Structural Assignment
of Neumann Boundary Feedback Parabolic Equations:
the unbounded Case in the Feedback Loop (*) (+*).

I. LASIECKA - R. TRIGGIANI (Gainesville, Florida)

Summary. — A parabolic equation defined on a bounded domain is considered, with imput acting
i1 the Neumann (or mixed) boundary conditions, and expressed as a specified feedback
of the solution x of the form: {yx,w)g, where w € Ly(R2), g Ly(I') and y 1s a continuous
operator for o < 3: H*(Q) — Ly(2). The free system is assumed unstable. In this case,
the boundary feedback stabilization problem (in space dimension larger or equal to two) fol-
lows from an essentially more general resull recently established by the authors in [L8]: under
algebraic (full rank), verifiable conditions at the unstable eigenvalues, one can select boundary
vectors, so that the corresponding feedback solutions decay in the uniform operator norm
exponentially at t — co. Here, this stabilization peoblem is pushed further and made more
precise, under the additional assumption that the original free system be self-adjoint: we show,
in fact, that one cam further restrict the boundary vectors, so that the corresponding feedback
solutions have the following more precise desirable structural property (the same enjoyed by
free stable -systems): they can be ewpressed as an infinite linear combination of decaying
exponentials. A semigroup approach is employed. Since structure of feedback solutions is
sought, the analysis here is much more technical and vastly different from [L8], where only
norm upper bound was the goal.

1. — Introduction and statement of main result.

Let £ be a bounded open domain in B’ with boundary I, assumed to be an
(v —1)-dimensional variety with 2 locally on one side of I'(). Let A(&, 8) be a uni-
formly strongly elliptic operator of order two in 2 of the form A(£, 8) = 3 a,(&) 0%,

o] <2
with smooth real coefficients @, , where the symbol & denotes differentiation. We
begin by considering a diffusion open-loop system based on Q with input applied.

on [" through mixed (elastic) boundary conditions; that is

1) DhH=—AE a8 i (0, TIXQ
12) 00,8 =), fe0

(1,0 | .
(1.3) o F DO =104,0)  in (0, TIXT (Miaed B.C.).

(*) Entrata in Redazione il 6 gennaio 1982.

(**) The final version of this paper was completed while the authors were visiting the
Istituto di Matematica « Pincherle » dell’Universith di Bologna. Support from the Consiglio
Nazionale delle Ricerche is gratefully acknowledged.

(*) Assumptions on I' will be imposed as needed; see the statement of Theorem 1.2.
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Here, f(t, ) is the input function or control function (or forcing term), defined on
(0, T1x I, which influences the solution x(¢, &), In (1.3), b(-) is also a real function
defined on /" and 0/oyn is the (outward) normal derivative. The Neumann case is
obtained when b= 0. It is known [F1] that: the operator 4, consisting of — A(£, 9)
with zero boundary conditions, generates an analytic semigroup on L,(Q), which
we shall denote by the convenient notation exp [At], £>0.

The Boundary Feedback Closed-Loop System. We now demand that the input
funetion f(¢, l) be expressed in a feedback form as a linear operator (of finite di-
mensional range) acting, in particular, as a gradient operator of the solution vector
x(t, &); that is, if y denotes any continuous operator: H*(Q) — L,(2), for any fixed
20 < %, we demand in this paper that the feedback operator be a econtinuous
operator from H¥(Q) into a J-dimensional subspace of L,(2) of the form:

J
(1.4) f(8,8) = 2 ya)(t, )y wi-)>g;(0)  on (0, TIXTI".
i=1

Here, w; and g, are fixed vectors in L,(Q) and IL,(I") respectively, and the symbol
{+, > denotes the inner product in L,(2). The vectors {gj};;l are assumed to be
linearly independent. For J == 1, we write w and g instead of w, and ¢,. The special
situation when 7 is the gradient operator, i.e. yh = Vh is covered when 2¢ = 1.

boundary input | parabolic solution a(%, -)

i, ¢) ‘ equation

.

7

Vx(t’ ‘)

k ; Lya(ty +), wy g

The Feedback System.

The following result may be proved as in [L3]; here I" may have finitely many
coniecal points [K3].

THEOREM 1.1 [L3]. — The feedback closed-loop solutions (¢, z,) of (1.1)-(1.4),
can be expressed simply as «{t, z,) = Sp(t)®g, 2,6 Ly(2), >0, where Sy(t) defines a
(feedback) O -semigroup which is analytic and compaect on L,(Q) for >0, and
whose generator A, has compact resolvent on I,(£). O

Theorem 1.1 states that the (well known) properties of the open loop (free)

system, i.e., with f(¢,() =0 are preserved, by the closed-loop system.

REMARK 1.1. — The proof of [L3] actually shows that the feedback semigroup
Sp(t) has the same properties listed above on all spaces H!™°(Q), 0 < e<$}. The
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structural assignment result of the present paper is topologically consistent with
the described regularity of feedback solutions. We also refer to [T3] for regularity
results, obtained by different techniques, that complement, and neither fully imply,
nor are fully implied by, Theorem 1.1. O

Since 2 is a bounded domain, the resolvent operator E(4, A) is compact [D2,
P. 1740]. Hence the spectrum o(4) of A is only point spectrum and consists of a
sequence of isolated distinet eigenvalues {A,}, ¥ =1,2,..., |4,| = oo, with correspond-
ing normalized linearly independent eigenvectors {@,.}, k = 1,2, ..., #, (M) being
the geometric multiplicity of ;). As is well known, since exp [A#] is analytic, the
{4} are contained in a triangular sector delimited by the rays: a - o exp [--if],
0<p < 00, /2 < 0 < m, @ real, with no finite accumulation point. Thus, at the right
of any vertical line in the complex plane there are at most finitely many of them.
Our standing assumption—for the problem considered in this paper to be signifi-
cant—is that: there are (K — 1) eigenvalues 1,, ..., Ax_; at the right of the imaginary
axis ordered, say, by decreasing real parts

(1.5) w<Relzg<< 0<Redr_1<... Re A, <Re 4, .

Thus, the generator A is unstable, in the sense that there are free solutions (cor-
responding to f(t,{) = 0), say the eigensolutions with 1<k<XK —1, that blow up
in time, in fact exponentially. Under this preliminary assumption, it is of interest
in boundary control theory to pose the following general boundary feedback siabiliza-
tion problem: identify large classes of vectors w;, ¢,, j =1, ..., J, for the least pos-
sible J, such that all solutions of the corresponding closed loop feedback system
(1.1)-(1.4) decay to zero as { —oco in the strongest possible uniform operator norm.
A solution to this problem is provided by Theorem 1.2. To formulate it, we need
to introduce the following number.

DEFINITION 1.1. — Let the integer Ir (1 <ly<dim X,) denote the number of line-
arly independent Dirichlet traces {@p.|p}, k=1,..., K—1; m=1,...,.4#, corres-
ponding to the normalized eigenfunctions associated with the wunsiable eigenvalues
in (1.5). O ’

We next introduce the J X.#, matrix

I<wl7 7@k1>7 {wy, 7¢k2>: cery SO0p, V@kv//k>
W, = | We ¥Purpy {Way yPrody wovs W2y yPrary

{wry YPr1yy Wiy yDPrzdy vovy {Wry Y Drsy

associated with each unstable eigenvalue 4, of 4, and the J X (dim X,) matrix
W= [W, W,,..., Wg_]; here X, is the (unstable) subspace of L), generated
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by the eigenvectors of {4} _;'. With X, the (stable) subspace which is the orthogonal
complement of X, in L,(2), we let P and @ be the orthogonal projections: L,(£2)
onto X, or X,, respectively. For z e L,(f), we write x,= Pz and «x, = Quz.
THEOREM 1.2 (Stabilization). — Let v = dim £2>2, and let Q either have (?) a
C=-boundary I, or else be a parallelepiped. Let the (necegsarily point (*)) spec-
trum of the generator A satisfy the instability condition (1.5). Let the restriction
A4, of A on the unstable subspace X, be diagonalizable (*) on X,. Let the given

vectors w;, § =1, ..., J satisfy the following full rank conditions
(1.6) (&) rank W, = .#,, k=1,...,K—1
at the A — 1 unstable eigenvalues in (1.5) and, moreover,
(1.6)() dim X, <lp+1,—1
where [, is defined by

rank W = [,(max {#4;, b =1, ..., K —1}<1,).

Then, there exist boundary vectors g, L,(f"), whose minimal number is discussed
in Remark 2.1 below, such that, for all 0 <s<o < %, we have that the corresponding
feedback solutions (¢, t,) = Sk(t)x, satisfy

o
[u—,
-]

~—

S p(8) g < M, 0xp [ 6t], 120

for some positive constants ¢ and M, , provided the vectors @, = (— 4,)°Qy*w;c X,,
defined as in the sobsequent Eqs (2.16)-(2.17), are in a sufficiently small sphere
of X, depending on ¢ and the g,’s. Here | |g(zuq) is the uniform operator norm
of H2s((). Moreover, we may require that — J = Re Ay + &, for any preassigned
e > 0. Eq. {1.7) implies the expected conelusion on the spectrum location of the
feedback generator Ay:

In |8g(t)]

sup Re o(4p) <lim <—0<0. [

{—>o0

(%) This assumption on I is needed only to invoke Corollary 2.2 in [81] to guarantee (3A.11)
in Appendix 3A of [L.8]. Otherwise, I' may have finitely many conical points [K3].

(83) Since 4 has compact resolvent on IL,(9).

(%) The assumption that 4, be diagonalizable is only for the convenience to have «clean »,
easy-to-check tests sueh as (1.6) (@)-(d), expressed in terms of (not necessarily orthogonal)
normalized eigenvectors {®,,}. Otherwise, resort to the Jordan canonical form is necessary.
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ProoT. — The proof is obtained as in Theorem 1.2 of [L8], except that now the
content of the footnote to Hq. (3.25) must be used to obtain invertibility of the
term in the brackets by means of |@,! sufficiently small [

REMARE 1.1. — As substantiated in [L8], the stabilized feedback semigroup in
(1.7) is generally not a confraction; ie. My>1 in (1.7). O

Theorem 1.2 gives only a desired norm-upperbound for the feedback solutions
corresponding to the suitable vectors w; and g, claimed there; it provides however
no information regarding the structure of such feedback solutions, nor does it give
any specific deseription regarding the spectral properties of the corresponding feed-
back generator A, beyong the indispensable spectrum location, say: Re o(4y) <
<—0<0.

