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Summary. - A parabolic equation defined on a bounded domain is considered, with input acting 
i~ the Neumann (or mixed) boundary conditions, and expressed as a specified feedback 
of the solution x of the form: (7x, w)g~ where w e L~(D), g e L~(1 ~) and 7 is a continuous 
operator for a < ~: H~z(D) --* L~(D). The free system is assumed unstable. I n  this case, 
the boundary feedback stabilization problem (in space dimension larger or equal to two) fol- 
lows from au essentially more general result recently established by the authors in [L8]: under 
algebraic (full rank), verifiable conditions at the unstable eigenvaIues, one can select boundary 
vectors, so that the corresponding feedbacl~ solutions decay in the uniform operator norm 
exponentially at t ~ co. Here, this stabilization problem is pushed further and made more 
precise, under the additional assumption that the original free system be self-adjoint: we show, 
in fact, that one can further restrict the boundary vectors, so that the corresponding feedback 
solutions have the following more precise desirable structm-al property (the same enjoyed by 
free stable systems): they can be expressed as an infinite linear combination of decaying 
exponentials. A semigroup approach is employed. Since structure o] feedback solutions is 
sought, the analysis here is much more technical and vastly different #ore [LS], where only 
norm upper bound was the goal. 

1. - Introduction and statement  of  main  result. 

Let  K2 be a bounded open domain in R ~ with boundary  F, assumed to be a.n 
( ~ -  1)-dimensional var ie ty  with f2 locally on one side of p(1).  Le t  A($, 8) be a uni- 
formly strongly elliptic operator  of order two in [2 of the form A($, 8) = ~ a~(~)3~, 

M<2 
with smooth real coefficients as, where the symbol O denotes differentiation. We 
begin by  considering a diffusion open.loop system based on 1? with input  applied 
on Y through mixed (elastic) boundary  conditions; t ha t  is 

8x 
(1.1) ~--~ (t, ~) = - -  A(~,  3) x(t, ~) in (0, T] • D 

(1.2) x(0, ~) = Xo(~), ~ e 9 

(1.3) ~x(t, r 8----~ ~- b($)x(t ,  ~) = f(t, ~) in (0, T] •  (Mixed  B : C . ) .  

(*) Entrata in Redazione il 6 gennaio 1982. 
(**) The final version of this paper was completed while the authors were visiting the 

Istituto di l~Iatematica (( Pincherle ~> dell'Universits di Bologna. Support from the Consiglio 
Nazionale dello Ricerche is gratefully acknowledged. 

(1) Assumptions on / '  will be imposed as needed; see the statement of Theorem 1.2. 
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Here, ](t, ~) is the input function or control function (or forcing term), defined on 
(0, T]• which influences the solution x(t, $). In (1.3), b(.) is also a real function 
defined on F and ~ / ~  is the (outward) normal derivative. The Neumann case is 
obtained when b ~ 0. I t  is known IF1] that:  the operator A, consisting of --A(~, ~) 
with zero boundary conditions, generates an analytic semigroup on Z2(/2), which 
we shall denote by the convenient notation exp [At], t>~O. 

The Boundary Feedback Closed-Loop System. We now demand that  the input 
function ](t, ~) be expressed in a feedback form as a linear operator (of finite di- 
mensional range) acting, in particular, us a gradient operator of the solution vector 
x(t, ~); that  is, if ~ denotes any continuous operator: H2"(t9) -~Z2(f2), for any fixed 
2 ~  ~, we demand in this paper that  the feedback operator be a continuous 
operator from H2~ into a J-dimensional subspace of L~(~9) of the form: 

J 

(z.4) fit, ~) = ~ ((rx)(t, .), w~(.))g~(~) on (o, T ] •  
j = l  

Here, wj and gj are fixed vectors in L~(~) a~4 L2(F) respectively, and the symbol 
( . ,  .) denotes the inner product in L~($2). The vectors {g~}[=l are assumed to be 
linearly independent. For J -~ 1, we write w and g instead of w~ and gl. The special 
situation when y is the gradient operator, i.e. yh----Vh is covered when 2~----�89 

1 
boundary input_i parabolic / solution ~(t, .) 

](t, r [ equation | [ 

(~x(t, .), w)g - ~x(t, .) I 

The :Feedback System. 

The following result may be proved as in [L3]; here Y may have finitely many 
conical points [K3]. 

THEO~)~ 1.1 [L3]. - The feedback closed-loop solutions x(t, Xo) of (1.1)-(1.4), 
can be expressed simply as x(t, xo )=  S~(t)xo, xoeZ2(/2), t>~0, where S~(t) defines a 
(feedback) Co-semigrou p which is analytic and compact on s for t > 0, and 
whose generator A~ has compact resolvent on JS~(Y2). [] 

Theorem 1.1 states that  the (well known) properties of the open loop (]ree) 
system, i.e., with ](t, ~)-~0 are preserve4 by the closed-loop system. 

I~EXA~K 1.1. -- The proof of [L3] actually shows that  the feedback semigroup 
St(t) has the same properties listed above on all spaces H~-'(.Q)~ 0 < e<~. The 
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structural assignment result of the present paper is topologically consistent with 
the described regularity of feedback solutions. We also refer to [T3] for regularity 
results, obr by different techniques, that  complement, and neither fully imply, 
nor are fully implied by, Theorem 1.1. [] 

Since /2 is a bounded domain, the resolvent operator i~(~, A) is compact [D2, 
p. 1740]. Hence the spectrum a(A) of A is only point spectrum and consists of a 
sequence of isolated distinct eigenvalues {Xk}, k ---- 1, 2,. . . ,  1~1 -> 0% with correspond- 
ing normalized linearly independent eigenvectors {r k ----1, 2, ..., J//~ (J4~ being 
the geometric multiplicity of ~tk). As is well known, since exp [At] is analytic, the 
{~,} are contained in a triangular sector delimited by the rays: a-4-~ exp [• 
0 < Q < 0% ~/2 < 0 < ~, a real, with no finite accumulation point. Thus, at the right 
of any vertical line in the complex plane there are at most finitely many of them. 
Our standing assumption~for the problem considered in this paper to be signifi- 
c a n t - i s  that:  there are ( K -  1) eigenvalues ~ , . . . ,  ~x_l at the right of the imaginary 
axis ordered, say, by decreasing real parts 

(1.5) ... < R e  ),x< 0 < R e  ,;tK_l ~<... Re 22~<Re 21 �9 

Thus, the generator A is unstable, in the sense that  there are free solutions (cor- 
responding to ](t, ~)=_ 0), say the eigensolutions with l ~ < k < K - - 1 ,  that  blow up 
in time, in fact exponentially. Under this preliminary assumption, it is of interest 
in boundary control theory to pose the following general boundary ]eedback stabiliza- 
tion problem: identify large classes of vectors wj, gj, j -~  1, ..., J ,  for the least pos- 
sible J ,  such that all solutions of the corresponding closed loop feedback system 
(1.1)-(1.4) decay to zero as t -->oo in the strongest possible uniform operator norm. 
A solution to this problem is provided by Theorem 1.2. To formulate it, we need 
to introduce the following number. 

:DEFIbTITIOI~ 1.1. - Let the integer Iz (1 ~<lz~cdim X~) denote the number of line- 
arly independent Diriehlet traces {(bkmlr}, k----1, ..., K - - 1 ;  m = 1, ..., J/k corres- 
ponding to the normalize4 eigenfunctions associated with the unstable eigenvalues 
in (1.5). [] 

We next introduce the J x d / ~  matrix 

W k 

associated with each unstable 6igenvalue 2k of A, and the J •  (dim X~) matrix 
W----[W1, W2,..., W~_I]; here X u is the (unstable) subspace of E2(i9) , generated 
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of {/~}k=~ �9 Wi th  X~ the (stable) subspace which is the orthogonal  by  the eigenvectors ~c-~ 
complement  of Xu in L~(D), we let P and Q be the orthogonal  projections:  /%(D) 

onto X~ or X, ,  respectively.  For  x~L~(D), we write x~= Px and x ,=Ox .  

THEOaE~{ 1.2 (Stabilization). - Let  v : dim ~ > 2 ,  and let ~ either have (~) a 
C ' -bomlda ry  /'~ or else be a parallelepiped. Let  the (necessarily point  (3)) spec- 
t rum of the  generator  A satisfy the instabil i ty condition (1.5). Let  the  restr ict ion 
A~ of A on the unstable  subspace X~ be diagonalizable (4) on X~. Le t  the given 
vectors w;~ ] = 1, ..., J sat isfy the  following full rank  conditions 

(l.6)(a) rank  W ~ =  J[k ~ k = 1, ..., K - -  1 

at the  K - - t  unstable eigenvalues in (1.5) and, moreover,  

(~.6)(b) dim Xu < lr  + % -  1 

where % is defined by  

, a n k  W =  o(ma  {JZ , k = _1, ..., K - - 1 } < Z w ) .  

Then, there exist boundary  vectors gj ~ ~52(F), whose minimal  number  is discussed 
in Remark  2.1 below, such tha t ,  for all 0 < s < a <  �88 we have tha t  the corresponding 
feedback solutions x(t, to)= SF(t)Xo satisfy 

(1.7) : ) ' / t )  iz(~,~(~)) < M~, exp [-- dt],  t > 0 

for some positive constants  d and  Mo~ provided the vectors %~ = (-- ASQy*wj~ X~, 
defined as in the  sobscquent Eqs (2.16)-(2.17), are in a sufficiently small sphere 
of X ,  depending on d and  the g;'s. Here  I Ize(z~,(~)) is the uniform operator  norm 
of H2~(D). Moreover, we m a y  require t h a t  - -  d = Re )~x + e, for any  preassigned 
e > 0. Eq.  (1.7) implies the  expected conclusion on the spectrum location of the  
feedback generator  AF: 

sup Re ~ (Ar )< l i r a  In IS / t ) ]  < - -  d < 0 .  [] 
t-->c~ t 

(2) This assumption on F is needed only to invoke Corollary 2.2 in IS 1] 4o guarantee (3A.11) 
in Appendix 3A of [LS]. Othem,ise, /" may have finitely many conical points [K3]. 

(8) Since A has compact resolvent on /he(D). 
(~) The assumption that Au be diagonalizable is only for the convenience to have <~ clean ~), 

easy-to-cheek tests such as (1.6)(a)-(b), expressed in terms of (no~ necessarily orthogonal) 
normalized eigenvectors (r162 Othel~dse, resort to the Jordan canonical form is necessary. 
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P~oor. - The proof is obtained as in Theorem 1.2 of [L8], except that  now the 
content of the footnote to Eq. (3.25) must be used to obtain invertibility of the 
term in the brackets by means of l@~[ sufficiently small [] 

I~E~r~K 1.1. -- As substantiated in [L8], the stabilized feedback semigroup in 
(1.7) is generally not a contraction; i.e. M ~ > I  in (1.7). [] 

Theorem 1.2 gives only a desired norm-upperbound for the feedback solutions 
corresponding to the suitable vectors wj and gj claimed there; it provides however 
no information regarding the structure of such feedback solutions, nor does it give 
any specific description regarding the spectral properties of the corresponding feed- 
back generator A~ beyong the indispensable spectrum location, say: l~e a(AF)< 
< - - ~ < 0 .  

With this preliminary background, we can finally introduce the problem investi- 
gated in this paper. The purpose of the present paper is to push further the above 
stabilization result and, in fact, to pose and solve a more precise problem--which 
we call structural assignment problem. This regards the exact structure of the feed- 
back solutions (not merely their norm upper bound), as an infinite linear combina- 
tion of decaying exponentials (eft footnote, (6)). To achieve this,  we will restricte 
our attention to the natural case where the original generator A with zero mixed 
boundary conditions is sel]-ad]oint (whereby, if A is stable, the desired structural 
property is automatically satisfied with vectors gj--= 0). With A selfadjoint, the 
eigenvalues ()~:} in (1.5) are real and the corresponding eigenvectors {qSk~ } form an 
orthonormal system in L2(Y2). We now state the main results of the present paper 
in the technically simpler situation where all eigenvalues have geometric multi- 
plicity equal to one. We then write ~b~ instead of q)k~. 

