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The Green Relations Approach to Congruences 
on Completely Regular Semigroups (*). 

MARIO PETRICH 

Abstract .  - On the congruence lattice e(S) of a completely regular semigroup S the following 
mappings are considered Zp : ~ "-> .~ N ~ and ZP: ~ V $, where $ is any @the Green relations 
:)C, ~, ~ or (~. The equivalence relations $^ and *7 v induced by these maps represent the 
main object of study in the paper. The former is a complete A-congruence whereas the latter 
is a complete congruence on e(S). In particular ~^ ,  2C v, .~v, t~v coincide with the keruel, 
trace, left trace and right trace relations on e(S), respectively. All essential properties 
known for the latter relations carry over to the new relations ~^ and Sv. In addition, some 
interesting interplays of these provide for more richness in the theory @congruences on com- 
pletely regular than is the case for the keruel-trace approach to congruences on regular 
semigroups. 

1. - I n t r o d u c t i o n  a n d  s u m m a r y .  

The study of congruences on regular semigroups experienced a considerable boost 
when it was realized that a congruence is completely determined by its kernel and its 
trace. This represented an essential improvement over the earlier knowledge that a 
congruence on a regular semigroup is completely determined by its idempotent 
classes. The eruption of information concerning congruences on regular semigroups 
when approached from their kernel-trace aspect has been both surprizing and pro- 
found. It has been most effective when the (congruence) pair (ker p, tr  ~) could be de- 
scribed abstractly in a relatively simple and/or  explicit manner, as for example for 
inverse semigroups. 

Nevertheless, the description of congruences on semigroups belonging to a special 
class for which there is a sufficiently transparent structure theorem should be based 
on that structure theorem and the ingredients figuring in it. The typical example for 
this is the class of completely simple semigroups and the Rees theorem. For the con- 
gruences in this case are best represented as (admissible) triples following the ingre- 
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dients figuring in the Rees (structure) theorem. Even though this is a relatively rare 
case, the Rees theorem being very explicit and transparent, the same idea was used 
in [4] for completely regular semigroups, for they are best represented as semilattices 
of completely simple semigroups. In this case, a congruence can be represented by a 
(congruence) aggregate which consists of a congruence on the underlying semilattice 
and the congruences on completely simple components. 

The last discussed approach to congruences on completely regular semigroups can 
be thought of as splitting a congruence ~ along the Green relation (~ in the sense of de- 
composing it into ~ N d) and ~ V 0~, as explained in [4]. This obviously suggests substi- 
tuting ~ by any Green's relation ~, which is the main idea of the present paper. Not 
only do we thus generalize the approach taken in [4] but with the case $ = M, recover 
essentially the kernel-trace approach as well. We can thus view the new point of view 
as an extension of the kernel-trace approach. By introducing also Green's relations s 
and ~ into the play, we arrive at a systematic study of congruences through their re- 
lationship with the Green relations. This paper is also related to [3]. The results 
therein may provide the clue as to the possibility of extending or generalizing the 
achievements of this paper to regular semigroups. 

We now briefly summarize the content of various sections. Terminology and nota- 
tion are taken care of in Section 2. From now on ~ stands for any of the Green rela- 
tions ~ ,  s ~ or 0) on a completely regular semigroup. The mapping p --~ p R ~ is dis- 
cussed in Section 3 and the properties of the induced relation in Section 4. The same 
pattern is followed in Sections 5 and 6 for the mapping ,o --) p V $ and the induced rela- 
tion. Further properties of both relations as well as applications to some greatest and 
least congruences are discussed in Section 7. In Section 8, a related diagram and a re- 
sulting network of congruences are considered. The paper concludes in Section 9 with 
a discussion of relationship with the kernel-trace approach to congruences. 

2. - T e r m i n o l o g y  a n d  n o t a t i o n .  

On any set X, ~ and ~ denote the equality and the universal relations, re- 
spectively; if needed for clarity, we shall affix the subscript X to these symbols. We 
denote by/ / (X) the partition lattice of Xwith meet g) and join V and will think of its 
members also as equivalence relations on X. If e e/ /(X) and x e X, then xe is the ~- 
class containing x. If ~, p e//(X) are such that ~ ~ 2, then s is the member of TI(X/p) 
defined by 

xp~lpy~ if x2y  (x, y e X ) .  

For any lattice L and ~,fl e L, let 

[~,fl]={.[eL]~<~y<.fl}, [ a ) =  { y e L l ~  ~< y}. 
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Now let S be a semigroup. We write 

= 

for these Green's relations. If S has an identity, let S ~ = S, otherwise let S 1 be equal 
to S with an identity adjoined. We denote by E(S) the set of idempotents of S and by 
(~(S) the lattice of congruences on S with the operation of meet A and join V. Let 

�9 e(S). If 5~is a family of semigroups, then ~ is an 5~-congruence if S/~ �9 5~and p is 
over ~ if each idempotent ~:-class is in ~ Also 

k e r ~ =  { a e S l a p e  for some e e E ( S ) } ,  trp =piE(s) 

are the kernel and the trace of ~, respectively. For a relation 0 on S, O* denotes the 
congruence on S generated by O. If 0 �9 II(S), 0 ~ denotes the greatest congruence on S 
contained in O; recall that for any a, b e S, 

aO~ Oxby for all x, y � 9  

Throughout the paper S shall stand for a completely regular semigroup, that is a 
semigroup which is the union of its (maximal) subgroups. For a �9 S, a -1 stands for 
the inverse of a in the maximal subgroup of S containing a; a ~ = aa-1 = a - l a  is the 
identity element of this subgroup. If  ~ �9 ~(S), then p preserves both operations of up- 
per - 1  and 0 and 

ker~: = { a e Z l a ~ a ~  

Completely regular semigroups form a variety with the binary operation of product 
and the unary operation of inverse. We denote by [u = v] the variety of completely 
regular semigroups determined by the identity u = v. 

