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On the Stokes Problem in Lipschitz Domains (*). 

G. P. GALDI - C. G. SIMADER - H. SOHR 

1.  - I n t r o d u c t i o n .  

Let  ~ be a bounded domain in R n (n >I 2) with a Lipschitz continuous boundary 
~t). Then for given f e  w - l ' q ( t ) )  n, g e Lq(t)), r e W1 -(1/q)'q(at)F, 1 < q < cr satisfy- 

ing the compatibility condition 

(1.1) f gdx = f r 
t~ a~  

we are interested in the existence and uniqueness of a solution pair 
(u, p) e W 1' q (t~)~ • L q (t)) satisfying f p dx = 0, the Stokes equations 

(1.2) -Au  + Vp = f ,  d ivu = g in D, u = r on aD, 

and the inequality 

(1.3) ]lUllwl, q(~r + IIPHLq(~) ~< C(llfllw-~,q(~r + tlgHLq(~) + nr 

where C = C(t), n, q) > 0 is a constant and N denotes the exterior normal to aD. Our 
aim is to prove this property under the assumption that  the Lipschitz constant L of 
the boundary at) is sufficiently small (smaller than a constant depending only on n 
and q); in particular such a pair (u,p) always exists if t) is a bounded domain with 
at) e C 1. Such a result is well known for a more regular domain. CATTABRIGA [4] proved 
this result ff at) e C 2 and n = 3; see GALDI-StMADER [8] for all n I> 2. Concerning the 
integral equation approach see LADYZENSKAJA [14] and DEUR~NG-VON WAHL-WEIDE- 
MEIER [6]. AMROUCHE-GIRAULT [3] proved the existence and uniqueness of the solution 
pair (u, p) together with (1.3) under the assumption at) e C 1' 1, their proof rests on the 
ADN-theory [2], see TEMAM [16], and on Giga's result in [9]. Our assumption at) e C o' 1 
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Bayreuth, Germany; H. SOHR: Universit~t Paderborn, Fachbereich Mathematik, D-4790 
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together with the smallness of L seems to be optimal for general domains. Examples 
for non-smoothness can be taken from the elliptic theory [10] by setting p = 0. 

Our hypothesis enables us to solve the Stokes problem above for domains having 
edges and corners provided the opening angles are close to =. If  q = 2 the above result 
on the existence and uniqueness of (u, p) holds for arbitrary Lipschitz domains with- 
out smallness condition on L. Furthermore, there are many results on special do- 
mains with edges and corners; see KELLOGG-OSBORN [12] for n = 2 and DAUGE [5] for 
n = 3 .  

The method of our proof is selfcontained and rather elementary, it rests on the 
halfspace result and on localization and perturbation techniques. However, although 
similar, our method is not completely parallel to that of CATTABRIGA [4]; let us analyze 
the difference in the basic step where the smoothness of af2 is involved. Cattabriga's 
assumption at) ~ C 2 is really needed only in the case 1 < q < 2 where the uniqueness 
property that u E W~'q( l )p ,  p ~ Lq(Q),  I p d x  = 0, -Au + Vp = 0, divu = 0 implies 

u = 0, p = 0 is not as trivial as for q t> 2. This uniqueness assertion is needed for prov- 
ing the a priori estimate (1.3) by localization and compactness arguments. In order to 
prove this uniqueness result, Cattabriga improves the regularity of (u, p) above by 
the second order derivatives of u which requires the C2-regularity of at); this leads to 
Vu e L 2 and u = 0. Instead of Cattabriga's argument we use a regularity property for 
the localized equations which enables us to consider two different exponents q and s 
simultaneously, see Section 3. The localized equations can be considered as equations 
on the halfspace or the ,<bended, halfspace. So we have first to treat the Stokes prob- 
lem in these unbounded domains. 

SOME N O T A T I O N S .  - Let 1 < q < co and let q' be defined by 1/q  + 1 /q '  = 1. We use 
the Lebesgue space Lq(Q) with norm IlUtlLq(~)= Ilullq and the usual Sobolev spaces 
W 1' q (t~) and W0 ~' q (t~) = Co ~ (t~) IPv~tlq where Co ~ (t~) means the space of all smooth func- 
tions having a compact support in Q. The norm in W~'q(Q) is given by IlUllw~,q(a)= 
~--- HUlILq(Q) + ]IVUIILq(Q) where IIVul[Lq(~)= (llal ullqq + . . .  + I]a,~ ull q )l/q, Vu  = ( ~1U, .. . , ~n U ), 

~, = a /~x ,  (v = 1, . . . ,  n). Furthermore we denote divu = ~lul + ... + a~u~ and hu = 
= a21u + ... + a~u. Let L q (t~) n, Co ~ (~)n,  ... be the corresponding spaces of vector fields 

u = (ul, . . . ,u~). Let 

W =I' q(t~) = [W~' ~' (t))]* 

denote the dual space of W~' q' (t~). For a functional f :  v - ,  [fi v] from W -1' q(t)) the 
norm is defined by 

Ilfllw-l.q(~) = sup I[fi v]l/INv[Iq,. 
O~veC~(t)) 

The usual trace space W 1 -(l/q), q (at)) is well defined if at) is Lipschitz continuous 
N denotes the outward normal vector to St) and f ... da the surface integral. 
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u la~ �9 W 1 -(1/q), q (OD) means the trace of u �9 W 1' q (~). Le t  (u, v) = ~ u . v  dx denote 
~he L q -Lq ' -pa i r ing  for scalar fields, vector fields or matrices. 

A bounded domain D c R n, n I> 2, is called a Lipschitz domain with Lipschitz con- 
stant L > 0 if the following is true. 