TIIEORE~ 1.3. -- In addition to the hypotheses through (1.6b) of Theorem 1.2, 
we assume that  the original generator A be self-adjoint and have (real) cigenvalues 
as in (1.5)with geometric multiplicities d//7~-----1. We assume further that  wje/~2(Y2) 
satisfy 

(1.Sa) O =/= (w j, yqS,> .4< const/m 1+ 2,/~, m ---- 1, 2, ..., j = 1, ..., J 

so that  the vectors @j,= (--A~)'~Qy*w~ 4efined as in the subsequent Eqs. (2.16)- 
(2.17), satisfy 

(1.Sb) 0 #  (@j,, q~)~<const/m, m = 1 ,2 , . . . ;  j = l , . . . , J  

(as one sees via (3.21)). Then 

(1.sc) 
for all such vectors @j~ with sufficiently 

small l~-norm 
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there  exist  boundary  vectors g~eZ~(F), whose minimal  number  is discussed in 

l~emark 2.1 below, such that the corresponding ~eedbaek solutions x(~, xo) = S~(t)Xo 
of the feedback system (1.1)-(1.4), with initial  da tum 

(1.9) (~) = (see (2.S)) 

can be wri t ten  for t>O as: 

K - - 1  co 

(1.10) (6) <(cI - -  A)~-~ Xo), y )  = ~ b~ exp [c#] + ~ ~ exp [ ~ ]  
r = l  v = l  

for any  y e L2(f2). (STotice tha t  the  equal i ty  is in the  weak-topology of H~-2~(~)). 
In  (1.10), t he  {c~}~=~ 1 are negative constants ,  which can be preassigned in any  chosen 
in terval  (in part icular ,  at  the left  of ~K), t ha t  replace the  unstable eigenvalues 
A~, ..., ~_~, while the  {~} are a suitable sequence of negative constants  having the  
same asymptot ic  behavior  as the  {~}: [~--27~] ->0  as k -->c~. (See (3.38).) B[ore- 
over, the  coefficients {Z~} are in l~ and, along with the  coefficients {bs}, are exhibi ted 
in the  proof as dependent  on y, the  initial da tum in H~-2s(~),  and on the system 
parameters ,  including the  sought-after  vectors gje  L~(/~): (see equat ion (3.58b) and 
Eq.  (3.59) which depend on the  sequence {d~}. The sequence {d~} is re la ted to the 
sequence {n~} by  (3A6)-(3.47) which, in turn ,  is related to the initial point  and the 

system's  parameters  via (3.16)). 
The vectors gj are given by:  gj = ~ + g*, where the ~j's are the solution of the 

finite moment  problem (3A.7) in Appendix  3A of [L8] as applied to the  present  

ease, unique in the  space 

.~- = span l k~ls, k 1, ..., K - -  1 ; m 1, ...~ -Mk} 

and  the g~ s are any  vectors or thogonal  to W. 
An expansion similar to (1.10) holds, this t ime in the  weak topology of L~(9), 

if the  init ial  da tum is only assumed in L~(f2). [] 

I n  the  self-adjoint case, the  stabil ization result  is t hen  recaptured  as a conse- 
quence of Thm. 1.3, via a double applicat ion of the Uniform Boundedness Principle.  

(5) Here c is a positive constant greater than the largest unstable eigenvalue, so that the 
fractional powers are well-defined. 

(s) A (scalar or vector valued) function z(t) of the form 

z(t) ----- ~. a~ exp [~kt], t e R  + 
k = l  

with ~ negative real numbers, where ~k -~ -- ~ as k --> c~, and where {ak} e l~ will be called 
in this paper a ]unction o] the crass IDE (In]inite linear combination o] Decaying Exponentials). 
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A reformulation of expansion (1.10) in terms of spectral properties of the  feed- 
back generator is given next.  To appreciate it, one should note tha t  the  feedback 
generator As, corresponding to those special vectors w~ and g~ as in Theorem 1.3, 
tha t  produce feedback solutions of class I D E  cannot in general be a selJ-ad]oint 
operator (~), so tha t  an orthonormal basis in Zs(D) of eigenvectors of A~ is out  of 
question. 

COROLLARY 1.4. -- The following spectral properties hold for the  feedback gen- 
erator As corresponding to the  vectors wj and g~ of Theorem 1.3: 

(i) the  distinct constants ~;e~ ~-~o~=~ , and {%}r~ are eigenvalues of such feed- 
back generator As; 

! co (if) the corresponding (normalized) eigenvectors tfes, m~K-~= 1 , and {er,~}~= 1 form a 
(Schauder) basis in L,(~Q) (non-orthogonal, when the g/s or the w[s  are not all 
zero) so tha t  the following expansions apply:  

K - 1  . co 

(1.11) x = ~_,~ (x)e~,~+ ~,~;(x)er,, ,  x e ~ ( ~ )  
i = 1  v = l  

(1.12) A f x  = ~_, c~i(x) e~,~ § a~:(x) e~,~, x ~ 2(Af )  
i = 1  f = l  

where the bounded linear functionals {~}, {~;} and the eigenveetors 
are biorthogonal sequences, say: 

~,~(e~,~) : 0 n r m" 

{el,,}, 

Similarly for (~/:} and {@,m}" Thus 

oo 
K - - 1  t r �9 

S~(t)x o = ~ ~h(x) exp [eat ] e~, i + ~ •:(x) exp [~r ] e:~,~ 
i=l ~'=I 

[] 

The general case in which ~r ~ 1 can presumably  be handle4 similarly, t tow- 
ever, its detailed t rea tment  would have considerably overloaded the presentation,  
part icularly at  the  notat ional  level. I t  is therefore analyze4 only in the first par t  
of the proof (section 2), while the  more technical par t  of the proof (section 3) is re- 
str icted to the  case J//~ ~ 1. 

Oar present  results on the structural  assignment problem for (1.1)-(1.4) represent 
a step forward over the  same problem for a parabolic system with Dirichlet :B.C. 
with (~ interior observation ~> t reated in [L2], where y was the ident i ty  operator in 

(7) Since, in this case, A s would be dissipative, contrary to Remark 1.1. 
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L:(tg). This extension is achieved here by refining in a number of places our original 
proof in [L2], and by further sharpening some crucial estimates in our analysis. 
However, because of assumptions (1.8) (b-c), the present results do not cover yet  
the fully boundary feedback ease, where y would be a continuous operator H~"(zg) -+ 
->Z~(F), 2 a <  ~, in particular the Dirichlet trace yx = xtr ((~ boundary observa- 
tion ~>). 

In this very important ease, however, a solution to the boundary stabilization 
problem w~s provided in [L8] in the non necessarily self-adjoint ease, thereby 
disproving a belief to its impossibility, expressed in IF3] on a basis of a one-dimen- 
sional (r ~ 1) negative example. 

2. - P r o o f  o f  T h e o r e m  1.3.  

Prelimina~'ies and ]inite dimensional part ]or general d[~. 

As in our previous work ILl-L3, LS, T3-Td], our approach to treating non- 
homogenous boundary problems consists of replacing the feedback system described 
by (1.1)-(1.3) and (1.4) with a corresponding semigroup-rooted abstract version. 
This was developed only very recently with the aim to model, through a variation 
of parameter type formula~ nonsmooth boundary input parabolic equations. See 
the original references [B1, B2, W1] for the full development, at least in the Dirichlet 
case. The mixed case can be ti~eated similarly (see comments in IT3] following 
(2.4M)). See also the very general and unifying treatment given in [LI]. In  the 
case oi the boundary feedback given by  (1.4), these abstract semigroup versions 
give rise to the following integral model: 

t 

(2.1) x(t) = exp [AtJxo exp [ A ( t -  ~)]M ~ <yx(~), w~}gj dT:. 
J = l  

0 

I-Iere~ - - A  is the elliptic operator with zero mixed B.C. ; the (( mixed map >> is the 
continuous linear map L2(F) --> H~(Y2) [LS], [N1] defined by  y = Mg, where 

(2.2) - -A(~,  ~)y-= O in ~;  \o~] bylr= g" 

Since t9 is a bounded domain, the resolvent operator R(fi, A) is compact [D2; 
p. 1740]. Hence, the spectrum a(A) of A is only point spectrum and consists of a 
sequence of real isolated eigcnvalues {2k} with no finite accumulation point: 
~ - ~ - - ~ ,  and with a corresponding orthonormal basis of eigenvectors {r 
k = 1, 2, ... ; m ~ 1, ..., J/~, J//~ being the geometric multiplicity of ~ .  Following 
now a procedure introduced in [T2], we let X ~ JL~(tg) be decomposed into two 
orthogonal subspaces X~ and Xs corresponding, respectively, to the subsets {A1, ..., 
�9 .., ~K_~} and {)~, k>K}  of the spectrum of A that satisfies assumption (1.5). (The 
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subscripts u and s stand for ~( stable ~ and (( unstable ~, respectively.) Here, we 
appeal to the stand~rd decomposition theorem as in [K1, Thm. 6.17, p. 1781. With P 
denoting the orthogonal projection of JL~(zP) onto X~ and Q -~ I -  P,  then Q~(A) c 
c ~(A), X~ and Xs are invariant under A and hence under the semigroup exp [At]. 
As for the spectra, we have ~(A~)= {~, ..., ~K_~), ~(A~)= {~k, k>~K), where A. 
is the restriction of A on X. A~ is bounded, in fact, finite-dimensional. 

Finally, P and Q commute with A, hence with the semigroup exp [At]. ~Ve 
shall henceforth use the notation x~ = Px and x~ : Qx. Notice that  the fractional 
powers of (-- A )  are well defined. Notice also that the definition of M in (2.2) always 
implies M g ~ 2 ( A ) ,  unless g = 0. Thus, for g@0,  we always have QMgr ~(A~). 
However, the following relations, which we later apply crucially, hold: 

(2.3) 2 ( ( - x s ) ~ - 9  = Q ~ - ~ ( ~ ) ,  o < ,o<-~ 

with norm 

(2.~) 
s 

Relations (2.3) are contained in the literature of fractional powers [F2], [L5], ILl; 
App. ]3], [M2; p. 187]. Now, elliptic theory [L4; pp. 187-188], [N1] shows that  

(2.5) range of M c H~(/2) 

and from (2.3) we then obtain 

(2.6) Q [range of M] c QH~'-2q(tP) = ~( ( - -  As) ~-~) , 0 < q <�88 

Having introduced the relevant machinery, we are now in a position to begin 
the proof. We project (2.1) onto X~ and X~. By virtue of (2.6), the projections of 
the solution x(t) in (2.1) onto X~ and Xs are, respectively 

t 

(2.7) x~(t) = exp [A~t]Xo~ xp [A~(t --  z) ~ A~PMg,[<Tx~(z), wj> + 
~=1 

o + <yxs(z), w~>] dr.  
t 

(2.8) x~(t) = exp [As tJxo8 (-- As)~+0 exp [As(t-- 3)] ~ (-- As)~-~" 
J = l  

0 

�9 QMgj[<rxs(~), wj> + @'xs('r wj>] dz.  

These projections are coupled. 
are led to study the equation 

J 

(2.9) 

Considering the unperturbed part  of Eq. (2.7) we 

J = l  
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We then observe that  this can be more conveniently rewritten as 

(2.10) 2 = ~ z,  

where _X. is a square matrix of size equal to dim X~, depending on the vectors 
A~PMg~ and w~ (besides A~ and y). This can be seen by using in X the basis of 
orthonormal eigenvectors q)~, k = 1, ..., K -- 1, which make the matrix correspond- 
ing to the operator A~ diagonal. As we are seeking suitable boundary vectors. 
gj~L2(F), which produce the desired stabilized feedback semigroup, we find it 
convenient to consider the projections (2.7) and (2.8) after setting 

(2.:[z) df p j = A ,  PMgj; qja--S_(-- A,)~-eQ3lgj, j = l , . . . , J ,  

and to think of the vectors pj and qj as, for the time being, just vectors in X,  and 
X,, respectively, without any connection with the vectors g; which generate them. 
The question of synthesizing p; and qj through an appropriate gj will be taken up 
later on. (Appendices 4 A-J3.) 