With this preliminary background, we can finally introduce the problem investi-
gated in this paper. The purpose of the present paper is to push further the above
stabilization result and, in fact, to pose and solve a more precise problem—which
we call structural assignment problem. This regards the exact structure of the feed-
back solutions (not merely their norm upper bound), as an infinite linear combina-
tion of decaying exponentials (cf. footnote, (6)). To achieve this, we will restricte
our attention to the natural case where the original generator A with zero mixed
boundary conditions is self-adjoint (whereby, if A is stable, the desired structural
property is automatically satisfled with vectors g,=0). With 4 selfadjoint, the
eigenvalues {1} in (1.5) are real and the corresponding eigenvectors {@,,} form an
orthonormal system in L,(£2). We now state the main results of the present paper
in the technically simpler situation where all eigenvalues have geomefric multi-
plicity equal to one. We then write @, instead of @,,.

THEOREM 1.3. — In addition to the hypotheses through (1.6b) of Theorem 1.2,
we assume that the original generator A be self-adjoint and have (real) eigenvalues
as in (1.5) with geometric multiplicities .#,=1. We assume further that w,e L,(Q)
satisfy

(1.8a) 0 7 {wy, Y@y <const/m' T2 . m=1,2,..., i=1,..,J

so that the vectors w,;, = (— 4,)°@y*w, defined as in the subsequent Egs. (2.16)-
(2.17), satisfy

(1.8b) 0% Wiy Py <constim, m=1,2,...;5=1,...,dJ
(as one sees via (3.21)). Then

[ for all such vectors w;, with sufficiently
(1.8¢)
small I_-norm
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there exist boundary vectors g,e I,{I'), whose minimal number is discussed in
Remark 2.1 below, such that the corresponding feedback solutions x(z, #,) = Sz(t)x,
of the feedback system (1.1)-(1.4), with initial datum

(1.9) (%) 20€ D((eI — A)7%) = H¥"2(Q)  (see (2.6))

can be written for >0 as:

KE-1 o

(1.10) (%) (eI — AY=u(t, @), y> = 3 biexp [0] 4 3 g, exp [o1]

re=1 r=1

for any y € L,(2). (Notice that the equality is in the weak-topology of H¥~2¢(Q)).
In (1.10), the {¢;}< ' are negative constants, which can be preassigned in any chosen
interval (in particular, at the left of i), that replace the unstable eigenvalues
Ay -ery Agy, While the {«,} are a suitable sequence of negative constants having the
same asymptotic behavior as the {A,}: [a,— A,] =0 as k —co. (See (3.38).) More-
over, the coefficients {y,} are in 1, and, along with the coefficients {b,}, are exhibited
in the proof as dependent on ¥, the initial datum in H!~2¢(0), and on the system
parameters, including the sought-after vectors g,€ L,(I): (see equation (3.58b) and
Eq. (3.59) which depend on the sequence {d,}. The sequence {d,} is related to the
sequence {n,} by (3.46)-(3.47) which, in turn, is related to the initial point and the
system’s parameters via (3.16)).

The vectors g; are given by: g,= g, -+ g;, where the §,’s are the solution of the
finite moment problem (3A.7) in Appendix 3A of [L8] as applied to the present
case, unique in the space

F=span {Qpplp, k=1,..., K—1;m=1, .., .M.}

and the g;’s are any vectors orthogonal to #.
An expansion similar to (1.10) holds, this time in the weak topology of L,(L),
if the initial datum is only assumed in L,(Q). 0O

In the self-adjoint case, the stabilization result is then recaptured as a conse-
quence of Thm. 1.3, via a double application of the Uniform Boundedness Principle.

(5) Here ¢ is a positive constant greater than the largest unstable eigenvalue, so that the
fractional powers are well-defined.
(®) A (scalar or vector valued) function z(t) of the form

2(t) =3 apexplouyt], teR+

k=1

with o, negative real numbers, where oy, — — oo a8 k — oo, and where {a,} €I, will be called
in this paper a function of the class IDE (Infinite linear combination of Decaying Huponentials).
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A reformulation of expansion (1.10) in terms of spectral properties of the feed-
back generator is given next. To appreciate it, one should note that the feedback
generator A, corresponding to those special vectors w; and g; as in Theorem 1.3,
that produce feedback solutions of class IDE cannot in general be a self-adjoint
operator ("), so that an orthonormal basis in L,(2) of eigenvectors of 4, is out of
question.

COROLLARY 1.4. — The following spectral properties hold for the feedback gen-
erator A, corresponding to the vectors w; and g, of Theorem 1.3:

(i) the distinet constants {¢,}Z!, and {«}°, are eigenvalues of such feed-
back generator Ay;

(ii) the corresponding (normalized) eigenvectors {¢; ,}/=;", and {e; }>, form a

(Schauder) basis in L,(£2) (non-orthogonal, when the g¢/s or the w,s are not all
zero) 8o that the following expansions apply:

K—1 <o ,
(1.11) @=3n@ep;+ 3 n(*)ep,, @elyiQ)
Ge=1 =1
KE~1 co ,
(1.12) Apw =3 (@) ep; + 2 an@)en,, z€D(Ay)
i=1 r=1

where the bounded linear funetionals {n}, {r,} and the eigenvectors {es.}, {ep,}
are biorthogonal sequences, say:

(e )_1 n=m
nn F,m _0 ’)’L;ém

Similarly for (5,} and {ey,}. Thus

K—1 o0
8p(t)xg= 3 n(w)exp [l ey + > n,(w) exp [a,1] el',’, . O
i=1 r=1

The general cage in which .#, 1 can presumably be handled similarly. How-
ever, its detailed treatment would have considerably overloaded the presentation,
particularly at the notational level. It is therefore analyzed only in the first part
of the proof (section 2), while the more technical part of the proof (section 3) is re-
stricted to the case 4, = 1.

Our present results on the structural assignment problem for (1.1)-(1.4) represent
a step forward over the same problem for a parabolic system with Dirichlet B.C.
with «interior observation » treated in [L2], where y was the identity operator in

(") Since, in this case, 4 would be dissipative, contrary to Remark 1.1.



138 T. LASIECKA - R. TRIGGIANI: Structural assignment, etc.

L,(Q). This extension is achieved here by refining in a number of places our original
proof in [L2], and by further sharpening some crucial estimates in our analysis.
However, because of assumptions (1.8) (b-¢), the present results do not cover yet
the fully boundary feedback case, where y would be a continuous operator H?(Q) -
- IL,(I'), 20 < %, in particular the Dirichlet trace yr = x| (¢« boundary observa-
tion »).

In this very important case, however, a solution to the boundary stabilization
problem was provided in [L8] in the non necessarily self-adjoint case, thereby
disproving a belief to its impossibility, expressed in [F3] on a basis of a one-dimen-
sional (v == 1) negative example.

2. — Proof of Theorem 1.3.

Preliminaries and finite dimensional part for general M.

As in our previous work [L1-L3, L8, T3-T4], our approach to freating non-
homogenous boundary problems consists of replacing the feedback system described
by (1.1)-(1.3) and (1.4) with a corresponding semigroup-rooted abstract version.
This was developed only very recently with the aim to model, through a variation
of parameter type formula, nonsmooth boundary input parabolic equations. See
the original references [B1, B2, W1] for the full development, at least in the Dirichlet
case. The mixed case can be treated similarly (see comments in [T3] following
(2.4M)). See also the very general and unifying treatment given in [L1]. In the
case of the boundary feedback given by (1.4), these abstract semigroup versions
give rise to the following integral model:

[

(2.1) o{t) = exp [At]w,— | A exp[A(t— 7)1 M i {yw(T), wirg;dv .
i=1

0

Here, — 4, is the elliptic operator with zero mixed B.C.; the «mixed map » is the
continuous linear map L,(I") — HY(RQ) [L5], [N1] defined by y = Mg, where

(2.2) —AE Yy =0 in @ (ﬁhby):g-
5’)’] I

Since £ is 2 bounded domain, the resolvent operator R(fS, A) is compact [D2;
P. 1740]. Hence, the spectrum ¢{A) of A is only point spectrum and consists of a
sequence of real isolated eigenvalues {A,} with no finite accumulation point:
Ap—>—o0, and with a corresponding orthonormal basis of eigenvectors {@Pin},
k=1,2,...;m=1,..., My, M being the geometric multiplicity of 1,. Following
now a procedure introduced in [T2], we let X = L,(£2) be decomposed into two
orthogonal subspaces X, and X, corresponding, respectively, to the subsets {4, ...,
vy Ax_a} and {4, k> K} of the spectrum of A that satisfies assumption (1.5). (The
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subseripts % and s stand for «stable» and «unstable », respectively.) Here, we
appeal to the standard decomposition theorem as in [K1, Thm. 6.17, p. 178]. With P
denoting the orthogonal projection of L,(2) onto X, and @ = I — P, then Q2(4)c
c2(4), X, and X, are invariant under A and hence under the semigroup exp [41].
As for the spectra, we have o(d4,) = {A, ..., 4x_s}, 0(4,) = {4, E>K}, where A,
is the restriction of A on X, A, is bounded in fact, finite-dimensional.

Finally, P and ¢ commute with A, hence with the semigroup exp [4{]. We
shall henceforth use the notation x, = Pz and 2, = @Qz. Notice that the fractional
powers of (— A,) are well defined. Notice also that the definition of M in (2.2) always
implies Mg ¢ D(A), unless g = 0. Thus, for ¢+0, we always have QMg ¢ P(4
However, the following relations, which we later apply crueially, hold:

(2.3) D((— 4 = QHI*(Q), 0 < o<}
with norm
(2.4) (@] g8-20(0) = [(— As)i_gwir,z(m .

Relations (2.3) are contained in the literature of fractional powers [F2], [L5], [L1;
App. B], [M2; p. 187]. Now, elliptic theory [L4; pp. 187-188], [N1] shows that

(2.5) range of M c H{Q)
and from (2.3) we then obtain
(2.6) Q [range of M]cQH* *(Q) = 2((— 4,79, 0<o<i.
Having introduced the relevant machinery, we are now in a position to begin

the proof. We project (2.1) onto X, and X,. By virtue of (2.6), the projections of
the solution () in (2.1) onto X, and X, are, respectively

[

(2.7 @y (8) = exp [A, t]@eu— [ 0xp [Au(t — 7) i A P Mg [{yzu(t), wy +
° + Lyx (1), wyl dz .
(2.8) z,(t) = exp[4, t]%rf iteexp[4.(t—7)] i Jie

: QMgi[<7ms(T ’ w; + <7003(T)a wa>] dr.

These projections are coupled. Considering the unperturbed part of Hq. (2.7) we
are led to study the equation

J
(2.9) g=A,z+ z A PMgyz,w;y, 26X, 2(0) = oy .

j=1
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We then observe that this can be more conveniently rewritten as

—

(2.10) t=4d,7,

where 4, is a square matrix of size equal to dim X,, depending on the vectors
A,PMg, and w; (besides 4, and y). This can be seen by using in X, the basis of
orthonormal eigenvectors @y, k = 1, ..., K — 1, which make the matrix correspond-
ing to the operator 4, diagonal. As we are seeking suitable boundary vectors.
g;€ Ly(I"), which produce the desired stabilized feedback semigroup, we find it
eonvenient to consider the projections (2.7) and (2.8) after setting

(2.11) 0, LA, PMg;  q; L (— A)%QMy;, j=1,..,J,

and to think of the vectors p; and ¢; as, for the time being, just vectors in X, and
X, respectively, without any connection with the vectors g, which generate them.
The question of synthesizing p, and ¢, through an appropriate g, will be taken up
later on. (Appendices 4 A-B.)

