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The Green Relations Approach to Congruences
on Completely Regular Semigroups (*).

MARIO PETRICH

Abstract. ~ On the congruence lattice C(S) of a completely regular semigroup S the following
mappings are considered y,: g —> o N\ Pand xp: ¢ V P, where P is any of the Green relations
i, £, R or M. The equivalence relations " and @V induced by these maps represent the
main object of study in the paper. The former is a complete /\-congruence whereas the latter
is a complete congruence on C(S). In particular 3", K, £Y, RY coincide with the kernel,
trace, left trace and right trace relations on C(S), respectively. All essential properties
known for the latter relations carry over to the new relations " and V. In addition, some
interesting interplays of these provide for more richness in the theory of congruences on com-
pletely regular than is the case for the kernel-trace approach to congruences on regular
semigroups.

1. — Introduction and summary.

The study of congruences on regular semigroups experienced a considerable boost
when it was realized that a congruence is completely determined by its kernel and its
trace. This represented an essential improvement over the earlier knowledge that a
congruence on a regular semigroup is completely determined by its idempotent
classes. The eruption of information concerning congruences on regular semigroups
when approached from their kernel-trace aspect has been both surprizing and pro-
found. It has been most effective when the (congruence) pair (ker g, tr o) could be de-
scribed abstractly in a relatively simple and/or explicit manner, as for example for
inverse semigroups.

Nevertheless, the description of congruences on semigroups belonging to a special
class for which there is a sufficiently transparent structure theorem should be based
on that structure theorem and the ingredients figuring in it. The typical example for
this is the class of completely simple semigroups and the Rees theorem. For the con-
gruences in this case are best represented as (admissible) triples following the ingre-

(*) Entrata in Redazione il 22 giugno 1992.
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186, Canada.
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dients figuring in the Rees (structure) theorem. Even though this is a relatively rare
case, the Rees theorem being very explicit and transparent, the same idea was used
in [4] for completely regular semigroups, for they are best represented as semilattices
of completely simple semigroups. In this case, a congruence can be represented by a
(congruence) aggregate which consists of a congruence on the underlying semilattice
and the congruences on completely simple ecomponents.

The last discussed approach to congruences on completely regular semigroups can
be thought of as splitting a congruence ¢ along the Green relation @ in the sense of de-
composing it into ¢ N @ and ¢V @, as explained in [4]. This obviously suggests substi-
tuting @ by any Green’s relation &, which is the main idea of the present paper. Not
only do we thus generalize the approach taken in [4] but with the case & = J(, recover
essentially the kernel-trace approach as well. We can thus view the new point of view
as an extension of the kernel-trace approach. By introducing also Green’s relations £
and R into the play, we arrive at a systematic study of congruences through their re-
lationship with the Green relations. This paper is also related to[3]. The results
therein may provide the clue as to the possibility of extending or generalizing the
achievements of this paper to regular semigroups.

We now briefly summarize the content of various sections. Terminology and nota-
tion are taken care of in Section 2. From now on & stands for any of the Green rela-
tions 9, £, & or ( on a completely regular semigroup. The mapping ¢ — ¢ N & is dis-
cussed in Section 3 and the properties of the induced relation in Section 4. The same
pattern is followed in Sections 5 and 6 for the mapping o — o V & and the induced rela-
tion. Further properties of both relations as well as applications to some greatest and
least congruences are discussed in Section 7. In Section 8, a related diagram and a re-
sulting network of congruences are considered. The paper concludes in Section 9 with
a discussion of relationship with the kernel-trace approach to congruences.

2, — Terminology and netation.

On any set X, ¢ and w denote the equality and the universal relations, re-
spectively; if needed for clarity, we shall affix the subscript X to these symbols. We
denote by II(X) the partition lattice of Xwith meet N and join V and will think of its
members also as equivalence relations on X. If o e II(X) and « € X, then xp is the ¢-
class containing @. If 2, ¢ € II(X) are such that A 2, then X /¢ is the member of II(X /o)
defined by

worfeye I xAy (m,yeX).
For any lattice L and «,8e L, let

[a,ﬁ]'—‘{yeLlaSy&ﬁ}, [0)={yeL|x<y}.
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Now let S be a semigroup. We write
e = {x, £ R, ®}

for these Green’s relations. If S has an identity, let S! = S, otherwise let S* be equal
to S with an identity adjoined. We denote by E(S) the set of idempotents of S and by
@(S) the lattice of congruences on S with the operation of meet A and join V. Let
e = C(8). If Fis a family of semigroups, then  is an F-congruence if S/¢c € F and ¢ is
over & if each idempotent p-class is in & Also

kero = {a e Slape for some ec E(S)}, treo=glus

are the kernel and the trace of o, respectively. For a relation 6 on S, 6* denotes the
congruence on S generated by 6. If 9 e IT(S), 6° denotes the greatest congruence on S
contained in 6; recall that for any a,be S,

at’be (xay by for all ¢, yeS).

Throughout the paper S shall stand for a completely regular semigroup, that is a
semigroup which is the union of its (maximal) subgroups. For a e 8, a ! stands for
the inverse of @ in the maximal subgroup of S containing a; a° = aa "' = a '@ is the
identity element of this subgroup. If ¢ € C(S), then p preserves both operations of up-

per —1 and 0 and
kerp = {aeS|aca’}.

Completely regular semigroups form a variety with the binary operation of product
and the unary operation of inverse. We denote by [# = v] the variety of completely
regular semigroups determined by the identity « = ».

We shall need the next lemma and its corollary from the literature. Since they are
used many times, we give the lemma a complete proof.

LEMMA 2.1. - For ce C(S) and a,be S, we have
apbsaltrob®, ab lekerp.

Proor. - If a o b, then a®0b° and ab ! pb°® whence a’trob® and ab ! e kero. Con-
versely, if a’trgb® and ab ' e kerp, then

a=0a%apba=0b"0"aa’ba’b 'ab?,
=ba " (ab ' )ab ) boba " (ab )b =1ba"bbb"=b.
COROLLARY 2.2. - Let A e e C(S). If ker Ackerp and trACtrp, then AcCg.

We now introduce the basic symbolism which will be adhered to throughout the
paper,
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NoOTATION 2.3. - Define the mappings
Apip—>eN&®,  xpip—peVE, (eedS)
and the induced (equivalence) relations " and ¥ on C(S) by
AP e ANP=oNP, AP oAV P=pV .

In all our considerations of the Green relations ¢, £, & and @, we shall consider
only ¢, £ and @ by duality of £ and & so that the latter need not be men-
tioned.

3. — The relation #*.

For a Green relation &, we have defined above a relation #* by
AP e iNP=cNP (A, peI)).