With (2.11) in mind, we obtain a suitable structural assignment of the solution 
to (2.10), for a suitable choice of vectors p~, through the following lemma. 

L~)n~x 2.1. - Suppose that  the vectors wieLd(D) are chosen as to satisfy the 
full rank conditions (1.6)(a) at the unstable eigenvalues and, moreover, condi- 
tion (1.6)(b). 

Then 

(i) t.here exist vectors pj, j = 1, ..., J in X~ such that  the corresponding 
matrix ~ in (2.10) has a set of eigenvalues arbitrarily close to any preassigned set 
of (dim X~)~complcx numbers (appearing in complex conjugate pairs, if A, and pj 
are all real). 

In particular, these eigenvalues of Z~ may be preassigned to be all distinct, 
equal to negative constants c~, i = 1, ..., dim X~ and, for instance 

(2.12) l~e ~ k §  CdimXu< ...  < C1< ~ e  ]~K< 0 , 

in which case the solution to (2.9), or equivalently to (2.10), is an X~dunction oi 
the form: 

dim Xu 

(2.13) z(t) = exp [A~t]Xo~ = ~ exp [c~t](xo~, ~ ) r ~ .  
i~1 

Here, v~ is the normalized eigenvector of 2X~ corresponding to the simple eigenvalue 
c~ and the {~p~}, i = 1, ..., dim Xu form a basis on Xu. 

(if) ~oreover ,  when dim • = v>2, each vector pj, j = 1, ..., J can indeed 
be synthesized, as required by the left equality of (2.11), by any of the infinitely 
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m a n y  vectors gjeZ~(F), satisfying the moment  problem (3A.7) of the proof in 
Appendix 3 A in [LS]. The minimal  number J required is discussed in l~emark 2.1 
below. The case dim ~9----v = 1 is also included, provided dim X~<3.  

PRooP oF Ln~-~ra 2.1. - See e.g. Appendix 3A of [LS], where the proof is given 
in the more general ease of y being a continous operator: H2~(tP) --> 52(/'). [] 

REMARK 2.1. -- Conditions (1.6) (a) and the definition of l~ in particular imply 

(2.14) J > m a x  {J//~, k ---- 1, ..., K - - I }  and J>l~. 

Moreover, the proof given in Appendix 3 A of [L8] shows tha t  the largest multi- 
plicity of the unstable eigenvalues is indeed the minimum number of boundary  vec- 
tors g~ required for the conclusion of Lemma 2.1, provided tha t  the Dirichlet traces 

{r , k = 1,..., K - - l ;  m = 1,...,Jff~ 

of the eigenfwactions are linearly independent (s). 
Otherwise, more vectors gjeL2(F)  are needed. For  instance, if d / / k ~ l  , l < k <  
< K - -  1 and (9) l~< dim X,  ---- K --  1, then  J suitable vectors g~e Z2(F) tha t  satisfy 
the moment  problem (32~.7) in Appendix 3A of [L8], where 

J > dim X. -- IT + 1 , 

will suffice (lo). A full analysis of the situation, amounting to a certain output 
stabilizability problem in X.,  is contained in the proof in Appendix 3A of [LS]. [] 

AppliCation of Lemma 2.1 to the unperturbed part  of the projection (2.7) allows 
us to rewrite (2.7) more conveniently as 

t 

(2.15) x.(t) = exp [2~ t]xo~ exp [2~(t--  ~)] ~ pj<~x~(~), w~> d~. 
J = l  

0 

To handle the coupled projections (2.7) an4 (2.8), we need the following consid- 
eration. F ix  2o < ~ in the definition of y, given above (1.4). 

Therefore, if we take H2~(f2) and L2(Q) as pivot spaces [A1, p. 48], it  follows 
tha t  the adjoint  operator y* is a continuous operator: L~(/2)-> H2"(/2). 

(s) This is the case when ~2 is a parallelepiped. 
(9) This is the case when I2 is a sphere. 

(lo) In the case of one dimensional ~2, where J and l~ are at most equal to two, the 
unstable eigenspace cannot be of dimensions larger than three. 

l O  - ,4nnali di Matemal@a 



~2 i .  LASIEOKA - 1{. TtCIGGIAI~I: Structural assignment, etc. 

By (2.3), we can then  write 

(2.16) <~,x(t), w~>r = <yx~(t), w~> + <yx~(t), w~> = 

= (x~(t), r*~,)..o(o)+ (x.(t), ~*~b.o(.)= 
= <A~x~(t), ~r -~ <(-- nyx~( t ) ,  ~ >  

where < ,>  is the inner p roduc t  in L2(Y2) and where we h~ve set 

(2.17) ~ ~ A[PF*wr , ~ = (-- A y Q T * w  ~ . 

~ot ice  tha t  in (2.17), Qy*% is wri t ten,  by  (2.3), as belonging to the largest pos- 
sible fract ional  power of ( - - A J ,  ~nd hence a fur ther  (( t ransfer  ~) of an addit ional  
fract ional  power of (--A~) from the  left  to the r ight  of the  second inner product  
in (2.16) is not  allowed. 

Continuing with the proof of Theorem 1.3, we see tha t ,  b y  (2.17), the projec- 
tions (2.15) and  (2.8) can t hen  be rewri t ten  in the  equivalent  form 

t 
J 

(2.18) x~(t) = exp [Z~ t]xo~--[ exp [X,,(t - -  7)] ~ ioj<(-- A,)"x,(v), @j,> dz .  
J J = l  

0 
t 

t ~  T 

x,(t) = exp [A, t]Xos--[ (-- A,) ~+q exp [A,(t - -  ~)] ~ q:[<(-- A,)~x,(~), ~,,> + (2.19) 
3 J = l  

O 

which we shall find more useful. 

I~EiV~RK 2.2. -- Wi th  reference to Lemma 2.1, a Yector in X ,  will always be re- 
ferred to the basis ~ ~d~x~ t~d~=~ . On the  o ther  han4,  a vector  in X~ will always be refer- 
red to the basis {r We shall also adopt ,  henceforth,  the following shot% 
nota t ion:  

if ve .X ,~  we set ( v h :  <v, tv{>, i =  1 , . . . ,  d imX~;  

if v e X~, we set [v]~ : <v, qS~>, k : K,  K + I, . . . .  [] 

R]~L~nK 2.3. -- For  handy  reference below, we collect here the  following results 
and observations.  Le t  ~k=~ ci. Then,  

t 

(2.20a) fexp [2~(t - -  7)] exp [e~] d~ = 

O 

and 

(2.20b) 

exp [c{ t] - -  exp [,l~ t] 

j exp [A(t -- 

(I 

~)] exp [e,(-c -- ~,)] d~- : 
exp [~(t -- ~)] -- exp [A(t -- ~,)] 
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In  other words, convolving two different exponentials preserves the exponential 
character. By contrast, we have 

t 

f exp [e(t -- v)] exp [ev] dv = t exp [ct]. 
0 

Thus, convolving the same exponentials destroys its exponential character. These 
remarks will play a crucial role in the development given below in proving the de- 
sired structural properties of the feedback solutions. [] 

3. - Cont inuat ion o f  Proof  o f  Theorem 1.3.  

In]inite dimensional part, when ~ k  ~ 1. 

For simplicity of notation we assume henceforth that  the conclusion of Lem- 
ma 2.1 holds with just one vector; i.e. with J ~ 1, in which case we write w, g, p, q 
instead of w~, g~, p~, q~. 

The proof now preeeeds through a lengthy sequence of intermediate results. 
As the geometric multiplicity J//~ of all eigenvalues is assumed identically one: 
~/~7~ ~ 1, we then consistently write ~b k for ~bk~ throughout. With the constant @ 
in (2.3) fixed once and for all, we also set 

(3.1) 

for the sought-after vector in X,, and 

(3.2) A ~ P M g  ---- p -= { p , } ~  e X~ = PZ2(/2 ) 

for the corresponding vector in X, ,  provided by Lemma 2.1. ttere, according to 
the convention o f  Remark 2.2, we mean explicitly: 

(3;3) qk-= <q, ~ } ,  k > K  but p , =  <p, ~ ,} ,  i ---- 1, ..., K - - 1 .  

We first consider the projections (2.18), (2.19) for J ---- ], thinking at first of p 
and q in (3.1), (3.2) as, for the time being, just vectors in Xu and X~, respectively, 
without any connection with the vector g E Z2(F) which generates them. The ques- 
tion of synthesizing p and q through an appropriate g will be taken up toward tile 
end of the proof, in Appendices 4A-dB. (The question of synthesizing only p ~vas 
solved in the proof of Lemma 2.1.) 

Finally, throughout this section, the initial point x0, is assumed to lie in 
~ ( ( - - A S - e ) ,  with no further explicit mention made (see (1.9)). 
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3.1. Reduction to a Volterra Integral Equation in d(t) = <(--A~)"x~(t), ~,>. 

Our starting point is the pMr of projections (2.18), (2.19) rewritten now for J = 1 

(3.4) 

(3.5) 

t 

x.(t) = exp [.~t]Xo~--fexp [.~.(t --  v)]p <(-- As)"x,(T), ~,> dv 
0 

t 

x,(t) = exp [A, t]xo,--f (-- A,) ~" +~ exp [A,(t-- z)]q[<(-- Ao)~x~(~), ~,> + 
O 

+ <x~(~), 5,>] aT, 

where we have defined the vector @~e X~ by 

(3.6) @. = A ~ . ,  i.e., by <AT.x.(~), @.> = <x.(~), @.>. 

Furthermore, set 

(3.7) + ~ + ~ d~ ~ < i, for suitable ~, once ~ is assigned 

and introduce the unknown function d(t): 

(3.s) d(t) = <(-- n,)~x.(t), ~8>. 

Applying (--A,):  to (3.5) and taking the inner product with ws yields, by virtue 
of (3.8), 

(3.9) d(t) = <exp '[AA](--n,)~ ~,> 
t 

--f<(-- X,) ~ exp [ n . ( t  - -  ~)]q, ~,>[d(-~) + <x.(~), #.>] d~. 
O 

We next compute, by means of (3.4) and a change in the order of integration, 

t 

f (--A,) t exp [A~(t-  ~)]q<x~(T), ~ >  dT = 
0 t 

= f ( - - A s )  ~ exp [ A , ( t -  T)]q<exp [-~T]x0~, ~ }  dv 
0 

$ t 

- - f  f ( - -  X,) ~ exp [A,(t -- T)]q <exp [~,(~ --  a)]p, @~> d(a) dT da.  
0 a 
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By (2.3), (2.12) ~nd the notational convenr in 1%emark 2.2, 

f (-- A , / e x p  [A,(t  - -  ,')]q<x~(~'), ~ )  dz = 

0 t 

0 
t t 

- - I  f ~' ex .  [ ' . ( t - -  T) eXP [O,(T--.)]('u)., '((Y) "T 'ff}q.{~}I: =-- 
o a 

= ~ exp [o~t]-- exp [At ]  - e 
,=~  ~=i ~ ,_  & ( x o ~ ) d w . h A -  

t 

- j ( e x p [ e d t - a ) J - e x p f X ~ ( t -  ; z ~ 7  a)] d(a) d,~(w+,.+)+p+3++}+I+@+. ~ + 

0 
(by (2.20)) 

Hence, (3.9) becomes 
t 

(3.1o) ,r = ,,(t) + f z ( t -  ,),r a~, 
0 

O<t<oo, 

where, in the notution:~l convention of l~emark 2.2 

(3.11) ~(t) = <exp [A+t](-- A,)~ ~ , )  - -  

K-1 exp [eit] - -  exp [l~t] 

I~=K i=l Oi-- ~k 
K--I 

[ 0,, 
+ _ ex~ [~,t][~.l. [ ( -  A.Vxo.],-- ~,~ E. 

k=K i ~ l  

(3.I~) ~(t) = - < ( -  A.)  ~ exp [A.tJq, ~,,> + 

q" ~ c ,--  ~k = - -  ~ exp Iv#]prig&) ~ - -  

We can rewrite (3.11) and (3.12) in a simplified manner as 

oo 

(3.13) +(t) = ~ n, exp [~ , t ] ,  0 < t < c ~ ,  

(3.14) ~4(t) = ~ h. cxp [fl.t] , O< t < c ~  
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where 

(3A5) 

(3.16a 

(3.16b 

k~ K ~l~--  Cr 

[(__ A,)~-~Xo~]J~s]r K--1 X ~ 

r - ~ K ,  K ~ - I , . . .  

r ~ 1, .. . ,  K - - 1  . 