To each x �9 af2 there  exists an open ball B with center x and a function o): D --) R 
on some domain D c_ R ~- ~ such that  (sfter some appropriate rotation and translation 
of the coordinate system depending on x) it holds 

grapho) = B A 0t~, { ( y ' , y , ~ ) s R n : y ' s D , ~ + c o ( y ' ) > ~ y , ~ o J ( y ' ) } c ] R n \ t ~  

for some ~ > O, I oJ(y~ ) - oJ(y~ )1 <~ L lY~ - Y; I for all y~, y~' �9 D .  

The function ~o with the lat ter  proper ty  is called a Lipschitz function. Le t  us put  

x = (x ' ,  xn) and V = (V', an) where x '  = (Xl, . . . ,  xn-1), V' = (81, . . . ,  an- l ) .  I t  is well 
known that  ~o: D--~ R is a Lipschitz function ff and only if ~ is continuous and 
V ' m e L ~ ( D )  n-1 in the sense of distribution. We get Ico(y~)-co(y{) l<~ 

-~ (llV' ~OIIL ~ (D)n-1) l Y2' -- Y~' I, Y2', Y~' �9 D, for such a function. 
Within the proofs we use positive constants C, C~, ... which may change from line 

go line. 

Acknowledgement.  The present  work was initiated while the first author was vis- 
iting the Universities of Bayreuth  and Paderborn;  the authors are grateful to DFG, 
CNR and MPI for supporting it. 

2. - M a i n  t h e o r e m  and pre l iminary  results .  

Our main theorem reads as follows 

2.1. THEOREM. - Let i < q < ~ and let t~ c R n (n >t 2) be a bounded domain  of  class 
C 1 or a bounded Lipschitz  domain  with sufficiently small Lipschitz  constant L > 0 
(i.e. L ~ M where M -- M(n,  q) > 0 is a constant depending only on n, q). Then for  
each given f e  W -1, q(t?) ~, g e L q ( ~ )  and r �9 W 1 -(l /q),  q ( o D ) n  satisfying f g d x  = 

= Jr N . r  dz, there exists a unique pair  (u, p) �9 W 1' q (~)n x L q (t?) such that ~ p dx = 0 
Of 2 D 

and 

(2.2) - Au + Vp = f ,  div u = g ,  u I a~ = r  

Moreover, this pair  is subject to the inequality 

Ilullw,,q< ),, + Ilpll-< ) -< c(llf!]w-l,q(m ~ + IIg]lL~(m + IIr 

where C = C(D, n, q) > 0 is a constant. 
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REMARKS, - a) Let/~q(t~) = 

(2.4) 

defined by 

v E L q vdx  = O[ and define the operator 
] 

(~):J 
] 

Sq: W~'q(t~) n x Eq(~)- - )  W-~'q(t~) ~ x ~q (~ )  

Sq(u, p) = ((Vu, V.} - {p, div.}, - d i v u )  

with the functional (Vu, V.) - {p, div.): v ~ (Vu, Vv) - (p, divv). Obviously, Sq is 
bounded and the dual operator 

S : :  W~'q'(~) ~ • ~ W-l 'q '(f~) •  (~) 

coincides with Sq, ; we get 

(2.5) s r  -- 

which is a consequence of the symmetry  property 

(Vu, av) - {p, divv> - {divu, h> = {Vv, Vu> - {h, d ivu)  - (divv, p> 

for all (u, p) e W~'q(t~) n • (v, h) e Wo*' q ' ( t )F • (D). 
Then the abstract  formulation of Theorem 2.1 for r = 0 means: 

(2.6) Sq is an isomorphism. 

b) It  is well known and easy to prove that  the Lipschitz constant L of each C *- 
domain can be chosen arbitrarily small. For  this purpose we have to choose the balls 
B in the definition of the Lipsehitz domain sufficiently small. Therefore, the assertion 
for C<domains in Theorem 2.1 is a corollary of the assertion for Lipschitz do- 
mains. 

The proof of Theorem 2.1 rests  on localization arguments by which the assertion is 
reduced to the corresponding results for the whole space ]R ~, the half space 

H = m n_ = {x ~- ( X l , . . . , x  n) e ]~n: Xn < 0} 

and the bended halfspace 

(2.7) H~ = {x = (x ' ,  Xn) ~ R~: x~ < o~(x')}, 

where ~: R ~-1 --) R is a Lipschitz function. We only need the case that  supp oJ is com- 
pact which means that  Hoj behaves like H for large I xl .  

For  the unbounded domains t) = R ~, = H or = H~o the solution space W 1' q (D) n x 
x/~q (t)) above is too small to prove an existence and uniqueness result. Therefore, in 

this cases we define 

(2.8) Vr q (~)~ = C0" (t~) ~lwllq 

being the completion of Co ~ (t~) ~ under the Dirichlet norm IIVVllq. If  a~2 ~ 0 we can 
identify each Cauchy sequence (u~) in Co ~ (t)) ~ with respect  to IIVvllq with that  element 
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u �9 ~ having the propert ies V u � 9  n2, 1~ i Vui= VU in Lq(t~) ~2 and u = 

= lira ui in Llqoe (~)n, since we may use Poincare's inequality near  the boundary a~9. The 
i 

same is possible for t~ = R ~ if 1 < q < n by using Sobolev's inequality. However if 

= ]R ~ and q > n, such a Cauchy sequence (ui) need not converge in Llqoc(R~) ~ but  
there  exist constants ci such that  this is t rue for (ui + ci ) and so we can identify (ui) in 
this case with a class in L1qoe (]R~) ~ whose elements differ by a constant. Fo r  simplicity 
we will consider 0 1 '  q ( R  ~ )~ for all I < q < ~ as a space of such classes; if i < q < n we 
find for each u � 9  '~ a representat ive in L~(R~)  ~ where 1 / n  + 1 / s  = 1/q ,  

see [8], [13] for details. 
Le t  

(2.9) 0 - 1 ,  q(~)n  __ [ 0 1 ,  q' (~)n], 

be the dual space of W01' q' (t~) ~, 1 /q  + 1 /q '  = 1. The norm of some functional f :  v- - .  
~ [ f i  v] from O- l ' q ( t~ )  ~ is given by 

