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On the Condition of Nearness Between Operators (*). 

SERGIO CAMPANAT0 

S u n t o .  - Siano A e B due applicazioni definite su un insieme 53 e a valori in un spazio di Banach 
531. Si espone una teoria deIle applicazioni A e B vicine. Si  dimostro, ad esempio, che A 
iniettiva, o surgettivc~ o bigettiva see  solo se A ~ vicina ad una B con queste proprieth (cfr. 
Appendice). Si danno condizioni sufficienti per la vicinanza nel caso generale e poi nel caso 
particolare in cui ~: ~ un spazio di Hilbert. Ulteriori condizioni sufficienti si danno quando 
A e B sono applicazioni differenziali non variazionali, del 2 ~ ordine, definite su un aperto 
0 r R ~, di classe C 1. Ricordata una opportuna definizione di operatore ellittico quasi-base 
(cfr. [1] e [2]) si dimostra, per questi operatori un teorema di isomorfismo H 2, q A H 1, q (0) ---) 
--~ L q (O), con q > 1, valevole anche quando 0 non ~ convesso. Questo risultato migliora un pre- 
eedente risultato di[3]. L'ult imo paragrafo ~ dedicato agli operatori parabolici. 

Summary .  - Let A and B be two mappings defined on a set ~ taking values in a Banach space 
t~l. We present a theory of nearness of  mappings A and B. We shall prove, for instance, that 
A is injective, or surjective or bijective i f  and only i r A  is near B with these properties (see 
Appendix). We shall give sufficient conditions for the nearness in the general case and then 
in the particular case wherein ~1 i8 a real Hilbert space. We shall give further  sufficient con- 
ditions when A and B are non variational differential mappings of  second order, defined on 
an open set t2 r R ~, of class C:. After recalling an appropriate definition of a quasi-basic el- 
liptic operator (see [1] and[2]) we prove, for  these operators an isomorphism theorem 
H 2, q N H 1, q(~) --> Lq(t~), with q > 1, valid also when 0 is not convex. This result improves 
an earlier result of [3]. The f inal  section is dedicated to parabolic operators. 

O. - I n t r o d u c t i o n .  

M a n y  p r o b l e m s  of analysis  (and not  only of analysis)  lead one to consider  a situ- 
at ion of the  following type:  

Suppose  

53 is a se t  

~1 is a real  Banach  space.  

(*) Entra ta  in Redazione fl 22 settembre 1992. 
Indirizzo dell'A.: Dipartimento di Matematica, Universit~ degli Studi di Pisa, via F. Buonar- 

roti 2, 56127 Pisa. 
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A: ~ - ~  ~1 is a mapping. We ask whether A is 

(0.1) injective or surjective or bijective. 

Investigating on the above problem (0.1) one is led, in the last years, to a new 
existential method based on the notion of near maps.  Let B be another mapping 

~--)  ~1. 

DEFINITION 1. - We shall say that A is near B i f  there exist two positive constants 
and K, wi th  K ~ ( 0 ,  1), such that Vu, v ~ ~,  we have 

(0.2) liB(u) - B(v)  - a[A(u) - A(v)] II zl <~ KH B(u)  - B(v)]l ~1. 

The theory of near mappings already has a sufficient amount of propositions which 
allows one to deduce interesting consequences. First of all one can prove the follow- 
ing theorem. 

THEOREM 1. - The mapping  A: 53 ~ ~ is injective, or surjective, or bijective, i f  and 
only i f  it is near to a mapping  B: 53 ~ ~ which is injective, or surjective, or 
bijective. 

Infact, the theorem has been proved, in the literature, only in the particular case 
wherein ~ and ~1 are real Hilbert spaces and B is a bijection (see [2] section 2 and [1] 
theorem 3.1). However, we can also prove now in the version stated in the text (see 
Appendix). 

As an example we have the following result. 