We shall need the next lemma and its corollary from the literature. Since they are 
used many times, we give the lemma a complete proof. 

LEMMA 2.1. - For ~ �9 C(S) and a, b ~ S, we have 

apbc~a~ ~ ab - ] � 9  

PROOF. - If a~ b, then a~ ~ and ab-lpb ~ whence a~  ~ and ab -1 
versely, if a~  ~ and ab -~ �9 ker~, then 

a = a~176 = bb~ -1 aa~176 ~ 

= ba- l (ab-1) (ab-1)bpba- l (ab-1)b  = ba ~176 ~ = b. 

�9 ker~. Con- 

COROLLARY 2.2. - Let ;~, ~ e e(S). I f  ker 2 c ker ~ and tr  ~ c tr ~, then ~ c ~. 

We now introduce the basic symbolism which will be adhered to throughout the 
paper. 
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NOTATION 2.3. - Define the mappings 

Zp:t~-"~ n 5,, ~p: ~--->~Vs,, ( ~  ~(S)) 

and the induced (equivalence) relations 5 )^ and 5)~ on C(S) by 

In all our considerations of the Green relations :~, ~, ~ and 59, we shall consider 
only ~,  ~ and 59 by duality of ~ and ~ so that the latter need not be men- 
tioned. 

3. - T h e  r e l a t i o n  5)^. 

For a Green relation 5,, we have defined above a relation 5,^ by 

$ ^ ~ r  ( ~ , ; e e ( S ) ) .  

In this and the next section, we shall study a number of properties of this (equiva- 
lence) relation. We have already remarked the obvious fact that 5)  ̂ is induced by the 
mapping Zp: C(S)---~II(S). The following notation will be used to characterize the 
image of e(S) in II(S) under Zp. 

NOTATION 3.1. - For 5, e G~, let 

l i p ( s )  = {o ~ ~I(X)lo = o* n ~ } .  

LEMMA 3.2. - For 5) ~ ~5~ and 0 E H(S), 0 = 0* N 5' i f  and only i f  O = ~ n 5,for some 

e e(S) .  

PROOF. - For the direct part, take p = 0". C o n v e r s e l y ,  0 = # N 5, implies 

0 = 0 N 5,c0" N 5,c,~ n 5,= o. 

LEMMA 3.3. - Let 5)~ ~ and p ~ ~(S). 

(i) ~n $= (pn ~)*n$. 

(ii) ker ~ = ker (p N 5,)*. 

PROOF. - (i) Since p n 5,c (tz N 5,)*, we get ,o N 5'_c (~ n 5))* n $. Also (p n :P)* c~ 
implies that (~ n 5,)* N 5)c~ n 5 ~. 

(ii) If  a e kerp, then a• n 5)a ~ whence a(~: n 5))*a ~ and thus a e ker(~ N t~)*. 
Hence ke rpcker (~  n ~)* and the opposite inclusion holds since (# N 5))* c#. 

We shall see below that the classes of 5)  ̂ are intervals. In order to describe the up- 
per ends of these intervals, the following symbolism will come in handy. 
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NOTATION 3.4. - For any 5, ~ ~ and ,~ e C(S), define a relation p~ on S by 

a h ~ b ~ a b  -~ �9 kerr:,  

al~bc~a~176176 ab - ~ e k e r ~ ,  

ar~bc~ab~176 ~ ab - l � 9  

ad~bc>ab~ba, ab-~ �9 kerp .  

For any relation 0 on S, define a relation 0 on S by 

a O b ~ ( f o r  every u � 9  aOuc~bOu).  

Simple verification shows that  0 is an equivalence relation on S. 
We are now ready for the E~rst principal result of the paper. 

THEOREM 3.5. - Let 5, �9 ~ , .  The mapping 

y.p: p ~ 6 N s, ( p e t ( S ) )  

is a complete A-homomorphism of C(S) onto IIp (S) which induces 5,^. Consequently 
5,^ is a complete ~k-congruence on C(S) but in general, it is not a V-congruence. For 
each ~ �9 C(S), we have ps,^ = [pp, ~P] where 

pp = (p n 5,)*, ~ = ~o. 

PROOF. - Trivially Xp is a complete A-homomorphism. By Proposition 3.2, Zp maps 
C(S) onto Ilp(S). Obviously Zp induces 5,^ so that  5,^ is a complete A-congruence. 

Let  S = Y • G where Y = {0, 1} is a 2-element semflattice and G is a nontrivial 
group. Denote by v the least group congruence on S and by p the Rees congruence on 
S determined by the ideal {0} • G. Then 

( ~ n  5,) V (p n 5,) = ~V~ = p ,  

and ~: ~ 5, since G is nontrivial. Therefore 5,^ 
Note that  here 5' = ~ = 2 = ~ = 6~. 

(~V 5,) N 5 ,=  ~o N 5, = 5,, 

is not a V-congruence in this example. 

We now return to the general situation and let p �9 C(S). By Lemma 3.3 (i), we have 
(.z N 5,)* n 5 ,= ~ n 5,, that  is (~ n 5,),5,^p. I f  ~ �9 c(S) is such that  ,~5,^~, then 
(~ A 5,)* = (2 N 5,)* c 2 which establishes the minimality of pp. 