(2.10) Ilfll~-~.~(~)~ = sup I[f,  v]l/llVvllq'. 
O~wC~(~) ~ 

The space 0 1 '  q (t~) ~ is isometric to some closed subspace of L q (t~) ~2 and therefore 
reflexive, we get [ O - l ' q ( t ) ) n ]  * = 01 'q ' ( t ) )  ~. I f  at~ ~ 0 or if t) = R ~ and 1 < q '  < n 

(i.e. q > n / ( n  - 1)), each f � 9  Co ~ (t)) ~ defines the functional v---) ( f ,  v) = I f .  v d x  which 
a 

is identified with f. I f  t) = R n, q '  ~ n (i.e. 1 < q <<. n / ( n  - 1)) we must additionally 
suppose that  ~ f d x  = 0 to get a well defined functional (f, .) �9 O -1 ,  q (9)~ since f must  

be zero on the class consisting of constants. The space of these functionals ( f , . )  is a 
dense subspace of 0 -1' q(t)) ~ in all cases; indeed, (fi  v) = 0 for all such f and given 
v �9 0 1 '  q'(~)~ implies v = 0. 

Using the Hahn-Banach theorem, for each f � 9  O -  ~' q (t~) ~ we can find a matrix F = 
= (F{j) �9 Lq(t~) ~2 such that  [f i  v] = (F,  Vv} for all v �9 O~' q' (t~) ~. Moreover, F can be 
chosen such that  Ilrllq = Ilfll$-~,~(a)~. Of course, each f � 9  O - l , q ( t ) )  n yields a well de- 

fined distribution on t~ being identified with fi we obtain f =  - d ivF  in the sense of 
distributions where d ivF  = ( a~ F{~ + ... + ~ F{~ )i= i ..... n. 

Our main result  on R ~, R n and H~ reads as follows. The equation - A u  + Vp = f i s  

understood in the sense of distributions. 

2.3. LEMMA. - Let  1 < q < oo, n >i 2 and  let t~ = R ~ or t~ = Rn_. Then  for  each 
f � 9  0 -1' q(t~) ~ and  g �9 Lq(t~) there exists a un ique  pa i r  (u,  p) �9 0~ '  q(t~) ~ x Lq(t~) 
sa t i s fy ing  

(2.11) -Au  + Vp = f ,  d ivu = g .  

Moreover  it  holds 

(2.12) IlVUllLq(a) ~2 + HPIILq(a) <'< C(IIflI~V-I,~(~) n + I]gHLq(a)) 

where C = C(t~, q) > 0 is a constant.  
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Furthermore, suppose additionally 1 < s < ~ ,  g e L f ( t ) )  and 

(2.13) sup ( l [ f ,  v][/liVVlIL~'(a) ~2) < ~ 
O~veC~(~)  ~ 

Then (u, p) e VV~'~(t~) ~ • L~(~). 

2.4. LEMMA. - Let  1 < q < ~ , 1 < s < :r n >1 2, let oJ: R ~-1 --> R be a Lipschitz 

funct ion with compact support and let L = II V' o)ll n ~ (~-~ i~-~ be sufficiently small (i.e. 
L <<. K where K = K(n,  q, s) > 0 is a constant). 

Then for  each f e i T V - l ' q ( H ~ )  ~ and g e L q ( H ~ )  there exists a unique pair  

(u, p) e VV~'q(H~) ~ • Lq(H~)  satisfying 

(2.14) - A u  + Vp = f ,  divu  = g .  

Moreover it holds 

(2.15) NVUI[Lq(Hof + IIPHLq(H~) ~ C(HfH$-~,q(Hr + llg][Lq(U,o)) 

where C = C((o, n, q, s) > 0 is a constant. 

I f  additionally g ~ L s (H~) and 

(2.16) sup ( ] [ f i  vJ]/I]Vvllt/(H~S) < ~ , 
OcveC~(H~)  n 

then (u, p) e ~V~ '~ (H~) • L ~ (H~). 

The proofs are given in the next sections. Observe that  the boundarycondi t ions  
u l ~g = 0 and U laH~ = 0 are implicity contained in u e 17Vo 1' q (H) ~ and u e Wo 1' q (H~) ~, 

respectively. 

3. - The whole  space R ~, the halfspace R n and the bended halfspace Ho~ ; proof  o f  
Lemmas  2.3 and 2.4. 

PROOF OF LEMMA 2.3 FOR ~ ---- R n .  - Firs t  we assume f e  Co ~ (F~)  ~ and g e Co ~ ( R  ~ ) 

where we identify f with the functional I f ,  -]: v - ~  [ f ,  v] = <f, v> = I fv  dx. I f  1 < q < 
<~ n / ( n  - 1) we must additionally suppose that  f f d x  = O. R ~ 

Rn 

In this case a (smooth) solution of - A u  + Vp = f ,  d ivu  = g can be sought of the 

form 

(3.1) 

where 

u = u l  + us + h ,  P = Pl + P2 

h = V(E * g),  Ul = E * f ,  u2 = U * Vh, 

p l = - Q * f ,  p 2 = - Q *  Vh. 