THEOREM 2. - I f  B: ~ --) 531 is bijective and i f  A is near to B then, V f  ~ ~1, 31U ~ ~ 
such that 

(0.3) A(u)  = f 

and for  this u we have the estimate 

(0.4) liB(u) - B(v)l[~l <~ ~ - K  ] I f -  A(v)ll~l, Yv ~ ~ i .  

The estimate (0.4) follows easily from the nearness condition (0.2). In this formu- 
lation the central points are 

the choice of B, 

the choice of  the sets tB and '~1" 
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1. - S o m e  p r o p o s i t i o n s  o n  n e a r  m a p p i n g s .  

We shall prove here some easy, but useful, propositions. 

THEOREM 3. - I f  A is near B with constants ~ and K then A is near to all mappings 
fiB, for fl > 0, with constants fla and K. 

THEOREM 4. - I f  A is near B with constants ~ and K then flA, fl > O, A is near to B, 
with constants a/fl and K. 

In particular A is near B with constants a and K is equivalent to say that  ~4 is 
near B with constants 1 and K. 

THE THEOREM OF THE ker .  - Given a mapping A: ~ ~ ~1 we let, as is custom- 
ary, 

k e r A  = { u e  ~ : A ( u )  = 0}. 

THEOREM 5. - If A and B are two mappings near to each other ~--)  :~1 and i f  

(1.5) ker A N ker B ~ 0 

then 

(1.6) ker A = ker B .  

In fact, if we choose v e k e r A  n ker B, we obtain, from the nearness relation 
(0.2), that  Yu e ~,  

HB(u) -  ~i(u)][~ 1 ~< KIIB(u)N~I 

and hence, since K e (0, 1), 

(1.7) A(u)  = O ~ B ( u )  = O. 

Let  A, B, C be mappings ~ ---) ~1o 

THEOREM 6. - I f  A is near B with constants ~ and K, and i f  C is near B with con- 
stants :r and K' then 

(1.8) ccA + ~' C is near B 

with constants 1/2 and (K + K')/2.  
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PROOF. - We have, Vu, v e 

]]2[B(u) - B(v)] - [~4(u) + a 'C (u )  - ~4(v) - ~' C(v)]I[z~ ~< 

<~ t]B(u) - B(v)  - a[A(u) - A(v)]]]~l + liB(u) - B(v)  - ~' [C(u) - C(v)]]]~l ~< 

<< g + g_____~' l[2[B(u) _ B(v)]llxl 
2 

Hence aA + a ' C  is near 2B with constants 1 and (K + K' ) /2 ,  and hence, by theo- 
rem 3, aA + a '  C is near B with constants 1/2 and (K + K' ) /2 .  

This theorem can also be stated in other forms which can be deduced from Theo- 
rem 6 making use of the Theorems 3 and 4. 

2. - S u f f i c i e n t  c o n d i t i o n s  for  the  n e a r n e s s  o f  t w o  operators .  

We have particularly simple conditions when 

~1 is a real Hilbert space. 

We recall the following def'mition of monotonicity. 

DEFINITION 2. - A is said to be monotone wi th  respect to B i f  Vu, v e 53 we 

have 

(2.9) (A(u)  - A ( v ) I B ( u )  - B(v))zl  >i O. 

A is said to be strictly monotone with respect to B i f  there exist positive constants 

M and v such that Vu, v e ~ we have 

IiA(u) - A(v)[l~ 1 ~< MIIB(u) - B(v)ll~l, 
(2.10) 

(A (u ) - -A(v )  IB(u) - B(v))z  I >i vl]B(u) - B(v)]]~l. 

These definitions of monotonocity are symmetric. 
These definitions of monotonocity depend on the choice of ~1. 
The following theorems are easily proved. 

THEOREM 7. - Two mappings  A and B: ~ --~ t81, are near if and only i fA  and B are 

strictly monotone. 