In this and the next section, we shall study a number of properties of this (equiva-
lence) relation. We have already remarked the obvious fact that #" is induced by the
mapping x,: G8) —II(S). The following notation will be used to characterize the
image of G(S) in JI(S) under x,.
NorartioN 8.1. — For Pe GR, let
I,(8) = {6ell(X)|6=6%N $}.
LEMMA 3.2. ~ For P e GR and 6 € II(S), 6 = 6* N P if and only if 6 = o N P for some
e € C(S).
ProoF. — For the direct part, take p = ¢*. Conversely, § = ¢ N & implies
6=6NPCO*NPCeNP=0.

LEMMA 3.3. — Let e GR and p e &(S).
@ eNEP=ENPH*NES.
(ii) kerp = ker (o N P)*.

PROOF. - (i) Since e NP N P)*, we get N PC(eNP* NP Also (p N P)*Cp
implies that (s N @)* N PcoN .
(i) If a e ker, then ap N Pa’ whenee a(p N @)*a’ and thus a e ker (¢ N P)*,
Hence kerp ¢ ker (¢ N @)* and the opposite inclusion holds since (o N P)* Cp.

We shall see below that the classes of " are intervals. In order to describe the up-
per ends of these intervals, the following symbolism will come in handy.
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NOTATION 34. - For any e GR and o € C(S), define a relation p, on S by
ah b ab ' ekerp,
allbea’beb®a’h, ab'ekerp,
ar,beab®cab®a’, @b 'ekerp,
ad,beabeba, ab lekerp.
For any relation 6 on S, define a relation 6 on S by
abb< (for every ueS, afu<bou).

Simple verification shows that 6 is an equivalence relation on S.
We are now ready for the first principal result of the paper.

THEOREM 3.5. — Let P e GR. The mapping
Apie—eN® (pe8)

is a complete /\-homomorphism of C(S) onto II,(S) which induces . Consequently
@" is a complete /\-congruence on C(S) but in general, it is not a \/-congruence. For
each p e C(S), we have p&" =[p,, 7] where

ep=(pNI*, P=pl

ProoF. — Trivially y,, is a complete A-homomorphism. By Proposition 3.2, Xp TMApSs
&(8) onto I7,(S). Obviously x, induces $" so that ®" is a complete A-congruence.

Let S =Y X G where Y = {0,1} is a 2-element semilattice and G is a nontrivial
group. Denote by o the least group congruence on S and by o the Rees congruence on
S determined by the ideal {0} X G. Then

NPV (NP =ecVo=p, (GVPANP=wNP=g,

and o # & since G is nontrivial. Therefore " is not a \/-congruence in this example,
Note that here 2=3=L=8=0.

We now return to the general situation and let ¢ € (S). By Lemma 8.3 (i), we have
(eNP)*NP=pNe, that is (¢NP)*P"o. If e ) is such that 1P, then
(e N @)* = (AN &)* c 2 which establishes the minimality of Pp

For the upper end, we first assume that for X e C(S), we have x ¢ and shall
prove that A cp,. By Lemma 8.3 (ii), we get

kerA =ker(A N #)* =ker(c N P)* = kerp

Next let aAb and ap,u. We consider several cases.
Let & = 3¢ Then au ~' € kerp so that au ~! e ker  whence bu ~! « ker A and hence
bu ™! e kerp. Therefore bh,u.
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Let ®=£ Then a’upu’a’u and au'ekere. As above, the latter implies

bu lekere. Also a’upNLu’a’u and hence, by hypothesis, a®ui N Lu’a’u
which, by hypothesis, implies b°ux N Lu°b6%%. But then b%upo N Lu’b%u whence
b%upu®b®u which together with bu ' e kerp gives bl u.

For # = @, the argument follows along the same lines as for #= £

We have proved that bp,u. By symmetry, we conclude that ap,b. It follows that
AcCp, whence Acp;. This establishes the maximality of p) and implies that
eN&c @0 N &.

Next we show that p° N @ cp. Let a5 N @b. Then xay p,xby for all ¢, y  S* and
thus

xaypusvbypu (x,yeS,uel).

In particular, for = y = 1 and u = b, we have a p,b since p, is reflexive. We now con-
sider several cases.

Let ®=3C. Then a¢3Ch so that a®=5"% Also ah,b gives ab~'ekere, which
together with a’cb° by Lemma 2.1 yields apb.

Let #=.£. Then a£b so that a’®=a’b® and 5°=0%" Also a£b gives
a’b%:b%a’b® and ab ! e kerp. But then

a°=a°b°pb°a°b°=b"

which together with ab ™! e kerp by Lemma 2.1 yields a ob.

For @ = ), the argument follows along the same lines as for £ = £

We have proved that p° N & ¢ ¢ which implies that p; N #ce N P. Above we have
established the opposite inclusion. Therefore p} " which proves the maximality
of oP.

As an example of interplay of ¢;, ¢, and ¢4, we shall prove only one result. For its
proof, we need a lemma of independent interest.

LEMMA 3.6. — For p e C(S), we have
D EN&*VENR*=(eNOV(pNR),
@ eN@=(ENLV(eNR),
where the second joins are taken within II(S).

PROOF. ~ (i) The left hand side is clearly contained in the right hand side. Also
eNLec(eNL* and o N RC(e N RY* imply that
(NOV(NRIC(eNL*V (e NR)*

whence the remaining inclusion.

(iiy The right hand side is obviously contained in the left hand side. Let
aeN®b and let T = D, = D,. Giving T a Rees matrix representation with normalized
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sandwich matrix, letting

a=(i,9,7\), b=(j,h,u), c=(i,h,;1),

and 6 = p|p with the admissible triple (v, N, r), we get irj, gh~'e N and )y, see

({1}, 111.4). It follows that ag N Lcp N RD so that a(p N LY p N R)b. Therefore
sNAC(eNLV(eNR).

PRroOPOSITION 3.7. — For pe C(S), we have o1V o, = pg-
PRroor. - Indeed
orVer=(NL*V (e NR)*
={(eNBV{(pNR)* by Lemma 3.6(1)

=eN®=py by Lemma 3.6(ii).

4. - Properties of the relation #".

We shall now characterize the relation " in several ways for which we need the
following symbolism concerning varieties:

H=8B=[x=2x], bands,

£=RRKB =[x = 2%, ey = y»], right regular bands,
R = LRB =[x = %, ayz = xy], left regular bands,
®=8=[xr=2x% ay=yz], semilattices.

THEOREM 4.1. — For e GR and A, ¢ € C(S), the following statements are equiva-
lent.

@ ANPcen e

(i) ker A ckerp, tra, ctre,,.
(ifi) 2, Cpp.