Here  * means the convolution, while E and U = (U/j), Q = (Qi) are the fundamental 
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solutions of the Laplacian and Stokes equations, respectively, namely 

[ Cl(n)lx[ 2-n if n >I 3, 
E(x) 1 

1(2=) -11~  f i n = 2 ,  

{ c~(n)[~ij Ix[ ~-'~ + (n - 2)Ix [ -nxixj ]  if n >>- 3, 
Uij(x)= (4=)- l [~ i j ( log[x] )  - [x[-2xixj] if n = 2 ,  

Qi(x) = I c3(n)[xt-~xi if n i> 3 ,  

[ (2z0 - l [ x [ - 2 x i  if n = 2 ,  

cl(n), c2(n), cs(n) being constants depending only on n. 
A repeated use of the Calderon-Zygmund theorem on singular integrals, see [8; 

p. 302], then leads to u �9 Wol'~(R~) ~, p eL~(R ~) and 

(3.2) IIVUItL~(n~). ~ + IIpllL~(S~) <~ c~ (llflIw-~,~(w) + IlgtlL~(S~)) 

for all 1 < r < o~, where C1 = C1 (n, r) > 0 is a constant. 
Assume now, f and g satisfy the assumptions of the theorem. Then the density 

property of C0~(R~) ~ in W - l ' q ( R n ) ~  explained above and the estimate (3.2) with 
q = r yield the existence of a pair (u, p) �9 WJ 'q(R~)  n x L q ( R  ~) satisfying (2.11). 
From (2.13) we know that fIcr extends by continuity to a functional 
f � 9  Therefore, the same argument as above yields a pair 
(~, ~) �9 ITd~, ~(R~) n • L ~ ( R  ~) satisfying - A ~  + V~ =)~  dive7 = g. We will show that 
u = ~ and p = i~; this proves u �9 ITV 1' ~(R ~)n, p �9 L ~ (F~ ~) and also the uniqueness of 
(u, p) by choosing q = s. For  this purpose we put w = u - ~ and r = p - ~. Then we 
get  

(3.3) (Vw, Vv) - (r divv> = 0 for all V �9 C~ (~:~n)n 

and divw = 0. Setting in particular v = VZ, Z �9 Co ~ (R~) we conclude from (3.3) that 

(r AZ> = 0 for all Z �9 Co ~ (~:~n). 

Then Weyl's lemma yields that  r is harmonic on R ~, it holds r �9 C ~ ( R  n) and ~1r = 0. 
The mean value property for harmonic functions leads to 

(3.4) r = c2(n)R-~ I (P(Y) - ~ ( y ) ) d y  
B R (x) 

where c2(n) depends only on n; we setBR(X) = {y �9 ]~n: IX _ Y[ < R}, R > 0. Apply- 
ing HSlder's inequality yields 

[~(x)l<~c3R-n Rn/q' BR(~)f IP(Y)]~dY) 1/q+Rn/~' ~R(~)] ]P(Y) I~dY 
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with c8 = c3(n, q, s). Recalling p e Lq(R~),  ~ e  L s ( R  ~) and letting R -~ ~ we obtain 
= 0. Now from (3.3) we get that  Vw is harmonic and the same argument  as for ~b 

yields Aw = 0. Therefore, w is constant and so zero as element in W~' q(Rn) n. This 
proves the assertion of Lemma 2.3 for D = R ~. 

In the next proof we use the notation 

(3.5) Co ~ ( (~ ) )  = { u i ~ :  u ~ Co ~ ( R n ) }  

for unbounded domains t~ _c R ~. 

PROOF OF LEMMA 2.3 FOR ~Q ---- ] R  n . - For  the halfspace H = R ~ _ we first assume that  
f e  Co ~ (H)~ and g e Co ~ (H) where the identify f w i t h  the functional v--~ (f, v). We con- 
sider extensions to Co~-functions on R n which are again denoted by f, g, respectively. 
Following [4; p. 323] we then look for a (smooth) solution to (2.11) of the form 

u = ~ t + W ,  p = ~ + S  

where ~ = (ui)i=l, . . .~n ia defined by ~ = hi + ~ Uij * (fj - Ojg) with h and Uij a s  be- 
fore, W =  (W~) by j=l 

Wi(x)  = K~j(x' - y~, x~ )A j ( y ' ,  O)dy' 

with d~ = ~. Uij * (~ - ajg), x = (x', x~), Z5 by 
j = l  

and 

--all f Kij(x' - Y" Xn)hJ(Y" O)dyr 

n 
= - E Q j  �9 - a s g ) ,  

j = l  

k(x' - y' ,  x~)Aj(y ' ,  O)dy' +anl k(x' - y' ,  x~) hj(y' ,  0 ) d y ' ] ,  

Kij (x' - y' ,  Xn) = ct (n) 
Xn (Xi -- Yi )(Xj - yj ) 

(Ix' - Y' ] 2 + x~) (~+2)/2' 
y~ = 0,  

k(x '  - y ' ,  x~) = c2(n) x~ ~2~12 ' y~ = O. 
( I x ' - y ' ] 2 + ~ n ~  

Following the proof given in [4; pp. 323-326] which is based on a well known vari- 
ant of the Calderon-Zygmund theorem [2; Theorem 3.3], see also [8], we obtain 
u e W1, r (H)~, p e L r ( H )  and 

(3.6)  HVUHLr(H) n2 -[-I]p]ILr(H)~ C1 (llfll~-l,q(H) ~ + llgl[iq(H)) 

for all 1 < r < ~ where C1 = Cl(n, r) > 0. Using the density of Co ~ (H) ~ in W-l'q(H)n 
and that  of Co ~ (H) in Lq(H)  we get the existence of a pair (u, p) ~ VV~' q(H) ~ • Lq(H)  
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satisfying (2.11) and (2.12). Using (2.13) we find in the same way a pair 
(~, p-) �9 17V~,~(HF x L~(H)  satisfying (2.11) and (2.12) with q replaced by s. To show 
u = g , p = / ~ w e p u t w = u - g , ~ = p - ~ a n d  get  d i v w = 0  and 

(Vw, Vv) - @, div v) = 0 

even for all v e 17V], q ' (HP  (3 17V~' ~'(H) ~. Now we take F �9 Co ~ ( H F  and construct a sol- 

ution pair (v,)0 of (2.11) with f replaced by F and g = 0. Thus we get divv = 0, 
veI~01'~(H) ~, z e L ~ ( H )  for all 1 < r <  r162 and 

(Vv, Vv* ) - (Z, divv* ) = (F, v* ) 

for all v* = Vl* + re* with vl* e l ~ '  q (H) ~, v2* e l ~ '  ~ ( H r .  Sett ing w = v* even 
yields 

<F, w) = <Vv, Vw) - <Z, divw) = (Vw, Vv) - (Z, divv) = 0 

for all F e Co ~ ( H F  which leads to w = O. This yields (q~, div v) = 0 for all v �9 Co ~ (H) ~ 
which shows that  zl~ = O. Since ~ = p -  ~, q~ cannot be a constant unless it is 
zero. 