, r -~ K ,  K -~ 1, . . . .  

(Here, xo~ is written in the largest fractional power of (--A~) compatible with 
the assumption (1.9)). 

(3.17a) h.~ = - -  p~(~)~  - - ,  r = 1, .. . ,  K - -  1 .  
k=K ~ k - -  Cr 

Notice that  the existence of the solution d(t) in (3.10), as un analytic f-nction 
for ~ > 0, is ~lready known through the existence result Theorem 1.1. One may 
Mternatively invoke the standard theory of linear Volterra integral equations [M1]. 
I t  should be kept in rain4 that  the functions ~(t), g(t)~ ~nd hence d($), depend upon q. 

The above expressions will play a crucial role in the analysis, given below, of 
the Volterra equation (3.10). Notice that  each coefficient n~ and h~, for r > K ,  depends 
only on the corresponding coordinate qr; while for l < r < K - - 1  it depends in a 
cumulative way on all {qk}~%~. This fact will be a source of difficulties. We also 
remark that  we shall henceforth borrow freely @ore Eq. (3.15) both the notation 
{/3,} in place of {cr} and (~}, or the other way around. 

3.2. Existence o] admissible vectors q generating Volterra solutions d(t)  el class I D E  

with negative exponents {a~}~=l all distinct 1rein all {fl~}~l. 

In order to establish that  the solution g(t) of (3.10) is of class IDE for a suitable 
vector % we find it convenient to associate with Eq. (3.10) the following sequence 
of ~uxiliary u equations: 

t 

gAt) = %(t) + t , ~A t -  ~) gA~) (3.1S) dr ,  
0 

where N----i,  2, ...~ and 

N 
(3.19a) %(t) = ~ .~ exp [#,t],  

r=l 0 < t < c ~ .  
2r 

(3.1%) &,(t) = Z, h, exp  [~,t] 
r=~ 
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L E n A  3.1. -- Let  the initial point x0~ be in 2( ( - -A~)  ~-Q) and also let q e QJS~(f2). 
Then, 

(i) the corresponding sequences 

1--(~ oo ( _  As)1-~{n,}~=~. df {~ n~}~=x and (--  As)-~{h~}~ ~: --- ~ - ~ h  "~r176 
- = = ( ' ~ r  r ) r  ~ K 

defined by  (3.16), (3.17), all belong to the space l~; moreover 

x_~ e o n s t  o o n s t  

r r 

(ii) the corresponding functions ~ ( t ) a n d  ~(t) are functions of class I D E  on 
t > 0  and t > 0, respectively, and they  are both absolutely Laplace transformable;  

(iii) the corresponding functions %(t) and f~(t) in (3.19) converge uniformly 
over R + and [a, co), a > 0, respectively to the  functions ~(t) and /~(t) in (3.13) and 
( 3 . 1 4 ) .  

PI~OOF. - Conclusion (i) is immediate  from the explicit expressions (3 .16 )and  
(3.17) of the coefficients via (1.8b). As a consequence, ~(t) and ~(t) are the uniform 
limits over R+ and [a, c~) of the  decaying exponentials, thus establishing conclu- 
sion (ii), as required by  definition of class IDE.  Conclusion (i) also clearly implies 
(iii). [] 

We start  with a general result which will be refined and complemented below 
in Theorem 3.9. 

PI~OPOSlTIO~ 3.2. -- For any  vector q e QL2(/2), the corresponding solutions ~(a(t) 
to the Volterr~ equation (3.18) converge uniformly over ~ to the corresponding 
solution ~/(t) of the  Volterra equation (3.10). 

PROOF. -- Let  /~(s) ---- ~ h,/(s ~ fir) be the Laplace t ransform of /~(t) of (3.14) for 
r = l  

Re s > 0. :By Lemma 3.1 (i) on {hr}, we can achieve ]1 - -  ~(s)] > @~> O for Re s > u, 
for a sui tably large u. Then the (onesided) Laplace transform 2~(s) of dr(t  ) exists 
here by  

2 . ( s )  - ~ . ( s )  
z - -  2 . ( s )  ' 2v = K ,  K + 1,  . . .  

and the uniqueness of the solution d~(t) to (3.18). Then, Lemma 3.1 (iii) and the 
definition of the (one-sided) Laplace t ransform imply that ,  as 2Y-+ c~, the  func- 
tions ~ ( s )  and /~(s) are uniformly convergent to s and Z(s), respectively, over 
Re s sui tably large. Again, by  the uniqueness proper ty ,  of the solution d(t) to 
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(3.10), the functions 2~(s) also converge uniformly over Re s suitably large to the 
function 2(s). But then, the inverse Laplace integral (see [D1; Thin. 24A, p. 157]) 
implies that,  as N - + 0 %  g~(t) converges uniformly to d{t) over [0, oo). [] 

We next establish some properties enjoyed by the Laplace transform of solu- 
tions d(t). 

PROPOSITION 3.3. -- For ~ny vector q e QL~(tg), the Laplace transform 2(s) of 
the corresponding solution d(t), extended over the entire complex plane C in a 
natural way by the right-hand side of (3.20) below, is a meromorphic function 
over C. 

~oreover, if, for a suitable q, the corresponding (continuous over R +) solution 
d(t) of (3.10) is of class IDE, then 2(s) has countably many simple poles {~), ~ real 
and negative, which are simple zeros for [1 --  ~(s)]: ~(~) ~ 1. Such poles are either 
finitely many or else, if infinitely many, have moduli tending to infinity: 

]~rl -->cx:) aS  r - - ~ o o ,  

PROOF. - As in the preceding proof, we have explicitly, from (3,13), (3.14), 

(3.20) 
~+)= ;(+) = + - # ~  

r =  8 - -  # r  

which is the Laplace transform of d(t) for l~e s > 0 and is extended to C by the 
expression on the right-hand side. As the ratio of two meromorphic functions over C 
(with common poles {fl~}~l, in fact), 2(s) is meromorphic and hence its poles are 
either finitely many or else their moduli tend to infinity [K2]. In addition, 2(s) 
admits an expansion as the sum of its principal parts plus an entire function (]KIT- 
TAs-LErFLER, Theorem [K2]; [Ld]): The poles of 2(s) are zeros of the denominator 
[ 1  - -  ~(s)]. I f  the real So is such a zero with multiplicity m, then the term t ~-1 exp [sot] 
occurs in the antitransform of the ~ittag-Leffler expansion of 2(s). Hence, the state- 
ment on the (~} is a consequence of the assumed IDE character of d(t). [] 

We proceed now to characterize the admissible vectors q (recall Eq. (3.1)) whose 
corresponding solution d(t) are function of the class IDE with the additional require- 
ment that  the exponents be all different from the set {fl~}~~ 1 in (3.15) (recall Re- 
mark 2.3). 

RE~ARK 3.1. -- We refer here to a basic known result on the asymptotic behavior 
of the eigenvalues of second-order self-adjoint elliptic differential operators, which 
will play a crucial role below, If v d.enotes, as in the Introduction~ the dimension 
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of the euclidean space containing the domain tg, then (see [T. 1; pp. 392-395], [C1; 
Ch. VI, w167 3.3-3.4]) the estimate 

(3.21) fi~ = ~ , ~  k ~/~ , k = K ,  K + 1, ... 

holds. Here, and hereafter, the symbol --~ means that  the left-hand side can be 
estimated by the right-hand side from below and from above with the aid of constants 
independent of the variable in question (k, in this case) going to infinity. [] 

We now let m be the smallest (non-negative) integer stricly greater than 
((v/2)--1). Then, (3.21)implies 

o o  

k k = l  k~im+l)l~ < ~ " 

Therefore, by virtue of the Weistrass faetorization theorem [Ld; p. 390], the func- 
tion H(s), defined by 

(3.23) 

where 

(3.24) 

H(s) = ~1 (1 --~)~(s, ~, m) 

~(s,  ~ ,  m) ~ exp s~ + 2 \t~J + "" + m \ ~ ]  J'  

is an entire function with zeros of multiplicity one precisely at the points {flk}~=l 
and no other zero (the integer m is the genus of 35(s)). Then, the meromorphie func- 
tion 2(s) in (3.20) can be rewritten as the ratio of two entire functions, in fact 

where 

2(s)  - ; (s )H(s)  
~(s)  

(3.25) ~)(s) = (1 - ~(s)) H(s),  

while ID(s) and ( 1 -  ~(s)) have precisely the same zeros. To motivate our further 
analysis, let us now assume, in the light of Proposition 3.3, that there exists a vector 
q e QZ~(~2) (this assumption will be shown Inter to be non-void) such that  the cor- 
responding function (1-/~(s)) ,  obtained through (3.17), has eountably many nega- 
tive zeroes, all simple, of the form {~k}~~ any ~k being different from all the {fli}~=l, 
but with a similar asymptotic behavior: ~ fl~. Then, the function 
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is well defined and vanishes precisely at (ak}k~" By standard complex analysis 
theory [K3; p. 6], such a function differs from ~(s) at most by  a factor exp [z(s)], 
where z(s) is an entire function; that  is, 

~ ) ( s )  = e x p  [ z ( s ) ]  1 - -  E(s, fl~, m). 

As a matter  of fact, exp [z(s)] must be a constant and, in fact, equal to A~ = f i  (~klig~o), 
k = l  

provicted this infinite product is we11 defined, i.e. provided ( e~ - - f l~ ) / f l~e l l .  T o  see 
this, one writes 

( h, " : t k )  l~ (1--fl~ts) 

from which one obtains the limit value A~ by letting s go to infinity in any way 
except along the negative real axis; this, leads to exp [z(s)] as being 0(1), and 
hence, by Liouville's Theorem, as being the constant A~. We have thus proved 
the first part  of the following claim, whose assumption, as already remarked, will 
be shown later to be non-void. 

PROPOSITIOh r 3.4. - Let there exist a vector q = {qk}~=xeQL2(f2) whose cor- 
responding function .d(t) in (3.14), obtained through the constants (hk}~= 1 of  (3.17)r 
satisfies 

d(a~) ~ 1 ~ k = 1, 2, ... with multiplicity one,  

for a negative sequence (%}k~i with 

(3.26) ~ # / ~ j ,  ak "~ ilk, and (~zs~--fl~)/fi1~ e 11, k : j = 1, 2, . . . .  

Then, the following identity over C holds: 

(3.27) (1 - ~ ( s ) ) ~ ( s )  = ~(s) ,  

where ~s) is defined by (3.23) an4 

(3.28) 

where 

, m ) ,  
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Moreover, the  correspending sequence h, is expressed by  

A~/~, 1 - -  m/~,,/%, ~) 
(3.29) h,----- , r = 1, 2, . . . .  

~O1(1--~)E(fl" fi~' m) 
k r  

PROOF. -- The entire proposit ion was )roved above, following (3.25), except  for 
the expressions (3.29), which we now derive as a consequence of (3.27). For  the  
assume4 ~, rewrite (3.27) explici t ly as 

oo hj ) 1 h,o ~ ~ ~(s)= ~)(s). 
8 p r  ~ = 1 o - -  p, j l  

jV=r 

In other  words, by  (3.23), for r = 1, 2, ..., 

1 8 

J ~  k~ r  

= ~)(s). 

