat isfy the  necessary proper t ies  
for Horn ' s  theorem.  F o r  9) e Q let  P9) ~ x(t + T, 9)) for - -  oo < t < 0 .  The m a p  P 
is cont inuous b y  (b). I t  follows f rom L e m m a  2 t h a t  Pip)-= x(t + :if, 9)). Indeed,  
b y  L e m m a  2, bo th  x(t + 2,  9)) and  x(t, PP)) are solutions of (1) on [0, ~ ) .  Notice 
t h a t  bo th  have  the  same init ial  funct ion PP). Thus,  b y  the  uniqueness of solutions 

we have :  x(t + T, 9)) = x(t, 1)9)). 5Tow, p29) = p(pp)) = x(t + T, lacf) = x(t + 2T, 9)). 
Continuing this process one obtains  psp) _~ x(t + :iT, 9)). Le t  m > 0 wi th  m T  > K -4- H.  
I n  L e m m a  4 we show t h a t  PJ(C~) c C~ for all j, and  P~(C1) c Co for : i>m. Therefore  

b y  Horn ' s  theorem there  exists a 9) in Co such t h a t  1)9) = 9) which implies x(t + T, 
9)) --= x(t, 9)) as required. 

LE~ffMA 4. - Consider the  sets Co, CI, C2, the  m a p  ps, and the  n u m b e r  m defined 
in the  proof  of Theorem 1. Then  PJ(C~) c C2 for all j, and  Ps(C~) c Co for j > m .  

PROOF. - F i r s t  we show t h a t  for 9)e C1 

IPJp)(u)-  P J p ) ( v ) l < ~ l u -  vI 

for u, v ~ (-- c~, 0]. 

Since PJ9)(t) = x(t + iT, 9)), 

IP~9)(u) - PJp)(v)l = Iz(u + iT,  9 ) ) -  x(v + iT, 9))I. 

Suppose u 4- i T < 0  and v + i T < 0 .  T h e n  

[x(u + iT; 9))-  x(v + jT, 9))l = 19)(u + iT) 9)(v + jT)t<ilu--  vl 

by  definition. 
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Suppose u + j r > 0  and v + j T > 0 .  Thea 

Ix(u + j r ,  ~) - x(v + i t ,  *)1< I/(u + j r ) - / ( v  + ir) [  

0 o 

+ fq(u + jz, 8, ~(s)) as-fq(~ + jr, s, ~(~)) as 
- c o  - o o  

u+iT v+iT 

+ fq(u + jr, s,~(s,w))as-fq(~+ jr, s,x(s,~))as 
0 0 

< z ~ l u -  ~1 + ~ d u -  vl + Z, l u -  vl = Z l u -  vl. 

Suppose u + ] T > 0  and v + # r < 0 .  Then 

[x(u + i t ,  ~) - x(v + j r ,  ~)1 = [x(u + i r ,  ~) - ~(v + ir ) l  

< [x(u + i t ,  ~) - x(o, ~)[ + IT(o) - ~(v + ir) [  

<L(u + j r )  + L(-- v - -  i t )  = Lu- -  Zv = Llu--  v[ . 

This proves t ha t  

IP~(u)  - P J q ( v ) l < Z T u -  v l 

for all u, v e (--  co, 0]. 
To show tha t  P~((7t)c C~ for all ], i t  now remains to show tha t  

I ~ ( s ) ]  = Ix(s + i t ,  ~)1 < B  v ' ~ -  H) 

for all 1, and - - i T < s < 0 ,  i . e ,  
[x(t, ~)] < B  V/g(t-- iT- -  tt) for all j, and 0 <t<jT.  We know tha t  Ix(t, ~v)f < Ba 

for 0 < t < j T  for any  j. Also, for 0 < t < j T  we h a v e - - j T - - H < t - - j T - - H < . - - t t .  
So, B %/g(t-- iT- -  H) >B fig(-- H) = B~. Thus, we have 

]x(t,~v)] < BV/g-~t--jT--H) for all ] ,  and 0 < t < j T .  

i .e. ,  

To show tha t  PJ(C1)c Co for j > m ,  we need to show tha t  

IP~q0(s)]-= lx(s + j T ,  cp)[<BVg(s) for - - c r  s < 0 ,  

[x(t, cf)I<B r ~ for - - ~ <  t < j T .  