F rom u = ~, p = ~ we conclude (u, p) e 17V~'~(H) n x LS(H) .  The uniqueness of 

(u, p) follows by  considering q = s in the calculation above. This completes the proof 
of Lemma 2.3. 

PROOF OF LEMMA 2 . 4 .  - We show that  the operator  Sq in (2.4) for H .  af ter  some 
transformation of the coordinates differs from the corresponding operator  for H = R ~ _ 
only by  a ,,small, perturbation.  Then Lemma 2A will be proved by applying Kato's 
perturbat ion criterion in the following formulation. 

3.1. LEMMA ( K A T O  [11]). - Consider Banach spaces X, Y and two bounded linear 
operators A and B f rom  X to Y. Suppose A has a bounded inverse f r o m  Y to X 
and 

[l vll -< CtlAvll, v 

with  a constant satisfying 0 < C < 1. Then A + B: X--> Y is bijective wi th  a bounded 
inverse. 

The proof  of this lemma is easy, I f  I denotes the identity in Y we get  ]tBA-1tl 
C < 1 for the operator  norm and writing A + B = (I  + BA -1 ) A  we get the desired 

operator  

(A + B) -1 = [(I + B A  -1 )A ] - I  = A -1 ~. ( _ 1)~ (BA -1 )~. 
v=0 

Going back to the proof of Lemma 2.4, we first define the transformation x--~ 
from H~o to H by xl = xl . . . .  , x~-I = x~_l, x~ = x~ - o2(x'). We write x = (x' ,  x~) ~ H~, 
5 = (5 ' ,  5~) e U,  V = ( V ' , a , , )  with a~ = a/axi ,  v = (v ' ,  v~) with a~ = a/~5i,  i =  
= 1, . . . ,  n. I f  the functions u, ~ are related by u(x)  = ~(5) we obtain a transformation 
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u ~ ~ of functions defined on H~ to functions defined on H. We obtain 

(a~u)(x) = ((~ - co~3n)~)(x) for 1 . . . . .  n - 1, 

(3.7) ( ~ ) ( 5 )  = ((5.~ - o~8~)u)(x) for 1, ..., n - 1, 

(On u)(x) = ( ~  ~)(~) 

where oJ~ = a~co (i = 1, ..., n - 1). Correspondingly we get a transformation f---~f of 
functionals for H,o to functionals for H by setting [f, v] = [ f ,  ~]. In this proof we dis- 
tinguish {t't{, (','} by writing I{'{lq, H~o, ll'{lq,~, <', "}H,o and <., ")H. Observe that the Jaco- 
bian of the transformation x--> ~ is one. 

Furthermore we write u = (u ' ,  us), u = (u ', u ,  ) and di-~-v ~ = 31 ul + ... + 3~ ~. 
Using (3.7) we easily get 

for all u ~ 17V~, q(H~)n and correspondingly with q replaced by s; C 1 ,  62 are constants 
only depending on ~, q. The transformation u--* ~ yields an isomorphism from 
W~'q(HoF to W0~'q(H) ~. Correspondingly, f ~ f  yields an isomorphism from 

-"  q (H~)~ to W-  i, q (H)~. 
Next we transform the equations (2.14) from H,o to H. An elementary calculation 

yields 

_ <(~,, ~) &,~, ~,, ~>.~ + <(~' ~,)&,~,(~' ~,) &, ~>.~ + <:~,(~' .)(&,~' )>., 

and divu = d~v ~ - (V'oJ) . (8~ ' ) .  
The abstract formulation for the first assertion in Lemma 2.4 means that the oper- 

ator Sq: I~o ~' q (H~)~ x L q (H~) ~ ITd- ~, q (H~)~ x L ~ (H~) defined by 

Sq(u, p) = ((Vu, V'>H~ - <P, div.)n~, - d i v u )  

is an isomorphism. Let Sq, H be the corresponding operator with H~ replaced by H. 
The calculation above shows the following representation 

(3.9) Sq(u, p) = Sq, H(u, P) + B(~, ~) 

where the perturbation B(~t, "~) is given by 

B(~,  ~) = ( - <~' ~, (~' ~) <.>, - (~' 3 ~ ,  ~'  "b + 

+ <(~' ~) 3,~, (3' ~) 3~.>~ + <~, (~' ~)(3~.)>~, - (~' ~ ) ( ~ ' ) ) .  
This expression yields 

setting (f, g) = Sq, ~ (u, p) in (2.12) leads t o  
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and so we obtain the estimate 

(3.10) liB(g, <- c (llv', fl  + IIv' llS)lls ,/ ( , 

where C4 = C4(n, q) depends only on n, q. 
I f  K=C4(tlV'~olt~ + IIV'~oll~)< 1 we may apply Lemma 3.1 and conclude that  

Sq, H + B is an isomorphism from 17Vo 1' q (H) ~ • L q (H) to W -  1, q (H)~ • L q (H). Due to 
(3.9) and (3.8) we now obtain that  Sq above is an isomorphism. This proves the first 
assertion of Lemma 2.4. To prove the last assertion we consider the intersections 

X =  [ l~l 'q(H) ~ x Lq(H)] A [WI, 8(H)~ x L~(H)] 

with 

and 

with 

II(u, P)lIx = II(u, P)II~c~'q(H~p• + H(U, p)II~C~,~(HP• 

Y =  [l~z-l 'q(H) ~ • Lq(H)] A [ITV-~'q(H) ~ • L~(H)] 

II(f, g)lly = ]l(f, g)ll~C-i,q(H)~• + II(f, g)ilVV-I'8(HpxL~(H)" 
For  the definition of Y observe we have to identify two functionals which coincide on 
Cg (H) n. 