We now set s =fl , .  in the above expression. Using ~(fl,) --= 0 an4 (3.28), we obtain 
the desired formulas (3.29). [] 

The following Lemma will be needed. 

LE~I~A 3.5. - For  ~k~flk, we have 

(i) ~--~' ~ z ;  

k C r  

(ii) k ~  ~ 1. 

IF[ l -  E(~,, ~ ,  m)  
k = l  
k ~ r  

PROOF OF L E n A  3.5. -- We have,  for r~ k ~- 1, 2, . . . ,  

(3.30) 

and the conclusion fOllOWS. [] 
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CO~OLr~ARY 3.6. -- Under the assumptions of Proposition 3.4, the following 
asymptot ic  est imate holds for the sequence h, in (3.29) generated by  the assumed 
vector q, as r-->c~, 

(3.31) 

P~ooF. - The first --, on the left stems from (3.29) via Lemma 3.5 (i). The 
second ,-~ on the r ight  then  follows from (3.17b), as the te rm in { } in tha t  equation 
is obviously ~ 1. By  q~[@~]~<const/r (see (1.8b)) and  by (3.21)~ we get 

const r2~/" 

for v = dim D>2, as assumed, cf. (3.7). [] 

I~EMA~K 3.2. -- The proof of Proposition 3.4 and  Corollary 3.6 actually refines 
the initial assumption of (3.26) by lea4ing to the more refined conclusion (3.31). 
I n  fact, (3.31) yields by  vir tue also of (3.21) as k --~c~, and of (1.8') 

(3.32) ~k-- fl~ i fl~ ~k i+2(l-~)i~ E li 

and Eq. (3.26) follows. Note tha t  est imate (3.31,) relates the assumed q and  {~k}k~l" 
l~eference to Fig. 3.1 below will greatly help in following the rest of the proof. [] 

~E+2 ~K+I ~K 

II U |1 11 

8. 8.-, 

1 I 
c~ 0 
T~ 

8.+, 8. 

Figure 3.1. Asymptotic behavior of the constaats {~,} with respect te the constants {fi,} 
(see (3.31) and (3.39)). 

We now tackle the problem of the existence of vectors q, as postulated in Proposi- 
t ion 3.4 and  Corollary 3.6. To this end, it  is convenient to introduce the following 
definition which is mot ivated by (3.17) and the paragraph below (3.17). 
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D~,FI~ImlO~ 3 . 1 . -  An /rsequence {~}k~ will be said to satisfy the Realizability 
Conditions for the problem under study if it satisfies the conditions, for r = 1, ..., 
K--l, 

(3.33) ~ = :p~(~.)~ ~ ~ 
~ = ~  { ~p,(w~), / ' 

which arc crucial for the reMizability of such {~k}k% ~ through a vector q as demanded 
by (3.17). [] 

l~eversing the procedure of Proposition 3.4 and Corollary 3.6, we now first as- 
sign a sequence {~k}k~l, with appropriate asymptotic behavior as suggested by 
(3.31), (see Fig. 3.1), and then solve (3.27) for a suitable sequence {)~k}k%l (see Propo- 
sition 3.7). We then study in Theorem 3.8 how to force such a solution {~k}k~ to 
satisfy the I~ealizability Conditions as well. Actually, even more is accomplished 
by the following two results. 

PROPOSITION 3.7. -- Fix an arbitrary vector v = {vk}k%lel ~ with vk# 0. 
Next, assign a negative sequence {~k}k~, which satisfies 

(3.34) a ~ r  f l j ,  k ---- i = 1, 2,  . . . ,  

and the asymptotic estimate 

(3.35) 

which implies (~--fi~)/fi~ell (see l~emark 3.2 an4 (1.8b)). 
Then, there exists a sequence {)~}~~1 such that  

~ ~ :~(8)= ~)(s), (3.36) 1 -- =~1 s--~flj) 

with ~B(s) and ~D(s) as in (3.23) and (3.28), respectively. Identi ty (3.36) then implies 

c o  

- -  �9 , . .  5=1~--flJ i k = 1,2, 

and, moreover, uniquely determines the {)~5}~1, according to formula (3.29), written 
for ~j. 

PROOF. -- See Appendix 4B of [L9] for a similar situation. [] 

What follows is a main result that  affirms the existence of admissible vectors q 
(cf. (3.1)) as postulated in Propostion 3.4 and Corollary 3.6, provided that  it has a 
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suitable small l~-norm and  all its coordinates (q, qS~,} = q~, of q, Ir -~ K, K -~ 1, ... 
a r e  n o n z e r o .  

Tm~oRE~ 3.8. - Let  a vector  q e X s as in (3.1) be given; i.e. q -~ (--As)~-eQMg = 
-~ {q~}a~ for some g eL,(17), Where now the  coordinates (~)q~= (--).~)-i-~(g, ~b~{r) r 
will be require4 (1~) to be different f rom zero. Then, for all vectors ~,  which satisfy 
condit ion (1.8b) and, which, in addition, possess a norm ]w~I~ sufficiently small, 

one can const ruct :  

~- oo with (i) a vector  ~ = tvk}~=r:~l~, 

(3.37) 0 r  7~=K,K§ 

where C~ is sufficiently small so t h a t  the  corresponding sequence ~. 1~ defined by  /. "kJ]~ = K 

(3.38) 

has its terms 5k negative, 4istinct~ an4  satisfying 

(3.39) G r  k = K ,  K - k 1 , . . . ;  j = 1 , 2 , . . . ;  

(ii) a sequence ( ~ } ~ 1  of negative,  dist inct  constants  with 

(3.60) ~i:/: G~ an4  ~ r  fit 

i = ] ~ . . . , K m l ;  k ~ - K ~ K - - } - ] ,  .... ; ] -~1 ~2 ~ . . .  

{h~,}~=l with {/j~-6- such tha t  the corresponding sequence - oo hr}r= 1 a 11 defined, according" 

to Proposi t ion 3.7, by  

(3.41) ~,___ k=l ~ l  , r ---- 1, 2, ... , 

/ r 1 6 2  

where the exponent ia l  funct ion E(fl~, fl~ m) is defined in (3.24) and A~ is specified 
following (3.28)), satisfies the  Realizabil i ty Condition (3.33). 

(11) See Appendix 4A, below (4A.4). 
(12) This is possible since ~k]r r 0 for C%boundaries Y [S1, Cor. 2.2] and for par~lle- 

lepipeds. 



I ,  L A S I E C K A  - 1~. T I%IGGIANI :  ~ t r u e ~ r a ~  assignment, e~c. J55 

oo 

Moreover, the function ~(s) a~ ~ hr/(s--fl~), corresponding to such 'a sequence 

{h~}~= 1 satisfies 1 - -  ,~(~) = 0, k = 1, 2, ... with multiplicity on% while ~(s) ~= 1 for 

Therefore, according to Proposition 3.4, the function ~(s) defined above satisfies 
(3.27). [] 

PROOF. -- Conclusions (i) and (ii) are proved in Appendices 4A and 4B. These 
appendices construct~ ultimately by means of a fixed point technique, the sequence 
{~)~=~ for which the l~eMizability Conditions hold, and, in addition, the claimed 
vector ~ and the sequence ( ~ ) k ~ .  

._~ K - - l ,  Moreover, the continuity of the map (Vk)k=~: (~)~=~. l~-*R K-~, needed in Ap- 
pendix 4A, is proved in Appendix 4B. 

To show that such (~h~)~=~ is in l~ we need only invoke part (i) of Lemma 3.5 
to obtain the ~ on 

(3.42) 

while the equality on the right stems from (3.38). The "Schwarz inequality applied 
to (3.42) ensures then that {fi~-~h~}~=lel 1. 

As to the claim for the corresponding function /~(s), this stems from (3.27), 
which holds by virtue of Proposition 3.7. [] 

The next result establishes that  any admissible vector q that  fulfills (3.27) also 
furnishes t h e  desired solution to (3.10): d(t), of the special class IDE, with ex- 
exponents ~ all different from the constants {fir). 

T~EO~E~s 3.9. - Let q be an admissible vector with corresponding function g(s), 
obtained through (3.17), that  satisfies (3.27) for negative constants {~k) obeying 
the estimate (3.31). (Such vectors q are provided by the proof of Theorem 3.8.) 
Then, the following properties hold for the corresponding solution d(t) to the u 
terra equation (3.10): 

(i) the solution d(t) has the form 

co 

(3.43) d(t) ---- ~ d~ exp [~,t], t eR-7; 
~'~1 

that is, 

(3 .44 )  = dr 
r=l ~-- O~r'' 

(For I~e s > 0, 2(s) is the one-sided Laplace transform of g(t) and is extended 
over C through the right-hand side of (3.44).) 
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(ii) The coefficients {d~} satisfy the conditions 

(3A5) d~a~ < - - ,  r - - - -1 ,2 , . . .  
r = l  ~" 

analogous to the properties of {n~fl~ -~} of Lemmu 3.1 (i). 

(iii) The coefficients d, ~re the residues, res 2(~) ,  of 2(s) at  {~}: 

(3A6) d , : r e s 2 ( ~ ) .  

Consequently, d(t) is a function of the special class IDE.  

Pl~ooF. - To prove (3.44), we apply the I~[ittag-Leffier expansion to 2(s). To 
this end, the following proposition is crucial. 

Pi~oeos:[~Io_~ 3.10. - Under the hypothesis of Theorem 3.9, the residues res 2(a,) 
of the function 2(s) at the points a, satisfy the est imute 

^ r2~/" 1) 8~S r --> o o .  

Pi~ooF oF Pl~oposimio~ 3.10. - Wi th  :B(s) and ~(s) the entire functions given 
by (3.23) and  (3.28), we have from (3.20) and  (3.27) 

(3.47) res if(a,) = lim (s - -  ~) ~(s)5~(s) 
~_.~, ~)(s) 

(3.48)  ~ ,~(:r162 #~), 

co ~ r  

k ~ r  

by Lemma 3.5 (ii), and  ~,~-fl~, where 

(3.49) 
o o  

As {n, fl~-s}~l belongs to ll and  ~,~lJ~ ~' ~1-~ <eft, according to Lemma 3.1 (i), we now 
need to invoke par t  (i) of the following Lemma.  Par t  (ii) will be needed later on in 
Lemma 3.12 and  Theorem 8.14. 

L E ~  3.11. - For  any  vector b -~ {br162 1 such t h a t  bj<const/] ,  the following 
estimates hold for ~,-~ fl~ aej t~: 
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(i): 

~=~+l ~ ( ~ - -  ~)  -- ~ 

where e' is an arbitrary positive number. In addition, by symmetry with the above, 

(ii): 

i) Y b~ -- 0 1 
~=~-+1 ~,(~-- ~,) ~ ; 

2) ~=% ~,(f~_ ~) V~d 

P~ooF. - The proof is similar to the one given in Appendix 4E of [L9]. [] 

Continuing with the proof of Proposition 3.10, we apply Lemma 3.11 (i) to the 
sum in (3.49), after multiplying the numerator and denominator by ~l- t  as allowed 
by Lemma 3.1 (i), to obtain 

(3.50) ~(~,) = (p(1)  n r  E + - - .  

Inserting (3.50) into (3.48) yields 

(3.51) 

The desired conclusion of Proposition 3.10 then follows from (3.51) via 

which is the result of (3.37)-(3.38), of q~[~8],<const/r (see (1.8b)) and of ~ , ~ / 3 , ~  r 2/~, 
from (3.21). [] 

l~eturning to the proof of Theorem 3.9, we see from Proposition 3.10 and Lem- 
ma 3.1 (i) that  we can apply the Mittag-Leffler Theorem [L3; p. 394], [K3; p. 37ff] 
to obtain 

(3.53) 2(s) = ~ rcs 2(~) + e(s) 

where e(s) is an entire function. But from (3.20), we see that  2(s) goes to zero for 
s -+c~ in any way except along the negative real axis and this leads to e(s) = 0(1) 
and hence, by LiouviHe's Theorem, to e ( s ) -  O. 