For  the upper end, we first assume that  for ~ �9 C(S), we have 2 5,^~ and shall 
prove that  2 _c ~ .  By Lemma 3.3 (ii), we get 

ker2  = ker(2 N 5,)* = ker(~ N 5,)* = kerp 

Next let a~b  and ap~u. We consider several cases. 
Let  5, = ~ .  Then au-1 �9 kerp so that  au-1 �9 ker2 whence bu-1 

bu - 1 ~ ker p. Therefore b h~ u. 
�9 ker ~ and hence 
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Let 5,= 2. Then a~176176  and a u - ~ e k e r p .  As above, the latter implies 
bu -~eke rp .  Also a ~ 1 7 6 1 7 6  and hence, by hypothesis, a ~ 1 7 6 1 7 6  
which, by hypothesis, implies b~ N 2u~176 But then b~ n 2 u ~ 1 7 6  whence 
b~176176 which together with bu -1 e kerp gives bl~u. 

For 5, = 50, the argument follows along the same  lines as for 5' = 2. 
We have proved that b p~ u. By symmetry, we conclude that a~; b. It follows that 

)~c_i~ whence )~ ci~ ~ This establishes the maximality of p-~O and implies that 
~ n 5,c~2 n 5,. 

Next we show that p-O n 5, c_ ~. Let a ~  2 0  5,b. Then xay~xby  for all x, y e S  ~ and 
thus 

xayp~uc~xbyp~u (x, y e S  1, u e S ) .  

In particular, for x = y = 1 and u = b, we have ap~ b since pp is reflexive. We now con- 
sider several cases. 

Let 5 ,=M.  Then aMb so that a ~  ~ Also ah~b gives a b - l e k e r ~ ,  which 
together with a~ ~ by Lemma 2.1 yields a~b. 

Let 5 , = 2 .  Then a 2 b  so that a ~ 1 7 6  ~ and b~176  ~ Also a 2 b  gives 
a~176176176 ~ and a b - l e  ker~. But then 

a o = aObOpbOaOb ~ = b o 

which together with a b - l e  kerp by Lemma 2.1 yields a p b. 
For 5' = 50, the argument follows along the same lines as for 5, = 2. 
We have proved that ~o A 8' c ~ which implies that/~o n 5, _c p A 5,. Above we have 

established the opposite inclusion. Therefore t~~ which proves the maximality 
of pP. 

As an example of interplay of pt, er and ~d, we shall prove only one result. For its 
proof, we need a lemma of independent interest. 

LEMMA 3.6. - For p e C(S), we have 

(i) (p n .~)* v (~ n a ) *  = ((~ n .~) v (~ n a))*, 
(ii) ~ n 50 = (~ n ~) v (p n a), 

where the second joins are taken within II(S). 

PROOF. - (i) The left hand side is clearly contained in the right hand side. Also 
n ~ c (~ n .r and ~ n t~ _c (~ n ~)* imply that 

(p n 2) V (p n ~)  c_ (p n 2)* V (~ n ~)* 

whence the remaining inclusion. 

(ii) The right hand side is obviously contained in the left hand side. Let 
a ~ n 50 b and let T = D~ = Db. Giving T a Rees matrix representation with normalized 
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sandwich matrix, letting 

a = (i, g, ~), b = ( j ,  h, ~),  c = (i, h, ~),  

and 0 = PIT with the admissible triple (r ,N,=),  we get i r j ,  gh -1 e N  and )~=~, see 
([1], III.4). I t  follows that  ap  n 2 c p  M ~ b  so that  a (p  M 2)(p M ~ )b .  Therefore 

PROPOSITION 3.7. - F o r  p e C(S), we  have pt V p~ = Pd. 

PROOF. - Indeed 

pt V p~ = (~ n 2)* V (p n ~)* 

= ((p n r )  v (p n a))* 

= p ( ~  (D=pd  

by Lemma 3.6(i) 

by Lemma 3.6(ii). 

4. - P r o p e r t i e s  o f  t h e  r e l a t i o n  ~ ^ .  

We shall now characterize the relation $^ in several ways for which we need the 
following symbolism concerning varieties: 

:~ = t~ = [x = x2] ,  bands ,  

= ~ = [x = x 2, x y x  = y x ] ,  right regular bands ,  

= ~3r = [x  = x 2, x y x  = x y ] ,  left regular bands ,  

= 8 = [x = x 2, x y  = y x ] ,  semflattices. 

THEOREM 4.1. - F o r  ~ ~ ~ a n d  2, p e C(S), the f o l l ow ing  s t a t e m e n t s  are equiva-  

lent. 

(i) ~ N ~ c ~ N $ .  

(ii) ker~  c_ kerp, t r ap  c trpp. 

(iii) ~p _c pp. 

(iv) ~/(2 A p) c p~. 

(v) p l e~ is a ~-congruence for every e e E ( S ) .  

PROOF. - (i) i m p l i e s  (ii). By Lemma 3.3 (i), we get  

ker~  = ker  ()~ N 0~) * c ker (p  N ~?)* -- ker~ .  

Also t r ap  = t r (~  np )*  c_ t r (p  n $)* = trpp. 
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(ii) implies (iii). Again by Lemma 3.3 (ii), we obtain 

ker~p = ker ()~ A ~?)* = ker~ r = ker (t: N 9)* = ker~p 

which together with t r a p  _ctrpp implies that 2p c~p by  Corollary 2.2. 

(iii) implies (iv). We consider ~ = ~ first. Let  a, b �9 S. Then 

a)~b~a~  V) 2b~176 

~ a ~ 1 7 6 1 7 6  

a o b pl b o a o b by hypothesis 

~ a ~ 1 7 6 1 7 6  

a)~ b ~ a b  -1 �9 ker)~ 

~ab-1)~ ~ ~(ab-1)2 

~ a b - i  Tt(ab-1) 2 

ab - 1 p ~ (ab -1 )2 by hypothesis 

~ a b - l # ( a b - 1 )  2. 