With (2.11) in mind, we obtain a suitable structural assignment of the solution
to (2.10), for a suitable choice of vectors p;, through the following lemma.

LeyvMa 2.1, — Suppose that the vectors w,e L,({2) are chosen as to satisfy the
full rank econditions (1.6) (¢) at the unstable eigenvalues and, moreover, condi-
tion (1.6) (b).

Then

(i) there exist vectors p,, j=1,...,J in X, such that the corresponding
matrix 4, in (2.10) has a set of eigenvalues arbitrarily close to any preassigned set
of (dim X,)—complex numbers (appearing in complex conjugate pairs, if 4, and p;
are all real).

In particular, these eigenvalues of A, may be preassigned to be all distinet,
equal to negative constants ¢,, ¢ =1, ..., dim X, and, for instance

(2.12) Re A< Caim x, < -+ < 61<< Re Az< 0,

in which case the solution to (2.9), or equivalently to (2.10), is an X,-function of
the form:
dim X

(2.13) #(t) = exp [A,t]wou =3, exp [0:t](Bou; Yi> P: -

=1

Here, v, is the normalized eigenvector of 4, corresponding to the simple eigenvalue
¢; and the {y;}, ¢ =1, ..., dim X, form a basis on X,.

(ii) Moreover,. when dim Q2 = y>2, each vector p;, j =1,...,J can indeed
be synthesized, as required by the left equality of (2.11), by any of the infinitely
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many vectors g,€ L,(I"), satisfying the moment problem (3 A.7) of the proof in
Appendix 3 A in [L.8]. The minimal number J required is discussed in Remark 2.1
below. The cage dim 2 = v = 1 is also included, provided dim X,<3.

Proor oF LEMMA 2.1, — See e.g. Appendix 3A of [L8], where the proof is given
in the more general case of y being a continous operator: H*(Q) — Ly(I"). O

REMARK 2.1. — Conditions (1.6) (a) and the definition of I, in particular imply

(2.14) J>max {#,, k=1,..,K—1} and J>I,.

Moreover, the proof given in Appendix 3 A of [L8)] shows that the largest multi-
plicity of the unstable eigenvalues is indeed the minimum number of boundary vee-
tors g; required for the conclusion of Lemma 2.1, provided that the Dirichlet traces

{Diwlr}y, k=1,..,K—1; m=1,.., 4,

of the eigenfunctions are linearly independent (¢).

Otherwise, more vectors g, L,(I") are needed. For instance, if /#,=1, 1<k<
<K —1 and (®) lp< dim X,= K — 1, then J suitable vectors g,e L,(I") that satisfy
the moment problem (3A.7) in Appendix 3A of [L8], where

J>dim X, —1l,+1,

will suffice (). A full analysis of the situation, amounting to a certain output
stabilizability problem in X, is contained in the proof in Appendix 3A of [L.8]. O

Application of Lemma 2.1 to the unperturbed part of the projection (2.7) allows
us to rewrite (2.7) more conveniently as

¢
— — J
(2.15) #,(t) = exp [4, t]@,,—|exp [4.(t — 7)] glpf@ws(r)y w;) dr .

0

To handle the coupled projections (2.7) and, (2.8), we need the following consid-
eration. Fix 20 < £ in the definition of y, given above (1.4).

Therefore, if we take H(Q) and L,(Q) as pivot spaces [Al, p. 48], it follows
that the adjoint operator y* is a continuous operator: L,(Q) — H*(Q).

(®) This is the case when £ is a parallelepiped.

(®) This is the case when 2 is a sphere.

(**) In the case of one dimensional £, where J and I, are at most equal to two, the
unstable eigenspace cannot be of dimensions larger than three.

10 - dnnali di Malematica
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By (2.3), we can then write

(2.16) pas(t), wy p= {ya, (1), w;> -+ {ya,(t), w)> =
= (@, (1), Y*W;) oy + (B(8); V¥ W;) graoay =

= <Azwu(t)7 wgu> + <(_— AS)st(t), /b—(jjs>
where (,) is the inner product in I,(2) and where we have seb

(2.17) Wy, LA Py w,, W= (— A4,)°Qy*w; .
Notice that in (2.17), Qy*w, is written, by (2.3), as belonging to the largest pos-
sible fractional power of (— 4,), and hence a further «transfer» of an additional
fractional power of (— A4,) from the left to the right of the second inner product
in (2.16) is not allowed.

Continuing with the proof of Theorem 1.3, we see that, by (2.17), the projee-
tions (2.15) and (2.8) can then be rewriften in the equivalent form

i
r J

(218)  @,(t) = exp [, t]ag,— J exp [Au(t — 7)] 3 A~ 4)°w(x), By d

0
11

J
(2.19) w.(t) = exp {Ast]%s——f(— A)ereexp [A,(t— 7)) _Zl I (— AL)°wy(7), Wiy +
iz
L]
+ <AZ%(T)7 ﬁ’au>] dT
which we shall find more useful.

REMARK 2.2, — With reference to Lemma 2.1, a vector in X, will always be re-
ferred to the basis {y;}i@%«. On the other hand, a vector in X, will always be refer-
red to the basis {Dy,}ire . We shall also adopt, henceforth, the following short

notation:
if velX,, we set (v);=<{v,p,>, i =1,..., dim X,;
if velX,, we set [v]p= 0, Py, k=K, K+1,.... O

REMARK 2.3. — For handy reference below, we collect here the following results
and observations. Let 1,3~ ¢;. Then,
i

(2.20a) [exp Dinlt— o) exp [0] ar — SR Loe = 0xp [hat]

Ci— Ay

’

0

and.
¢

Y

(2.200) Jexp [L(t — 7)] 6xp [¢:(r — 0)] dr = exp [¢;(t — )] — exp [A(t — 0)]

e;— Ay
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In other words, convolving two different exponentials preserves the exponential
character. By contrast, we have

i

fexp [e(t— t)] exp [eT] dT = t exp [ct] .
o

Thus, convolving the same exponentials destroys. its exponential character. These
remarks will play a crucial role in the development given below in proving the de-
sired structural properties of the feedback solutioms. O

3. — Continuation of Proof of Theorem 1.3.

Infinite dimensional part, when M, =1.

For simplicity of notation we assume henceforth that the conclusion of Lem-
ma 2.1 holds with just one vector; i.e. with J = 1, in which case we write w, ¢, p, ¢
instead of wy, gy, Py, 0.

The proof now preceeds through a lengthy sequence of intermediate results.
As the geometric multiplicity .#, of all eigenvalues is assumed identically one:
M= 1, we then consistently write @, for @,, throughout. With the constant p
in (2.3) fixed once and for all, we also set ‘

(3.1) (—4)%QMg = g = {g:}i2c€ X, = QLy(Q)
for the sought-after vector in X,, and

(3.2) A, PMg=p = {p}E'e X,= PL,(Q)

for the correspending vector in X,, provided by Lemma 2.1. Here, according to
the convention of Remark 2.2, we mean explicitly:

(3:3) =14, P, k>K but =Py, t=1,.. ,K~—~1.

We first consider the projections (2.18), (2.19) for J = 1, thinking at first of p
and ¢ in (3.1), (3.2) as, for the time being, just vectors in X, and X,, respectively,
without any connection with the vector ¢ € L,(I") which generates them. The ques-
tion of synthesizing p and ¢ through an appropriate g will be taken up toward the
end of the proof, in Appendices 4A-4B. (The question of synthesizing only p was
solved in the proof of Lemma 2.1.)

Finally, throughout this section, the initial point x, is assumed to lie in
D((— A0, with no further explicit mention made (see (1.9)).
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3.1. Reduction to a Volterra Integral Equation in Z(t) = {(— 4,)°z,(1), @,>.

Our starting point is the pair of projections (2.18), (2.19) rewritten now for J = 1

¢
(3.4) @,(1) = oxp [A,t)a0—[exp ALt — 1P {(— Au),(x), B> dv
0

11
(3.5)  aufi) = exp [4, oo — | (— 4172 exp [A,(t — D)]gl<(— 4,)7o,(2), ) +
0

+ (@u(z), Doyl dv
where we have defined the vect(nj w,e X, by
(3.6) Wy = A3W,, le., by <{Aiw,(7), W) = {w(7), B, .
Furthermore, set
(3.7) s+14+o¥d<1, for suitable 0, once ¢ is assigned

and introduce the unknown function #(1):
(3.8) 2(t) = {(— 4,)°2,(1), Ws) .

Applying (— 4,)° to (3.3) and taking the inner product with #, yields, by virtue
of (3.8),

(39) wl(t) = <6XP EI:A-st]('_' As)gwou 77;3>
t

—[<(— 4" exp (44t — g, BLL(E) + <aulw), B> do

]

We next compute, by means of (3.4) and a change in the order of integration,

i

J =40 exp L4, 6— 7)1a Cou(m), B> dv =

0 t
=[(— 4)° exp [A,(t— ©)]a<oxp [, 7]a0s, > do

0

¢ &
——Jﬂ f(- A,)? exp [A,(t — 7)]glexp [A,(T — 0)]p, B> £(0) dr do .
0

a
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By (2.3), (2.12) and the notational eonvention in Remark 2.2,
1

f (— A,)? exp [A.(i— el ) de =

o0

=3 2{ m’expmk(t«-m oxp [0,7)(oa) () 7 —

k=K i=1
-—f f 23 exp [A,(t — 7) exp [Gi(r — 0)1(Wu)pi (o) dr da} 2Dy, =

(@ou) (@) A3 —

0 o
=5 Kg {exp [o,t] — exp [A,1]

=K i=1 C— Ay

B fexp [o4(t — 0)] — exp [Ault — o))

o 210) o) pit}d . (b (2:20)

1]

Hence, (3.9) becomes

(3.10) () = n{t) +f£(t — D)) dr, O<i<oo,
0

where, in the notational convention of Remark 2.2

(8.11)  #lf) = {exp[At)(— 4,)°2y, @,> —
3 Extexpled] —exp [At]

COMECAR AN VI

b=k i=1 C;— A

KE—1 . o -"3 ZG
— 3 explofl(wa)@), 5 DR

i=1 ¥<E Fr— C;

+ 5, e fi- arnl—g3 G0,
K=K i=1 Ap— 0y
(8.12)  A(t) = — {(— 4,)% exp [4,t]g, B,> +
S ESlexp [e;t] — exp [A4]

+ 2 2

K=K i=1 ¢;— Ay

E Qk[wx]kak

r—Ci

( Qk[ s]k’lk = E exp [0 t]P wu)t
— Z exp Ukt]%[wa]k%{ Z ‘e (wu)}
k=K i=1 Ap—0C
We can rewrite (3.11) and (3.12) in a simplified manner as

{3.13) »(t) = % n, exp[f,t], 0<i<oco,
r=1

{3.14) A(t) = 3 hoexp{f.t], O0<t<oo

r=1
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where

(3.15) f.=¢, +r=1,.., K—1; and B,=2,, r=K K+1,..

o 20 8
(3160/) Ny == <a;ou)r(wu)r z Qk[ws]kzlc

=% A—Cr

(3.16b) " — [(— A,)i~ewy, ), [,],
9. .=

, r==1,.., L —1.