11 - .Annali eli Matemativa 
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We can then rewrite (3.53) as in (3.44), from which relations (3.46) follow im- 
mediately. We now prove (3.45). To this end, we invoke (3.46), and (3.51), to 
obtain 

(3.54) d ~_o ~ - -  #~ - -  " ~ - ~  h~e; ~-5 ~-~ roar " ~ 7  -7- 'u ~brO~r 
~r 

where the right-hand side estimate makes use of (3.42). Then (3.45) follows via 
~/- ,  fi, from Theorem 3.8 (if) and Lemma 3.1 (i). The proof of Theorem 3.9 is thus 
complete. [] 

3.3. F o r  d ( t )  as i n  w 3.2, the p r o # c t i o n s  x~(t) a nd  x,(t) are o/ the special  class I D E .  

With the existence of representation (3.43) for some admissible vector q guaran- 
teed by Theorems 3.8 and 3.9, the following Lemma will be useful in later arguments. 
The proof of this lemma, however, takes place in the t-domain. 

L E s r ~  3.12. - The solution d(t) of the integral equation (3.10) has the form (3.43) 
as a function of class IDE, where 

~ : / :  flj , r, ] = 1, 2, ... , 

if an4 only if the following conditions are satisfied. 

(3.55) ~ h~ ~=l ~ - -  fli -~ 1 , r -= 1, 2, ... 

c o  

(3.56a) n ~ =  - -  h~ ~1 di ~ i ~ 2  , ,  r = K , K @ I , . . . ,  

(3.56b) ( x o . ) ~  ~1 d~ 
P~ ~- ~ i ~ c  , r ] = ] , . . . , K - - 1 .  

PnooF. - Let d(t) be given by (3.43). Then, inserting (3.43), (3.13) and (3.14) 
into (3.10) and equating to zero, by linear independence argument, all the coefficients 
of exponentials results, after straightforward computations, in (3.55), as well as in 

(3.57) n~ --= --  h~ ~ d~ 
~=1 c ~ - -  fl~ ' r -=  1 ,  2 ,  .... 

Relation (3.55) means, of course, that  the {c%}~ 1 are zeros of the denominator 
(1--/~(s)) of 2(s). For r = K, K + 1,. . . ,  (3.57) leads to (3.56a) via (3.15). For 
r -  1, ...~ K - - l ,  however, the ratios n~/h, in (3.57) are computed via (3.16a) and 
(3.17a), thus leading to (3.56b). 

Reversing the steps of the above procedure proves the opposite direction. ['1 
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R E ~ K  3.3. - Summing up (3.57) in r f rom one through c~ and  using (3.55) 

yields ~ nr = -- ~ dr [] 
~=I T=I 

A final Lemma  is needed. 

LE~M:~IA 3.13. - For  any  admissible vector  q provided by  Theorems 3.8 and 3.9 

the  corresponding solution d(t) of the form (3.43) to equat ion (3.10) satisfies the 
following asymptot ic  est imates:  

PI~0OF. -- B y  (3.56a), we can write for r = K,  K + 1, ..., 

dr __ ~r ~ dt 
2r--~, hr J=12r--~ 

Next,  by  vi r tue  of (3.45) and Lemma 3.11 par t  (ii), we have 

Finally,  (3.16b) and  (3.17b) provide 

n~ d~ ([(--A~)~-'Xo~]~ ( 1 )  

and the Lemma  is proved.  [] 

We are finally ready now to draw the desired conclusions to the solution x(t). 

THEOI~E~ 3.14. -- For  any  admissible vector  q provided b y  Theorems 3.8 and  3.9 
the  projection x.(t) of the  solution x(t) is an X~-function of the special class ID E  (i8). 

PlCOOF. - In  view of (2.13), it  is enough to show the desired conclusion for the 
integral  t e rm of (3.4). By  (2.14), (3.8) and (3.43), this t e rm can be rewri t ten  for 

(la) Since X u is finite dimensional and A. an operator on it, then A~xu(t) for any power 
r is also of the special class IDE. 
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(3.58) 

(by (3.56b)) = 

0 t 

= exp [o~(t --  z)]pr ~ d~ exp [~z] dz y~ 
i=1 [ = i  

0 

(by (2.20)) = ~1 [P~ d, 

= ~ - ~  ~ exp [e~t] + ~, exp [ ~ t ]  % 
i = 1  r = l  r = l  6 ~ r - -  ~ i  

K - - I  oo 

- exp [A~t]Xo + ~. p~ ~ exl) [~ t ] .  
~=1 r = l  r - -  

(3.58b) (@ (2.z3)) = 

But, since the {c~} and the {~} were chosen (see Fig. 3.1) 

in f  I ~ - o d - - - ~ > 0 ,  
~ = I , 2 . . .  

i = l , . . . ~ K - - 1  

relations (3.45) in Theorem 3.9 imply a ]ortiori that  the infinite sum in r in (3.58b) 
is a function of the special class IDE. The desired conclusion is then contained 

in (3.58b). [] 

The proof for the relevant result for xjt) on X ,  passes through the following 
theorem. 

T~EO~E~ 3.15. -- l%r any admissible vector q provided by Theorems 3.8 and 3.9, 
the function (--A,)~-exJt) is of the special class IDE in the X,-weak topology. 
More precisely, we have for y e X~----QZJf2) 

[ ~ q~Y~l. (3.59) <(-- AI)i-qx,(t), y} ---- ~ exp [o~,t]d~ 1 + ~ ~,--  v,j 
~ = 1  i = 1  k = K  

P~ooF. - We have from (3.5), (3.4): 

(3.60) <(-- A~)~-exs(t), y} -~ <exp [A~t](-- --~/ ~08~ 
t 

0 

+ {feb + zU)] e,, y}, 
0 

with W(-) an4 2~(.) defined by (3.8) and (3.58), respectively. 



I. ~hSIECKA - ]~. Tt~IGGIA~I: Structural assignment, etc. 161 

Since by (3.58b) and (3.43), 

we see that  the first term in (3.61), once inserted in (3.60), cancels the second ~erm 
in (3.60). Hence, substituting (3.61) into (3.60) sn4 using the convolution relations 
(2.20) yields 

(3.62) <(--A,)~-ox~(t), y} = <exp[A~t](--A~)~-exo~, y} 

r { ~ 1  (ff2u)i:Pil exp [ ~ , t ] -  exp [2kt] 

= k=Kexp [Jlkt] 2~q~yk ,~1 
d,(1 ' K~I (Y)u)iPi~\ [ 

J 
+ ~ {eKe)[O~rt](~ r ('1 -~ ~ 1  (~)u)iPil( ~ ~lzqkyk~ I 

, =  1 ~=-1 a , - - c ,  I~k----~ a ,  - -  , L ] J "  

To ascertain that  all the infinite sums in (3.62) are well defined, we observe lore- 
liminarily that  

(3.63b) = o ( ~ ) +  , ~ ) 

which follows when Lemma 3.11 (ii) is applied to the first two sums in (3.63a) (a 
valid procedure when (3.45) is invoked) and Lemma 3.13 is applied r the last term 
in (3.63a). Hence, (3.63b) gives 

) (3.64) ~ ,~q~y~I ~ ~ <const ~ rq~Y~J + I((-~.)'-~ 
k=K r=l k=K 

<const (Iq] + ](--A.)~-OXo~l)Jyl. 

Therefore, the following interchange of order of summation is allowed 

(3.65) 
k=K r=l r k=K (Zr-- ~k ' 
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showing by (3.64) tha t ,  as la~l-->ec, the  following sequence in r is in ~: 

(3.66) d, i +  - - - -  2, - -  ~ l l  

K - - !  

Since the ~,erm ~ goes to zero as r ~ c ~ ,  we conclude lrom (3.65) and (3.66) 

tha t  tgq. (3.62) is well defined as a function of class IDE.  To complete the proof 

of Theorem 3.!5, it remains to show tha t  the first sum ~ in Eq. (3.62) is, in fact, 
l : = K  

identically zero. To this end, we recall the definition of ~((t) (Eq. (3.8)) and  its ex- 
pansion (3.43) for q admissible as assumed, along with a <  ~--@ (Eq. (1.11)). We 
~hen deduce tha t  for y = ~ with (see (2.17)): 

~he firs~ sum ~ in (3.62) vanishes identically. This implies (~) tha t  all its coeffi- 
k = K  

cients are identically zero, 

 y-2, l ' ' 

We then divide by the non-zero coefficient Yk [see (1.8'): [w~]kg= 0] and obtain the 
desired conclusion. Theorem 3.15 is fully proved. V] 

To finish off the proof o f  Theorem 1.3, we need to tackle the synthesis problem 
o~ the  vectors p ~ X~ and  q~  X~ by  a suitable boundary  vector g e L~(l"), as dic- 
ta ted  by (3.1) and (3.2). More precisely, we seek a vector g in L~(F) such tha t :  

(i) i t  satisfies the finite moment  problem (3A.7) of Appendix A of [LS], in- 
volving only the coordinates (g, q}~[r)r, k = 1, ..., K ~ 1; 

(if) the vector q ~- ( - -A , )~ -~  ~ X~ has all coorclin~tes (~s) 

~q, r  = - ~j~-~(g, ~ ( ~ ) ~ ,  r = K,  K + 1 , . .  

different from zero, so t ha t  the procedure of Appendices 4A.B applies. 

co 

(14) If ~ %exp [2~t] ~ 0, t > 0, with {zk} ell, then ~erm-by-term Laplace transforming gives 
k ~ K  

c~ 

z~ ~ = 0 for Z ~lt~}k=K 

by analytic continuation. Integrating along a small eireIe centered in Z~ yields by Cauehy's 
theorem ze ~ 0 as desired. 

(15) We are using here M* r = -- (1/~k)(g, C51~Ir)r (see [L7, Lemm~ 4.1]). 
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This can be accomplished by means of boundary vectors g of the type g ----- ~ + g*, 
: {~b~]r}~= ~ , of the moment where ~ is the solution, unique in the space ~ span K-~ 

problem (3A.7) in [LS], and g* is any vector orthogonal to o~. In  fact, we compute 

K - - 1  K - - 1  

A.PMg* = 2 ~,r qSk) qSk ~- --  ~ (g*, tk l r ) r  ~5~ = 0 
k=l k=l  

so that  for the stabilizing vector p in X~ of Lemma 2.1 we get A . P M g  = A.PM~.  
The proof of Theorem 1.3 is thus complete. E] 

PROOF OF COROLLARY 1.4. - -  We write more conveniently {y,}~=~ for the sequence 
0~ co  {e~}g~ ~, and { ,}~=x. As noted st  the end of Theorem 1.3, the expansion (1.10) holds 

in the weak topology of JS~(:Q), when xoeJSs(~) in which case, we can write 

(3.67) 
c~ 

<S~(t)xo, y> = ~ u.(xo, y) exp [ 7 J ] ,  t >0  

for the desired feedback semigroup S~(t) on L~(/2); where the u.(xo, y)'s are constants 
depending on xo and y, which form an/~-sequence; moreover, u.  is a bounded linear 
functional on xo for y fixed, andsimilarly on yforx0fixed. Thus, u~(Xo, y) ~ <B~xo, y} 
for bounded operators B~ on JS~(~). Application of the L~pl~ce transform to (3.67) 
(term by term application is legal) yields for the resolvent of A~: 

(3.6s) <R(~, A~)xo, y> = ~ <B.~o, y>, ~ ~ {~.} 
.=I # - - 7 -  

after extension by analytic continuation. The constants {y~} are then simple poles 
of the resolvent and thus simple eigenvalues of A~ IT5, Thin. 5.8-A, Io. 306] with 
corresponding eigenveetors %, .  