If now a()~ A 2)~/(Z A ~)b()~ A ~), then a;~ b so by the above 

(a(2 A t))o (b()~ A p)) = (b(2 A ,z))o (a(), A ~))o (b(~ A p)) , 

(a(~ A ~))(b(;~ A ~))-~ ~ E(S/(~ A ~)) 

so that  a(;( A ~) l~ b(), A ~). Therefore ~/(~ A ,~) c t~. The case ~ = 59 follows along the 
same lines; the case ~P = :~ requires only a part  of the above argument with 5C re- 

placing .r 

(iv) implies (v). Let  e �9 E(S). Then 

a �9 e)~ ~ a)~ct ~ 

a(Z A p) )~/(,~ A ,o) a ~ (), A p) 

a(~ A ,~) p~ a ~ (;~ A ~) by hypothesis 

a(;~ A 2) �9 E(S/(X A p)) 

~ a  �9 ker (s  Ap)  c k e r s  
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and thus ~le~, is a band congruence. Next consider ~ = 2. Then 

a, b E e ~ a 2 b  

a(~, A ~) ),/(;, A ,~) b(;, A ,~) 

a(~ A ~) p~ b(~ A ~) by hypothesis 

(a( i  A ,z)) ~ (b(), A ~)) = (b(Z A p))o (a(Z A p))o (b(~ A ~)) 

~ a ~ 1 7 6 1 7 6  

so that  ~ I~z is a r ight regular  band congruence. The case t? = 69 follows along the same 
lines and $ = PC is included in the fu'st par t  of the proof. 

(v) implies (i). Le t  a ~ N ~ b .  Then ab-1;~b ~ so that  a b - l e b ~  whence 
ab- i~(ab-1)o  by hypothesis which gives ab -~ e kero. 

I f  a 2  n Mb, then a ~ = b ~ which together  with a b - r e  ker~: by Lemma 2.1 gives 
apb. Suppose that  a I n s  Then a~ ~ so that  a ~  a~ ~ and b ~  b~ ~ Also a ~ 
b ~  a~ which by hypothesis yields a~176176 Consequently a ~  a~176176176 ~  
= b ~ This together  with a b - l e  ker~ by Lemma 2.1 implies that  a~ b. 

Therefore,  for ~ = PC and ~ = 2, we have )~ n $ _c ~. The case $ = ~ follows along 
the same lines. Thus in all cases )~ n 5' c ~ n 2, as required. 

As an immediate consequence, we have the following characterization of the rela- 
tion 5 ,^. 

COROLLARY 4.2. - For ~ e  ~ and 2,~ e C(S), the following statements are 
equivalent. 

(i) ~ ~'^ ~. 

(ii) ker  2 = ker  p, t r  ~ p = tr,o p. 

(~i) ~/(~ A ~), ~/(~ A p) c_ p~. 

(iv) ~ lea and 2 lee are ~--congruences  for every e e E(S).  

The $^-classes of the equality relation e and the universal relation ~o can now be 
easily characterized. To this end, we need a lemma of independent  interest. 

LEMMA 4.3. - For any ~ e ~ ,  we have p~ n ~ = s_ 

PROOF. - Let  ap~ n $b.  Then ab -I e E(S).  I f  ah~ n PCb, then a ~ = b ~ If  al~ N 2~b, 
then a ~ = a~ ~ b ~ = b~ ~ and a~ = b~176 whence again a ~ = b ~ The case $ = 0~ is 
similar. Therefore  a ~ = b ~ in all cases which with ab -1 ~ E(S)  by Lemma 2.1 implies 
that  a = b. 

COROLLARY 4.4. - For ~ ~ ~5~ and p e C(S), the following statements are equ@a- 
lent. 
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(i) p 5,^ ~. 

(ii) kerp = E(S), trpp 

(~i) p c p,. 

(iv) p is over [P. 

(v) p A P =  ~. 

PROOF. - The equivalence of the first four items follows by specializing the state- 
ments of Corollary 4.2 to ;~ = ~. That (iii) implies (v) follows directly from Lemma 4.3. 
Clearly (v) implies (i). 

The relations on a set are said to be disjoint if their intersection is the equality re- 
lation. Hence Ct~ ̂  consists of congruences disjoint from 5,; in particular CP is the great- 
est such. 

COROLLARY 4.5. - For 8 ) e ~8~ and p e e(S), the following statements are equiva- 
lent. 

(i) ps,^ oJ. 

(ii) p is a band congruence and pp is a group congruence. 

(i~) ~/p c p,. 

(iv) p is a S-congruence. 

(v) 5,c_p. 

PROOF. - The equivalence of the first four items follows by specializing the state- 
ments of Corollary 4.2 to ,~ = ~. I tems (i) and (v) are obviously equivalent. 

We conclude that  ~5,A consists precisely of congruences containing p so that  
o~5, ̂  = [O ~*, o~]. 

We have seen in Theorem 3.5 that  5,^ is always a (complete) A-congruence but  
need not be a V-congruence. We shall now investigate the relationship of ;/p being a 
homomorphism vs. 5,^ being a congruence. To this end, we need a lemma. 

LEMMA 4.6. - For 5, ~ ~5~ and ),, p e C(S), we have 

(~. n 5,) V (p n 5,) = (~.p V p p )  N 5' 

in the lattice lip (S). 