(i) /(A Ap)Cp..

(V) glex is 2 @-congruence for every e e E(S).

~ PROOF. - (i) tmplies (ii). By Lemma 3.3 (i), we get
ker A = ker (A N #)* cker (p N #)* = kerg.
Also tra, =tr(ANp)*ctr(p N &)* =tro,.
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(i) implies (iii). Again by Lemma 3.3 (ii), we obtain
ker 2, = ker (A N @)* = ker A ckerp = ker (o N $)* = kerg,

which together with tr A, ctre, implies that 2, cp, by Corollary 2.2.
(iii) implies (iv). We consider & = £ first. Let a,be S. Then

arb=a’bxN L% b
=a%h2,0%a%b
=a’bpo,b%a’ by hypothesis
—abeb%a’b,
arb=ab ' ekeri
=ah AN L(ab 1P
=ab 1 (ab7t)
“1y2

=ab 1o (ab by hypothesis

=ab lo(ab '),

If now a(A A o) A/(A A o) (A A ), then a X b so by the above
(@ AN (B A ) = (A A ) (alr A )" (B(x Ag))
(@A AN e BES/(AN )

so that a0 A )L B2 A ¢). Therefore A/(x A p) Ci.. The case @ = @ follows along the
same lines; the case & = C requires only a part of the above argument with JC re-
placing £.

(iv) implies (v). Let e e E(S). Then
acer=ai’
=a(A A A/ A Ap)a’ A Ap)
=a(AAp)p.a®(AAp) by hypothesis
=u{x Ne)e BES/(AAp))

=aeker(l Ap)ckerp
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and thus ¢|,, is a band congruence. Next consider # = £ Then
a,beer=arb
=a(ANe) V(AN )bAA)
=a(AN\e)p.b(AAg) by hypothesis
= (a1 A )" (B A p)) = (B A ) (alx A 2))° (B2 A 0))
=0a’beb%"b
s0 that p|,, is a right regular band congruence. The case @ = @ follows along the same
lines and & = I is included in the first part of the proof.
(v) implies (). Let aAN®b. Then ab 'xb® so that ab e b’ whence
ab “'p(ab 1)’ by hypothesis which gives ab ! e kerp.

If a AN 3Ch, then a’ = b which together with ab~! e kers by Lemma 2.1 gives
apb. Suppose that ¢ AN £b. Then a’£b° so that a® = a®h° and 5° = %" Also af,
5% € a®x which by hypothesis yields a®be5%ab. Consequently a’ = a’b%5%a°0° =
= bC This together with ab ! ekere by Lemma 2.1 implies that a o b.

Therefore, for # = € and # = £, we have A N P p. The case P = M follows along
the same lines. Thus in all cases 2N PCo N &P, as required.

As an immediate consequence, we have the following characterization of the rela-
tion 2.
COROLLARY 4.2. - For e GR and ipe CS), the following statements are
equivalent.
@ 2@ .
(ii) ker A = kerp, tra, =trp,.
(i) A/(A Ag), o/(A A o) Cp..
(iv) plex and Al,, are ?P———congruences for every e e E(S).

The #"-classes of the equality relation ¢ and the universal relation w can now be
easily characterized. To this end, we need a lemma of independent interest.

LEMMA 43. - For any Pe &R, we have p. N P = «

ProoF. — Let ap. N #b. Then ab ' e E(S). If ah, N 3¢h, then o = b°. If al, N £,
then a®=a®0% 6% =0%" and a°b = b°a’b whence again a® = b°. The case # = @ is
similar. Therefore a° = b° in all cases which with ab ! ¢ E(S) by Lemma 2.1 implies
that a = b.

COROLLARY 44. - For P GR and p e C(S), the following statements are equiva-
lent.
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@ 29",
(i) kerge = E(S), tro, = «.
(i) o € p..
(iv) ¢ is over 2.
V) eN@P=c.

Proor. — The equivalence of the first four items follows by specializing the state-
ments of Corollary 4.2 to A = . That (iii) implies (v) follows directly from Lemma 4.3.
Clearly (v) implies @).

The relations on a set are said to be disjoint if their intersection is the equality re-
lation. Hence «»" consists of congruences disjoint from &; in particular ¢” is the great-
est such.

COROLLARY 4.5. — For P& GR and p e C(S), the following statements are equiva-
lent.
@) 0 P" .
(ii) ¢ s a band congruence and g, is @ group congruence.
(i) w/pcp..
(iv) pis a @-congmence.
) @¢p.

PRrOOF. — The equivalence of the first four items follows by specializing the state-
ments of Corollary 4.2 to A = w. Items (i) and (v) are obviously equivalent.

We conclude that w®" consists precisely of congruences containing o so that
wP" =[P, wl.

We have seen in Theorem 3.5 that #" is always a (complete) /\-congruence but
need not be a \/-congruence. We shall now investigate the relationship of y, being a
homomorphism vs. #* being a congruence. To this end, we need a lemma.

LEMMA 4.8. — For e GR and 2,0 € C(S), we have
ANPAVENP =G, Ve ) NG
in the lattice IT,(S).
PrOOF. - First AN @ =2, N PC (X, V p,) N & and similarly o NP (X, V ep) N &.
Now let 6 e @(S) be such that AN &, o N PcoN . In view of Theorem 4.1, we have

2, C0, and ¢, CH, so that A,V p, 6 whence (1, Ve,) N PCH N &. The assertion of
the lemma follows.
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PROPOSITION 4.7. — The map y,, is a homomorphism if and only if the relation " is
a congruence.

PROOF. — The direct part is well known. For the converse, let A, e C(S). Since
A,@" % and p, #" o, the hypothesis implies that A,V ¢, ®" AV p. This together with
Lemma 4.6 yields ANV (¢ NP =(A V)N & and x, is a VV-homomorphism; it is
always a A-homomorphism.

5. — The relation &V.

For a Green relation & we have defined in Notation 2.3 a relation " by
AP o dVP=oVP (eoedl)).

In this and the next section, we shall study a number of properties of this (equiva-
lence) relation. We have already remarked the obvious fact that #V is induced by the
mapping yp: C(S)— II(S). The following notation will be used to characterize the im-
age of C(S) in II(S) under yp.

NOTATION 5.1. — For Pe GR, let
Ip(S)={6eI(S)|6=0"V &}.

LEMMA 52. - For e GR and 6 € II(S), 6 = 0°P if and only if 6 = o\ @ for some
e e C(S).