Bou) o (Dy) s
18 QT S]rla z g 0—‘_.) s 7'=K,K+1,..

(Here, x,, is written in the largest fractional power of (— A,) compatible with
the assumption (1.9)).

(3.17a)  ho= — p.(i) sz q;[:"__]z , r=1,..,KE—1.
(3.17b)  hy= — [ A2 {1 — Z o g } r=K,K+1,...

Notice that the existence of the solution #(¢) in (3.10), as an analytic f-netion
for ¢ > 0, is already known through the existence result Theorem 1.1. One may
alternatively invoke the standard theory of linear Volterra integral equations [M1].
1t should be kept in mind that the functions »(t), 4(f), and hence #(t), depend upon q.

The above expressions will play & crucial role in the analysis, given below, of
the Volterra equation (3.10). Notice that each coefficient », and k,, for » > K, depends
only on the corresponding coordinate g,; while for 1<r<K —1 it depends in a
cumulative way on all {g}s> . This fact will be a source of difficulties. We also
remark that we shall henceforth borrow freely from Eq. (3.15) both the notation
{8,} in place of {¢,} and {4}, or the other way around.

3.2, Euxistence of admissible ’Uectors q generating Volterra solutions (1) of class IDE
with negative exponents {a,};>, all distinct from all {f,}:2,.

In order to establish that the solution Z(#) of (3.10) is of class IDE for a suitable
vector ¢, we find it convenient to associate with Eq. (3.10) the following sequence
of auxiliary Volterra equations:

(3.18) dylt) = my(t) + [Aylt— ¥ y(m) d
0
where N =1,2,..., and
(3.19a) sy (t) = E'n exp [$,1],
r=1 O<i<oco.

(3.190) hy(t) = §, b, exp [B,1]
r=1
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LEMMA 3.1. — Let the initial point x,, be in 2((— 4,)¥¢) and also let g € QL, ().
Then,

(i) the corresponding sequences
(_ As)l_a{nr :iK g {A:_dnr}:iK and (— As)_a{hr}:iK = {Zr_dhr}:ilf
defined by (3.16), (3.17), all belong to the space l;; moreover

_ consgt _ const
b, < ——; A7h, < —;

'(ii) the corresponding functions #(f) and #4(t) are functions of class IDE on
t>0 and ¢ > 0, respectively, and. they are both absolutely Laplace transformable;

(iii) the corresponding functions x,(f) and #,(¢) in (3.19) converge uniformly
over R+ and [a, 00), a > 0, respectively to the functions «(f) and 4(¢) in (3.13) and
(3.14).

Proor. — Conclusion (i) is immediate from the explicit expressions (3.16) and
(3.17) of the coefficients via (1.8b). As a consequence, »(f) and #4(f) are the uniform
limits over R¥ and [a, co) of the decaying exponentials, thus establishing eonclu-
sion (ii), as required by definition of class IDE. Conclusion (i) also clearly implies
(iiy). O

We start with a general result which will be refined and complemented below
in Theorem 3.9.

PROPOSITION 3.2. — For any vector q € QL,(f2), the corresponding solutions (f)
to the Volterra equation (3.18) converge uniformly over R¥ to the corresponding
solution #(t) of the Volterra equation (3.10).

PROOF. — Let /(s) = > h,/(s — f,) be the Laplace transform of 4(t) of (3.14) for
r=1

Re s > 0. By Lemma 3.1 (i) on {&,}, we can achieve |1 — £(s)| > p,> 0 for Re s > u,
for a suitably large u. Then the (onesided) Laplace transform Z,(s) of &,(f) exists
here by

; . 2y(8)

ds—-**‘— ~ =
() ey Y=EE+L.

and the uniqueness of the solution () to (3.18). Then, Lemma 3.1 (iii) and the
definition of the (one-sided) Laplace transform imply that, as N — oo, the fune-
tions 7y(s) and Z,(s) are uniformly convergent to #(s) and 4(s), respectively, over
Re s suitably large. Again, by the uniqueness property- of the solution #(f) to
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(3.10), the functions Z,(s) also converge uniformly over Re s suitably large to the
function Z(s). Bub then, the inverse Laplace integral (see [D1; Thm. 24.4, p. 157 1)
implies that, as N — oo, #,(t) converges uniformly to #(t) over [0,00). O

We next establish some properties enjoyed by the Laplace transform of solu-
tions #(t).

PROPOSITION 3.3. — For any vector g € QL,(f2), the Laplace transform Z(s) of
the corresponding solution (), extended over the entire complex plane C in a
natural way by the right-hand side of (3.20) below, is a meromorphic function
over C,

Moreover, if, for a suitable g, the corresponding (continuous over R¥) solution
4(t) of (3.10) is of class IDE, then Z(s) has countably many simple poles {ot.}, o, real
and negative, which are simple zeros for [1 — A(s)]: 4(«,) = 1. Such poles are either
finitely many or elge, if infinitely many, have moduli tending to infinity:

lo,] >0 as r >oo.

PRroOF. — As in the preceding proof, we have explicitly, from (3,13), (3.14),

>
L8

[
I
i

(3.20) ) = SR = 1

which is the Laplace transform of #(¢) for Re s >0 and is extended to C by the
expression on the right-hand side. As the ratio of two meromorphic functions over C
(with common poles {8,};>,, in fact), Z(s) is meromorphic and hence its poles are
either finitely many or else their moduli tend to infinity [K2].. In addition, #(s)
admits an expansion as the sum of its principal parts plus an entire function (M-
TAG-LEFFLER, Theorem [K2]; [L4]). The poles of 2(s) are zeros of the denominator
[1 — A(s)]. If the real s, is such a zero with multiplicity m, then the term ! exp [g,t]
occurs in the antitransform of the Mittag-Leffler expansion of Z(s). Hence, the state-
ment on the {«,} is a consequence of the assumed IDE character of (). O

We proceed now to characterize the admissible vectors ¢ (recall Eq. (3.1)) whose
corresponding solution #(t) are function of the class IDE with the additional require-
ment that the exponents be all different from the set {8,}:>, in (3.15) (recall Re-
mark 2.3).

REMARK 3.1. — We refer here to a basic known result on the asymptotic behavior
of the eigenvalues of second-order self-adjoint elliptic differential operators, which
will play a crucial role below. If » denotes, as in the Introduction, the dimension



I. LastECKA - R. TRIGGIANI: Structural assignment, etc. 149

of the euclidean space containing the domain £, then (see [T. 1; pp. 392-395], [Cl;
Ch. VI, §§ 3.3-3.4]) the estimate ‘

(3.21) fo=I~E", k=K K+1,..

holds. Here, and hereafter, the symbol ~ means that the left-hand side can be
estimated by the right-hand gide from below and from above with the aid of constants
independent of the variable in question (%, in this case) going to infinity. [

We now let m be the smallest (non-negative) integer stricly greater than
((#/2) —1). Then, (3.21) implies

© 1 < 1
2 m > kZ(m+1)/v< 0.
k=1Px B=1

Therefore, by virtue of the Weistrass factorization theorem [L4; p. 390], the func-
tion B(s), defined by

(3.23) Bis) = [1 (1 ——’l)E(s, By, m)
LR 2
where
» at $ 1/s\? 1/s\m
(524 oy pum) 2 exp [ 55V 4 ()]

is an entire function with zeros of multiplicity one precisely at the points {f,};2,
and no other zero (the integer m is the genus of $(s)). Then, the meromorphic fune-
tion Z(s) in (3.20) can be rewritten as the ratio of two entire functions, in fact

where
(3.25) D(s) = (1 — 4(s)) B(s) ,

while D(s) and (1 — 4(s)) have precisely the same zeros. To motivate our further
analysis, let us now assume, in the light of Proposition 3.3, that there exists a vector
g € QL,(2) (this assumption will be shown later to be non-void) such that the cor-
responding function (1 —Z(s)), obtained through (3.17), has countably many nega-
tive zeroes, all simple, of the form {x,}s°,, any o« being different from all the {§;};2,,
but with a similar asymptotic behavior: a,~ f;. Then, the function

ﬁ (1 ——s-)E(s, B, m)

E=1 A
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is well defined and vanishes precisely at {«,};>,. By standard complex analysis
theory [K3; p. 6], such a function differs from D(s) at most by a faetor exp [2(s)],
where 2{s) is an entire function; that is,

D(s) = exp [=(s ﬁ (1~——) 8y Bry m

As a matter of fact, exp [#(s)] must be a constant and, in fact, equalto 4, = H (ot /B),

provided this infinite product is well defined, i.e. provided (o;— f;) //f?,cel1 To see
this, one writes

e = (i )(ﬁ%)fji:fi:é?

from which one obfains the limit value 4_ by letting s go to infinity in any way
except along the negative real axis; this, leads to exp [2(s)] as being O(1), and
hence, by Liouville’s Theorem, as being the constant 4_,. We have thus proved
the first part of the following claim, whose assumption, as already remarked, will
be shown later to be non-void.

PROPOSITION 3.4. — Let there exist a vector ¢ = {g,};° € @L,(2) whose cor-
responding function 4(¢) in (3.14), obtained through the constants {,};>, of (3.17).
satisfies ’

Aoy)=1, k=1,2,... with multiplicity one,
for a negative sequence {o};>, with
(3.26) or By ap~fBr, and (tp—Be)Brely, k=j=1,2,...
Then, the following identity over C holds:
(3.27) (1 — A(s)) B(s) = D(s),

where $s) is defined by (3.23) and

(3.28) D(s) = Ao ﬁ (1 —“i) E(sy ey m),

where
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Moreover, the correspending sequence k. is expressed by

o5 1 ( Jj—’k)Ewnﬂk,m)
ﬁ( BB, o m

(3.29) By =

, r=1,2,...

PrOOF. — The entire proposition was i)roved above, following (3.25), except for
the expressions (3.29), which we now derive as a consequence of (3.27). For the
assumed ¢, rewrite (3.27) explicitly as

hr S hi -
(1 — —-—ﬁ;—q% . _ﬂj)&’)(s) = D(s).

In other words, by (3.23), for r =1, 2, ...,

j=1 r k=1
istr L#r

(1— i sﬁjﬁj)ﬂi(s) —{—71’ ﬁ (l_ﬁik)E(s’ﬁ’“m) — D(s).