For  a proof of this theorem see for ex. [1], Lemma 3.2, page 16. 
The generalized theorem of Lax-Mi lgram is an easy consequence of this. Let  

= ~1 = H be a real Hilbert space. Let  A be a mapping H --> H and let I be the iden- 
t i ty on H. Suppose that  A is strictly monotone (with respect to I). Then A is near I 
and since I is obviously a bijection H--> H it follows that  (see Theorem 2). 
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THEOREM 8. - I f  A: H -o H is strictly monotone, V f  e H 71U e H such that A(u) = f 
and we have the estimate 

IIUlIH --< A(O)IIH 

where v is the constant of monotonocity. 

If A is linear the condition of strict monotonocity with respect to I reduces to the 
classical condition of continuity and coercivity. 

THEOREM 9. - I f  A, B, C are mappings 83 ~ ~1 and i f  

(2.11) A is near B with constants a and K ,  

(2.12) i f  C is monotone with respect to B ,  

then A + C is near B + aC with the same constants a and K. 

PROOF. - VU, v e (O3 we have, by (2.11) 

(2.13) liB(u) + ~C(u) - B(v) - aC(v) - a[A(u) + C(u) - A(v) - C(v)] I1~1 ~< 

<~ gliB(u) - B(v)llzr 

On the other hand, from (2.12) we have 

(2.14) liB(u) - B(v)ll~l ~< liB(u) + aC(u) - B(v) - aC(v)ll~l. 

The assertion follows from (2.13) and (2.14). 
We derive from this, as a corollary, the following 

THEOREM 10. - Under the hypothesis (2.11) and (2.12), Vfe 831 the problem 

(2.15) A(u)  + C(u) = f 

has a solution (has a unique solution) if and only if the problem 

{ u ~  
(2.16) B(u) + o:C(u) = f  

has a solution (has a unique solution). 
In  particular, i f  f =  0 the two systems (2.15) and (2.16) have the same solutions 

(consequence of Theorems 3 and 2) provided that they have one solution in 
c o m m o n .  

Infact, the Theorem 9 can be made more precise in the following manner: 

THEOREM 11. - I f  A, B, C are mappings 83--~ tS] satisfying (2.11) and (2.12) 
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and i f  

(2.17) 

then 

(2.18) 

k e r A  N ker B A ker C ~  0 

ker (A + C) = ker (B + aC). 

Infact, by Theorem 9, A + C is near B + ~C. 
This last theorem has applications, for example, in the so called eigen value 

problem. 
Let  ~ be a real linear space, in particular, 0 e .93. 
Let  ~1 be a real Hilbert space. 
Let  A, B, C be three mappings t~ --* ~1 with A(0) = B(0) = C(0) = 0. 

DEFINITION 3. - We shall say that the number ~ e R is an eigen value of A with re- 
spect to C i f  

(2.19) ker (A - i(C) ;e 0. 

The Theorem 9 ensures that  if 

i) A is near B with constants ~ and K ,  

ii) - ~ C  is monotone with respect to B ,  

ker (A - ~C) = ker (B - ~2C). 

(2.20) 

then 

In other words, if (2.20) holds, ~ is an eigen value for A with respect to C if and 
only if ~ is an eigen value for B with respect to C. 

A concrete case of this situation has been studied in [5]. 

3. - Other sufficient conditions for the nearness in the case where A is a differ- 
ential operator. 

Suppose that  A is a differential operator. For  simplicity let us suppose that  A is a 
second order operator of quasi-basic type. That is, we suppose that  A is an operator 
of the type 

(3.19) A(u) = a(x, H(u)) 

where x varies in a bounded open set t~ c R ~, of class C 2, u is a vector t~ ~ R N, N being 
an integer t> 1, H(u) = {Diju} is an n • n matrix of vectors in R N, that  is an element 
of R n2N and finally a(x, ~) is a vector of R N, measurable in x and continuous in ~ such 

that  a(x, O) = O. 
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DEFINITION 4. - We shall say that the vector a(x, ~) is elliptic i f  it satisfies the fol- 
lowing condition: 

