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On The Geometrical Structure of Euler-Lagrange Equations (*). 

PAOLO GIUSEPPE COSTANTINI 

Summary. - We show that the Euler-Lagrange operator and the Poincard-Cartan form arise in 
a very simple and natural way from the contact structure of the second order jet space, in a 
purely differential context, without any reference to a variational problem. By the way we 
obtain an intrinsic expression of the Euler-Lagrange operator. 

Introduction. 

The Euler-Lagrange equations have been introduced in the analytical approach to 
variational calculus, and now they are the fundamental field equations of physical 
theories. In the last few years, a new attention has been directed to the geometrical 
structures related to the calculus of variations. So, the geometrical approach has been 
greatly developed, and many deep results have been found (for instance, see [GS], 
[HE], [KR], [MM1], [TA], [TU], [VI]). 

The aim of this paper is to show that the Euler-Lagrange equations can be simply 
obtained in a direct, natural and elegant way from the contact structure of the 1-jet 
space, independently of a variational approach. 

The literature concerning this subject is large (see, for instance, [FF], [GS], 
[MM1], [TA], [TU], [VI]). Our approach is very quick and fully intrinsic. In particu- 
lar, we base our procedure on the momentum and the canonical splitting of the differ- 
ential of forms on jets. We derive the Euler-Lagrange operator and the Poincar~-Car- 
tan form in the same pure differential framework. 

We consider f~rst the relative tangent valued 1-forms on a generic fibred manifold 
q: F---)M, i.e. the sections of the tensor bundle T * F ~  TM--->F, and make use of a 

f 
well known result (see for example [SA]) which associates to such a section a deriva- 
tion of degree 1 on the exterior algebra over the base space M. 

This derivation lifts an s-form on M to an (s + 1)-form on F. 

(*) Entrata in Redazione il 15 febbraio 1993; ricevuta in nuova versione 1'1 ottobre 
1993. 

Indirizzo delrA.: Via Dante Alighieri 52, 50055 Lastra a Signa (Firenze), Italy. 
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We then fLX a fibred manifold p: E--)B, and apply this result to the contact 
morphism 

0~ k+l: Jk + lE--> T* B ~ TJkE 
J~E 

and to its complementary morphism 

0k+l: Jk+ lE---) T* JkE r~EVJkE ]k 

on the k-order jet space of E, which are Pk + 1, z-relative tangent valued 1-forms, and 
obtain the two derivations dh and d,, of degree 1, on the exterior algebra over JkE, 
called the horizontal and ve~ical differentials respectively. They reveal themselves 
to be very powerful tools. 

Starting from a lagrangian density ~, i.e. a p~-semibasic m-form on J1 E, we make 
use of canonical isomorphisms and of the differentials dh, d~, relative to the second or- 
der jet  space of E, for the construction of the fundamental objects of first order field 
theory. Namely, we obtain first the Legendre form, or momentum form--a PS- 
semibasic m-form on J1 E-- through the vertical derivative of the lagrangian. The ap- 
plication of the horizontal and vertical differentials to this m-form yields a canonical 
splitting of its exterior differential, hence the Euler-Lagrange operator and the 
Poincar~-Cartan form. Thus, these two objects arise in a very natural way. 

Finally, for the sake of completeness, we link the objects previously obtained to 
the variational context, hence to field theory. So,  we recover in a geometrical way, 
the well known result that the Euler-Lagrange equations are a necessary and suffi- 
cient condition for a section s: B - .  E to be critical, and we find an equivalent condi- 
tion, involving the Poincar~-Cartan form, which allows us to easily prove the Noether 
theorem (see also [GS], [GA]). 

O. - P r e l i m i n a r i e s .  

We assume all manifolds and maps to be smooth. We denote by 5~(M), 8"(M), ~(M) 
the sheaves of local functions, vector fields and differential forms on the manifold M, 
respectively. 

Our fundamental geometrical framework is constituted by a fibred manifold 
p: E--~ B, with dim B = m, dim E = m + n. The typical fibred chart of E will be de- 
noted by (x ~', yi), with 1 ~< 2 ~< m, 1 ~< i ~< n. 