PrOOF. — For the direct part, take ¢ = 6% Conversely, 6 = oV & implies
=0V &20°VPVEP=9.
The next result will be used repeatedly. (The formula ¢ V 3 = p( below is due to
N. R. REILLY.)
LEMMA 53. - Let o e C(S) and Pe GR. Then oV @ = pPe.
(@) apVAHbsaeb (a,besl).
(i) apV Lbapab’ beba® (a,beSl).
In addition oV 3 = 3.
PROOF. — If @ 9 ¢y 9Cb and g = (x°y°)°, then a o gag 3Cgbg o b. Hence 3o3C C 03¢
which evidently implies that 3G = o V 3¢
() If apV Ib, there exists a sequence

G‘Oxls{:xszn%b
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whence
alor) =alo...xd=0°

so that a¢ b°. Conversely, if a’ob° then 2 9a’sb°3Cb so that a oV 9Cb. The last as-
sertion of the lemma is now evident.

(ii) Indeed,
aplebe®acrLypb for some x,yel
= ap = X LYyp = bp
(1) =>qp Lbp
=ap = (ap)(bp)®,  bp = (be)ap)’
(2) =acab’, bpbal.

Let « = ab® and y = ba’b’. Then
z=ab’=a(@®h®) = a(a’b®) " (a’b "1)(ba’b®) e Sy,
y=ba"b" = (ba ") ab®) e Sx

so that x £y. Now (2) yields a o x £y p b so that a Lo b. Therefore all the above state-
ments are equivalent and part (1) shows that £ is an equivalence relation. But then
eV £ =L and part (2) gives the first assertion.

The formula ¢V ® = e was proved in ([3], Proposition 8.1 and([4], Lemma
2.1(v)).

We shall need the following symbolism.

NOTATION 5.4. — Let the upper bar denote the permutation (H D)L R). For @ € GR,
we define a relation <p by: for e,fe E(S),
es foe=¢, espfeoe=fo,
SH=$L0$R, @gpféeESfS.

We are now ready for the principal result of this section.

THEOREM 5.5. - For @€ GR. The mapping
xpie—e VP (ce@8))

is a complete homomorphism of C(S) onto IIp(S) which induces #". Consequently &
is a complete congruence on C(S). For each e C(S), we have o9 ={pop, of]
where

er=(eN<p)*, =GV
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PrOOF. — Clearly yp is 2 V-homomorphism. In order to show that it is a A-homo-
morphism, we let & ¢ &S) and remark that the inclusion

(3) (AIVEC NV )

holds trivially. For the opposite inclusion, we let a /\( oV @) b so that apV b for all
¢ e F and consider several cases.
Let @ = 3¢ By Lemma 5.3 (i), we have a’ob? for all ¢ € F and hence o’ /gp b° so
FE

that a( /\5 ) V 3Cb again by Lemma 5.3 (i). For & = £, the argument follows along the
ce

same lines by using Lemma 5.3 (ii). This proves the opposite inclusion for & = 3 and
# = £ so that yp is a complete homomorphism for ?e {3 £}; for = @ this was
proved in ([4], Theorem 4.3). In particular, #" is a complete congruence on
e(S).

Now let o e ¢(S). We consider first the lower end of ¢#V. Clearly

V200NV

For the opposite inclusion, we let a oV ?b and consider several cases.
Let # = 3. By Lemma 5.3 (i), we have a’cb® which yields (a°5°)’c N <pa’ and
(@®b°)°c N <pb° so that

6® (e N <) (@b (o NS p)*b°

and hence a’(p N <;)*b’. Now Lemma 5.3 (i) gives that a(c N <p)* V 3Ch.
Next let # = £. By Lemma 5.3 (i), we have apab® and beba®. Letting ¢ = a° and
=" we first obtain epef and fofe which yields

(4) (efPeN<ge, (feN<pf.
The second part of (4) gives (fe)’(p N <pz)* f whence
(5) (fe) fle N<R)*S.
Furthermore

[(fe)’F1ef)" = (fo) " fef(ef )° = (fe) ' fof = (fe)f,
(ef Y [(f)°f1 = (ef )" ef(feo) f = (ef ) fe( fo)°f = (ef ) fef = (ef )°
and thus (¢f)° £(fe)’f. Now by the first part of (4) and (5), we get

aLe(o NS ) (ef )P L(f)f(e N<R)*fLb

80 that a(p N <R)*V £b.

For 9 e {3, £}, this proves that ¢V Pc(p N <3)*V ? whence the equality so
that o @Y (o N <p)*,

To show minimality of (o N <p)*, we let e C(S) be such that x#'p and
eo NS5/
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Let #=3C.Then AV X =V I and e N < f. Hence e ¢ f which by Lemma 5.3 (i)
and AV 3=V I implies that e Af. Thus e N<pcA Nextlet P=£ Then AV £=
=0V £Land ep N < f. Hence e p ef and fo fe which by Lemma 53 (i and AV L =¢ V £
implies f fe. But e <pf gives fe = e so that e A f. Therefore o N <z ¢ 2. We thus have
eMN<pci whence (pMN<3)*cAi which establishes the minimality of pp for
?e {9, £}. The case P = @ follows from ([4], Theorem 4.3 (i)).

It remains to consider the upper end. Since o ¢ ¢V &, we have ¢ ¢ (o V &)’ whence
oV &c(eV PPV & Conversely, (¢V PP ceV @ implies that (¢ VPPV PcpV &
Therefore oV #=(p V #)° Vp, that is o @Y (o V #). If 2 e €(S) is such that A",
then AcAV @=pV & whence Ac(eV #° This proves the maximality of ¢

As an example of interplay of o%, o® and ¢¥, we shall prove only one result. For its
proof, we need a lemma of independent interest.

LEMMA 5.6. — For oe C(S), we have
@D EVELAEVR =(eV2N(V R,
@ ¢ VI=(VLN(VR).

ProoF. — (i) Since (¢ V £)°¢cpV £ and (pV R)CoV R, we have
(PVEV(VR c(eVON(VR)
whence the inclusion
VOV @EVR ceVan(eVa).

The opposite inclusion is obvious.

(i) Let a(oV £) N (s V R)b. By Lemma 5.3(ii) and its dual, we have apab’
and bpa’h whence a’ca’b%0b%. But then Lemma 5.3 (i) gives a ¢V 3b. Therefore
(e V&NV R)CeV I and the opposite inclusion holds trivially.

PROPOSITION 5.7, — For ¢ e C(S), we have o= N\ o = o2

PrOOF. - Indeed,
EAE=(VELA(Y KR
=(eVEN(VR)Y by Lemma 56()

=(pV 3)° by Lemma 5.6(ii)

— H
=p7.
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6. — Properties of the relation #".