(A) There exist three positive constants a, 1,, ~ wi th  ~, + ~ < 1, such that YE., 
v �9 R n2N and Vx �9 ~ we have 

(3.20) II + - a(x,  'i1 11 + 4 E 
i i 

For an analysis of the condition (A) see for example [1]. 
The following theorem can easily be proved (see [1] and [3]) 

THEOREM 12. - I f  the vector a(x, ~.) is elliptic and the open set t~ is convex then the 
operator a(x, H ( u ) ) is near the Operator ~lu, both operators being understood as opera- 
tors H 2 A H~(t~) --) L2(t)). 

The proof is made easy in view of the fact that, if t) is convex, we have the follow- 
ing classical estimate of C. Miranda - G. Talenti: 

V u e H 2 N H o l ( t ~ )  we have f ]lH(u)l[2dx <<. ~lldull2dx. 
Q 

If t2 is not convex, the condition of ellipticity (A) is not in general sufficient to gau- 
rentee the nearness stated in Theorem 12. 

We shall now prove that, even if ~2 is not convex, we have the nearness asserted in 
the Theorem 12, provided that a some what more restrictive condition than the condi- 
tion (A) is imposed on the vector a(x, ~). This new condition, that we shall call the 
condition (As) depends on the geometry of ~. 

4. - T h e  c a s e  o f  n o n  c o n v e x  D. 

Let A(u) as before be the differential operator (3.19). 
Let the open set ~ be bounded and of class C 2, from the theory of linear differen- 

tial operators we know that there exists a constant C(2)~> 1 such that, 
Vu �9 H 2 N H~ (t)), we have 

(4.21) f [[H(u)[[2dx <~ C~(2) f Ndul[ 2 dx .  

Then, we shall impose the following condition on the vector a(x, ~): 

(A2) There exist three positive constants ~, •, 8, wi th  ~, + $ < 1, such that Y~, 
~" ~ R n2N and Yx  ~ t) we have 

i C(2) N i 
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The condition (A2) is more restrictive than the condition (A) since C(2) I> 1, and 
hence, if (A2) holds, the vector a(x, ~) is again elliptic. 

THEOREM 13. - I f  the vector a(x, ~) satisfies the condition (A2) then the operator 
a(x, H(u)) is near du considered as an operator H~ N H~ (~)-->L2(~). 

PROOF. - VU, V e H 2 N HI  (t)) and Vs > 0, we have 

r I A u -  c ~ [ a ( x , H ( u  

Making use of (4.21), we get 

+ v)) - a(x, H(v))] -< 

y2 1 

Assuming z = 8/], we have 

a <. ('I + II ul[2dx 

Then we again have the following 

THEOREM 1 4 . -  Under the hypothesis of the theorem 13, Vf  e L 2 (D ) the Dirichlet 
problem 

u e H 2 n H~ (~), 

(4.23) a(x, H(u)) = f in t] , 

has a unique solution u and we have the following estimate 

(4.24) IIg(u)ili2< > ~< 1 - (], + 8)IIfllL2(~), 

Hence, if (A2) holds, then we have proved that the operator a(x, H(u)) is an iso- 
morphism H 2 N  H~(~)--~L2(~),  without the hypothesis that ~ is convex. 

5. - An Lq(D), q > 1, regularity result .  

Making use of the procedure followed in the preceeding section we can also prove 
that, if in Dirichlet problem (4.23) we have f e  Lq(t~), q > 1, then the solution u be- 
longs to H 2'q A H01'q(~9). 

This result is known in the literature under the following hypothesis: 
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(i) a(x, ~) satisfies the condition (A), 

(ii) t~ is convex, 

(iii) q is sufficiently close to 2 (2 ~< q < qo). 