PROOF. - Firs t  ~ N 5, = )~p O 5,c_ (s V pp) O 5, and similarly p N 5,c ()~p V pp) N 5,. 
Now let 0 e C(S) be such that 2 n t~, p n 5, c 0 n 5,. In view of Theorem 4.1, we have 
2p c 0p and pp c_ 0p so that  2p V pp c 0 whence (2p V pp) n 5'_c 0 n 5,. The assertion of 

the lemma follows. 
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PROPOSITION 4.7. - The map ~ is a homomorphism i f  and only i f  the relation 5"^ is 
a congruence. 

PROOF. - The direct part  is well known. For  the converse, let ;~, p e C(S). Since 
~ps'^ )~ and pp 5"^ p, the hypothesis implies that  ~p V pp 5"^,t V p. This together with 
Lemma 4.6 yields (~ N 5") V (~ A $) = (~ V p) N 5" and Xp is a V-homomorphism; it is 
always a A-homomorphism. 

5. - T h e  r e l a t i o n  8 ~v. 

For  a Green relation ~ we have defined in Notation 2.3 a relation ,2 v by 

~. s v  p , ~  ;~ V 5" = p V $ (,~, ~ ~ e (S ) ) .  

In this and the next section, we shall s tudy a number of properties of this (equiva- 
lence) relation. We have already remarked the obvious fact that  ~,v is induced by the 
mapping XP : C(S) --) II(S). The following notation will be used to characterize the im- 
age of C(S) in II(S) under ZP. 

NOTATION 5.1. - For 5" ~ ~5r let 

IZ~(S)  = { o ~ I z ( S ) l o  = o ~  5"}. 

LEMMA 5.2. - For 5" e ~ and 0 ~ H(S), 0 = 0 ~ $ i f  and only i f  0 = ~ V 5" for some 
~ ~(S).  

PROOF. - For  the direct part, take p = 0 ~ Conversely, 0 = p V 2 implies 

0 = oVS,Do~ O. 

The next result will be used repeatedly. (The formula p V PC = p :~  below is due to 
N. R. REILLY.) 

LEMMA 5.3. - Let p ~ e(S) and 5' ~ ~ .  Then p V ~ = pS~p. 

(i) ap V pcbc~a~ pb ~ (a, b e S). 

(ii) ap V 2 b ~ , a p a b  ~ bpba ~ (a, b e S ) .  

In  addition p V PC = PCppc. 

PROOF. - I f  a PC x p y PC b and g = (x 0 y o)0, then a p gag pcgbg p b. Hence :~:PC c_ p:)~ 
which evidently implies that  p :~  = p V PC. 

(9 If  a p V PC b, there exists a sequence 

apxl  pcX2p ... x~pcb 
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whence 

a O p x  o = x ~ = b o 

so that  a~ ~ Conversely, if a~ ~ then a~a~176 so that  a~V3Cb. The last as- 
sertion of the lemma is now evident. 

ap~Cpb~a~x2ypb for some x, y e S  

~ a p  = xp2yp = b~ 

(1) ~ a ~ b , ~  

ap = (ap)(b~) ~ b,~ = (bp)(ap) ~ 

(2) ~ a ~ a b  ~ b~ba ~ 

Let  x -- ab ~ and y = ba~ ~ Then 

x = ab ~ = a(a~ ~ = a(a~176 -l(a~176 ~ e S y ,  

y = ba~ ~ = (ba-1)(ab ~ e S x  

so that  x ~r y. Now (2) yields a ~ x s y p b so that  a ~r b. Therefore all the above state- 
ments are equivalent and part  (1) shows that  p24 is an equivalence relation. But then 
p V .r = ~ and part  (2) gives the first assertion. 

The formula ~ V (~ = ,o0~p was proved in ([3], Proposition 8.1 and [4], Lemma 

2.1 (v)). 

We shall need the following symbolism. 

NOTATION 5.4. - Let the upper bar denote the permutation (H D)(L R). For $ e ~ ,  
we define a relation <~p by: for e , f  ~E(S), 

e <~Lfc~e = ef, e <<.Rf~e =fe ,  

~ H = ~ L A ~ R ,  e < ~ D f c ~ e e S f S .  

We are now ready for the principal result of this section. 

THEOREM 5.5. - For ~? e G~ The mapping 

Z P : ~ V ~  (~E~(S)) 

is a complete homomorphism of C(S) onto lip (S) which induces ~v. Consequently Sv 
is a complete congruence on C(S). For each ~e C(S), we have ,o~ ~ =  [~p, pP] 

where 

(ii) Indeed, 
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PROOF. - Clearly ~p is a V-homomorphism. In order to show that it is a A-homo- 
morphism, we let 5~c C(S) and remark that the inclusion 

(3) 

holds trivially. For  the opposite inclusion, we let a / ~ ( p  V 8) b so that ap V Sb  for all 
e ~ and consider several cases. 

geo- 

Let ] = 34. By Lemma 5.3(i), we have a~ ~ for all p E ~'and hence a ~ 1 7 6  so 

that a(A.~)  V 34b again by Lemma 5.3 (i). For $ = 2, the argument follows along the 

same lines by using Lemma 5.3 (ii). This proves the opposite inclusion for t~ = 34 and 
-~ = 2 so that ZP is a complete homomorphism for S e {34, 2}; for ~ = 6~ this was 
proved in ([4], Theorem 4.3). In particular, pv is a complete congruence on 
e(s). 

Now let ~ ~ e(S). We consider first the lower end of ~$v. Clearly 

p V 6 ~  (p ;h <~p)* V 8  ~. 