Next compute around a small circle /~., centered at a fixed 7; and containing 
no other point of the sequence {y~} 

B.xo 
R(/~, AF)xo dt~ = j / ~  _ Y; d/~ = 27dB;xo 

by Cauchy Theorem. Thus, B .  is the projection from L~(~) onto the one dimen- 
sional eigenspace of A~ spanned by the normalized eigenvector %,~, along ( I - -  
--B.)L~(Q): B~x = ~.(x)%.., ~n(x) = scalar. Then, U,(%,~) ~ I an4 ~].(e~,~) ~- 0, 
n t m .  From (3.67) with t = 0  

oo c~ 

(3.69) x = Z B . x  = ~ V~(x) e . . ,  x e L~(9) 
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so t ha t  {e2..},~1 is a basis on L~(~2). Since B ,  commutes with Ay, we also obtain 

(3.70) A~x -~ ~ B , A r x  = ~_A~B~x -~ ~,y,~,(x)@., ,  xe@(A~) 
n ~ l  n = l  n = l  

as desired. Expansions (3.69)-(3.70) can be wri t ten out explicitly as in (1.11)-(1.12) 
respectively. [] 

Appendix 4A. 

Proo] o] Theorem 3.8 (i)-(ii). 

(1) I f  v = { ~}~=~ is any  vector satisfying 

o # Iv~I < c ~ , k = K ,  K + l ,  . . .  

we define s corresponding sequence {ak}k~K of scalars by  sett ing 

(4A.2) 

Then by (1.8'), (3.21), and  (4A.1) 

k~al,, 
~s k --> cx3 

for dim ~9 = v>2  as assumed, and  so a ~ f l ~  and (~k--fl~)/flkel~, by Remark  3.2. 
Thus, we conclude tha t :  if C in (4A.1) is sufficiently small, then  the e o n s t a n t s ~ ,  
k -  K~ K - ~  1, ... ia  (4A.2) are all real an4 negative, like the corresponding ilk's, 

as desired. 

(2) If  {e,}K~ ~ are the distinct negative constants obtained through Lemma 2.1 

and e.g. required to be 

~+1 < ~ < cK_I < ... < e~ < 0 ,  

we consider vectors {a,}K~ 1 in the R K-1 sphere ~f~ 

(4A.3) i = 1 ,  . . . ,  K - - 1  

with @~ sufficiently small, so tha t  all coordinates a!, ..., a~_~ are negative an4 distinct, 
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(3) We now let q be ~ vector of the form 

(~A.~) q = (-- 4 ) ' -~QMg e QL~(~2) for some g e L,(F) .  

Since 

q = Z ( -  ~ 2 - 0 < ~ g ,  ~.> r Z (- ~.)~-~(~, ~*~).~. 
r r = K  

and M * r  ((--1)/(~,)) r r [LT; Zero. 4.1], we deduce that  the coordinates q, 
of q are 

q = ( ,}.-~q co = { ( - , ~ . ) + ~  r 

an4 therefore, by Corollary 2.2 in [$1] for C'-boundary / ,  und for parallelepipeds, 
they can and will all be required to be different from zero: q ,#  O, r = K, K + 1, ..:: 

(4) l~ext, with q as in (4A.4) fixed, and for e~ch {a~}~=~ ~ in the sphere ~c we 
define a non linear operator T~, depending on the vector y = (q~[w~]r},~g from 

~t~]~=~ with 

(4A.5) 

k~  t l - - ~ J  E(~' '  ~k' m) 

, ( f l ~ = e ~ ) ;  r = K, K + 1,... 

which we shall consider as acting ]rom the (closed) sphere s in R ~:-1 into 1.. 
For the operator Tv the following claim is easily verified: with the radius ~ fixed 

in advance, and/or a given vector q as in (dAA) (so that  such q is in 12, he,ice in 1.), 
one can select a su/]iciently small sphere ]or the vectors w8 ~ X8 in (1.8b)--as assumed. 
in (1.8e)-- such that all the corresponding operators Tv which are defined through 
(4A.5) map the sphere 5'~c into an arbitrarily small neighborhood of the origin in 1.. 
This assertion follows from the definition of T~ in (4A.5) and the fact that  for points 

a K--1 { ,}~=1 in ~ we have: i nf {lfi,-- a~]: {a~} e ~ }  > 0, where the inf is taken over all 

r = K ~ K + I ~ . . ,  and i = 1~..., K - - 1 .  

(5) Next, motivated by  (3.17b) and (3.29), we define a non-linear operator 
V co  ~ co  __~ co ~: { ~}~._~ ((Fv),},_~ {i~},.~ by 

(4A.6) 

where the constants 

(4A.6) (ii) y~ = 

(2) t , =  (Fv),_-- y, 1 - E(~,, ~k, m) 

1-6 --~, A .  

k # r  

r K, K + 1, ... 
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depend only on data  3.~= fl~ and on parameters obtained through Lemma 2.1: 
(w~)~, p~ and c~. By  virtue of (4A.2), Eq. (4A.6)(i) gives {(Fv),},~__~ explicitly in 
terms of {v~}~x: 

(4A.6) 

r =  K~ K @ I~ . . . .  

We shall consider F as acting ]rom a neighborhood o] the origin in l~, see (4A.1), into 
t~. Notice t ha t  F maps {v k --= 0}~= K into {(_Fv)~ ~ O}~~ more generally, if one co- 
ordinate v~ = 0, then  by (4A.6) (iii) the corresponding coordinate (Fv)~, = 0 as well. 
Notice tha t ,  because of Lemma 3.5, it  follows from (4A.6) t ha t  

vr[WG as r- oo 

where, in the last step, we have used (4A.2). 
The following proposition, to be proved at  the end of the present Appendix, 

will be paramount  in our t reatment .  

PROPOSITION 4A.1. - The inverse mapping theorem ~pplies to the operator F 
defined above; i.e. there is a neighborhood ~ of v = 0 in l~ such tha t  T is o n e - - t o - -  
one in ~ with _F-~ continuous in the l~-~ l~ topology. [] 

A n  important consequence o] both the claim regarding T~ and Proposition 4A.1 is: 
with the radius ~ o] 5f~ ]ixed in advance, and ]or a given vector q as in (4A.4), one can 
select a su/]iciently small sphere Jor the vectors ~ e X ,  in (1.8b)--as assumed in (1.8c) 
such that the corresponding composite map F-~ T~ o] T~ ]ollowed by F -~ is well de]ined 
and maps the sphere 5P~ into an arbitrarily small neighborhood of the origin in l~. 

(7) I t  will be shown in the subsequent Appendix 4B tha t  the map G: {Vk}k~ g --* 
_+ (~r from a neighborhood o] the origin o] l~ into R K- ~, which produces the constants 
~ ,  ..., ~K_I ]or which the Realizability Conditions (3.33) hold, is in ]act continuous. 

( a d f : :  e {{~}~2~ for which the I~.C. holds} e SPo 

T~ 
Notice tha t ,  if we apply ~-1 on the  vector {q'} given by (4A.5) for a preassigned q, 
we get a vector {%}, whose corresponding {~k}k~176 X via (4A.2) are such tha t  

r =  K, K @ I , . . .  
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so that, by (4A.7), 

(~A.7') q'~,.~ v~[w-~]~ 

l 

while (4A.5) gives q~,~,q,[@~]~. Thus: the preassigned vector q and the obtained 
T ~ ~ K - 1  vector v = ~-~q', with q ' =  Tva  = ~,(a~=~ satisfy 

(4A.7 '~) q~-, v~ . 

Thus, if q is only in 4, so is v. 

(8) As a consequence of the last two statements~ we obtain a conclusive result, 
which we state formally:  

P ~ o r o s ~ o ~  4A.2. - With  a radius ~r of 5~r fixed in advance, and a given vec- 
tor q as in (4A.4), one can select a suitably small sphere for the vectors @~X~ in 
(1.8b)--as assumed in (1.Sc)--such tha t  the corresponding composite map G ~ - ~ T v  

of Tv followed by ~-~ and  by G is well defined and maps the (closed) sphere 5~r into 
itself. [] 

Since G~ -~ T~ is continuous, being the composition of continuous mups, Brower~s 
fixed point theorem applies and produces (at least) a fixed point {~}~=~1 e5~ with 

! Co ~11 coordinates distinct and negative. The corresponding vector ~q~}~=K = T~(a~}KQ 1 
has all its coordinates different from zer% by (1.8b) and also since all coordinates q~ 
were taken  =/= 0; hence (by the observation above Prop. hA.l),  the corresponding 
vector (Vk)k~K : F -1  T~(~)K~ 1 is ~ ~ and has also all its coordinates different from 
z e r o .  

As to the sequence {~}K~ in the conclusion (ii) of Theorem 3.8, we then take a 
fixed point 5 , ~  ~,, i = 1, ..., K - - 1 .  As to the sequence {:r in the conclusion 
(i) of Theorem 4.8, we take instead 

With  this choice 

~k=~ fi~ , k ---- K ,  K ~ I ,  ... and k = l ,  . . . ,  K - - 1  
j = 1 , 2 , . . .  but  k e  e j  

from Appendix 4B. It remains to show 

5 i @ c t ~ f l i ,  i = l , . . . , K - - 1 .  

In  fact, if--say--51-----cl, then  by (dB.1) in Appendix 4B with a~-----~ i = 
--1~ ~ K - - 1  we would have tha t  the corresponding ~ l ( a ) =  0. Since ~ 5 ~ - 1  
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makes the l~ealizability Conditions (3.33) hold, it follows tha t  Eqs. (3.17a-b) apply 
~ - - - h  co to the corresponding sequence {h,(a) ,},.=~ with p and  {c~}f~ ~ coming from 

Lemma 2.1 and with q the vector as in (4A.4) for which Brower's fixed point theo- 
rein holds. But  then  from (3.17a-b), we see tha t  the condition h, .= 0, r = 1, ..., 
K -  ! can ~lways be avoided by slightly changing, if necessary, say just one c~. 

(9) To conclude the  proof of Theorem 4.8 it remains to establish Proposition 4A.1 

PROOF OF PROPOSITION 4A.1. - We need to verify t ha t  the operator F defined 
in (4A.6) satisfies the following properties [L10, p. 266; M3, p. 116]: 

(a) F admits  a well defined Frechet  derivative F ( v )  in a neighborhood Jiz~ 
of the origin in l~, and, moreover, the map v-->/~'(v) is continuous in ~ in the 

topology of l~ -* l~; 

(b) the operator F '(v = 0) is invertible; i.e. [F'(v = 0 ) ]  - 1  exists in l~. The 
val idi ty of (a) will follow a f o r t i o r i  once we show the following assertion: that the 
second Frechet derivative F"(v) is well deJined as a continuous operator lo~ ~ loo. 