We recall a few notation and results on the geometry of jet  spaces. We are in- 
volved with the k-jet space JkE of p: E --~ B, where k ~ 0 is an integer, with the natu- 
ral fibrings ([MM2], pag. 172-3) 

Pk, B: JkE---) B,  

Pk, h: JkE--*JhE, 0 <<- h < k. 
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For  k = 1, we set 

PB =- PLB: J1E---> B , 

PE-- Pl, o: J1E---> E .  

The fibred charts on JkE induced by a fibred chart  (x ~, yi) of E are denoted by 

�9 i " (x~,y~,yi~,y~2, . . . ,y~. . .~k) ,  l <<.2l <~...<<.~k <<.m, 

and the local bases for the vector  fields and the 1-forms on JkE are denoted respect- 
ively by 

(a;., ca~, ~ ,  ~1. . .~)  (d ~, d i, d~, . . . ,  , . . . ,  d~...~), 

with the same restrictions on the indices. 
Le t  s: B ~ E be a local section of p: E---) B. We have the k-jet prolongation of s 

j~s: B--) J~E , 

with coordinate expression 

�9 i ~ ) o j ~ s  = (x ~, s ~, ~ s  ~, ~ s  i , ~ .~s~), (x ~, y~, y~, Y ~ ,  . . . ,  Y~.. ~ . . . ,  

where 

~k 

a~.1...~,~ = axe1 ... aX ~k " 

The contact structure on JkE is the pair of complementary natural linear fibred 
morphisms over JkE ([MM2], pag. 182) 

(1) ~k + 1: Jk + 1E'-* T* B (~ TJkE , 
]kE 

(2) 0k+l: Jk + lE--)  T* JkE (~ VJkE , 
JkE 

with coordinate expressions 

(3) 0~ k + 1 = d ~ | 0~k + 1 

(4) 0 k+l = o i |  + 0~1 | ~'1 + ... + 011...)~k ~ ~ 1'''2k 

where we have set 

1 i ~,i a~l i a~l""~k): Jk+lE---> TJkE (5) 80~ + = (a~ + y~ai + ~ i  + --. + Y~. .  ~k 

l ~ < l x ~ < m ,  l < 2 ~ < . . . ~ < 2 k ~ < m ,  

(6) I Oi = di - y'~d~: JiE--* T ' E ,  

[ O i = rzi _ ~,i ~'~" Jk+lE T*JkE 
~ l . . . ) ~ k  - -  k t e ) , l . . . ) ,  k 9 ) ~ l . , . ~ k b r  (-b } .  ----)  , 
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In order to define prolongations on J~ E of vector fields on E, we recall the natural 
exchange fibred morphism over J1E X TE ([MM1], pag. 33) 

E 

(7) r: J1TE --) TJ1E,  

with coordinate expression 

(x A, y~, y~; ~cA, ~)i, ~)~)or = (x A, yi, y~; ~A, ~)i, ~ _ y.~i .,xA ), 

where(x  A,y~,2A,~i y~, .A .i ' i. .~ .i) ; x , ,  y~,) and (x A, y*, yz, ~A, are Y, YA the charts induced on 
J1TE and TJ1E by (x A, yi),  respectively. Indeed, if u: E---~ TE is a local vector field 
with coordinate expression u = UAaA + U~a~, then we obtain the projectable vector 
field ([MM2], pag. 195) 

(8) w - roJ lu:  J1E---) TJ1E , 

with coordinate expression 

~J~ u i ~  ), (9) w = UAaA + U~a~ + (~AU i -  y ia~,U~ + ~A j ~ ~. 

1. - The hor izonta l  and vertical  differentials.  

In this section we deal with a generic fibred manifold q: F - ~  M, which later will 
be specified. 

DEFINITION 1. - A section 

Z: F - ~  AS(T* F) ~ TM 
F 

is said to be a relative tangent valued s-form on F (vector-valued s-form along q: 
[SA], pag. 75). We denote the sheaf of q-relative tangent valued 1-forms by 
5"* (F) | #(M) 

We shall be concerned with the case of relative tangent valued 1-forms. The coor- 
dinate expression of a relative tangent valued 1-form on F is 

Z = (Z~ dA + Z~ di)@ at, 

where X~, X~ e 5(F). 
We have a natural contraction between relative tangent valued 1-forms on F 

and s-forms on M, which yields 1-forms on F; its coordinate expression is, for 
Z = (X~ d~ + z~d i ) |  e 5"*(F)| and ~ = ~A1 ..A dA~A ... A d ~ e  5~* (M): 

~t i . . .  g a s .  