We shall now characterize the relation " in several ways for which we need the
following symbolism concerning varieties:

=g=[2"=1y"], groups ,
£6=[x"y*=2"], left groups,
=®g=[2"%"=y"], right groups,

= @S = [(wyx)’ = 2°], completely simple semigroups .

THEOREM 6.1. — For e GR and A,p € &S), the following statements are equiva-
lent.

() AV PcoV &
(i) AN<pcpN<p.
(i) ApCpp-
(iv) )\ngp.
W) A (AN CD.
i) ¢l is @ §-congmence for every e e E(S).

Proor. - (i) implies (ii). By hypothesis 2 ccV &. We let e,fe E(S) be such that
g2 N <pf and distinguish several cases.

For =9 e)f implies epoV 3(f so by Lemma 5.3(i), we get e¢pf and thus
eeN<pf Let =2 Then eAN<pfsothat epV Lf and e = fe. By Lemma 5.3 (ii),
fefe and thus ec N <y f Finally let $=®. Then AcpoV @ and el N <y f so that
eeV@f By Lemma 5.3, we have epox @y o f for some «,y e S, whence ep @ fo. Also
¢ <yf implies ez <pfo which then gives ep = fo. Therefore epo N <y f.

(ii) emplies (iii). This follows directly from the expression for ()p.
(iii) ¢mplies (iv). The expression for () is clearly order preserving. Conse-
quently

W= QP c(op) = 6"

(iv) ¢mplies (v). The hypothesis implies that AcAfcePceV &. Let aAb. For
#=3 by Lemma 52(), we get a’:b° which together with a®2b° implies
a2 A\ @) Hb(A N p) so that A/(A A g) ¢ 3¢ For & = £ by Lemma 5.3 (i), we get acab®
and boba® which together with a1ab® and bAba® gives

a(AN ) =aAA)BOA AL, b AR)=bOAp)alr A )
so that a(A A\ g)Lb(A Ap) which proves that A/(A Ap)c L. Finally let $=@. As
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above, a oV @ b implies ap 3 be; we also have ai = b so that a(A A g) ®b(A A p). Con-
sequently A/(A A p)C®.

(v) implies (vi). Let e,fe E(S) be such that ¢ Af, Then
e(AN )N ) AN p)

and the hypothesis implies that e(A A 0) PfAA Ap). If & = I, then e(X A ) =f(A Ag)
whence eef and thus ¢l,, is a group congruence. If #= £, then e(A Ap) LA Ap)
whence e(A A\ o) = e(A A g) f(A A p) so that e g ¢f and p|,, is a left group congruence. If
P =, then e(A A\ p) Df(A A\ p) so that

eANp) =N AN YA Np)
for some x,y e S whence ¢ ¢ xfy and analogously fo uev for some %, v € S which proves
that p|,.; is a completely simple congruence.

(vi) implies (i). We let a2 b and consider several cases. If £ = 3¢, then a’e b%2
g0, by hypothesis, a°0b° which by Lemma 5.3 (i) yields apV 3¢b. If @ = £, we simi-
larly get a®0a®b% and 5% 5%° so that

aLa’oa’b’a’Lb’a’ob’Lh
and thus apV £b. If # = @, then we similarly get a’p2b’y and b°pua’v for some
x, ¥y, u,v e S whence
a®a’exb®ypa(ua’y) b’y @ (ua’v)(xb y) o (ua’v) a’ dua’veob®
and thus apV Db
Therefore, in all cases A CoV & whenee AV PcoV L.

As an immediate consequence, we have the following characterization of the rela-
tion #V.

COROLLARY 6.2. — For Pe QR and Ape CS), the following statements are
equivalent.
i) APYe.
@ AN<p=cN<sp
(i) A/(AA ), /(AN C P
(Vi) plex and Al,, are $-congruence for every e e E(S).

The #"-classes of the equality relation ¢ and the universal relation « can now be
easily characterized. Compare the next corollary with ([3], Theorem 2.18) for =&
and with ([3], Corollary 2.21) for #=3

COROLLARY 6.3. — For e GR and Ape CS), the following statements are
equivalent.
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() ¢ 2" e.

() pN<p=-c
(iii) pC &.
vi) ¢ is over 9.

Proor. ~ This follows from Corollary 6.2 by letting 2 = «.

We conclude that «®" consists precisely of congruences contained in & so that
«P¥ =[e, 1.

COROLLARY 6.4. — For e GR and p e CS), the following statements are equiva-
lent. '

@) & w.
(i) Spce.
(iil) w/pC .
Vi) pisa 5’-congmence.
W) o V& =ow.

ProoF. — The equivalence of the first four items follows from Corollary 6.2 by let-
ting A = w. Clearly (v) is a reformulation of (i).

In particular, wp is the least congruence ¢ on S for which 8V @ = «w.
We shall now characterize the $"-class of #*. To this end, we need some prepara-
tion which is of independent interest.

LEMMA 6.5. - For e GR, pe &S) and a,be S, have
acV Pb<=>apPbe.
Proor. - Indeed, by Lemma 5.2, we have
aeV aHbea’e b’ (a0)’ = (bo)’ <> ap 9Chp,
apV Lbeapab®, beba’
<ap = (ap)(be)®, bp = (be)ag)’ = ag Lhe,
apVDb=>apx®Pypb for some %, y € S=>ap D bp
=ap = (2e)(be)(ye), be = (up)(ap)(vp) for some x, y, u, veS
=>a 0 xby, bpuwv'

=apx®@b as at the end of the proof of Theorem 6.1.
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COROLLARY 6.6. — For e GR and p e &S), we have

eV & is a congruence < P is a congruence on S/p.

ProoF. - Using Lemma 6.5, for any a,b,ce S, we get
apV Ph=capV Pch, acpV Pbc
if and only if
ap Pbp = (ce)apg) P(co)ap), (ap)(ce) P(bpX(ce)

whence the assertion.
We can now give the desired characterization.

PropPoSITION 6.7. — For # € SR and p e CS), the following statements are equiva-
lent.

() o " P
(i) oV &= 2%
(i) pc P* and ¢V &P is a congruence.
(iv) pCc P* and @ is a congruence on S/e.

PRrOOF. - Item (ii) is a reformulation of item (i). Ttems (iii) and (iv) are equivalent
by Corollary 6.6. Item (i) trivially implies item (iii).

(iii) mplies (i). First o = ®* implies p V ¢ #*. Conversely, since PcoV &
and the latter is a congruence, we also have #*cpV &.

7. - Properties of $"- and #"-classes and of their ends.

The main result here provides an isomorphism of the part of a #"- or 9"-class
above a given congruence ¢ and a certain $"- or #"-class of the equality congruence
on S/¢. We also study greatest congruences over ¥ and least V-congruences for some
familiar varieties V. This is illustrated by two diagrams. Recall the notation [«) from
Section 2.

