Some Transformations and Reduction Formulas
for Multiple ¢g-Hypergeometric Series (*).

H. M. SRIVASTAVA (*¥)

Summary. — Some simple ideas of G. B. Andrews ([2], [3]) are used here to derive a transforma-
tion formula for a general multiple g-series with essentiolly arbitrary terms. As applications
of (or motivated by) this g-series transformation, several tramsformation and reduction formulas
for g-hypergeometric series in two and more variables are presented. Relevant conmections of
the various g-identities considered here with a number of known results are also indicated.

1. - For real or complex ¢, |¢| <1, let
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In terms of a bounded multiple sequence {Q(m,, ..., m,)}, we define
(1.4) F(z 2n) = i 2m. m, )z—1m~ e
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provided that the multiple g-series converges absolutely. Also let
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Then it is easily observed that
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By Heine’s theorem [8, p. 92, Equation (3.2.2.11)]
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(1.6) readily yields the multiple ¢-series transformation
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where F(zy, ..., 2,) is defined by (1.4), and M and K are given by (1.5).

For various special values of the coefficients 2(m,, ..., m,), the function F(z,, ..., 2,)
defined by (1.4) can be expressed in a closed form. Indeed, in every such situation,
the result (1.8) would simplify considerably, and we shall be led to a transformation
or reduction formula for a multiple ¢-hypergeometric series. Some of these special
cases of (1.8) will be presented in the next section.

2. — Denoting, as usual, a g¢-hypergeometric series with # numerator and s
denominator parameters by ,®, (cf. [8, p. 90, Equation (3.2.1.11)]), let
@r:ul;...;un
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denote an analogous ¢-hypergeometric series in #» variables in which there are r
numerator and s denominator parameters of the type (4)y, and »; numerator and v;
denominator parameters of the type (A)n, (j =1, ..., n) [¢f. the definitions (1.2),
(1.4) and (1.5)]. Now set
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in (1.4) and apply the ¢-Gauss theorem [8, p. 97, Equation (3.3.2.5)]
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so that
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and then the g-series transformation (1.8) reduces to the multiple g-hypergeometric
identity:
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where, for convenience, (w,) abbreviates the array of n parameters o, ..., w,, with
similar interpretations for (1,), et cetera.
Next we set

(2.5) Qg ceey Mg) = (1), e @),

n (1.4) and (1.8), and apply Heine’s theorem (1.7), or (alternatively) we let §,— 0
(j=1,..,n) in (2.4) above, and we obtain the special case (cf. [4, p. 49, Equa-
tion (1)])
(R S N 8
(2.6) Dol G By | =
M) =5 5 =
(Ao (D)o {(“iza')co}.

(e () e 551 | (25) o
(2a) = pafhi; s poldss
T O Ayeesdo
(€a2n): ——5 oy —3
By setting
(2.7) Qg ooy my) =1

in (1.4) and (1.8), and using the elementary identity {8, p. 92, Equation (3.2.2.14)]
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or (alternatively) by further specializing (2.4) and (2.6) when «,— 0 and 8;—0
 =1,..,n), we find that
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provided that each of the multiple ¢-hypergeometric series ferminates.

By applying one or the other of several known g¢-hypergeometric summation
theorems (see, for example, [8], pp. 247-248) in place of the ¢-Gauss theorem (2.2),
- we can similarly deduce from (1.8) a number of special g-hypergeometric transfor-
mations analogous to (2.4), (2.6) and (2.9).

3. — In terms of the ¢-Lauricella function
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the special case of (2.6) when p = 1 would immediately yield ANDREWS’ formula ([2,
p. 621, Equation (4.1)]; see also [3, p. 207, Theorem 5])
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ANDREWS [3, p. 209, Corollary 5.3] applies the case » = 2 of his formula (3.2) and
HALL’s identity for @, [b, p. 276] to give an alternative proof of a result of ArL-
SALAM [1, p. 457, Equation (9)] which we recall here in the corrected form:

(3.3) OV, BB BB @yl=
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where we have used Jackson’s notation @, instead of @2, for the ¢-Appell function.
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A simple proof of Al-Salam’s result (3.3), using only Heine’s transformation [8,
p. 97, Equation (3.3.2.3)]
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runs as follows. Indeed, by expressing P ag an infinite series of ,; and applying
(3.4) term-by-term, we have the g-hypergeometric transformations
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In particular, if ¥ = f’, (3.5) and (3.6) readily give
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and
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Applying the transformations (3.7) and (3.8) successively, we obtain the g¢-hyper-
geometric identity
(3.9) DV« B, 65 B wyl=
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which immediately yields (3.3) upon replacing  and y by f'«/« and fy/«, respectively.

4. — Making use of JACKsoN’s transformation [6, p. 145, Equation (4)]
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instead of (3.4), it is not difficult to prove the reduction formulas
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and
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Now we recall SEARS’ transformation [7, p. 167, Equation (8.3)]
a, b, ¢, q"; dla, d[b, ¢, ¢ ;
Y 7q ’ 6/(,‘) de/ab /’ /’ 7q ?
4.4) 9D, 04q W 94
dye,f ; d7 cqt "6, eq*"[f;

where abc = de¢f g (n = 0,1, 2,...). Setting f= abe ¢-"/de and letting n — oo,
(4.4) reduces to the known identity [7, p. 174, Equation (10.1)]
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Combining (4.2) and (4.5), we find that
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whence Al-Salam’s result (3.3) follows at once if we replace # and y by f'z/x and
By /x, respectively.

In view of the reduction formula (4.2) or (4.3), Al-Salam’s result (3.3) is essen-

tially equivalent to the familiar ¢-hypergeometric identity (4.5) which, in turn, is

equivalent to the aforementioned identity of HALL [5] employed by ANDREWS [3].

5. — Yet another interesting proof of Al-Salam’s result (3.3) would make a
rather straightforward use of the ¢-hypergeometric expansion
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which incidentally is an obvious special case of one of several general classes of
g-series transformations given elsewhere by us [9].
The case r = #4 =1 and s = v = 0 of (5.1) leads us to
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and, by virtue of Heine’s transformation (3.4), we thus have
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On interpreting the second member of (5.3) by means of (5.1), we arrive once again
at Al-Salam’s result (3.3).

6. — In view of the demonstrated usefulness of such ¢-hypergeometric transfor-
mations as (3.5) and (3.6), we conclude by recording the following generalizations:

a: B (a);
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which can be established by applying the proof of (3.5) and (3.6) mutatis mutandis.
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Various g¢-hypergeometric transformations, analogous to (6.1) and (6.2), follow
similarly from (4.1), and (for example) we have

a: B (ar);
6.3) @ g,y | =
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with, of course, two similar transformations written by symmetry.
The first g-hypergeometric transformation in (6.3) would lead us, when r =1,
s =0,a,=p" and y = pp’, to the reduction formula (4.2).
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