We now set s = 8, in the above expression. Using $B(8,) = 0 and, (3.28), we obtain
the desired formulag (3.29). O :

The following Lemma will be needed.

LemmA 3.5. — For o~ S, we have

~E)mip., oy m)

i

ER
I8
A /—\
i

(1) = 3 ~1;
kH 1 “#)E(ﬂra ﬁka m)
fr g
00 o,
il (1 - BZ)E(“” By m)

(ii) 22" - ~1.
H( _“—;)E(“r’ﬁmm

&Y

i
<+

Proor oF LEMMA 3.5. — We have, for v,k =1,2,...,

(3.30) Be B amdalso % ~%

Xy ﬂk ‘ ,Bk 247

and the conclusion follows. [
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CoRrOLLARY 3.6, — Under the assumptions of Proposition 3.4, the following
asymptotic estimate holds for the sequence h, in (3.29) generated by the assumed
vector ¢, as 7 —o0,

(3'31) by~ o, — ﬁrN Q'r[ws]rﬂg —0 as ¥ —0co.

PROOF. ~ The first ~ on the left stems from (3.29) via Lemma 3.5 (i). The
second, ~ on the right then follows from (3.17b), as the term in { } in that equation
is obviously ~1. By ¢[@,],<const/r (see (1.8b)) and by (3.21), we get

?.2617

(9,182 < const -0 asr —oo

P

for v = dim 2>2, as assumed, cf. (3.7). O

REMARK 3.2. — The proof of Proposition 3.4 and Corollary 3.6 actually refines
the initial assumption of (3.26) by leading to the more refined conclusion (3.31).
In fact, (3.31) yields by virtue also of (3.21) as k —o0, and of (1.8')

P 1 el
B, Flrea-a = 1

(3.32)

and Eq. (3.26) follows. Note that estimate (3.31) relates the assumed g and {o};2, .
Reference to Fig. 3.1 below will greatly help in following the rest of the proof. O

7. 3% %g+1

Ok
LN 7N I .
,11;_,_2 )vx+1 Ax  Cg—y e, 0
1t " L] W k]
Bt Brt Bx Br-1 /9}
Xraa /‘\a'\ //{
f87+1 ﬂr ﬂf"‘l

Figure 3.1. Asymptotic behavior of the constants {«,} with respect to the constants {f,}
(see (3.31) and (3.39)).

We now tackle the problem of the existence of vectors g, as postulated in Proposi-
tion 3.4 and Corollary 3.6. To this end, it is convenient to introduce the following

definition which is motivated by (3.17) and the paragraph below (3.17).
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DEFINITION 3.1. — An l-sequence {f,}:>, will be said to satisfy the Realizability
Oonditions for the problem under study if it satisfies the conditions, for r =1, ...,
K1,

* i
(3.33) he= (@), > vyl
o3 e

which are crucial for the realizability of such {A,}:°, through a vector ¢ as demanded
by (3.17). O

Reversing the procedure of Proposition 3.4 and Corollary 3.6, we now first as-
sign a sequence {o}r~,, with appropriate asymptotic behavior as suggested by
(8.31), (see Fig. 3.1), and then solve (3.27) for a suitable sequence {ﬁk},‘:‘;l (see Propo-
sition 3.7). We then study in Theorem 3.8 how to force such a solution {f,};>; to
satisfy the Realizability Conditions as well. Actually, even more is accomplished
by the following two results.

PROPOSITION 3.7. — Fix an arbitrary vector v = {v,};>,€l, with v,5 0.
Next, assign a negative sequence {a,};~,, which satisfies

(3.34) un*ph, k=j=1,2,..,
and the asymptotic estimate
(3.35) o — P~ [@]evifi

which implies (cx— f,)/fr€l, (see Remark 3.2 and (1.80)).
Then, there exists a sequence {#}:, such that

(3.36) @f—i ﬁf)$w%=$®h

iS1s—p;
with B(s) and D(s) as in (3.23) and (3.28), respectively. Identity (3.36) then implies

k

105k’—/3j

18

4’.('0%) %
)

=1, k=1,92..

and, moreover, nniquely determines the {ﬁ,};’i 1, according to formula (3.29), written
for h,.
Proor. — See Appendix 4B of [L9] for a similar situation. 0O

What follows is a main result that affirms the existence of admissible vectors ¢
(cf. (3.1)) as postulated in Propostion 3.4 and Corollary 3.6, provided that it has a
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suitable small I -norm and all its coordinates {g, @r> =g, of ¢, b =K, K -1, ...
are Nonzero.

THEOREM 3.8. — Let a vector ¢ € X, as in (3.1) be given; i.e. ¢ = (— As)%“QQMg =
= {g )2 ; for some g Ly(I"), where now the coordinates (1) g, = (— 4,)"¥"%(g, ,/r)r
will be required (¥} to be different from zero. Then, for all vectors @, which satisfy

condition (1.8h) and, which, in addition, possess a norm [&,[, ~sufficiently small,
one can construct:

(i) a veetor B = {T};2 #elz, with
(3.37) 0 <0, k=K, K41,..
where C, is safficiently small so that the corresponding sequenece {&,};>  defined by
(3.38) Go— Br= [@,1:pi0,, k=K, KE-41,..
has its terms &, negative, distinet, and, satisfying
(3.39) a# B, k=K K-+1,.;i=1,2,..;
(ii) a sequence {&};=;" of negative, distinet constants with

(3.40) @i G, and &P,
i=1, E—1; k=K, E+1,..;§=1,2,..

such that the corresponding sequence {%,}> . with {87 %k} €, defined, according
to Proposition 3.7, by

oo 1 (1 =) 04, 1 m

(3.41) E: , r=12 ..,

( &)E(6., ey m

where the exponential function E(f,, 8;, m) is defined in (3.24) and A4, is specified
following (3.28)}, satisfies the Realizability Condition (3.33).

?T::]x

{1') See Appendix 4A, below (4A.4).
(*2) This is possible since @;|p 7% 0 for ¢™-boundaries I' [81, Cor. 2.2] and for paralle-
lepipeds. ‘
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Moreover, the function #(s) &£ ZT@ (s—B,), corresponding to such a sequence
1 2,.

(B}, satisfies 1 — A(@,) =0, k =
8 7 &y

Therefore, aceording to Proposition 3.4, the function Z(s) defined above satisfies
3.27). O

... with multiplicity one, while #(s) = 1 for

ProOF. —~ Conclusions (i) and (ii) are proved in Appendices 4A and 4B. These
appendices construet, ultimately by means of a fixed point technique, the sequence
{&}! for which the Realizability Conditions hold, and, in addition, the claimed
vector v and the sequence {&. 5 .

Moreover, the continuity of the map {v,};> — {o}i7*: I, — R¥™% needed in Ap-
pendix 44, is proved in Appendix 4B.

To show that such {8, %k}, isin 1, we need only invoke part (i) of Lemma 3.5
to obtain the ~ on

(342) ETN &r— ﬁr = [@_Us]rarﬂf ’

while the equality on the right stems from (3.38). The Schwarz inequality applied
to (3.42) ensures then that {f7°h}, €l,. ‘

As to the claim for the corresponding function #(s), this stems from (3.27),
which holds by virtue of Proposition 3.7. O

The next result establishes that any admissible vector ¢ that fulfills (3.27) also
furnishes the degired solution to (3.10): #(¢), of the special class IDE, with ex-
exponents o, all different from the constants {8,}."

THEOREM 3.9. — Let ¢ be an admissible vector with corresponding function 4(s),
obtained through (3.17), that satisfies (3.27) for negative constants {x,} obeying
the estimate (3.31). (Such vectors q are provided by the proof of Theorem 3.8.)
Then, the following properties hold for the -corresponding solution #(¢) to the Vol-
terra equation (3.10):

(i) the solution () has the form

(3.43) 4(t) =Y d,expla,t], teRF;
r=1
that is,
(3.44) dsy =3 "
F=18 — 0y

(For Res >0, &(s) is the one-sided Laplace transform of #(f) and is extended
over C through the right-hand side of (3.44).) '
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(i) The coefficients {d,} satisfy the conditions

o b
(3.45) 3 Wt <oo, and dai'< 9"—?—, r=1,2, ..

analogous to the properties of {n,f°} of Lemma 3.1 (i).

(iii) The coefficients d, are the residues, res (), of Z(s) at {a}:
(3.46) d, = res J(e) .

Consequently, &(f) is a function of the special class IDE.

Proor. — To prove (3.44), we apply the Mittag-Leffler expansion to Z(s). To
this end, the following proposition is crucial.

ProrosITION 3.10. ~ Under the hypothesis of Theorem 3.9, the residues res Z(c«,)
of the function Z(s) at the points o, satisfy the estimate

1-26/7

res aonc,) = 0(( 1+6lv) -+ |n,[) as8 r —>o0o.

PROOF OF PROPOSITION 3.10. — With B(s) and D(s) the entire functions given
by (3.23) and (3.28), we have from (3.20) and (3.27) '

é(“r)“r(ﬂr“‘ OC,) ﬁ (1 —"%)E(“M ﬁk, m
k=1 ﬂk

(3.47) res Z(o,) = lim (s — o) ’2(27)33(8) - ket
s>y (3) l__[ (1 ___) “r, ﬂk, m)
i
(3.48) ~ (o) (o — B,

by Lemma 3.5 (ii), and «,~ f,, where

(3.49) &(“r) - 7:?1 Oert‘i.Bi '

As {n,B7 %2, belongs to I, and |m,B~°|<ecfi, according to Lemma 3.1 (i), we now
need to invoke part (i) of the following Lemma. Part (ii) will be needed later on in
Lemma 3.12 and, Theorem 3.14.

LemMMA 3.11. — For any vector b = {b,};2, such that b,<const/j, the following
estimates hold for o;~ f,%f 2,:
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e b 1\
D i=;rl AiAi—ay) @(“?—s'ﬁa)’

PROOF. — The proof is similar to the one given in Appendix 4E of [1.9]. 0O

Continuing with the proof of Proposition 3.10, we apply Lemma 3.11 (i) to the
sum in (3.49), after multiplying the numerator and denominator by A;~° as allowed
by Lemma 3.1 (i), to obtain

- 1 Ny
(3.50) | Aloy) = 0(57) it
Inserting (3.50) into (3.48) yields
(3.51) res () = @(5‘%_@) + O(n,) .

The desired conclusion of Proposition 3.10 then follows from (3.51) via

. 20/v
(3.52) ‘i"}—ﬂ’z @(T 1 ),

P

which is the result of (3.37)-(3.38), of ¢,[#,]. <const/r (see (1.8b)) and of a,~ f.~r*",
from (3.21). O

Returning to the proof of Theorem 3.9, we see from Proposition 3.10 and Lem-
ma 3.1 (i) that we can apply the Mittag-Leffler Theorem [L3; p. 394], [K3; p. 37{f]
to obtain '

(3.53) A =3 18 o) | ey,

r=1 8$—10

where ¢(s) is an entire function. But from (3.20), we see that Z(s) goes to zero for
§ —oco in any way except along the negative real axis and this leads to e(s) = 0(1)
and hence, by Liouville’s Theorem, to ¢(s) = 0.