For the opposite inclusion, we let a ~ V 5'b and consider several cases. 
Let t/' = 34. By Lemma 5.3(i), we have a~ ~ which yields (a~176176 (~ <<.Da ~ and 

(a~176176 ~ A <~Db ~ so that 

a~ (h ~D)*(a~176176 O <~D)*b ~ 

and hence a~ N ~D)*b ~ Now Lemma 5.3 (i) gives that a(# N ~D)* V 34b. 
Next let ~ = ~r By Lemma 5.3 (ii), we have apab ~ and b#ba ~ Letting e = a ~ and 

f =  b ~ we first obtain e p ef and fp fe  which yields 

(4) (ef)~ A <~Re, (fe)~ N <~zf. 

The second part of (4) gives (fe)~ A <~R)*fwhence 

(5) 

Furthermore 

(fe)~ f (p  A <~R)*f . 

[(fe)~ ~ = ( fe)- l fe f (e f )  ~ = ( fe) - l fe f  = (fe)~ 

(ef)~176 = (e f ) - l  ef(fe)Of = (e f ) - l  fe ( fe)~  = (e f ) - l  f e f  = (ef) ~ 

and thus ( e f )~176  Now by the first part of (4) and (5), we get 

a.~e (~ 0 <~ R )* (ef)~ 2.(fe)~ (1 <<.R)* f .~b 

so that a(t: A ~<R)* V 2 b .  
For $ e  {34,~}, this proves that pV2'_c(p VI ~<F)*VS' whence the equality so 

that p~v (p O ~<F)*. 

To show minimality of (~fh<~)* ,  we let ;~eC(S) be such that ~ v p  and 
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Let 8, = aC. Then ~ V M = p V pc' and e~ O ~<Df. Hence e ~fwhich by Lemma 5.3 (i) 
and k V 0C = ~ V OC implies that e kf. Thus p N ,< D C ~. Next let 8' = ~. Then ~ V s = 
= ~ V ~e and e ~ A ~< Rf. Hence e p e fand fp fe  which by Lemma 5.3 (ii) and ~ V ~e = ~ V 
impliesf2fe .  But e <-.Rfgivesfe = e so that e),f. Therefore ,o N ~<~ ok. We thus have 
~ < ~ c _ ~  whence ( ~ - < ~ ) * c k  which establishes the minimality of fiR for 
8, �9 {0C, Jg}. The case 8, = Oa follows from ([4], Theorem 4.3 (i)). 

It remains to consider the upper end. Since ~ c ~ V & we have ~ c_ (,o V 8,)0 whence 
V 8, c (~ V 8,)0 V 8,. Conversely, (~ V 8,)0 c ~ V 8, implies that (~ V 8,)0 V 8, c ~ V 8,. 

Therefore ~ V 8, = (~ V 8,)~ p, that is ~8,v (p V 8,)0. If k e e(S) is such that ~ 8,v ~, 
then k c ~ V 8, = ~ V 8, whence ~ c (~ V 8,)o This proves the maximality of ~P. 

As an example of interplay of ~L, ~R and fill, we shall prove only one result. For its 
proof, we need a lemma of independent interest. 

LEMMA 5.6. - For p �9 C(S), we have 

(i) (~ V ~)o A (~ V ~)o = ((~ V ~) N (~ V ~))o, 

(ii) ~ V ac = (p V a:) n (~ V a) .  

PROOF. - (i) Since (? V ~e) ~ c_ p V s and (p V 8{) ~ c p V ~,  we have 

(p V ae) ~ V (~ V a)o c (p V ae) n (p V ~)  

whence the inclusion 

(p V ae) ~ V (p V ~)o _c ((~ V ae) n (~ V ~))o. 

The opposite inclusion is obvious. 

(ii) Let a (~V~e)A ( ~ V ~ ) b .  By Lemma 5.3(ii) and its dual, we have a~ab ~ 
and b~a~ whence a~176176 ~ But then Lemma 5.3(i) gives a~VaCb. Therefore 
(~ V ~) A (p V ~)  c ~ V aC and the opposite inclusion holds trivially. 

P R O P O S I T I O N  5 .7 .  - Fo~" p �9 C(S), we have ~L A ~R : ,oH 

P R O O F .  - Indeed, 

pL A pR = (~ V ~e) ~ A (~ V a )  ~ 

= ((~ V ae) n (~ V a) )  ~ 

= (p V ~c) ~ 

by Lemma 5.6(i) 

by Lemma 5.6(ii) 

= / ~ H .  
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6. - P r o p e r t i e s  o f  the  re la t i on  5 )v, 

We shall now characterize the relation 0 ~v in several ways for which we need the 
following symbolism concerning varieties: 

:~ = ~ = [x o = yO], 

= ~ = [xOy ~ = x~ 

= 0 ~  = [x~  ~ = yO], 

= e8 = [(xyx) ~ = x~ 

groups ,  

left g roups ,  

right groups ,  

completely simple semigroups.  

THEOREM 6.1. - For $ e ~5~ and ~, ~ ~ r the following statements are equiva- 
lent. 

(i) ~ V 2 _ c ~ V ~ .  

(ii) ~ n  ~<~c_~ n ~<~. 

(iii) ~p c_ m,. 

(iv) ~Pc_~ P. 

(v) ~/(~ A ?) _c ~. 

(vi) ?]ez is a ~-congruence for every e e E(S). 

PROOF. - (i) implies (ii). By  hypothesis 2 c 6 V  ~. We let e , f e  E(S) be such that 
e~ N ~<~f and distinguish several cases. 