The following proposition is the specialization of Proposition 3.4.4 and Proposition 
3.4.7 of [SA], pag. 78-79, to the case of relative tangent valued 1-forms. 
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PROPOSITION 1. - Let Z: F--)  T* F ~ TM a relative tangent-valued 1-form on F. 
F 

Then, we obtain: 

i) a derivation of degree 0 

(10) ix: t~(M) --~ tg(F), 

characterized, for ~: M --> A ~ (T* M) by the relation 

iz~ = ; ~ J ~ ;  

il) a derivation of degree 1 

(11) d z -- i x o d - d o iz: t)(M) ~ t](F), 

where d is the exterior derivative on the exterior algebra of F. 

If i/z, Z2 e 5"* (F) | 5~(M), then we have 

izl+z2=izl +iz~, dzl+x2 = dzl +dz2. 

Now, let us go back to the fibred manifold p: E--)  B. By recalling the canonical 
inclusions 

Jk+i E X T*Bc-.~T*Jk+I E ,  
B 

VJk E ~ TJk E ,  

we can easily see that the contact morphism (1), (2) of J~+ 1E are relative tangent 
valued 1-forms with respect to the fibring Pk+l ,k :Jk+lE- - )JkE.  We can then 
apply the abogve Proposition 1 to these 1-forms and obtain the two derivations of de- 
gree 0 

(12) i h - i~k+~ : ~(JkE)-">~(Jk+ i E ) ,  

(13) iv = iok.1: t~(JkE) --) t)(J k § ~E), 

and the two derivations of degree 1 

(14) dh =- ih od - do ih : t~(JkE) ---~ t~(Jk + l E) , 

(15) d~ =- iv od - doi~: t)(JkE)---)t)(Jk + ~E). 

DEFINITION 2 .  - The two derivations dh (14) and dv (15) are said to be the horizontal 
and vertical differentials, respectively. 

PROPOSITION 2. - The horizontal and vertical differentials (14) and (15)fulfill the 
following properties (see [SA], pag. 216-217): 

a) dh + d, = p~'+ 2, k ~ 

b) ( j k + 1 8 ) *  odv = 0; 
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c) do(j~s)* = (j~+~s)* oda; 

d) d~=dv ~ = o ;  

e) d ~ o d v + d v o d ~ = 0 .  

The two differentials (14) e (15) are characterized by the following formulas, for 
each f e  5~(J~E): 

(16) 
f o,i a~j..~kf)d.~ -_ ( ~ . f ) d  ~, d~f= (S~f  + y~Si f  + ... + ~ . . . ~ , ~  

dad ~ = O, 

�9 ~ d ~ ;  d~ d~...~ - - d~l ...~k~ /~ 

and 

(17) 

d~f= 8~fO + 8~f  + �9 ~ i  J U ) ~ l . . . ~ k ,  

d~d ~ = O, 

d d i _ ,~i A d '~ �9 v ; ~ l . . . ) , k  - -  ~ ) , l - " ~ k l  z 

Hence, in particular, 

f dhx ~ = ihd ~ = d ~, 
i _~ �9 i i dhY~l...~ k Zhd~. . ,~k  = y~...~k,~d ~, 

(18) dvx ~' = ivd ~ = O, 

i �9 i i i ~ 0 i dvY~l...~k = z~d~...~ = d~...~ k - y~...~k~d = ~...~k" 

2. - Fundamental objects. 

The next step is the construction of the fundamental geometrical structures of 
field theory in a purely differential way; our main geometrical object is the fibred 
manifold p: E - .  B, and our main tools are the horizontal and vertical differentials 
(14), (15), and further canonical isomorphisms. 

We start from a lagrangian density 

~: J1E---) Am(T* B),  

i.e. a pB-semibasic m-form on J1E. Its coordinate expression is 2 = loJ, where 

l: J1E ---) R 

is a local function on JIE,  called the lagrangian function, and oJ = d 1A ...d TM. 
The direct application of dh and d~ to ~ gives no new and interesting objects; in- 

deed, by using Proposition 2c) and a), we can easily see that 

(19) dk~ = O, dr2  = d3 ,  
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where we have still denoted the pullback of dE over J2E by dE (we will always omit 
the indication of obvious pullbacks). It is interesting to see this locally. From the ex- 
pressions (16)-(17), we see that the differentials dh and d, act only on the lagrangian 
function l, for they both vanish on the base components d ~, and we see that dhl A ~o = 
= 0, and d~l A ~o = dE. In this case, we have no new terms of second order. 