11 ~ Adnnali di Malematica
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We can then rewrite (3.53) as in (3.44), from which relations (3.46) follow im-
mediately. We now prove (3.45). To this end, we invoke (3.46), and (3.51), to
obtain

- — Xy — - — -
(3.54) d, ol "~~’—O—Ca—ﬁ—’ + o~ b0 4 mp0l?
T

where the right-hand side estimate makes use of (3.42). Then (3.45) follows via
o~ [, from Theorem 3.8 (ii) and Lemma 3.1 (i). The proof of Theorem 3.9 is thus
complete., [

3.3. For 4(t) as in § 3.2, the projections x,(t) and x,(f) are of the special class IDH.

With the existence of representation (3.43) for some admissible vector ¢ guaran-
teed by Theorems 3.8 and 3.9, the following Lemma will be useful in later arguments.
The proof of this lemma, however, takes place in the ¢-domain.

LeMMA 3.12. — The solution #(t) of the integral equation (3.10) has the form (3.43)
as a funection of class IDE, where

w# By T, i=1,2,..,

if and only if the following condiftions are satisfied.

0 hi
(3.55) ST =l r=10,
co d,
(3.56(1) Ny = — h,,. .Zl m P 7= K, K —{— 1, 9
{ \ o . .
(3.560) ‘“;‘;“”z _Zla_fz_’c , r=1,.,K—1.

Proo¥. — Let &(f) be given by (3.43). Then, inserting (3.43), (3.13) and (3.14)
into {3.10) and equating to zero, by linear independence argument, all the coefficients
of exponentials results, after straightforward computations, in (3.55), as well as in

(3.57) Ny = — hr i ._dl__

r=1,2,...
) ) H
&0 — B,

Relation (3.55) means, of course, that the {«}>, are zeros of the denominator
(1—4(s)) of &(s). For r =K, K +1,..., (3.57) leads to (3.56a) via (3.15). TFor
r=1,..., K —1, however, the ratios #,/h, in (3.57) are computed via (3.16a) and
(3.17a), thus leading to (3.56b).

Reversing the steps of the above procedure proves the opposite direction. O
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REMARK 3.3. — Summing up {3.57) in » from one through oo and using (8.55)
yields ¥ n,=—>d, 0O
r=1

r=1

A final Lemma is needed.

LeMMA 3.13. — For any admissible veetor ¢ provided by Theorems 3.8 and 3.9
the corresponding solution #(t) of the form (3.43) to equation (3.10) satisfies the
following asymptotic estimates:

dr o [(_ As)%_gxos]r i
lr"“xrm@( QT}'T )—I—@(lf)

Proo¥F. — By (3.56a), we can write for r = K, K +1, ...,

d.
Ar— oty

Ny
hr i
i

Next, by virtue of (3.45) and Lemma 3.11 part (ii), we have

® d; 1
= 0},
a'gi 2’1'_ 22} (lr>

i#r

Finally, (3.16b) and (3.17b) provide

Ny . [(""' As)%_ewo.s]r _1_)
h ‘”( wn )T o7
and the Lemmsg is proved. O

We are finally ready now to draw the desired conclusions to the solution x(t).

THEOREM 3.14. — For any admissible vector g provided by Theorems 3.8 and 3.9
the projection z,(t) of the solution x(t) is an X,-function of the special class IDE (8).

Proor. — In view of (2.13), it is enough to show the desired conclusion for the
integral term of (3.4). By (2.14), (3.8) and (3.43), this term can be rewritten for

(3) Since X, is finite dimensjonal and A, an operator on it, then A x,(t) for any power
r is also of the special class IDE.
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>0 as
[
(3.58) Tu(t) 2L |exp [A,(t — 7)]pd(7) dv
OK-I : o
= 21 {fexp et —7)1p: > d, exp [e.7] dr}zpi
i= =1
K ® . exp [« t]— exp[e;t]
by 220) =3 { $ g oplnl—c }1,,,.
K—1 <o d
= z=1{ (g )eXp lo:t] + 2 ; — OXD [ocrt]}w,-
K—-1 oo d
(by (3.56b)) = gl { (o) ©XP [€:t] -+ Py gl " _i o 6xD [oc,t]} v, 1>0.
(3.58b) (by (2.13)) = — exp [A,t]a,+ E s Z G —5 ©Xp [et] .

But, since the {¢,;} and the {e,} were chosen (see Fig. 3.1)

inf !OCT_"‘ 0,’| =Y > 0 ’
r=1,2,...
§=1,...,K—1

relations (3.45) in Theorem 3.9 imply a fortiori that the infinite sum in r in (3.58b)
is a function of the special class IDE. The desired conclusion is then contained
n (3.686). 0O

The proof for the relevant result for #,(f) on X, passes through the following
theorem.

THEOREM 3.15. — For any admissible vector ¢ provided by Theorems 3.8 and 3.9,
the function (— A, %x,(t) is of the special class IDE in the X,-weak topology.
More precisely, we have for y € X, = QL,(2)

F Ul - Zlc kYK
B39 (- AV 0,9 = 3 oplong 1473 P[] § S0,
=1 Ap—C K Xr X
Proor. — We have from (3.5), (3.4):
(3-60) <(_' As)%_gms(t)7 ?/> == <6Xp [‘A-st](_ As)%_ewﬂss ?/> _i_
t
{4, exp 1ALt — 7)lgCexp (AL vlon, B d7, ) +
0

t
([, oxp 14, — 9)1a[<@l), wa> + LD T y)
0

with &(-) and %,(-) defined by (3.8) and (3.58), respectively.
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Since by (3.58b) and (3.43),
(3.61)  (&ul2), By + (1) = — {exp [A,7]%0u, B> +
+ §1 d, {1 + 1:;-11 gz’—_)%} exp [, 7] .
we see that the first term in (3.61), once inserted in (3. 60), cancels the second term

n (3.60). Hence, substituting (3.61) into (3.60) and using the convolution relations
(2 20) yields

(3.62)  {(— A w,(t), y> = <exp[4,1](— A.)iemy,, >

+ 2 Z Do G2 {1 + 3 @ }exP [o#] — exp [4,1]

j=1 %p— C; - Zk
(1 n El (@, zp)
== Ich exp [Axt] | A ey 21 Z;—l :r 4z S 22—y 1k

-+ z {exp [a,t]d, (1 4+ 2 @) ’)(ki qu"yk)}.

i=1 &y—¢C T 0, — Ay

To ascertain that all the infinite sums in (3.62) are well defined, we observe pre-
liminarily that

(3.63a) i s ———d’“’ = § o 4%
. r= - }-k r=1log™? (0tr— Az) r=k+1 (fxr" M) lots— Zkl
_ }_ [(_ As)%— Qwos]k
o))

which follows when Lemma 3.11 (ii) is applied to the first two sums in (3.63a) (a
valid procedure when (3.45) is invoked) and Lemma 3.13 is applied to the last term
n (3.63a¢). Hence, (3.63b) gives

=) oo d
(3.64) ¥ qukyk{(z T )<const }: |92 Y] -H )i~ 20,) 4
k=K Gy

r=1

<eonst (|g] + [(— 4,)iem,,)) |y .
Therefore, the following interchange of order of summation is allowed

Zka?/k

(3.65) kgxllchkykigl ‘—‘— 2 || Z sy b

r=
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showing by (3.64) that, as |«| —o0, the following sequence in # is in I;:

(3.66) {d, (1 BRSRCAL )(kf Akq‘”y’“)}m el, .

i=1 0% C; =K‘xr_'}*k =l

K-1
Since the ferm Y goes fo zero as r —~oco, we conclude from (3.65) and (3.68)
i=1

that Eq. (3.62) is well defined as a function of class IDE. To complete the proof

of Theorem 3.15, it remains to show that the first sum > in Hq. (3.62) is, in fact,
k=K

identically zero. To this end, we recall the definition of #(t) (Eq. (3.8)) and its ex-

pansien (3.43) for ¢ admissible as assumed, along with o <<% —p (Eq. (1.11)). We

then deduce that for y = ¢ with (see (2.17)):
g = (— As)%+g+6?’7)s€Xs

the first sum » in (3.62) vanishes identically. This implies (1) that all its coeffi-
k=K
cients are identically zero,
E—1{sn ).
a1+ B

a Z h i=1 &r—C;
Ye ol rgl AL"" &y

—{—Z%C_Q[wog] =0, k=K, K+1,

We then divide by the non-zero coefficient ¥, [see (1.8'): [¥,],5¢ 0] and obtain the
desired conclugion. Theorem 3.15 is fully proved. [I

To finish off the proof of Theorem 1.3, we need to tackle the synthesis problem
of the vectors pe X, and ge X, by a suitable boundary vector ge I,(I), as die-
tated by (3.1) and (3.2). More precisely, we seek a vector ¢ in L,(I") such that:

(1) it satisfies the finite moment problem (3A.7) of Appendix A of [L8], in-
volving only the coordinates (¢, Pulp)r, bk =1,..., K —1;

(i) the vector ¢ = (— A4, 2QMge X, has all coordinates (**)

<4, ®r> :""7‘;_%—9(97 er‘I‘)I'a "’:K’K+15'-~

different from zero, so that the procedure of Appendices 4A-B applies.

(1) If 3 z,exp [A4,¢]1=0, t > 0, with {z,} € I, then term-by-term Laplace transforming gives
=K
25 * zj . ©
- =0 for A A Yim
;__ZkJer:lﬁ__Zj # {Aefp-x
%k
by analytic continuation, Integrating along a small circle centered in A, yields by Cauchy’s
theorem 2z, =0 as desired.