In  fact, l~"(v) is an infinite matr ix  with the following structure:  

J~K 

Ex+1 
.F"(V) = E~+~ 

where 

E ,  = 

s st, ~ st, ~ ~i, 
~ '  ~v~ ~vl'  ~v~ ~vl' "'" 

SVl ~V~ ' ~V2 ~V~ ' ~Va ~V~' "'" 

~Vl ~V~ ~ ~V2 ~V3 ' ~V3 ~V3' "'" 

for r = iT, K ~- 1, .... According to well known results [T5, p. 220], F"(v) defines a 
continuous operator: l~ -* l~, provided 

sup / 
(dA.S) over all {ll-norm of ~ row} = sup snp ,~ S2I, i/ 

rows , ~ ~ - 1 ~ < ~ "  
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F rom (4A.6) we compute after setting Z~ = [N,]~fl~: ~ ;;~s:/:~ 

(4A.9) ~v~ 1 
~2],. 

for j # h - -  
~v~ ~vt 

=~"  ! ~ ~v~ E ( ~ , , ~ , m )  ( ~ , +  Z,v,)~(~,+ Z,v,)': - 
kr 
k#J 

12,z3,z, 
(~ - ~,./(~, + z , ~ , ) ) ( ~  - ~,./(f~, + z , + , ) ) ( ~ ,  + z ,~ , )~ (~ ,  + z ,~ , )~  

= ] , ~ z , z ,  ] 
(r ~ + z~v,)(fl,- ~, + z,v,)(~ + z,vj)(fl, + z,v,) " 

_+: ~,,~,I ] E(,a,, ,a,:, m),~,.Z,.~(,a,., ,~,, m) 
(~, + z,~,)~ 

Similarly from (4A.6) we obtain for j ---- l: 

(~.A..].o) ~, - ~Z,Z=, E(~,, ~ ,  m) ~, ~ Z;~).E(,a,, ,~,:, m)} ( ~  ~,~,y _ 

- ~t,~,z~ 
= ( ~ , - ~ , +  z,~,) (~, /z ,v,p"  

To verify (4A.8), we need, according to (4A.9) and (dA.10), to check tha t  the follow- 
ing two quantities Z1 and X: be finite: 

/ 

= sup, 11,,8~:1 sup, 1,8,- ,8,+ z,v,ll,8,+ z,~,:l ~:~ I /~ , - /~ ,+ z,v, ll,8,§ z,~,:l " 
J:A1 

(,~.A.].2) z ~ =  s~p s ~  Ova' J -  , 1 ( , 8 , - /~+  z,v,)(/~,+ z,v~)l " 

We first handle Z1. In  the sequel we shall use with no further  mention tha t  

g k ~ - -  [w~]kfl~<(const/k)ke~/~-~O as k-->oo. (From (1.Sb) and (3.21)). In  order to 
show tha t  Z1 is finite, it will suffice to establish tha t  the following quantities Z~ and 
Z~' be finite, where Z~ refers to the case 1 ~ r and X~' refers to the case 1 ----- r: 

(4A.la) z,'= s~:p{It2~I sup Iz,l [ ~ rz,i 1/ 

jz, j jz.r I/ 
9 @l,'r 
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(4• z:~ = syp {lSf~i IzC ~ IZ, I 
! z . v . ~ r l  j:~ 1(~;- tl. + z,.,)/LI} 

by (4A.7) <constsup{I/7,i ~7 IZ, I l 
, :1  I ( r  tT.)/7,1J" 

To conclude that  Z~ and X;, and hence Z~, are finite, we now need to invoke the 
following two estimates : 

(4A.15) 

(4A.16) 

~:. I(~,- tl.)tT, i 
i # r  

sup ~ coast 

(see the independent Lemma 3.11), 

(see the final Remark 4A.1). 

We now use (4A.15) at the level of the infinite sum term in (4A.13). We then obtain 
from (4A.13), since ],.<const and (Hv , )<cons t  (cf. (4A.7')): 

Z,'<~onst sup Isup Ir .l 
. t . + ,  l ( f l , - f l . ) f l , l J  < co 

1H 
from which the finiteness o2 X~ follows via (4A.16). The finiteness of Z~ follows 
directly from (4A.14) via (4A.15). The proof that  2:1< co is complete. The proof 
that  X~< c~ is simpler. From (4B.12), we compute 

(4A.17) z ,  <const sup IDfl.l sup,~, [(fl -~)f l~[j  • const sup. ( ~ l l "  

Since ],<const,  (],/vr)<const and (Zdflz) ->0, and (4A.16), we easily conclude from 
(4A.17) that  22< cx~ as desired. The proof that  the second Frechet derivative F"(v) 
is a bounded operator l~-+ l~ is thus complete. 

To finish the proof of Proposition 4A.1, it remains to show statement (b) on the 
invertibility of F'(v = 0). This is quickly done as follows. The Frechet derivative 
/re(v) is an infinite matrix with entries 

~'(v) = \~vd!l ,  j = r = K,  K - t -  1, . . . .  

Starting flora (4A.5) (if), we compute directly, again with Z k = [~s]k/5~ 

(4:A.lS) , (1 ) . < ,  , ,  ~ 

= - -  . 

(1--~, [ ( f l j+  Zd)j)) (~ t+  Z;VJ) 2 ( l~ , - - f l t+ Zjv , ) (pr+ Z;v,) 
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Setting v -~ 0, i.e. v ~ 0 ,  ~ = K,  K + I ,  ... implies, as we know (see below (4A.7)) 
] , ~ 0 ,  r = K , K + I , . . .  Thus from (4A.18) we get 

~/" ~=o 0 for rve ] ,  
~v~ 

~l, ] -1,  

Thus, F ' (v  = O) is an inf in i te mat r ix  whose off-diagon~l terms al l  vanish, and whose 
main diagonal terms are --  ],Iv,, r = K,  K ~- ] ,  .... Since ],/v,,-~ 1 by (4A.7), we 
can conclude tha t  F ' ( v - ~  0) is invertible as an operator: lr 

RE~h~K 4A,1, - To prove est imate (4A.16), rewrite 

(aA.z9) sup -- sup 

and since Zz/~-~O as 1 - > ~ ,  we only have to worry if [ ( f l j / ? , ) - - l ]  becomes un- 
bounded. Thus, taking r = l -  1 we est imate (4A.19) by using Zz ~- [~]~flf where 
[~]~<const / l  (el. (:l.8b)) and fl~-~l 2t~ (cf. (3.21)). I t  is left to the reader to check 
tha t  the sup is bounded. 

Proposition 4A,1 is thus  fully ~o-ved, 

Appendix 4B. 

Determination o /s~  IK.-I /tom which the Realizability Condition (3.33) hold. Continuity ( iJ'~ = 1 
co --~ o / G :  { ~ } k ~  ~ {~}~:~/~o~,~ ~ - >  R ~:~ 

Let a = {a~, ..., aK_l} be u set of distinct negative numbers in the sphere ~c  
define4 hy  (4A.3) e~ch different i~om all fij. Motivate& by  (3.29), ~ e  define a 
sequence 0~r(a)}~=~, depending on a, by  

(dB.0) 

k#r 

We then  t ry  to determine the parameters (a~,..., aK_~} in such a way tha t  the se- 
quence {~r(a)}r~l satisfies ~Jhe ReMizability Condition (3.33). 

The sequence ]g,(a) in (4]3.0) can be more conveniently rewrit ten as 

(4B.1) ~,(a) = e, 1 - ~  , r = 1, 2, ... 
k=l\ 
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where  t h e  coefficients  e, a re  def ined b y  

fl,.Ao~ 1 - -  E(fl,, ~ ,  m) ]--[ E(fl,, fl~, m) 
k = K  k = l  

(4B.2) e~ = ~ ~ r = 1~ 2~ ... 

whe re  ~ = fl~ + [~ . ]~ f l~v~ :  b y  (3.38). 

W e  t h e n  d e t e r m i n e  ghe n e g a t i v e  p a r a m e t e r s  a,~.. . ,  a~_x in such a w a y  t h a t  t h e  

l~ea l izabi l i ty  Condi t ions  (3.33)~ r e w r i t t e n  now as 

K - - 1  

are  sat isf ied.  To  th i s  end ,  we use  t h e  i d e n t i t y  

E--1 (k=~ 1K-1 ) t K~I ) K--a 
1-I ( ~ , - ~ k ) =  ~f-~-  ~k ~f-~+ ~,~ fi, - 

/ K--1 ~ K 4 K--1 
- !  ~ a,a,a~/~,- + "" + ( - 1 V  -~ 1-I a,, 

\i,~,~ =_._~_L~ / J = 
distinct 

on t h e  r i gh t  and ,  for  r =-i ,  on the  le f t  of (4]~.3) a n d  a p p l y  t h e  s u m  ~ on each  

p o w e r  of fi, in t h e  p rev ious  i d e n t i t y  s epa ra t e ly .  Then~ b y  se t t i ng  ,=g 

(4B.~) 

a n d  

K - - I r a  / w ~ ] ~ 

l =  l ~ . . . , K ;  i =  l ~ . . . , K - - i  

A i , . g  - (__ ~--1 ~ :~ : ! )  A,,~_, + ( - -  1 ) ' e , f l f - ' ,  I = 1, .. . ,  K ;  i = 1, .. . ,  K - -  1 ,  

t h e  l:~ealizability Condi t ions  (4B.3) can  be  r e w r i t t e n  as a mu l t i l i nea r  a lgebra ic  
s y s t e m  (see also Eq .  (3.15)), 

K--1 K--1 

o.o.. § §  .0CHo. =o.  
\~,~,k~..__~ / distlnet 
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of ( K -  1) equations in ( K - - 1 )  unknowns, for which we seek a negative solution: 
a~, ..., a~_~ (that is, all a, negative). 

Notice that  the infinite series defining each coefficient -~i.~-~ through (4]3.4) is 
c o  

,-~ ~ e, fl~ -l-~. Therefore, the following claim is relevant. 
r = K  

Through Eq. (3B.2) one can define a non-linear map: (%}~=g-+ ;e ~K-t-1)~ 
that  we view from lo~--> l~. We claim that this map is continuous. 

In fact, by simply comparing Eq. (4B.2) and Eq. (4A.5)(if) in Appendix 4A, 
with ?~ defined by (4A.5) (iii), we see that  

~ r  / 6 - -  

I t  suffices to consider the case l ~ 1. Here we get 

(4B.6) ( ) x-2 , -- ~-I qt 

where ~ ~ 1 and v>2:  in the last step we have made use of assumption (1.8') on 
co __>. and of Eq. (3.21) for fi~. Appendix 4A shows a fortiori that  the map: {Vk}k= K 

' OO --~ {q,},~K from l~-~ l~ is continuous. Thus, the desired claim follows from (4]3.6). 
We conclude that:  the map v : {Vk}k~176 --> A~.K_ ~ is continuous ]rom I~ ~ R ~. We next 
want to show that when the l~-norm of v is sufficiently small, the system (4B.6) 
does admit a negative solution. To establish this, we make use of an observation 
plus a continuity argument. 

The observation is that,  when 

(4B.7) ~ - - f l ~ ,  k = K,  K § 1, . . . ,  

then a solution of distinct roots for the system (4B.3) is given by 

(4]3.8) a ~ :  fi, df c ,~  O , i : l ,  ..., K - - 1  

with the c ~  0 coming ~om Lemma 2.1. In fact, under assumption (4B.7), it 
follows from (4B.2) that  

e , ~ 0 ,  r ~ K , K ~ - I , . . .  

and hence from the right-hand side of (4]~.3) we deduce that system (4B.6) reduces to 

K- ~ fl~ ) i : 1 , . . .  I;. 1 (4B.9) e~ k=l~I1 (1 --  : 0 ,  , - -  . 

In other words, . ~ , ~ _ ~  0 in this case (see Eq. (4B.5)). 

1 2  - Annal~  c~t Malemat ica  
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Referring to Eq.  (3.14), however~ since 

it  follows from (4B.2) t ha t  e~=/= 0, i ~ 1, ...~ K - - 1 .  Hence,  the  desired conclusion 
(4B.8) is ~ consequence of (4B.9). This proves the observat ion.  

For  convenience of l~ngauge, we sh~ll c~ll the  si tuat ion under  ~ssumption (4B.7) 
the  original situatio~e. We now use ~ cont inui ty  argument .  Firs t ,  we urgue t h a t  
the roots of u multiline~r system like (4B.6) depend cont inuously on the re~l coef- 
ficients of the system. Second, we ~rgue t h a t  these coefficients, as shown ubove 
depend continuously on the  sequence {v~}~~ l~. Therefore,  if the vector  v is suf- 
ficiently sm~ll in ~he /~-norm, the  new coefficients A~,K_ ~ ~re ~ sligh~ per turba t ion  
of the originul ones. Since the roots of the  original s i tuat ion (4B.9) ~re dist inct  ~nd 
negative,  ns described in (4B.8), so will the  new roots { ~ } ~ 1  be. 

Thus the  map G, needed in Appendix  4A: {v~}~~ { ~ } ~  defined from l~-~  
-+ R K-~ is continuous. [] 
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