For  t < 0 we know tha t  Ix(t, ~0)] = ]T(t)] < B V / ~ - -  H). For  j > m we have jT > H 
So, t - - i T <  t - -  H. This implies t ha t  B V/ g(t-- jT) > B V~-~-- H). Thus, 

Ix(t, ~)1 < B v / ~ t -  j~) for t < o .  
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F o r  0 < t < K we k n o w  t h a t  Ix(t, ~)l < B,. Also, for  0 < t < K we h a v e  - -  I T  

< t - - i T <  K - - I T <  - - H  if j~>m. So, B v / ~ - - j T )  > Bv /g ( - -H)  --= Bs. Thus,  

Ix(t, ~)l < B v/g(-~--- j~)  for 0 < t < K .  

Fina l ly ,  for  KKt<]T we k n o w  t h a t  Ix(t, ~>1 < B. Also, for  K<t<jT we have  

K - - j T < < t - - j T < O .  So, B V ' f ~ - - ] T ) > ~ B ~ / g ~ ) - =  B. Thus ,  

Ix(t,~v)l < B V / g ~ - - j T )  for  K < t < j T .  

This comple tes  t he  p roof  of L e m m a  4. 

3. - g-uniform boundedness and g-uniform ultimate houndedness of solutions. Con- 
tinuous dependence of solutions on initial functions. 

LElU~rA 5. - L e t  z(t) a n d  a(t) be  con t inuous  in t e R + =  [0, c~). Suppose  z(t) 
e LI(R +) a n d  a ( t ) - +  0 as  t---> oo. Then 

(2) 

t ends  to  zero as t ~ co. 

t 

re(t) = f z ( t -  s)~(s) as 
0 

P~ooF. - F r o m  (2) we h a v e  for  t > z >  0 

t 

[m(t)l<fNs)ll~(t- s)l & --t-flz(s)li~(t- s)[ & .  
0 v 

If  A(~) = sup {[~(s)[: s>~}  t hen  

o o  o o  

I~(t)l<.a(t -@~(s)f  d~ + ~(@z(s)t ds. 
0 "r 

Since A(a) -+ 0 as a ~ oo we ge t  
o o  

l im sup Im(t)I <A(O) f Jz(s)l d s  . 
b--> c o  

This is t r u e  for  all ~ > 0 a n d  the  r igh t  h a n d  side t ends  to  zero as ~---> oo. 

comple tes  t he  proof  of L e m m a  5. 

This  
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LElW_~A 6. -- Le t  a ( t )~  C(R +) n El(R+). Suppose there  exists a cont inuous de- 
creasing funct ion p :  (-- c% 0] -+ [1, oo), p(0) = 1, p(r) --> ~ as r - > -  oo with  

co 

f la(s)]p(-- s ) d s < M  
0 

0 

for somo M > O. Then w(t) =f l a ( t -  s)lp(s) ds < M for t e/~+, and  w(t) --> 0 as t -+ ~ .  
- - r  

The proof of L e m m a  6 is tr ivial .  
I n  the  nex t  theorem we assume tha t  the resolvent  of the  kernel  a of the  linear 

Volterra  in tegra l  equat ion 

x(,) = t(t) + f a ( , - -  s)x(s) as 
0 

is integrable.  Resul ts  on the  in tegrabi l i ty  of the  resolvents  can be found in GRI- 
PENBERG [5, 6, 7], GROSS:~SAN [8], MILLER [12], and  PALEu and  WIENEI~ [15]. 

Tm~0RE~ 2. -- Le t  q(t, s, x) ~--- a(t -- s)x(s) where a(t) ~ C(R +) ~ Za(l~+). Suppose 
oo 

there  exists  an M > 0  such t h a t  fla(s)Ig(-s)ds<.M. Suppose also t h a t  the  fol- 
lowing condit ions hold:  o 

(i) b(t), the  resolvent  of a(t), is of class /?I(R+); 

(ii) Fo r  each y > 0 and  for each cont inuous init ial  funct ion ~0 with  [~(s)l< yg(s), 
0 

fa(t--s)q~(s) ds is cont inuous for t>O.  

Then solutions of 
t 

(3) z(t) l(t) + f a ( t -  s)z(s) as 

are g-uniform bounded  and  g-uniform u l t imate  bounded.  