(%) We are using here M* @, = — (1/M;)(g, Bulr)r (see (L7, Lemma 4.17).
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This can be accomplished by means of boundary vectors ¢ of the type 9=g-+ g%
where § is the solution, unique in the space F = span {@,| 5, of the moment
problem (3A.7) in [L8], and g* is any vector orthogonal to #. In fact, we compute

-1 -1
A, PMg*= Z Ml Mg*, &> D= — Z (g* lel‘) »=0

k=1

so that for the stabilizing vector p in X, of Lemma 2.1 we get 4,PMyg = A, PMg.
The proof of Theorem 1.3 is thus complete. [

PROOF oF COROLLARY 1.4. — We write more conveniently {y,}=> , for the sequence
{o 3531, and {«,}2,. As noted at the end of Theorem 1.3, the expansion (1.10) holds
in the weak topology of L,(2), when x,e L,(2) in which case, we can write

(3.67) (Bp(B) a0, Y> = 3, Ua(wo, y) exp [yat], >0
n=1

for the desired feedback semigroup 8,(f) on L,(Q); where the u,(x,, y)’s are constants
depending on x, and y, which form an 7,-sequence; moreover, #, is a bounded linear
functional on #, for y fixed, and similarly on y for 2, fixed. Thus, w,(%y, ¥) = {Bn%, ¥,
for bounded operators B, on L,(£2). Application of the Laplace transform to (3.67)
(term by term application is legal) yields for the resolvent of A,:

(5.69) Ry Ao,y = 5 L )

after extension by analytic continuation. The constants {y,} are then simple poles
of the resolvent and thus simple eigenvalues of A, [T5, Thm. 5.8-A, p. 306] Wlth
corresponding eigenvectors e,

Next compute around a small circle I',, centered at a fixed yp; and containing
no other point of the sequence {y,}

B
J.R(ﬂa Agywy dy =f ——"%—d,u == 271 B- %,
r—="
I"'T n
by Cauchy Theorem. Thus, B, is the projection from I,(£2) onto the one dimen-
sional eigenspace of 4, spanned by the normalized eigenvector e, ,, along (I —
— B,) Ly(2): B,x = n,(®)e; ,, Na(w) = scalar. Then, Nalp,,) =1 and n,(e,,) =0,
# #= m. From (3.67) with { =20

(3.69) m—ZB x_gm Cnny ©ELyQ)

n=1
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so that {ey,}-7, is a basis on L,(£2). Since B, commutes with A,, we also obtain

(3.70) Apw =3 B, Ayt =3 ApB,x = 3 v, Na@)rn, #€D(Ap)
n=1

n=1 n=1

as desired. Expangsions (3.69)-(3.70) can be written out explicitly as in (1.11)-(1.12)
respectively. [

Appendix 4A.,

Proof of Theorem 3.8 (i)-(ii).

(1) If v = {v,};> ¢ is any vector satisfying
(4A.1) 0+# n|<0,, k=K K+1,..
we define a corresponding sequence {«,}~  of scalars by setting
{4A.2) ap— Be = [WuPlve, k=K, K-+1,...

Then by (1.8'), {3.21), and (4A.1)
26/v

k

-0 as k —>co

[, ], B5v, < const

for dim 2 = v>2 as assumed, and 80 o,~ f, and (a,— 8,)/f€ kL, by Remark 3.2.
Thus, we conclude that: if €, in (4A.1) is sufficiently small, then the constants «,,
k=K, K-+1,..in (4A.2) are all real and negative, like the corresponding f’s,
as desired.

(2) If {¢,};* are the distinet negative constants obtained through Lemma 2.1
and e.g. required to be

e < dg<eg1<..<e<O0,

» » » »

ﬁx+1 ﬁK ﬂK—-l ,31
we consider vectors {a}=7' in the R®"! sphere 7,
(4A.3) &L= {a il lm—el<o, i1=1,.,K—1

iJi=1

with p, sufficiently small, so that all coordinates @y, ..., ax_, are negative and distinet,
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(3) We now let ¢ be a vector of the form
(4A.4) g=(—A4,)7QMgecQL,(Q) for some geLyTI).

Since

o

=2 (—A) XMy, D) D, = 2(— Ji=2(g, M*&,) D,

r=K =

and M*@, = ((—1)/(4,)) D,|p [L7; Lem. 4.1], we deduce that the coordinates g,
of ¢ are

= {8} = {(— lf)—%ﬂ(g, djrll')l‘}::K

and, therefore, by Corollary 2.2 in [S1] for C*-boundary I" and for parallelepipeds,
they can and will all be required to be different from zero: ¢, 0,r = K, K -+ 1,...:

(4) Next, with ¢ as in (4A.4) fiwed, and for each {a} " in the sphere &, we
deﬁne a non linear operator T,, depending on the vector y = {q,[®,]};> z from
{a’z i-l T {Qr}r K by Settlng {q'r}r K= Tu{a’% re1 11 with

K—~1
T (1=5)266., oy m
(4A.5) g, = q,[,], 7=

1 (1=-2)m6., ., m

y (fr=e);r=K, K+ 1,..

k=1

which we shall consider as acting from the (closed) sphere &, in RE~! into 1.

For the operator T, the following claim is easily verified: with the radius g, fized
in advance, and for a given vector q as in (4A.4) (so that such ¢ is in 1,, herce in 1)),
one can select a sufficiently small sphere for the vectors wW,e X, in (1.8b)—as assumed.
in (1.8¢)— such that all the corresponding operators T, which are defined through
(4A.5) map the sphere &, into an arbitrarily small neighborhood of the origin in 1.
This assertion follows from the definition of T, in (4A.5) and the fact that for points
{a} ' in &, we have: inf {|f, —a,|: {a} e } > 0, where the inf ig taken over all

r=K,K+1,...and i =1,..., K —1.

(5) Next, motivated by (3.170) and (3.29), we define a mnon-linear operator
F: (o e = {(Fo) 32 g = {{,}72x by

(4A6) (1) frz (F?))TE?/ kgﬁ(l_é') ﬂr’ﬁka s T:K’K+1""
where the constants
1-8
(4A.6) (ii) V= Z=ip. ), —b A 3
{1*i=1 ‘37__01} H (1~_ﬁ—) ﬁr?ﬁk?

ksér
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depend only on data A,==p§, and on parameters obtained through Lemma 2.1:
(w,);, p: and c¢,. By virtue of (4A.2), Eq. (4A.6) (i) gives {(Fn) > explicitly in
terms of {v}p gt

(“4A6) (i) fr:(Fv)r=VrkﬁK(l——B;ﬁfm)E(ﬁ”ﬂmm),

r=K,K+1,...

We shall consider F as acting from o neighborhood of the origin in 1, see (4A.1), into
l.. Notice that F maps {v,=0};> . into {(Fv),= 0}7> ., more generally, if one co-
ordinate vz = 0, then by (4A.6) (iii) the corresponding coordinate (Fo); = 0 as well.
Notice that, because of Lemma 3.5, it follows from (4A.6) that

B

o

16
(4A.7) (F'v),~ﬁ—;— (etr— fr) ~ = (W}, asr-—>o0

ﬁé
where, in the last step, we have used (4A.2).

The following proposition, to be proved at the end of the present Appendix,
will be paramount in our treatment.

ProrosiTioN 4A.1. — The inverse mapping thecrem applies to the operator F
defined above; i.e. there is a neighborhood 4, of v = 0 in I, such that I is one—to—
one in 4", with F-! continuous in the I, -1, topology. [

An important consequence of both the claim regarding T, and Proposition 4A.1 is:
with the radius o, of &, fiwed in advance, and for a given vector q as in (4A.4), one can
select a sufficiently small sphere for the vectors w,e X, in (1.8b)—as assumed in (1.8¢)
such that the corresponding composite map F-T, of T, followed by F— is well defined
and maps the sphere &, into an arbitrarily small neighborkood of the origin in .

(7) It will be shown in the subsequent Appendix 4B that the map G: {v,};.x —
— {o,}E from & neighborhood of the origin of 1., into R* ', which produces the constants
sy ..., Og_y JOF which the Realizability Conditions (3.33) hold, is in fact continuous.

{a}iS e, {{a}= for which the R.C. holds} € ¥,
Tvl TG
, F o
1o {gr}2g — > {Vi}imx € loo -

Notice that, if we apply I'~* on the vector {q;} given by (4A.5) for a preassigned g,
we get a vector {v,}, whose corresponding {o.};>  via (4A.2) are such that

= [ (1= E)Bip peom), 7= K K1,

k=K %y
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go that, by (4A.7),
(4A'7I) ‘1:’" /vr[ws]r

while (4A.5) gives ¢,~ ¢,[@,],. Thus: the preassigned vector ¢ and the obtained

vector v = F-1¢/, with ¢'= T,0 = T {0}7" satisty

(4A.7") : qp~ D, .

Thus, if ¢ is only in [,, so is ».

(8) As a consequence of the last two statements, we obtain a conelusive result,
which we state formally:

PROPOSITION 4A.2. — With a radius g, of &, fixed in advance, and @ given vec-
tor q as in (4A.4), one can select a suitably small sphere for the vectors @, X, in
(1.8b)—as assumed in (1.8¢)—such that the corresponding composite map GF-'T,
of T, followed by F-* and by G is well defined and maps the (closed) sphere &, into
itself. O

Since GF-1T, is continuous, being the composition of continuous maps, Brower’s
fixed point theorem applies and produces (at least) a fixed point {7}~ 'e &,, with
all coordinates distinct and negative. The corresponding vector {g.} = T {@}F7
has all its coordinates different from zero, by (1.8b) and also since all coordinates ¢,
were faken = 0; hence (by the observation above Prop. 4A.1), the corresponding
vector {v,}7° = F'T (@} ' is ~ 7, and has also all its coordinates different from
Zero. ’

As to the sequence {&}~; in the conclusion (ii) of Theorem 3.8, we then take a
fixed point & =4a,,i=1,..., K—1. As to the sequence {d,);> , in the conclusion
(i) of Theorem 4.8, we take instead

&= P+ W10, k=K, K-+1,...
With this choice

&t By, k=K K+1,..
i=12,.. but k+#j

from Appendix 4B. It remains to show
&FEe=0, i=1.. K—1.

In fact, if—say—a, = ¢,, then by (4B.1) in Appendix 4B with a,=&;, i =
=1,..,K—1 we would have that the corresponding %,(4) =0, Since AN

i=1
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makes the Realizability Conditions (3.33) hold, it follows that Egs. (3.17a-b) apply
to the corresponding sequence {h(a) = h}°°1 with p and {¢}{ ' coming from
Lemma 2.1 and with ¢ the vector as in (4A.4) for which Brower’s fixed peint theo-
rem holds. But then from (3.17a-b), we see that the condition h,=0,r=1,...,
K —1 ean always be avoided by slightly changing, if necessary, say just one ¢,.

(9) To conclude the proof of Theorem 4.8 it remains to establish Proposition 4A.1

PrOOF OF PROPOSITION 4A.1. — We need to verify that the operator F defined
in (4A.6) satisfies the following properties [L10, p. 266; M3, p. 116]:

(@) F admits a well defined Frechet derivative F'(v) in a neighborhood .47,
of the origin in 1., and, moreover, the map v — F'(v) is continuous in .47, in the
topology of 1, —1,;

{(b) the operator F'(v = 0) is invertible; i.e. [F'(v = 0)]"* exists in 7,. The
validity of (a) will follow a fortiori once we show the following assertion: that the
second Frechet derivative F"(v) is well defined as a continuous operator 1, -—1,.