The same calculation as above for (3.10) now yields 

(3.11) HB(u, P)IIY <- KIISq,,(~, P)Ily 

with K =  Ca(l!V'o~l[~ + IIV'~otl~ ) where C4 = C4(n, q, s) also depends an s. We get 
0 < K < 1 if IIV' ~oll~ is sufficiently small. The abstract version of the last assertion of 
Lemma 2.3 for t~ = H means that  the operator Sq, H is an isomorphism from X to Y. 
Using (3.11) we conclude from Lemma 3.1 as before that  Sq is an isomorphism from X 
to Y now with H replaced by H~. This proves the last assertion of Lemma 2.4. 

4. - P r o o f  o f  T h e o r e m  2.1. 

According to Remark 2.2, b) it is sufficient to consider a bounded Lipschitz do- 
main t~ c_ R n with Lipschitz constant L which fulfills some smallness condition. 

We will use the well known localization procedure and apply locally the lemmas on 
R ~ and H~; this leads to the desired result. For  this purpose we choose open balls 

k 
B1, B2, . . . ,  Bk c_ F~ n covering the closure ~ of t~, i.e. ~ _c U Bi. Fur thermore  we 

i= l  
k 

choose functions z~ e Co ~ (Bi), i = 1 . . . .  , k, with 0 <~ ~i ~< 1 and ~ ~i(x) = 1 for all 
- -  i = 1  

x E W. According to the definition of Lipschitz domains we can choose B, . . . .  , Bk as 
follows. 
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There is some k' with 1 < k '  ~<k such that  B i n O t ?  # 0  for i = 1 , 2 , . . . , k '  and 
Bi _c 0 for i = k '  + 1, . . . ,  k. For  each i = 1,, ... ]~' we can find some Lipschitz continu- 
ous function ~oi: D i ~ R with compact support and II Vo~ill ~ < L such that  Bi A 0 _c H ~  
and B~ f3 Of] c ~Ha~ (after some appropriate rotation and translation of the coordinate 
system depending on i); see (2.7) for the defmition of H~.  Put  Oi = Bi 71 f2 for 

i =  1, ... ]~. 
First  we consider the case r = 0 in the equations (2.2). Let  (u, p) e W01'q(OF x 

x Lq(O) with [ p d x  = O, put f =  - A u  + Vp, g = divu and multiply the equations 
o 

(4.1) - ~u + Vp = f ,  d ivu = g 

by the cut off function ~i, i = 1, ... ,k.  This yields the local equations 

(4.2) - A(~iu) + V ( ~ p )  =3~, div (~iu) = gi, 

with fi = ~ i f  - ( A ? i ) U  - 2(V~i)(Vu) + (V~i)p and gi = ~ig + (V?i)u.  For  
i = 1,, ... ]d we may treat  (4.2) as equations on H ~  and apply Lemma 2.4 and for 
i = k '  + 1, . . . ,  k we get equations which can be considered as equations on R n or on H 
(after some translation). We carry out this procedure in several steps. 

In the f'n'st step we prove the a priori estimate 

(4.3) IlVuIIL~<O) ~ + IIPlI--(~) ~ c(llfllw-~(o)~ + Ilgll.(~) + ilulIL,(O)~ + [IPlIw ~'<0)) 

containing two additional terms on the right compared with (2.3); they will be re- 
moved later on by some compactness argument. 

Assuming L <<. K(n ,  q, q) with q = s in Lemrna 2.4 we may apply (2.15) for 

i = 1,, ... k '  and obtain 

Ilv(~iu)llL~<.~,)~ ~ + II~iPlIL~(Ho,) <- C(IIAII~-' ~(H,o~)~ + [Ig~llLo(H,o~)). 

To estimate the expressions on the right we consider test  functions v �9 Co ~ (H~)~, ap- 
ply Poincare's inequality on t?i = B~ r t) c H ~  (suppressing a rotation and translation 
possibly needed depending on i) and use the estimates 

II(A~)vlI/~ (~)= ~ CIIVvlIL~(~oo,)~ ~, 

I<u, ( # i )v> l  ~ Cllull.<o>~ II wll/~ <~,o,>, 

t ( w , ( v w ) v ) t  -< ctl~ll~.q(,~,~llvvll.(.o., 

I<p,(V~)v>l < CI1P]Iw-I,q<~>IlVvlILq<H,o~). 
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This leads to 

= 

= sup  { I<f, Wv> - - 2<Vu,(VV )v> + 
O~wC~(H~i)~ 

c,(  sup I<i, + 
~ O#veC$(H, fi) / 

<~ C111filw-~.,(e), + C2 (IlUilLq(~)~ + IiPllw-'.,(a) ) 

and 

tigi]iLq(H~O ~ C1 tlgllLq(~) -~ C2HUilL~(~).. 

For i = k'  + 1, ..., k we get the same estimates with H~ replaced by H and apply- 
ing Lemma 2.3 instead of Lemma 2.4. In this case no smaUes assumption on L is need- 
ed. Summing up these estimate over i = 1, 2, ..., k ' ,  ..., k we obatin the desired esti- 
mate (4.3). 

The next step yields the uniqueness property for (2.2). We will show that 

l < q <  ~ ,  (u,p) eW~'q(~7)~xLq(17), I p d x = O ,  
17 

-Llu + Vp = 0, div u = 0, 

implies u = 0 and p = 0. 
For i = 1,... ,k the local equations (4.2) now have the form 

(4.4) - / l ( ~ u )  + V(~p) = ~ ,  d iv (~u )  = gi 

with J~ = - ( A ~ i ) u -  2(Y~i)(V?i)p, gi = (V~i)'u. Applying the regularity property 
in the Lemmas 2.3 and 2.4 concerning the exponent s we can show in a number of 
steps that 

(4.5) u e  W~'2(U2) ~, p e L 2 ( l ~ ) .  