THEOREM 7.1. — Let L€ 8GR, + € {A,V} and p e &S). Then the mapping
e Aa—>2afe (Aee®t Nie)
is an isomorphism of o@* N [p) onto c5/, P*.

ProoF. — It is well known and easy to prove that the mapping
gia—2fe (Aelp)
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is an isomorphism of [¢) onto @&(S/p). It thus suffices to prove that for any A e [¢), we
have 2 ep#* if and ony if A/p €5/, ", or equivalently, that A $* ¢ if and only if
Mo & egy. Let dep). '

Assume that 2 " ¢ so that A N &= N & we must show that 2/o N & = &g,. Let
a, b e S be such that ap A/p N Pbe. Then a A b and, by Lemma 6.5, a ¢ \V @b. It follows
that ab '2b® so that ab 'AN @@ )% Now ANP=gN&P implies that
ab 1o (ab™)® and thus ab ~! € kerg. In order to show that a°¢b° we consider several
cases.

If $=09C then apV b and hence a’cb° by Lemma 5.2().

Let 2= £ Then apV £b and hence, by Lemma 5.2 (i), apab® and beba®. Fur-
ther, a A b implies that ab A N £5%ab which by A N £ = p N £ implies that abeb®ab. It
follows that apab®ob%ab® whence apb°a and finally a°¢ 5°a®. Since by the above also
b%:6%" we conclude that a®b°

Finally, let # = @. Then ap VV @b so that, by Lemma 5.2 (i), a o @y ¢ b for some
x,y € S. Now a2b implies abx N ®ba which by AN & =p N @ implies that ab ¢ ba.
Hence xy pyx. Let T= D, =D,, 6 =p|y and T = T/6. Then %% = % so that z¢7. It
follows that z°0y° whence 2°%:%° and finally a®cb°

We have proved that in all cases a”¢b° which together with ab ~* e ker ¢ by Lem-
ma 2.1 implies that a o b. Therefore ap = be, as required.

Conversely, assume that 2/c " g, that is A/o N @ = e5,; we must show that
AP" p. Let a2 N @b. Then ap)/p N Pbe and thus, by hypothesis, ap es/,bp and hence
apb. Consequently AN Pcp and since A2p, we obtain ANP=¢N & that is
AP e

Now suppose that A " o so that 2V & = o V #; we must show that A/ #" e5,,. Let
a,b e S be such that ag A/¢ bo. Then a A b which together with 1\ & = oV & implies
that apV @b. By Lemma 6.5, we get ap Pbe. Hence A/pc @ which implies that
MoV @= es/,, that is A/ ?" £8/5r

Conversely, assume that 2/¢ " g/, that is A /¢ ¢ #; we must show that A $¥ ¢. We
let @AV @b and consider several cases. Recall that 22 so that AN P2p N &.

Let @ =3¢ Then a2 V 3Cb and thus ¢°25° by Lemma 5.2 (i). Hence (ag)’1/¢ (be)°
which together with A/¢ ¢ 3¢ implies (ap)’ 2C(be)° so that a®c 4% By Lemma 5.2 (i), we
get apV b, Consequently AV 3CCpo V K

Assume next that & # 3C. By Lemma 5.2, we have a Az #y A b for some «,y € S.
Hence

apAfomo PYp A /o be

which together with A/o ¢ @ gives ap Pbe. Now Lemma 6.5 yields apV &b. Conse-
quently AV PceV &
Therefore in all cases 1 ?" ¢ as required.

COROLLARY 7.2. — For $e SR, e {p, P} and o e &S), we have
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@ /e = (e51.)%

() p=p" (e, )" = &5/

For a small set of varieties ¥, we can now easily deseribe the greatest congruence
on S over © as well as the least V-congruence on S. This will be achieved in the next
two propositions. Beside the notation for varieties introduced at the outset of Sec-
tions 4 and 6, we shall also need

£Z=[wy =x], left zero semigroups,
KB = {xyx = 2], rectangular bands .
Compare the next lemma with ([3], Corcllary 3.10).

LEMMA 7.3. — The following statements concerning p e G(S) are equivalent.

(@) ¢ is over £2.
(@) eNH=¢ pCcL.
(i) eNR=¢ pCD

PrOOF. — Taking into account that £Z = $ N £&§ = LRB N €S, we obtain
p is over £Z<>po is over both B and £g
< is over both LRB and CS

By Corollary 4.4, we have

o is over B NIH =¢,
g is over LRB=S e NR =¢,

and by Corollary 6.3, we have

o is over LG+ pC.L,
o is over CSspoCc®.

The assertion of the lemma follows by combining these statements.
Compare item (i) of the next lemma with ([3], Theorem 3.8).

LEMMA 74. — Let p e C(S).
(i) o 18 over RBSpNIH=1¢, pcC D
(i) p is over S®pNL=pNR=c.
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PROOF. — (i) Taking into account that KB = BN CS, we get
¢ is over RB<>p is over both B and CS,
o is over RB<eNIH=¢ by Corollary 44,
¢ is over CS<cc® by Corollary 6.3

and the assertion follows.
(ii) Taking into account that S = LRB N RRB, we get

¢ is over S<>p is over both £LRB and RRAB,
¢ is over LRB<po N R =¢ by Corollary 4.4
¢ is over RRB<=cNL£=¢ by the dual of Corollary 4.4

and the assertion follows.

NOTATION 7.5, — For a variety "V of completely regular semigroups, denote by T the

greatest congruence on S over V), if it exists.

LEMMA 7.6. — Let U and © be varieties of completely reqular semigroups and as-

sume that to, tv and Toynv exist. Then Ty N Tv=Tyne

PROOF. — Since 74 ¢ in over U N V), it is also over both U and ¥ so that 7, vC Ty
and Ty nvCTe Whence 74, nvC 7ty A Ty Conversely, 74, is over U and 7 is over ¥ so

that 7o A 7y is over U N Y whence 7o, A TvC 7oy v

ProPOSITION 7.7. — The greatest congruence on S over
B s ¢,
LRB i &,
S is el=clAeT,
s is =0,
£G is =g,
g is =90,
£z is " Ael=e"AED,

KRB is " NP

PRrOOF. ~ This follows easily from Corollaries 44 and 6.3 and Lemmas 7.3, 7.4

and 7.6.
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The above proposition uses the upper ends of the #"- and #"-classes of ¢ and is
based upon (greatest) congruences over certain varieties © of completely regular
semigroups. We now consider the dual situation which will use the lower ends of the
@"- and 9"-classes of w and will be based upon (least) ¥-congruences.