The coordinate expression of dE is 

(20) ), i d2 = 8~ld~ A ~ + r:i d~ A oJ , 

~here w have set =~ -= a~ l. 
Now, let us consider 2 as a fibred morphism E: JIE--> A ~ (T* B) ~, er p: E ~ B. 

Then, we can perform the vertical derivative 

(21) V~2: VEJ1E -o VA'~(T* B),  

where VE is the vertical functor with respect to the base space E (for the sake of sim- 
plicity, we have omitted to write explicitly the pullback p* (T 'B) ) .  

Its coordinate expression is 

where y~ are the fibre components of the linear chart (x;', yi, y~, ~ ) i n d u c e d  on 
V~J1E by (x ;', yi). 

Then, by taking into account the canonical isomorphism 

(22) VAm(T*B) ~_A~(T*B) • A ~ ( T * B ) ,  
B 

projecting VE2 to the second factor and taking the pullback over J1 E, we obtain the 
section 

v 

(23) d2 = pr2 oV~E: J I E - ~  V* E (~ (Am(T 'B)  ~ TB) 
J I E  B ' 

In coordinates we have: 

V Y.  

(24) ds = =I dR | ~ ,  
V .  

where we have denoted by dR the vertical 1-forms induced by the fibred chart 
(X ~, yi, y~); they are to be kept distinct from the forms d~ on T * J I E .  

We would like to apply the horizontal and vertical differentials to the vertical 
V v 

derivative d2 of 2; but this is not possible in a direct way, for d2 is not a differential 
v 

form. Hence, we have to transform d2 in an -equivalent, differential form, that is in 
v 

a differential form which carries the same content of d2; this content is essentially 
given by the derivatives =i -- 

Thus, we have the following result. 
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(27) 

where we have set 

(28) 

REMARK 3. - The following composition of natural maps 

(25) JIE X E (V*E~(A'~(T*B)~B TB))-(')>J1E X E (V*E~A'~-I(T*B))E ~*> 

~1. T* I(T* _-~ E ( ~ A  m- B ) ~ T * E @ A m - I ( T * E )  A--~A~(T*E), 
E E 

turns out to be an.injective fibred morphism over PE: J~E ~ E. 
V 

The section d2 (23) can then be characterized by the pE-semibasic m-form 

(26) I1: J1E ---) A'~(T* E), 

The coordinate expression of 11 is 

~_ ~ i lI=7:~:OiAoJ~ 7:i(d AoJ~-y~o) ,  

~o~ = ia, = ( - 1 ) ~ - l d l A  ... A d ~ A  ... A d  ~. 
V 

This expression confirms the equivalence o f / / a n d  ds the fundamental content car- 
ried by ds constituted by the derivatives 7: i~, is maintained in (27). 

DEFINITION 3. - The pE-semibasic m-form 11 (26) is said to be the legendre form, or 
the momentum form, associated with s 

Now, let us apply the horizontal and vertical differentials to the Legendre form 
(26). Unlike (19), the result is now ,,non trivial,: from the coordinate expressions (27) 
and (16)-(17) for the action of dh and dv on functions, we see that the presence of the 
term u~diA o~ yields at least a second-order term y~ .  

THEOREM 4. - The (pullback of the) differential of the Legendre form I1 (26), associ- 
ated with the lagrangian s splits canonically on J2 E into a sum of two P2, l-semiba- 
sic (m + 1)-forms: 

(29) dH = d~11 + d~II. 

PROOF. - This theorem is an immediate consequence of Proposition 
2a). q.e.d. 

The coordinate expressions of d~11, dvII are: 

(30) dhIl= ( ~  ~ i ~d~A - " ~ i ) d  A ~ - ~ i  , 

j 
( 3 1 )  dvH • ~jTv~O j A 0 i A 09~ "4" ~j T~ i O~ A 0 i A 0 ~ .  