Then we conclude that O= ( - A u  + Vp, u> = ][Vu[l~(.~), Vu : 0 ,  Vp = 0 and p = 0 
using f p  dx = O. So it remains to show (4.5). This property is clear ff q I> 2 since D is 

bounded. So we assume now 1 < q < 2. 
First we consider i = 1, . . . ,  k'. In the following we have to apply Lemma 2.4 for 

finitely many exponents sl, ..., sm (depending on q, n) instead of s. Therefore we can 
find some K =/iT(n, q) > 0 such that for L ~< ~2 in the following the assertion of Lem- 
ma 2.4 is applicable. 

Now we choose sl > 1 such that 1/n  + 1/sl = 1/q. Then Sobotev's embedding the- 
orem yields flUIILSl(~2)u ~ CIiVUllLq(~)n 2, Defining q' = q/(q - 1), s; = s l / ( s l  - 1) we get 
! I n  + 1/q'  = l / s { ,  q' > s~ , Sl > q. Applying again Sobolev's embedding theorem and 
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Poincare's inequality on t?~_cH~ we obtain for v e Co ~ (H~)~: 

I<Vu, (v~)v>l  -< c ~ l l V u l l . ( ~ > . ~ l l V v l l .  ' (H~o,). ~, 

I<Vu,(Vw)v>l -< c, Ilvuli.<~yllVvll.~(so~>. ~, 

I(p,(Vw)v>l <- C~llpll.(~)llvvl[Lq <.,.,) -~, 

I(p,(Vvi)v>l -< C6Hpll.<~)llwli.~(.o~<. 

This leads to fielTV-l'q(H(o~) ~ and J~elTV-i'S1(H~) ~. In the same way we get 
gi ~ L q (H~ ~ ) (') L SI (H~, ~ )" The application of Lemma 2.4 now yields 

(~i u,  riP) ~ [w~'q(H,~ ~)n x Lq(H~)] N [W~'SL(H~) n x LS~(H~,)]. 

For  i = k '  + 1, . . . ,  k we conclude in the same way using Lemma 2.3 for the halfspace 
H instead of Lemma 2.4. This yields 

(~iu, ~ p )  ~ [W~'q(HF • Lq(H)] CI [WI'S~(H) n X [L~(H)]  

for i =k '  + 1, ...,k. 
Therefore we have (u, p) e [W~' q (i)) ~ x Lq(t))] N [W~' ~ (f2) ~ x L~  (f2)]. I f  Sl t> 2 it 

follows the desired result (4.4). I f  s~ < 2 we repeat this procedure with q replaced by 
sl > q and with s~ replaced by s2 defined by l / n +  l/s2 = l /s1,  this yields 
(u, p ) e  Wl'~(f2)~ • L~(t~). So we obtain (4.5) in a finite number of steps. 

In the next step of our proof we show the a priori estimate (2.3) with r = 0. For  
this purpose we show by a compactness argument that  the terms HUl[nq(m~ and 
]]Pi]w-~.q(~) on the right of (4.3) may be omitted. We argue by contradiction. Suppose 

the estimate 

(4.6) IIv~ll~<~). ~ + Ilpll.<~) ~< c ( l l f l lw,  ~(~)~ + Ilgll-(~)) 

is not true for all (u, p) e Wol'q(t~) ~ • Lq(t}) with Ipdx  = 0 where f =  - Vu + Vp, 
t} 

g - - d i v u .  Then we can choose ( u ~ , p i ) e W ~ ' q ( ~ ) ~ x L q ( t } ) w i t h  f p idx=O for 

i = 1,2, . . . ,  such that  

lira IIf~ll~-,,~(~)~ = o ,  lira ]lg~NLq(m = O, 

Ilvu~ I1-(~< + IJp~ IIL~(o)-- 1, i = 1, 2, . . . .  

where fi = -  zlur + Vpi, gi = divui. We can single out a sub-sequence converging 
weakly in W(~'q(~)nx Lq(~);  we may assume that  the sequence itself converges 
weakly to some element (u, p) e W~' q(t~) ~ x L q ( ~ ) .  Since ~ is bounded we know that  
(u, p) = lim(u~, Pi) holds strongly in L q ( ~ )  n X W - l ' q ( ~ )  and therefore that  

ilull.<~>o = l im Ilu~llL~<~>o, I lPi iw-~(~)  = lira Ilpillw-',~(~). 
i 
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Appl~ng estimate (4.3) yields 

1 ~< C(lt)~ltw-,,q(~)~ + IlgillLq(~) + tlUilIL~(~) ~ + tlPi[Iw-',q(~)) 

and letting i--) cr leads to 

(4.7) 1 + Ilpll -, 

from which we conclude that  (u, p) ~ (0, 0). 
Since lira IIJ~llw-l,q(s)~ = O, l'.~n ]]gillLq(~)= 0 we obtain 

i 

lim ((Vui, Vv) - (Pi, div v)) = (Vu, Vv} - (p, div v) = 0 

for all v �9 Co ~ (~9) ~ and divu = 0. The weak convergence of pi to p in Lq(t~) and 
p~ dx = 0 (i = 1, ...) yields ~ p dx  = O. From the uniqueness assertion above we con- 

t~ t~ 
clude that  ( u , p ) =  (0,0) being a contradiction to (4.5). This proves (2.3) for 
r  

In the next step we show that  the operator Sq in (2.4) is an isomorphism. For  this 
purpose we use a duality argument. The inequality (2.3) with ~, = 0 means that  

(4.8) H (u, P)]lw], q(~)~ x Lq(~) <- C~ISq (u, p)]lw-', q(~)~ • ~q(~) 

holds for all (u, p) �9 W~'q(t~) '~ x/~q(t))  with/~q(t~) as in (2.4). From the well known 
closed range theorem we conclude that  the dual operator Sq* = Sq, in (2.5) is surjective 
and since (4.6) holds for all 1 < q < ~ we see that  Sq is surjective and therefore bijec- 
t ire for all 1 < q < ~ .  This shows that  Sq is an isomorphism and so Theorem 2.1 is 
proved for the special case r = 0. 