LEMMA 7.8. ~ The following statements concerning ¢ € &8) are equivalent.
(i) p 18 o L£LZ-congruence.
() Hcp, eVL=a.
(i) Rce, e VD= 0.
ProoF. - Taking into account that £Z = N £§ = LRAB N €S, we obtain
o I8 o £Z-congruence<>p is both a $- and a £G-congruence,
«p is both a £LRB- and a CS-congruence.
By Corollary 4.5, we have
o is a B-congruence<> 3 Cp,
¢ is a LRB-congruence<> R Co,
and by Corollary 6.4
g is a LG-congruence< oV L=w,
¢ is a CS-congruenceoV B =w.

The assertion of the lemma follows by combining these statements.

LEMMA 7.9. — Let ¢ € G(8).
() o is & RB-congruence<>IHcCp, ¢ VAR = w.
(i) p 18 @ S-congruence<> @ Cp.
Proor. - (i) Taking into account that RB = BN €S, we get
0 18 a RB-congruence<>¢ is both a B and a CS-congruence,
¢ is a B-congruence I g by Corollary 4.5,
o is a @S-congruence <»oV @ = w by Corollary 6.4

and the assertion follows.
(ii) It is well known that @ is the least semilattice congruence on S.

NoTATION 7.10. — For a variety 9 of completely regular semigroups, denote by 6+
the least O-congruence on S.

It is well known that for varieties U and ¥, we have 6, A 04, = 64, v This can be
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used for deseribing 6.\, v when 84, and 6+ are known. We thus state briefly some of
these «basic 6».

PROPOSITION 7.11. — The least
B-congruence is wy = H*,
LRB-congruence is w, = R*,
S-congruence is wy = @,
CS-congruence i8 wp,
£&-congruence s wy,,
G-congruence is wy.

The following result will be useful in drawing the diagrams of some of the congru-
ences we have encountered.

LEMMA 7.12. - Let e GR and A, 0 € &S) be such that AN P=c and ¢V & = w.
Then Acp.

PROOF. ~ Let a A b. Then ab 1% so that ab~* 4 N $(ab )% which by hypothesis
implies that ab ' e E(S). Let ¢ = a° and f = b°. The hypothesis implies that e\ @f.
In order to show that ecf, we consider several cases.

If =29 then egV ICf whence ecf by Lemma 52(). Next let ®= £ Then
¢f A N £ fef which by hypothesis implies that ef = fof. Also by hypothesis ec V £f
which by Lemma 5.2 (ii) implies that ecef and fp fe. Therefore ¢ pef = fof o f.

Finally, let #= ®. Then efA N @ fe which by hypothesis yields ¢f = fe. Also by
hypothesis eV @ f which by Lemma 5.2(iii) implies that epcx Mypf for some
z,y€S. Hence 2%y cef=fooy®x® which gives z°=y° since z°My° But then
eef.

In all cases we have a”ob° which together with ab ~! € E(S) c kerp by Lemma 2.1
implies that apb. Therefore 2 Cp.

COROLLARY 7.13. — For Pe GR we have

efcwp, 5P=90g3’*=wp.

ProoF. -~ The first inclusion follows directly from Lemma 7.12. The first equality
follows from Theorem 5.5 and the second from Theorem 3.5.

Notice the duality of the statements in Corollary 7.13. In Diagram 1, we apply
Notations 7.5 and 7.10. Full lines indicate true meets and joins.
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0=y = e?= 1cg

Oqqs =t

Diagram 1.

8. — A diagram and a network.

The diagram in question represent the A-subsemilattice of II((S)) generated by
the set
{9" |92e gR} U {P" |Pe GR}.

The network announced is obtained by fixing e GR and p e G(S) and then forming
the sequence p,, op, opps Prps ---- We thereby obtain a sublattice of &(S). Particularly
interesting networks are obtained by letting o = w and varying & over all of GR.

PROPOSITION 8.1.
(i) For e 8GR, we have " N F¥ =e.
(i L"Na"r =a".
(i) £¥ NKRY = 3",
PrOOF. — (i) If 28" N @V p, then by Corollaries 4.2 and 6.2 and Lemma 4.3, we
get,
MON /O NP NP =c¢
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which evidently implies that A = . The case # = @ forms the content of ([4], Corol-
lary 3.2).

(i) We must show that for any 2,p e &\S),
(6) ANL=pNE, INR=pNRSIAND=pND.
If the left hand side of (6) holds, then by Lemma 3.6 (ii) we obtain
ANO=0NLYVANR)=ENLV(eNR)=cN®.

The opposite implication in (6) is trivial.

(iii) The argument here follows along the same lines using Lemma 5.6 (ii).

Proposition 8.1 (i) indicates that a congruence o on S is uniquely determined by its
P*- and @"-classes. It thus should be possible to express ¢ by means of ¢ N & and
¢V &. This we do in the next result.

PROPOSITION 8.2. ~ Let o e &S) and a,beS. Then
aobea(o V)b, ab teker(pN s0)*
<a(eV b, a’beneb’a’b, ab leker(pN £)*

“apV Db, abp ADba, ab leker(cN®).

PROOF. — Let a0 b. Then ¢ ¢ (pV X)° and thus a(p V 9)°b. Also ab !¢ b® whence
ab o N 9C(ab ™) so that ab ! e ker (o N 20)*.

Let a(pV 30)°b and ab ' e ker (o N 90)*. Then a. oV 3Cb so, by Lemma 5.2 (i), we
have a°0b° whence a%b¢b%a’h. Since we always have a’b£b%ab, it follows that
a’be N £b%’b. Since ¢ L, the hypothesis also implies that a(eV £)°b and
ab ! e ker(p N £)*.

Let a(poV £)°b, a®bp N £5°%°b and ab ' e ker (¢ N £)*. By Lemma 5.2 (ii), we
have a’ca’0® and b%b%° By hypothesis, we have a®b°5°a°6° whence
a®0a’b%b%a b%b% Also (o N L£)*Cp so that ab~!ekerp, which together with
a’eh® yields apb by Lemma 2.1.

The equivalence of a¢b and the last expression is the content of ([4], Lem-
ma 3.1).

Of course, Proposition 8.2 actually implies Proposition 8.1 (). In Diagram 2, we
represent the A-sublattice of I1(<(S)) generated by {#" |Pe gR} U {9 |Pe R}
using the relations established in Proposition 8.1.
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@NU Y
Diagram 2.

The next lemma provides a further interesting relationship among the notation
introdueed.

LEMMA 83. —~ For e R and o e &S), we have
p=p" NoF=0,Vopp.

ProOF. — Indeed,
(P NPV PPV P=pV PPNV O

and equality prevails. Now Proposition 8.1(1) implies that ¢7 A of = ¢. The argument
for o = ¢,V pp follows along the same lines.