In fact, F"(v) is an infinite matrix with the following structure:

| Bx i
E
F”(,v) — Et+1
Exys
where
0 ofr o of, 0 of |
o, v, B0, 0w’ v, ov,”
oo, 2 0
B, = v, o, o, 00, g ovy’
I A
ov, 0y’ o, 00, v 0vy’

for r = K, K +1,.... According to well known results [T5, p. 220], F"(v) defines a
continuous operator: I, — 1., provided

sup oo
(4A.8) over all {{,;-norm of a row; = sup {sup Z
rows

o1 ‘ < o0
v, 0v '
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From (4A.6) we compute after setting Z,= [u,].52:

of, i[ ﬁ (1_ B- )E(ﬂnﬁka )B:Z: E By B1, m
ov; 00, ov; |7 gk B+ Zyv, (Bi+ Zyvy)®
k=1

(4A.9) for j== I:

k=K
kAl
ki

1:B8: 2P, Z, _
(1 —Bel(Bs+ Zw)) L — B/ (B Zoo))(Bs+ Zv)H B+ Zyvi)®
_ f:B:Z: %,
- Bi—Br+ Z0)(f1— B, + Zw) B+ Zv:) (B + Zz’l?z)]

Similarly from (4A.6) we obtain for j = 1I:

azf 7 ﬂr — 2,37'Z12E(‘5T7 ﬂly m
{(4A.10) e {kl;IK(l —m) E(B., Br, ’m)} (B Ziv.)?
)

- — 21,8, %%
T (Bi— B Z0) (B Ziwy)?

To verify (4A.8), we need, according to (4A.9) and (4A.10), to check that the follow-
ing two quantities 2 and 2, be finite:

}:

N |Z) < |Z;]
S“p{'f”g S B Tz B ¥ Zows Lzl F—FT ZolBi© zﬂm]}'
.f)

ol

o

2
(4A11) = sup {sup 2 3, 2’@1
E

(4A.12) 2, = sup {sup
r 11

Zy
}: S‘i—p {2‘]‘1'57‘ Slllp (B, — B+ Z) (B + Zl'v%)l} .

We first handle 2;,. In the sequel we shall use with no further mention that

Z, = [W,),f,<(const{k) k" - 0 as k —oo. (From (1.8b) and (3.21)). In order to
show that X is finite, it will suffice to establish that the following quantities 2 and
2, be finite, where 2 refers to the case I r and X refers to the case | = 7:

, , 12, S 124
(4A.13) Elwsup{ifﬁ D e T ey ﬁ|[721| (Bi— P+ Zsv; ﬂal]}

<_s?p{‘f'(35’?3}’f<ﬁzl ; [§ Lm T mesll
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e AR 1Z,) ’
(A1) Zi=sup {”’ﬂ oo B 2 =Bt za-v,-mji}
i#r

y (4A.7T)  <const sup{lﬂ ]El 2 IZ:‘»’]r p’;f}

To conclude that X and Xy, and hence X, are finite, we now need to invoke the
following two estimates:

&, 1Z;
(4A.15) z 1 ﬁl il = (9(}—;—) (see the independent Lemma 3.11),
=1 r 7 7

(4A.16) sup 824

gee the final Remark 4A.1).
2 Bp—pl - ( )

We now use (4£A.15) at the level of the infinite sum term in (4A.13). We then obtain
from (4A.13), since f,<const and (f,/v,) <const (cf. (4A.7")):

2, < const sup {sup‘ ﬁ]ﬂ' ﬂl,ﬁ l}
T ] 1= r

from which the finiteness of X, follows via (4A.16). The finiteness of 2, follows
directly from (4A.14) via (4A.15). The proof that X< oo is complete. The proof
that X,<< oo is simpler. From (4B.12), we compute

N _la e
(ALD) Za<constaup {'W" s I(ﬂr—ﬂr)ﬁ?!} TeOmtR g, rﬁ”l}

Since f,< eonst, (f./v,) <const and (Z,/8,) -0, and (4A.186), we easily conclude from
(4A.17) that 2,<< oo as desired. The proof that the second Frechet derivative F’(v)
is a bounded operator I, -1, is thus complete,

To finish the proof of Proposition 4A.1, it remains to show statement (b) on the
invertibility of /(v = 0). This is quickly done as follows. The Frechet derivative
F'(v) ig an infinite matrix with entries

o\l .
F'(v) = (5}:—)1, j=r=K,K+1,...

Starting from (4A.5) (ii), we compute directly, again with Z, = [%,],52

k=K
k#d
— f" _ABT J — _'"frﬁrzd .
(1 ~— B./(B; -+ Zﬂ’:’)) B+ Zw):  (Bi— e+ Zw) (B + Z;v;)
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Setting v = 0, i.e. »,=0,§ = K, K+ 1,... implies, as we know {see below (4A.7))
fr=0,r=K,K+1,.. Thus from (4A.18) we get

of, .
—a—’(-)';vco——o for T,
o _ =tk
87-77 ’1/‘=0 (23 )

Thus, F'(v = 0) is an infinite matrix whose off-diagonal terms all vanish, and whose
main diagonal terms are —f,/v,,r =K, K 4-1,.... Sinece f,/v,~1 by (4A.7), we
can conclude that F'(v = 0) is invertible as an operator: 1, —1_.

REMARK 4A.1. — To prove estimate (4A.16), rewrite

8.2 &
(4A.19) BB 01 o BB~ T

and sinee Z,[f, >0 as I —oo, we only have 1o worry if [(3,/5,) — 1] becomes un-
bounded. Thus, taking r =1-—1 we estimate (4A.19) by using Z,= [#,],; where
[@,]; <const/l (cf. (1.8b)) and f;~1%" (cf. (3.21)). It is left to the reader to check
that the sup is bounded.

Proposition 44.1 is thus fally proved. 0O

Appendix 4B.

Determination of {w.}i=;* from which the Realizability Condition (3.33) hold. Continuity
of G: {v}itg — {“z}1=1 from 1., - R¥1

Let @ = {a,, ..., 6z_1} be a set of distinet negative numbers in the sphere &,
defined by (4A.3) each different from all 8;,. Motivated by (3.29), we define 4
sequence {h,(a)},, depending on a, by

4B.0)  fia) = e H(l"”) ﬁ“ﬂ;’ fl(l——) (Brs Busm
1 (25 o
k#r

We then try to determine the parameters {ai, ..., ag_,} in such a way that the se-
quence {ﬁr( .2, satisfies the Realizability Condition (3.33).
The sequence k.(@) in (4B.0) can be more conveniently rewritten as

(4B.1) ho(a) = e,Kl:[l( —é’), r=1,2,..

k=1 ay
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where the coefficients e, are defined by

(1—"4) (Bes oy m) T1 B(Brr fuym

1 (1~£)z6., 5um

ok

BoAw []
(4B.2) e, = k=K

where o, = f; -+ W’s]kﬂgvk by (3.38).
We then defermine the negative parameters a,, ..., az_; in such a way that the
Realizability Conditions (3.33), rewritten now as

E—1 B,
g1 B < kl;Il( —;’;c)
(4B.3) eilgl(l—a)wi(wu) 5

_ ___K 1 pi(wu)j ’
i (}L ¢;) {1 521 ““_“‘Zr_ 0,-}

are satisfied. To this end, we use the identity

T0 a0 = o= (5w + (S ,,51 o i

(5 manpts oot 2
i,d,k=1
distinct

on the right and, for » = i, on the left of (4B.3) and apply the sum > on each
power of f, in the previous identity separately. Then, by setting r=K

_ @ B
(4B.4) Apo=piwy); ¥ ol :
TQK(}»T'—‘Oi) {1 __ 2 _pf(wu)a‘}
i=1 }«'r_ C;

and
Ao = (=14, ;o + (—1)epf, 1=1,.,K;i=1,..,K—1,

the Realizability Conditions (4B.3) can be rewritten as a multilinear algebraic
system (see also Eq. (3.15)),

E—1 E—1
(4B.5) A, x 1t Ai,K—Z( z “k) + Ai,K—:i( Z a£a1)+

i#d
K—1 K—1
+ Ai,K—4( % a’ia:iak) Rl it Ai'o(:)l_[1 “:i) =0,
i,9, k=1 =

N s
distinet
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of (K —1) equations in (K —1) unknowns, for which we seek a negative solution:
@y, ..., 0g_y (that is, all a; negative).
Notice that the infinite series defining each coefficient 4, ,_; through (4B.4) is

~ Y ¢, pE71"1. Therefore, the following claim is relevant.
r=K
Through Eq. (3B.2) one can define a non-linear map: {v,};> . — {¢, X1}

r=K
that we view from I, —1,. We claim that this map is continuous. _
In fact, by simply comparing Eq. (4B.2) and Eqg. (4A.5) (ii) in Appendix 4A,
with p, defined by (4A.5) (iii), we see that

B 4B,
(.

k=1

Cpr

It suffices to consider the cagse I = 1. Here we get
!
(4B‘6) ﬁf_zgr’\’ q;[wa]rg g_l = 0(;5:2%‘——5)/1;)

where ¢ << 1 and »>2: in the last step we have made use of assumption (1.8') on &
and of Eq. (3.21) for f,. Appendix 4A shows a fortiori that the map: {v};  x —
—{g;}2  from 1, ->1, is continuous. Thus, the desired claim follows from (4B.6).
We conclude that: the map v = {v};2 x — A, ., is continuous from I, — R. We next
want to show that when the I_-norm of v is sufficiently small, the system (4B.6)
does admit a negative solution. To establish this, we make use of an observation
plus a continuity argument.
The observation is that, when

(4B.7) =0, k=K K+1,..,
then a solution of distinet roots for the system (4B.3) is given by
(4B.8) ai=p;Le, <0, i=1,.,K—1

with the 6;< 0 coming from Lemma 2.1. In fact, under assumption (4B.7), it
follows from (4B.2) that

6, =0, r=K K-J}1,..
and hence from the right-hand side of (4B.3) we deduce that system (4B.6) reduces to
E—1 B: )
(4B.9) e,-l'[(l——’)=0, i=1, .., K~—1.
E=1 az

In other words, 4, ;=0 in this case (see Eq. (4B.5)).

12 - dnnalt di Malematica
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Referring to Eq. (3.14), however, since
Cigﬂi#(xk('iﬁk), izl,...,K"—‘l; k:K,K“l—l,...,

it follows from (4B.2) that e,52 0,4 =1,..., K —1. Hence, the desired conclusion
(4B.8) is a consequence of (4B.9). This proves the observation.

For convenience of language, we shall call the situation under assumption (4B.7)
the original situation. We now use a continuity argument. Firs, we argue that
the roots of a multilinear system like (4B.6) depend continuously on the real coef-
ficients of the system. Second, we argue that these coefficients, as shown above
depend continuously on the sequence {v,};  €1l,. Therefore, if the vector v is suf-
ficiently small in the I.-norm, the new coefficients 4, p_, are a slight perturbation
of the original ones. Since the roots of the original gsituation (4B.9) are distinct and
negative, as deseribed in (4B.8), so will the new roots {«}Z " be.

Thus the map @, needed in Appendix 4A: {v,}3> ¢ — {o}i! defined from I,
- RE=1 iy continuous. [
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