These expressions show that dhH and dvH are m-semibasic over E. 
The (m + 1)-forms dhH and d,H play a fundamental role in the construction of the 
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basic objects of our purely differential approach to field theory. First, we can charac- 
terize the Euler-Lagrange operator in the following way. 

THEOREM 5. - The (m + 1)-form 

(32) ~ =- ds + dhll: J2E--) A'~+ I (T*E)  

is the unique combination (up to a scalar factor) of ds and dhlI which is pE-semiba- 
sic. Its coordinate expression is 

(33) ~ (Sil (~ '=~)diAo~ ( ~ l  8~=~ J ~ J ~ ~ i 
. . . . . .  y~ ajTc i y;,, 8j 7~ i ) d  A o~ . 

PROOF. - It suffices to compare the expressions (20) for ds and (30) for 
d~ II. q.e.d. 

DEFINITION 4.  - The (m + 1)-form ~ (32) is said to be the Euler-Lagrange 
form. 

REMARK 6. - Formula (32) can be rewritten as 

(34) d2 = ~ - dhII. 

Hence, we can say that the differential d2 of the lagrangian 2 splits canonically on 
J2E into a sum of pE-semibasic (m + 1)-form 8 and in a P2, z-semibasic (m + 1)-form 
dh II. 

We can regard the Euler-Lagrange form in other equivalent and useful 
ways. 

PROPOSITION 7. - We can regard in a natural way the Euler-Lagrange form 8 as a 

fibred morphism over E 

v 

(35) 8: J2E--* V* E Q Am(T* B). 
E 

PROOF. - The image of the Euler-Lagrange form is contained in a subspace of 
Am+I(T*E),  which turns out to be isomorphic to V * E Q A m ( T * B ) .  q.e.d. 

E 

v 

DEFINITION 5.  - The fibred morphism 8 (35) is said to be the Euler-Lagrange opera- 
tor associated with the lagrangian s 

Its coordinate expression is 

(36) ~=(a~l - f f~ .7 :~ )d~ |  ~- y~a~7:i)d j '~ )~ i ~ 0 9 .  

So far we have been involved with the horizontal term dhII of the canonical split- 
ting (29); now let us investigate the role of the vertical term dvlI. 
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T H E O R E M  8 .  - Then s u m  

(37) 8 + dvII 

is an exact form. Moreover, among all potentials of (37), we have the distinguished 
canonical pE-semibasic m-form 

(38) 0 - ~ + H: J t  E ---> A "~ (T* E) ,  

which depends only on the objects so far introduced. 

PROOF. - From (32) and the canonical splitting (29), we obtain, on J~E, 

8 + d J I  = ds + dhlI + d~II = d(s + 1I) = dO. q.e.d. 

DEFINITION 6. - The PE semibasic m-form 0 is said to be the Poincard-Cartanform 
associated with the lagrangian 2. Its coordinate expression is 

(39) 0 = loJ + =~0 i A o~ = 7:~d i A ~o~ + (1 - Y~=ii ~)(o. 

REMARK 9. - The differential dO of the Poincar~-Cartan form 0 splits canonically on 
J2E into the sum of $ and dJI:  

(40) dO = ~ + d J I .  

3. - L a g r a n g i a n  f ie ld  theory .  

So far we have made use of a lagrangian, but no variational principle, or varia- 
tional problem has been mentioned: the lagrangian was simply a pB-semibasic m-form 
on the 1-jet space of a given fibred manifold p: E--+B, and theory developed in Sec- 
tion 2 is nothing but a consequence of the geometrical structure of 1-jet space. In this 
section we see how our objects are related to the usual lagrangian field theory. 

We refer to our given pair (E, ~) as the physical field, and set the related varia- 
tional principle. 

DEFINITION 7. - The action associated to the physical field (E, ~) and to the section 
s: B'--~ E,  where B '  r B is a compact submanifold of maximal dimension, is defined to 
be the integral 

~ =- I ( j l s ) * ~ .  
B' 

DEFINITION 8. - A variation of the field E is defined to be a pair (E ' ,  u), where 
E '  - p-1 (B') c E, B '  c B is a compact submanifold of maximal dimension with bound- 
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ary, and u: E'  ---) TE' c TE is a projectable vector field such that 

(41) u ]aE' = 0. 

The 1-jet prolongation of (E', u) is the pair ( J IE ' ,  w), where 

w =- roJlu 

is the 1-jet prolongation of u (8). 