(See, for instance [3] Theorem 3.) 
Here we prove that the result is true Vq > 1, and without the hypothesis (ii), pro- 

vided that the hypothesis (A) on the vector a(x, ~) is replaced by a slightly more re- 
strictive hypothesis (Aq), which allows us to verify that the operator a(x, H(u)) is 
near Au considered as an operator H 2,q N Hl 'q(~)-->Lq(~) .  

It is known, from the linear theory that, if t~ is of class C 2 and q > 1, then 
Yu e H 2' q A H 1' q (~9) we have the estimate 

(5.25) f I[H(u)Hqdx <~ Cq(q) f liAuHqdx, C(q) >I 1. 

We shall impose the following condition on the vector a(x, ~): 

(A~) There exist three constants ~, I", ~, with 1" + ~ < 1 such that Vx e ~ and 
V~, v ~ R n~N 

(5.26) ~ii C(q) [a(x, ~ + z) - a(x, z)] N ~< + ez II ~ $i~ IIN 

where f l = ( q  + 1)/q. 

The condition (Aq) is more restrictive than the condition (A) because 

~,~ < ~,, ~ < ~, C(q) >t 1 

and hence, if (Aq) holds, then the vector a(x, ~) is again elliptic. 
If the vector a(x, ~) satisfies (Aq) then, Yu, v e H  2'q A Hl, q(~9) and Vs > 0, we 

have 

a = ~ IIc(q)~u - ~[a(x, H(u + v)) - a(x, H(v))]Jlqdx <. 

-< f + -< I(1§ ir,(u)rl  + (1+ 
Q 

And, from (5.25), we have 

a ~< (1 + z)q.['q + ,1 + -[/q~ z' ]lC(q)AuH'dx. 
t~ 

Choosing e = ~/y we get 

(5.27) a <<. (,[ + ~)q*1] ]lC(q)Aullqdx. 
D 
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Since (r + ~)q+l < 1, the estimate (5.27) proves that a(x, H(u)) is near the opera- 
tor C(q)~lu, and hence near Zlu, considered as operators H 2,q N H~.q(~)~Lq(t~) .  

It follows from this that 

THEOREM 15. - I f  the vector a(x, ~) satisfies the condition (A~) and i f  f e Lq(~9), 
q > 1 the solution u of the Dirichlet problem (4.23) belongs to H 2' q • H~' q (t)) and we 
have the estimate 

(5.2s) I[H(u)ilL ( ) IIfl[Lq( ) 
1 - ( y  + ~)~ 

6. - P a r a b o l i c  operators  o f  s econd  order. 

Still remaining in the case of a second order differential operator of basic type, the 
Theorem 9 allows us to study also some other operators which are not elliptic in the 
sense that they do not satisfy the condition (A). For example, the operators A = A1 + 
+ A2 where A1 satisfies the condition (A) but A2 is just monotone with respect to A. Or 
the operator A = A1 + A2 where A1 is elliptic in the sense of (A) only with respect to a 
block of k < n variables. 

An example of the first case is given by the operator considered in page 7 
of [1] 

2(n - 1) 
(6.29) a(x, H(u)) = Au + - -  D ~ u ,  with n/> 3. 

(n - 2) 

This operator does not satisfy the condition (A) and does not satisfy, as is well 
known, the condition of Cordes. However it is elliptic in the classical sense and conse- 
quently is an isomorphism H2N H~ (t~)--)L2 ([2). 