To prove Theorem 2.1 in the general case r �9 W 1 - i/q, q ( ~ ) n  where I N.  r dz = 
= f g dx we use the well known extension operator a~ 

t) 

E: W 1 - (l/q), q (&Q)~ __) W 1, q (Q)~ 

which is continuous and has the property E(r r for all r �9 W 1 - = (1/q), q(8~). In 
particular we have 

(4.9) 

where C = C(t~, n, q) > O is a constant. Using the assertion of Theorem 2.1 for r = 0 
we find a unique pair (~7, p) �9 W~,q(t~) ~ x Lq(~9) with f p d x  = 0 such that  

Q 

- A5 + Vp = f +  ~E(r d iv~ = g - divE(C). 

This is possible since 

i (g - d i v E ( r  = f g d x  - I N ' E ( r  O. 



162 G . P .  GALI)I ~ C. G. SIM~ER - H. SO~R: On the Stokes problem, etc. 

Moreover we get from (2.3) for r = 0 and (4.9): 

]IV~]ILq(Q) n2 -{-[IPIILq(9) ~ C1 ([Ifllw-',q(~)" + IIAE(r ~ + IIgl[Lq(~) + IldivE(r ~< 

<~ C2(l)filw-',,(a)~ + )lg]tLq(a) + ll~ltW~-(~/q),~(a~)') " 

Setting u = ~ + E(r  we obtain u]a~ = ula~ + E(r  = r d iv u  = d iv~  + divE(C) = 
= g and 

-~lu + Vp = - ~1~ - ~IE(r + Vp = f .  

Finally, we get  11~7[Iw~.~(~), ~< c~lv~[[~(~)~ ~ since uI~a = 0 and 

c(llfllw-~,~(~), + IIg]lL~(~) + I[r n ) 

which is the estimate (2.3). The pair (u, p) constructed above is unique; this also fol- 

lows from the uniqueness assertion proved before. This completes the proof  of Theo- 

rem 2.1. 

R E F E R E N C E S  

[1] R. A. ADAMS, Sobolev Spaces, Academic Press, New York - San Francisco - London 
(1975). 

[21 S. AG•ON - A. DouGLIS ~ L. NIaENSEaG, Estimates near the boundary for solutions ofeUiptic 
partial differential equations satisfying general boundaw conditions, Comm. Pure Appl. 
Math., 12 (1959), pp. 623-727. 

[3] C. AMROUCHE - V. GIRAULT, On the existence and regularity of the solution of Stokes problem 
in arbitrary dimension, Proc. Japan Acad., 67, Set. A (1991), pp. 171-175. 

[4] L. CATTABRmA, Su un problema al contorno relativo al sistema di equazioni di Stokes, 
Rend. Sere. Univ. Padova, 31 (1961), pp. 308-340. 

[5] M. DAUGE, Stationary Stokes and Navier-Stokes equations on two- or three-dimensional do- 
mains with corners, Siam J. Math. Anal., 20 (1989), pp. 74-97. 

[6] P. DEURING - W. VON WAHL- P. WEI1)M~ER, Das linear Stokes- System in R n. L Vorlesung 
i~ber das Innenraumproblem, Bayreuth. Math. Schr., 27 (1988), pp. 1-252. 

[7] G. P. GALDI, Introduction to the Mathematical theory of the Navier-Stokes Equations, 
Springer Tracts in Natural Phylosophy, Vol. 38 (1994). 

[8] G. P. GAL~ - C. G. SIMt~E~, Existence, uniqueness, and Lq-estimatesfor the Stokes prob- 
lem in an exterior domain, Arch. Rat. Mech. Anal., 112 (1990), pp. 291-318. 

[9] Y. GmA, Analyticity of the semigroup generated by the Stokes operator in L~-spaces, Math. 
Z., 178 (1981), pp. 287-329. 

[10] P. GRISV~_RD, Elliptic Problems in Non-Smooth Domains, Monographs and Studies in 
Mathematics, 24, Pitmann (1985). 

[11] T. KATO, Perturbation Theory for Linear Operators, Springer, Berlin-Heidelberg-New 
York (1966). 

[12] R. B. KELLOG - J. E. O S B O R N ,  Regularity for the Stokes problem in a convex polygon, 
J. Funct. Anal., 21 (1976), pp. 397-431. 



G. P. GALDI - C. G. SIMADER ~ H. SOHR: On the Stokes problem, etc. 163 

[13] H. KozoNo - H. SOHR, On a new class of generalized solutions of the Stokes equations in 
exterior domains, Ann. Se. Norm. Sup. Pisa, to appear. 

[14] O. A. LADYZENSKAZA, The Mathematical Theory of Viscous Incompressible Flow, Gordon 
and Breach (1969). 

[15] G. G. SIMADER - H. SOHR, A new approach to the Helmholtz decomposition and the Neu- 
mann problem in L q-spaces for bounded and exterior domains, in Mathematical Problems 
Relating to the Navier-Stokes Equations, World Scientific Publishing Co., Singapore-New 
York-London (1992). 

[16] R. TEMAM, Navier-Stokes Equations, North-HoUand, Amsterdam-New York-Oxford (1977). 
[17] W. VON WAHL, Rudolph-Lipschitz-Vorlesung, Sonderforschungsbereich, 256, Bonn (1989). 