(~) 

where 

P R O O F .  - -  Consider a cont inuous ~: ( - - co ,  0] _~/~n with  Iq~(s)]<~g(s) for some 

y > 0. By  (ii), (3) has  a unique cont inuous solution x(t, ~) for t > 0 .  Since b(t) is 
the  resolvent  of a(t), the solution x(t, ~0) can be obta ined  b y  

�9 (t, ~) = i(t) + ~(t) - f b ( t - -  s)(/(s) + /z(s)} ds 
0 

0 

~(t) = f a ( t -  S)qJ(s) as. 
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co  

Let  I](t)]<~V for t e R ,  and fib(t)] dt<L.  Then using Lemma 6 in (4) we get  
0 

I~(t, ~)I<N + I~(t)I + ~ z  + lfb(t-  s)~,(~) d~l<N + 7M + ~VZ + ~,MZ 
0 

for t~>0. This proves t ha t  x(t, 9~) is g-tmiform bounded.  
The funct ion /x(t) is continuous by  (ii), and /x(t)--> 0 as t - +  c~ by  Lemma 6. 

Since a(t) is continuous, b(t) is continuous for t >  0 (cf. MILLJ~R [13, p. 202]). Also, 
t 

b(t) ~ L~(R +) by  (i). So, by  Lemma 5, fb(t-- s)~(s) as -+ o as  t ~ ~ .  Thus ,  we can 
0 

choose the  u l t imate  bound B ~ 2V(1 + L) + 1. 
Equa t ion  (3) is l inear and of convolution type.  l~esults on the existence and 

uniqueness of periodic solutions of linear integral  equations of noneonvolution type  
are available in IS~A~ [10]. 

T~EO~E~ 3. - Le t  q(t, s, x) = a ( t -  s)h(s, x). Let  the functions a and g satisfy 
the  propert ies  s ta ted in Theorem 2. Suppose (ii) of Theorem 2 and the following 
conditions hold: 

(i) h is continuous in (t, x) for t e R, x e R";  h(t, x) satisfies a local Lipschitz 
condit ion in x, and Ih(t, x)]~<~lx ] uniformly in t for some a >  0; 

(ii) There  exists a fl > 0 such tha t  

oo  

f [a(t)l dt<~ , 
0 

Then solutions of 

(5) 

and ~fl < 1 .  

t 

z(t) = /(t) -+-fa(t-- s)h(s, z(s)) as 
- - o o  

are g-un]form bounded and g-uniform ul t imate  bounded. 

P~ooF. - Consider an initial funct ion ~ with I~(s)l <~Tg(s). Since h is continuous, 
0 

i t  follows f rom (ii) of Theorem 2 tha t  f a ( t -  s)h(s, ~(s)) as is continuous for t~>0. 
- - o o  

Therefore,  (5) has a unique continuous solution x(t, qD) on [0, ~) for  some ~ > 0. 
We show tha t  x(t, ~v) remains bounded on [0, 3), and the  bound is independent  of ~. 
This will essentially imply tha t  the solution x(t, 9~) is defined on 2~ + and x(t, q~) is 
g-uniform bounded.  

Le t  [](t)[•N for t > 0 .  F ro m  (5) we have for 0 < t <  

t 

(6) Ix(t, ~ ) I<N § ~yw(t) -4- ~tla(t - s)llx(s, ~)[ as 
0 
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where 
0 

w(t) = l i d ( t -  s)]g(s) as . 
- o o  

L e t  v(t) : {sup Ix(s, 9)]: 0 < s < t ,  t < z}. Now, f rom (6) and  L e m m a  6 we obta in  

ix(t, 9) 1<iV + ar ig  + ~flv(t) , o < t  < ~ . 

Since v(t) is nondecreasing,  one readi ly  sees t h a t  

ix(t, 9)l <v(t)-< 
iV + ~yM 

1 - -  a/9 

This proves  t h a t  x(t, 9) is g-uniform bounded.  

Let v(t) = {sup I~(s, 9) 1:8 >t, t e ~+}, and Vo = ~ V(t). ~ote that v(t) is no~- 

increasing and Ix(t, 9)]<V(t) .  B y  L e m m a  5 and  (ii), 

t 

lira flu(t-- s)lV(s) ds = Volim flu(t-- s)I ds<~Vo. 
t-->co t - + c o  

0 0 

Now, since w(t) ---> 0 as t --> 0% a few cMcuL'~tions on (6) yield 

iV 
lira sup Ix(t, 9)[ < - - "  

Thus,  we can choose the  u l t ima te  bound B = N/(1 - -  aft) + 1. 

TttEOI~EM 4. -- Le t  solutions of (1) be g-uniform bounded.  Le t  U be any  bounded  
subset  of Y. I n  addi t ion to (Ad), suppose q also satisfies the  following: for a given 
s > 0 and  J5 > 0 there  exists  a D > 0 such t h a t  [9 e U, t e [0, L]] imp ly  

- - D  

- - o o  

Then solutions o f  (1) depend cont inuously on init ial  funct ions in U. 