The lattice generated by a min $-network is described by our next result. Mono-
tonicity of the operators subp and sub P plays an essential role in its proof.

THEOREM 84. — For e GR, c e &S) and n = 0, we have
@) eqry N\ pwpr = Pwprrp V e@prps
() oppyp V e@pyrp = e@pyt A\ g ppytts

whe/re PO T P

Proor. — Let a = pP and b = Pp.

(i) The case % = 0 amounts 0 p = p, V pp Which was established in Lemma 8.3.
Hence assume that # > 0. By Proposition 8.1 (i), to show the desired equality, it suf-
fices to prove that the two sides of the given equation have the same intersections and
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joins with &. Indeed, on the one hand,
(oar A ppn) N & =g N (o N )
=p0gn N {ppr-1p N P) by definition of sub p
= (pgr A ppn-1p) N &
=pr NG Since pyn-1p = ppgr-12 pgny
and on the other hand,
(eanp Vourp) N P2earp N P=pmN P by definition of sub p

(Pa”p Vepp) N ‘?g(pa”p V)N @

=(pgnp) N & since gqnp = ppn C 2oy
=pn NP by definition of sub p
and therefore |
(N (par N ppn) NP =(ggnp Vepnp) NP

Further, on the one hand,
(parp Npsn) V PCppn V @,
(par Nppn) V @2 (par Npyrp) V &
=pppV P since pyrp = ppgn C oo,
=pmV & by definition of sub P
and on the other hand,
(parp V pinp) V & =pgny V(gpnp V &)
= (pgn Vepr) V@ by definition of sub P,
=ppmV P since panp = opu Copn
and therefore
(8) (earp Veprp) VP = (g4ny Veprp) VEP.
The desired equality follows by (7) and (8) in view of Proposition 8.1 (i).

(i) The argument here is of the same general type as above and is omitted.

DEFINITION 85. ~ For # e §& and ¢ € C(S), we call the set {p, ¢, 0, 0pp, PPp» -}
the min P-network for .



144 Mario PETRICH: The Green relations approach to congruences, efc.

Now the min $-network for p together with the meets and joins provided by Theo-
rem 8.4 forms the sublattice of @(S) generated by this network. Its diagram has a
very simple form as follows.

Cpp epp
As an example of min P-networks, we consider ¢ = w. To this end, we use Nota-
tion 7.10 and in addition we need the following varieties:
BS = [(2y)" = (x"y°)°1,  cryptogroups (bands of groups),
J=[x=y], trivial semigroups.
The min d-network of w:
@ =0z 0g=10g, wy="0g, 0y =lgg, ...,

the min £-network of w:

o=0g 0= Gfg’ W)= Ogggy - )

the min @-network of «:

bcs = wp wg = bg

Wpg = Wgp = &

By monotonicity, a min (>-network has at most 4 vertices for any o e C(S).
One may also consider the following networks:

Cs Pis Pry Plrs Py -++>

s PLs PRs PLRy PRL> +-- -
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9. — Relationship with kernels and (left and right) traces.

For a congruence ¢ on a regular semigroup, the leff and the right traces of p were
defined in ([2], Definition 4.1) by

ltrp=tr(pV£)°, rtre=tr(cV&)°,

respectively. The following relations on the congruence lattice play an important role
in the study of congruences on (completely) regular semigroups:

IKp<wkeri =kerp, ATeetra=trg,
ATjeeltra=ltre,  AT,pesriri =rtro.

For numerous properties of these relations, see [2] and [3]. We mention here only that
K is a complete A-congruence, but generally not a V-congruence, whereas the others
are all complete congruences on &(S). Going back to our completely regular semi-
group S, we have the following relationships with some of the concepts studied so
far.

Compare the next proposition with ([3], Theorems 6.3 and 6.12).

PROPOSITION 9.1. - K=3", T=3", T,=2Y, T, =R".

PROOF. — Let 2,0 e &(8S). Assume that 2 Kp. Let a A N 9b. Then ab ! e ker A and
a® = b°% The hypothesis implies that ab~!ekerp which together with a°=b° by
Lemma 2.1 implies that a o b. Hence A N 3CCp N IC and equality follows by symme-
try. Therefore A3C" e.

Conversely, suppose that 23" ¢. Let @ € ker A. Then ¢ A N 3Ca® which by hypothe-
sis yields apa® so that a e ker p. Thus ker A ¢ ker ¢ and equality follows by symmetry.
Therefore 2 K p.

Suppose next that A T'o. Let ¢ 2 V 3Cb. By Lemma 5.2 (i), we have a°2 b° which by
hypothesis yields a®¢b° Again by Lemma 5.2(i), we conclude that a ¢\ 9¢b. Conse-
quently AV 3cpV I and equality follows by symmetry. Therefore X 3" c.

Conversely, assume that A3C" . Let etrAf Then eV 9Cf so by hypothesis
eV If. Now Lemma 52(i) implies that eof so that etrAf. Thus trActre and
equality follows by symmetry. Therefore A T p.

It is proved in ([3], Theorem 6.3) that 7, = &" (in our present notation) in the
wider context of regular semigroups. That 7}, = £ now follows by duality.

Beside establishing a connection between the relations " and @V for ® e §R with
the relations K, T, T; and T, and thus between the Green relations approach to con-
gruences and the kernel-trace approach for completely regular semigroups, the above
proposition may serve as a source of further ideas as to possible properties of our rela-
tions " and $". In"fact, many properties known for the relations K, T, Ty, T, auto-
matically hold for 3¢*, 3¢V, £¥ and &" in view of the above proposition, but they could
possibly be extended to either " or #'. Somewhat in the opposite direction, one
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could try to extend the results we have seen here for congruences on completely regu-
lar semigroups to the more general context of regular (or only inverse) semi-
groups.

In addition to the identifications in Proposition 9.1, we also have that U = @V and
thus V=®" N 3" in the notation of [3]. Finally 3¢" N 3¢ = ¢ by Proposition 9.1
since K N T =& These results shed further light on Diagram 2.

REFERENCES

[1] J. M. Howik, An Introduction to Semigroup Theory, Academic Press, London (1976).

[2] F. PASTIIN - M. PETRICH, Congruences on regular semigroups, Trans. Amer, Math. Soc., 295
€1986), pp. 607- 633.

[8] F. PASTLIN - M. PETRICH, The congruence lattice of a reqular semigroup, J. Pure Appl. Alge-
bra, 53 (1988), pp. 93-123.

[4] M. PETRICH, Congruences on completely vegulor semigroups, Canad. J. Math., 41 (1989),
pp. 439-461.