We can reobtain this risult from the Theorem 9. Infact, setting 

2(n - 1) 
A1 (u) =/lu and A2 (u) = - -  Dn,~ u 

(n - 2) 

Ai satisfies (A) and A2 (u) is trivially monotone with respect to Au. Hence, by Theo- 
rem 9, the operator (6.29), and more generally, the operator 

1 2(n - 1) 
a(x, H(u)) + D ~ u  

(n - 2) 

with a(x, ~) elliptic, is an isomorphism H 2 N Ho 1 ([2) ~ L 2 (~). 
An example of the second case is given by the second order, for simplicity, quasi- 

basic type parabolic operators 

(6.30) a(x, t, H(u)) ~u 
St" 



SERGIO CAMPANATO: On the condition of nearness, etc. 253 

Let t} be an open set in R ~, of class C 2 and x be a point in it. Let Q be the cylinder 
~] • (0, T), with T > 0, and X = (x, t) be a point in it. Let a(X, ~) be a vector in R N, 
which measurable in X e Q, continuous in ~ e R n2N, elliptic in ~ (that, is satisfies the 
condition (A)) and satisfies the condition a(X, O)= O. 

We shall denote by W~' I(Q) the real Hilbert space 

(6.31) w~,I(Q)= u~L2(O, T, H2C~HJ(~)): -~ ~L2(Q),u(x,O)=O 

provided with the norm 

I 82 Ou 2dX ' (6.32) HU]I~V~,I(Q) = ]lg(u)II 2 + ~ with fl > 0. 
Q 

If t} is convex or if the vector a(X, D satisfies the more restrictive condition (A2) 
introduced in (3.20), then the operator A1 (u) = a(X, H(u)) is near the operator Ju, 
considered as a mapping 

�89 L2(Q) 

with constants ~ and K = (y + ~) (see Theorem 12). 
Instead, the operator 

9u 
A 2 (u) - 

at 

W02, I(Q)__+ L 2 (Q) is monotone with respect to Au (as can easily be checked, see for 
instance [4]). 

It follows now, from Theorem 9, that the operator (6.30) is near the operator Au - 
-~(au/at). We conclude that Vfe L2(Q) the Cauchy-Dirichlet problem 

(6.33) u e W~' 1 (Q), a(X, H(u)) au at = f i n q  

has a unique solution since this happens, as is well known, for the linear problem 

~u 
(6.34) ueW~'l(Q), A u - ~ - ~  = f  in q .  

This theorem, together with some regularity results for the solution u, is proved 
in [4]. 

We shall give here a generalization of this considering parabolic operators which 
do not depend linearly on Ou/at: 

( ~ u )  (6.35) a(X, H(u)) - b X, u, Du, -~  

where B(u) = b(X, u, Du, au/at) is a vector in R N, which is measurable in X and con- 
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tinuous in the other variables and with a controlled growth condition, which means 
that  

Suppose further that  

(6.36) 

u ~ W2o ' I ( Q ) ~ B ( u )  e L 2 ( Q ) .  

i) B(0) = 0,  

fi) - B ( u )  is monotone with respect to Au. 

The condition (ii) means that  Vu, v ~ W~' I(Q) we have 

(6.37) - (](u - v ) I B ( u )  - B(V))L2(Q) >t O. 

Then, it follows, from Theorem 9, that  a(X, H ( u ) ) -  B(u ) )  is near the operator 
zlu - aB(u)  where a is the constant of nearness of the vector a(X, ~) to the vector Au. 
Infaet, Vu, v ~ Wo 2' I(Q) we have 

= ]l~l(u - v) - ~t[B(u) - B(v)] - a[a(X, H(u) )  - a(X, H(v))  - B (u )  + B(v)] ilLs(q) = 

: Ilzl(u - v) - a[a(X, H(u) )  - a(X, H(V))]HL2(Q) <<- KII/l(U - V)IIL2(Q ). 

Moreover, by the assumption (ii), we have 

][A(u - V)HL2(Q) <<. I[A(U -- V) -- ~[B(u) - B(v)] HL~(Q). 

We then conclude that  Vu, v ~ W~' I(Q) we have 

(6.38) ci <~ KllA(u - v) - ~[B(u) - B(v)] IlLS(Q). 