PRoo~. - Le t  J > 0 and  e > 0 be  given and  let  ~ ~ U. I t  is sufficient to find a 

5 > 0 such t ha t  [~ ~ U, I~ - -  Y~I~< ~] i m p l y  Ix(t, 9) -- x(t, ~)I < e for O < t < J .  
L e t  f l >  0 be such t h a t  [~oe U, t > 0 ]  imply  Ix(t, 9)] < ft. For  - -  J < s < t < J  and 

for Q bounded  b y  fl, find M : M1 of (A4). Choose s l >  0 such t h a t  2sl exp [MIJ] < e/2. 
Fo r  this  s~ and  for J ,  find D > J  of the  hypothesis .  Le t  ~ = m a x  {]9(s)[: - -  D < s < O } .  
For  - - D < s < t < D  and  for ~ bounded  b y  g, find M : Ms of (Ad). 

Le t  ~ e  U and  19--~1~< 8 so t h a t  k~M, D exp [M~J]< s/2 where k : {max g(s): 
--D<s<O}. L e t  x~( t )= x(t, 9) and  x2( t )= x(t, ~). Then f rom (1) we obtain  for 
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O < t < J  
0 t 

Ix (t)- <  (s)l ds x (s)l ds<2   + 
- - D  0 t 

+fM lx (s) -- x (s) l ds .  
B y  G r o n w a l l ' s  i n e q u a l i t y ,  we g e t  o 

]x~(t)- xp(t)] <~ (2s~ + M~Dk~) cxp  [M~J] < e . 

This  c o m p l e t e s  t h e  p r o o i  of T h e o r e m  4. 

R E F E R E N C E S  

[1] O. AmINo - J. HADDOCK, Estimates ]or periodic solutions of differential equations with 
infinite delay, Notices Amer. Math. Soc., (29) 5 (1984), 1 o. 57. 

[2] T. A. BURTON, Stability and Periodic Solutions of Ordinary and _Functional Differential 
Equations, Academic Press, New York, 1985. 

[3] T. A. Bv•To•, Periodic solutions of integrodifferential equations, J. London Math. Soe., 
(2) 31 (1985), pp. 537-548. 

[4] T. A. BURTON, Toward unification of periodic theory, in Differential Equations: Quali- 
tative Theory, pp. 127-141 (B. Sz.-NAGY and L. HATVA•I (eds)), North-Holland (1987). 

[5] G. GRIe~B~RG, On positive, noninereasing resolvents of Volterra equations, J. Differential 
Equations,  30 (1978), lol o. 380-390. 

[6] G. GRIPENBERG, On the resolvents o/ Volterra equations with noninereasing kernels, J. 
Math. Anal. Appl.,  76 (1980), pp. 134-145. 

[7] G. GRIFE~BERG, On the asymptotic behavior of resolvents of Volterra equations, SIAM J .  
Math. Anal., l l  (1980), pp. 654-662. 

[8] S. I. GROSS~AN, Integrability of resolvents of certain Volterra integral equations, J. Math.  
Anal. Aplol., 48 (1974), pp. 785-793. 

[9] W. A. HORN, Some fixed point theorems for compact maps and flows in Banaeh spaces, 
Trans. Amer. Math. Soc., 149 (1970), pp. 391-404. 

[10] M. N. ISLAM, Periodic solutions of Volterra integral equations, Internat .  J. Math. Math. 
Sci., to appear. 

[11] M. J. LEITMAN - V . J .  MIZ~L, Asymptotic stability and the periodic solutions of 
t 

Ix(t) -~.Ia(t -- s)g(s, x(s) ) ds = f(t) , 

J. Math. Anal. Appl. ,  66 (1978), pp. 606-625. 
[12] R. K. MITL~R, On Volterra integral equations with non.negative integrable resolvents, J. 

Math. Anal. Appl. ,  22 (1968), pp. 319-340. 
[13] R. K. MILLER, Nonlinear Volterra Integral Equations, Benjamin, Melno Park,  California, 

1971. 
[14] R. K. MILL]~R - A. N. MIeI~L, On the response o/ nonlinear multivariable interconnected 

]eedbacl~ systems to periodic input signals, I E E E  Trans. Circuits. Syst., CAS-27 (1980), 
pp. 1088-1097. 

[15] R. E. A. C. PALEY - N. WIENER, _Fourier transforms in the complex domain, Amer. Math. 
Soe., Colloquium Publications,  1934. 