By considering the 1-parameter group of fibred diffeomorphisms of the total space 
E generated by u, we can see that our defmition of variation is actually the infinitesi- 
mal version of the usual one. 

DEFINITION 9. - A section s: B--) E is said to be critical if 

(42) ~ (Jl s)* Lw 2 = 0, 
B' 

where Lw is the Lie derivative with respect to the vector field w (8), for all variations 
(E', u) o f F .  

So, we can recover in a geometrical language the standard analytic procedure for 
deriving the Euler-Lagrange equations. 

LEMMA 10. - The following conditions are equivalent: 

i) A section s: B--~E is critical; 

(43) ii) (j2s)*iu~ = O, 

for all vector fields u of E. 

PROOF. - By using a well known identity for the Lie derivative of a differential 
form, the canonical splitting (34) of d2, the Stokes theorem and the boundary condi- 
tion (41), we obtain 

]( j lS)*Lws f ( j l s )*( iwds di~2)= I ( j2s)* iuS-  f(j2s)*iwdhH. 
B' B'  B'  B'  

Now it is easy to see, by a straightforward calculation, that 

(j~ s)* iw dh11 = d(jl s)* i, 11. 

By using the Stokes theorem with the boundary condition (41), we see that 
I d(jl s)* i~11 vanishes. Hence, we have 

B' 

(44) ] ( j l s )*L~2= f(j~s)*i ,~.  
B' B'  



400 P. G. COSTANTINI: On the geometrical stm~cture, etc. 

i) ~ ii) The definition of critical section and (44) imply 

I (j2s)*iu~ = 0, 
B '  

hence, for well known theorems on integration theory, 

(j2s)* iu ~ = 0, 

for all variational vector fields (i.e. such that the boundary condition (41) holds). 
Moreover, we remark that we can omit the boundary condition (41) by considering a 
standard technique of extension of local vector fields. So, (43) holds for all projectable 
vector fields on E. 

ii) ~ i  It follows immediately from (44). q.e.d. 

THEOREM 11. - Condition (43) is equivalent to the Euler-Lagrange equation: 

V 

(45) $ o j2 s = 0, 

PROOF. - It  follows easily from the above Lemma, by expressing the Euler-La- 
grange form in terms of the Euler-Lagrange operator, q.e.d. 

The coordinate expression of this equation is 

(46) ( a i l -  ~ . ~ ) o j 2 s  - (a~l - a~r~ - a~sJ ajr~ - a~sJ ~j r~)OjlS = O. 

We have another important geometrical characterization of critical sections. 

THEOREM 12. - Condition (43)for a section s to be critical is equivalent to the fol- 
lowing condition: 

(47) (Jl s)* i~ dO = O, 

for  all local projectable vector fields u: E ~ TE (see [MM1], pag. 42). 

PROOF. - From the canonical splitting (40) of dO on J2E, we obtain 

(Jl s)* iw dO = (J2 s)* iu 8 + (J2 s)* iw dvI1. 

Moreover, the coordinate expression (31) for d~II tells us that the coordinate expres- 
sion of the contraction i~ d~I1 will contain at least one of the 1-forms 0 ~, 0~, whose pull- 
back by j2s vanishes. So, the second term vanishs, q.e.d. 

For completeness of our exposition, we recover the well known results on symme- 
tries and on Noether theorem, by using the Poincar6-Cartan form (see also 
[GA). 
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DEFINITION 10. - A symmetry of the Poincar~-Cartan form 0 is a projectable vector 
field 

u: E-->  TE 

such that, for all critical sections s: B ~ E ,  

(Jl s)* L~ 0 = 0. 

DEFINITION 11. - A conserved current is an (m - 1)-form 

~: J1E---> A m - I ( T *  J1 E) 

such that, for all critical sections s: B - - , E ,  

(Jl s)* d~ = 0. 

THEOREM 13 (Noe the r ) . -  I f  

is a symmetry of O, then 

is a conserved current. 

u: E - o  T E  

iuO: J~E--~ Am- I(T* E) 

PROOF. - Let  s: B ~ E  be a critical section. Definition 10 and Theorem 12 
give 

(jlS)*L~O = (jls)*iwdO + (jlS)*diuO = ( j ls)*diuO = 0 q.e.d. 
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