For  2 =  ~ ,  e ~ f  implies e~V:)Cf so by Lemma 5.3(i), we get e p f  and thus 
e,z N < D f. Let  ~ = 2. Then e ~ A ~< R f so that  e p V 2 f  and e = fe. B y  Lemma 5.3 (ii), 
f~fe  and thus e~ n ~<~f. Finally let ~ = 0% Then 2 c~ V (~ and e~ n <-Hf SO that 
e ~ V (Dr. By Lemma 5.3, we have e ~ x (D y t : f  for some x, y e S, whence e~: (Df~. Also 
e <. Hf implies e~ < uf~ which then gives et: = f: .  Therefore e p N ~< H f" 

(ii) implies (iii). This follows directly from the expression for ()p. 

(ffi) implies (iv). The expression for ()P is clearly order preserving. Conse- 
quently 

~P = ()~p)P c (~p)P = ~P. 

(iv) implies (v). The hypothesis implies that  ~ c APe pPc  ~ V O ~. Let  a A b. For  
2=3~:,  by Lemma 5.2(i), we get a~ ~ which together  with a~163 ~ implies 
a(;~ A ,~) 3CbC~, A p) so that  2/(+~ A ~) c 0C. For  $ = s by Lemma 5.3 (ii), we get  a~ ab ~ 
and b,o ba~ which together with a ~ ab o and b ~ ba~ gives 

a(~ A p) = a(~ A ~)(b(2 A ~))o, b(Z A ~) = b(2 A ~)(a(;( A ~))o 

so that  a(), A ~).~b()~ A ,~) which proves that  2/(2 A ~ ) c 2 .  Finally let 0 ~ = 0~. As 



132 MARIO PETRICH: The Green relations approach to congruences, etc. 

above, a p V O) b implies ap 0) bp; we also have a), = b;~ so that  a(~ A p) 0) b(;~ A p). Con- 
sequently ;~/(;~ A .~) _c O). 

(v) implies (vi). Let  e , f �9  E(S) be such that  e ;(f. Then 

e(s A ~) ;tl(;~ A p) f(), A ,0) 

and the hypothesis implies that  e(), A p) 9f(; t  A ~). I f  9 = 3C, then e(~ A p) = f(7 A ~) 
whence e ~ f  and thus ~ ]e~ is a group congruence. If  9 = 2, then e(;~ A ~)s A ~) 
whence e(), A p) = eO~ A ~) f ( s  A ~) so that  e ~ e fand  ~I~. is a left group congruence. I f  
9 = Q, then e(;~ A ~) Of(;( A p) so that  

e(;~ A p) = x(;~ A ,~) f(;~ A ~) y(;~ A p) 

for some x, y �9 S whence e ~ xfy and analogously f~ uev for some u, v �9 S which proves 
that  ~l~ is a completely simple congruence. 

(vi) implies (i). We let a 2  b and consider several cases. I f  9 = ~ ,  then a ~ �9 b~ 
so, by hypothesis, a~ ~ which by Lemma 5.3 (i) yields a~V3Cb. If  9 =  s we simi- 
larly get a~176 ~ and b~176 ~ so that  

a~eaO paO b~ a~ s176 a~ ~b~ s 

and thus a p V s  If  9 = a~, then we similarly get a~176 and b~176 for some 
x, y, u, v �9 S whence 

a @a~ xb~176 bOy @(ua~176 ~ (ua~ a ~ @ua~ b~ 

and thus a p V (~ b. 

Therefore, in all eases ~ c_ ,~ V 9 whence ~ V 9 c p V 9. 

As an immediate consequence, we have the following characterization of the rela- 
tion ~v. 

COROLLARY 6.2. - For 9 e ~ and ~,~ e C(S), the following statements are 
equivalent. 

(i))~9 v p. 

(ii))~ r] ~<F = ~ r] ~<F. 

(iii) i/(~, A p), ~ / ( i  A p) _c 9. 
v 

(vi) ~ la  and ~]~ are 9-congruence for every e E E(S). 

The 6 ~v-classes of the equality relation z and the universal relation ~o can now be 
easily characterized. Compare the next corollary with ([3], Theorem 2.18) for 9 = 
and with ([3], Corollary 2.21) for 9 = :~ 

COROLLARY 6.3. - For $ � 9  g~ and ;~,,~ �9 C(S), the following statements are 
equivalent. 
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( i)  ~ 8,v ~. 

( i i )  p n < ~ = ~. 

(ii i)  p _ c &  

(vi)  ~ is over ~'. 

PROOF. - This follows from Corollary 6.2 by letting ~ = ~. 

We conclude that  ~80v consists precisely of congruences contained in 8 0 so that  
~80v = [~, 8,0 ]. 

COROLLARY 6.4. - For 8" e ~ and ,o e e(S), the following statements are equiva- 
lent. 

( i)  p 8,v ~. 

(ii) ~<~c_ ~. 

(iii) o~/~ c 8,. 

(vi) ~ is a ~-congruence. 

(v) ~ V S , =  co. 

PROOF. - The equivalence of the first four items follows from Corollary 6.2 by let- 
ting ;~ = o~. Clearly (v) is a reformulation of (i). 

In particular, ~ p  is the least congruence 0 on S for which 0 V 8, = co. 
We shall now characterize the 8,V_class of ~ .  To this end, we need some prepara-  

tion which is of independent interest.  

LEMMA 6.5. - For $ ~ ~8~, ,~ e e(S) and a, b e S, have 

a~ V 80b<~a~8,bp. 

PROOF. - Indeed, by Lemma 5.2, we have 

ap V M b ~ a ~  pb~ ~ ( a p )  ~ = (bp)~ ~a~OCbp , 

a~ V ~ b c ~ a ~ a b  ~ b~ba ~ 

~ a p  = (a~)(b~) ~ b6 = (bp)(a~)~ 

ap V ( ~ b ~ a p x ( ~ y p b  for some x, y ~ S ~ a ~ ( ~ b p  

ap = (x~)(b~)(y~), b~ = (up)(ap)(vp) for some x, y, u, v e S 

a p xby, b p uav 

~ a ~ x 6 9 b  as at the end of the proof of Theorem 6.1. 
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COROLLARY 6.6. - For 8' �9 ~ and p �9 C(S), we have 

p V 5) is a congruence r 5" is a congruence on S l y .  