Thus we have the following 

THEOREM 16. - I f  ~ ~ a(X,  ~.) is elliptic and B(u)  satisfies (i) and (ii), then 
Vfe L2(Q), the Cauchy-Dirichlet  problem 

u E W g . I ( Q ) ,  

(6.39) a(X,  H(u) )  - B (u )  = f in  Q,  

has a solution (has a unique  solution) i f  the problem 

uEW2'I(Q), 
(6.40) Au - aB(u)  = f in  Q.  

has a solution (has a unique  solution). 

We can further say that, if f -  0, the problems (6.39) and (6.40) have the same 
solutions, in view of the hypothesis that  

B(0) = 0.  

Infact, we can assume v = 0 in the nearness relation (6.38) and find that  
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Vu ~ W0 ~' 1 (Q) we have 

I{Au - aB(u) - a[a(X, H(u))  - B(U)]{{L2(Q) <~ K{{~u - aB(u)I{L2(Q,. 

The assertion follows from this since KE (0, 1). 

7 .  - A p p e n d i x .  

PROOF OF THEOREM 1. - The only i f  part follows f~om the trivial observation that  
any mapping A: tB--> ~1 is near to itself. I t  is enough to take in (0.2) 

0 < a < 2  and K =  { 1 - a  I. 

The proof of  the i f  part is not as simple and is proved in various propositions each 
of which, it is better to discuss separately. 

We recall two lemmas concerning the transport of the structure. 

LEMMA 1. - I f  B, 5] -~ ~1 is injective then ~ is a metric space with the induced 
metric 

(7.41) d~ (u, v) = liB(u) - B(v) ll~l. 

This is obvious to check. 

LEMMA 2. - I f  B: ~ --> ~1 is bijective then ~ with the induced metric (7.41) is a com- 
plete metric space 

PROOF. - Let {un } be a Cauchy sequence in {~, d~ }, which means that {B(u~)} is a 
Cauchy sequence in ~1, and hence 3 %t e ~1 such that 

{l (un) - 0 .  

Setting u = B - l ( ' l ~ )  then u e 5~ and 

u )  = l iB(us)  - ul{ l-  0 .  

This proves that {~, dz} is complete. 

We shall now prove the i f  part of the Theorem 1. 

B is injective: It follows, from the condition (2) and since K e (0, 1), that Vu, 
v ~  

B(u)  - B(v) = 0 ~ A(u)  - A(v) = 0 

and hence A is also injective. 

B is bijective: V f e  ~1, solving the equation 

(7.42) A(u)  = f ,  u e 
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is equivalent to solving the equation 

(7.43) B(u)  = B(u)  - ~A(u) + ~f = F (u ) ,  u ~ 53. 

But, Vu e 5~ we have F(u)  e 531 and hence 31 ~d = 5(u) E 53 such that 

(7.44) B(%t = F(u ) ) .  

We thus construct a mapping ~ 53-~ 53 which is a contraction of {53, d~ } into itself. 
Infact, if u, v e 53 and ~t = J(u), ~ = ~v)  then 

d ~ ( ~ ,  ~) = flB(%t) - B(~)II~I = I]F(u) - F(v)lt : 

= l i B ( u )  - B ( v )  - -A(v)]ll l K I I B ( u )  - = v ) .  

On the other hand, by lemma 2, the metric space {53, d~} is complete. Hence, by the 
contraction mapping theorem, 31 u e ~ which solves (7.43), and hence 31 u e ~3 which 
solves (7.42). We have thus proved that A is also bijective. 

B is surjective: We define an equivalence relation ~ on ~3 by 

u&~v ~ B(u)  = B(v) .  

We denote by {u}~ the equivalence class of u and let X = 53/0~. 
Define the mappings B* and A*,  X--~ 531 as follows 

B* ({u}~) = B(u)  

A* ({u}~) = n ( u )  

A* and B* are again mappings near to each other with constants a and K and the 
mapping B* is bijective, Hence A* is also bijective, that is, A is surjective. 

This last point of the above proof was communicated to me by Dr. A. TARSI~, for 
which I thank him. 
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