PROOF. - Using Lemma 6.5, for any a, b, c e S, we get  

ap V 5 ) b ~ c a ~  V 5"cb, 

ff and only ff 

ap 5) b~ ~ (c~)(a6) 5)(c~)(ap), 

whence the assertion. 

We can now give the desired characterization. 

acp V 5)bc 

(ap)(c~) 5"(bp)(c6) 

PROPOSITION 6.7. - For 8 ) e ~ and p e C(S), the following statements are equiva- 

lent. 

(i) ~ 5)v 5".. 

(ii) ~VS)= 5"*. 

(iii) ~ c_ 5)* and ~ V 5" is a congruence. 

(iv) p c_ 5)* and 8' is a congruence on SIp. 

PROOF. - I tem (ii) is a reformulation of item (i). I tems (iii) and (iv) are equivalent 
by Corollary 6.6. I tem (ii) trivially implies item (iii). 

(ffi) implies (ii). Firs t  ,~ = 5"* implies p V 5"c_ 5)*. Conversely, since 5"c_~ V 5" 
and the lat ter  is a congruence, we also have 5"*c p V 5". 

7. - P r o p e r t i e s  o f  5"^- a n d  5"V-classes a n d  o f  t h e i r  ends .  

The main result  here provides an isomorphism of the par t  of a 5)^- or 5"V_class 
above a given congruence ~ and a certain 5"^- or 5"V-class of the equality congruence 
on S/p. We also study greatest  congruences over ~ and least W-congruences for some 
familiar varieties ~. This is illustrated by two diagrams. Recall the notation [~) from 

Section 2. 

THEOREM 7 . 1 . -  Let 5"e ggr + e { A , V }  and p e C(S). Then the mapping 

~: ;~ ~ ;~tp (~ ~ ~ +  n [,~)) 

is an isomorphism of p5"+D [~) onto CSlps" +. 

PROOF. - I t  is well known and easy to prove that  the mapping 
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is an isomorphism of [~) onto C(S/,o). I t  thus suffices to prove that  for any ~ e [~), we 
have ~ e ~  + if and ony if ~ / ~ � 9  Ss#g '+, or equivalently, that  ~ ' + p  if and only if 
~/~ ~+ ~s/~. Let  ~ �9 [,~). 

Assume that  2 t? ̂  ~ so that  2 N ~ = p A 8~; we must show that  ~/p ,Q ~ = ~s/~. Let  
a, b ~ S be such that  ap~/p A :~bp. Then a 2  b and, by Lemma 6.5, a~ V 2b.  I t  follows 
that  ab-12b ~ so that  a b - l s  2. Now ~ n ~ = ~ 2  implies that  
a b - ~  (ab-1 )2 and thus ab-1 �9 ker~. In order to show that  a~ b ~ we consider several 
cases. 

If  $ = 2C, then a~ V Mb and hence a~ ~ by Lemma 5.2(i). 
Let  ~ =  ~. Then a ~ V 2 b  and hence, by Lemma 5.2(ii), a~ab ~ and b~ba ~ Fur- 

ther, aJk b implies that  ab;~ n ~b~ which by ;~ N ~ = ~ n ~ implies that  ab~b~ I t  
follows that  a ~ ab o ~ b o ab o whence a,o b o a and finally a o ~ b o a o. Since by the above also 
b~ ~b~ ~ we conclude that  a~ ~ 

Finally, let $ = 69. Then a ~ V d) b so that, by Lemma 5.2 (ii), a ~ x d~ y ~ b for some 
x, y e S. Now a ;k b implies ab ~ rq d~ ba which by ;~ R $ = ~ A $ implies that  ab ~ ba. 
Hence xy~yx .  Let  T = Dx = D~, ~ = ~1~ and T = T/O. Then xy  = yx  so that  53s I t  
follows that  x~ ~ whence x~ ~y ~ and finally a~ ~b ~ 

We have proved that  in all cases a~ ~ which together with ab-~e  ker~ by Lem- 
ma 2.1 implies that  a ~ b. Therefore a~ = b,o, as required. 

Conversely, assume that  ) , / ~ ^  ~s/~, that  is ,~/~ A ~ =  ss/~; we must show that  
;~ $^ ~. Le t  a ;k n s b. Then a~ ;~/p rh sb~ and thus, by hypothesis, ap ~s/~b~ and hence 
a p b. Consequently ,~ ~ ~c_~ and since ,~_~, we obtain )~ ~ ~ ' = ~  A ~', that  is 
;k~^ p. 

Now suppose that  ;~ t? v ~ so that  ), V ~ = ~ V $; we must  show that  'V~ ~,v ~s/~. Let  
a, b e S be such that  a~ ;k/~ b~. Then a ;~ b which together with ;~ V $ = ~ V $ implies 
that  a~Vt?b .  By Lemma 6.5, we get a~t?b~. Hence ;k/~_cS' which implies that  
~/p V $ = ss/~, that  is ~/~ sv  SSl~. 

Conversely, assume that  ,~/~ ~v s~/~, that  is ,~/~ _c ~; we must show that  ;k ~,v ~. We 
let a ;k V $ b and consider several cases. Recall that  ;k _~ ~ so that  ), A d' ~ ~ n $. 

Let  $ = 2C. Then a ;k V ~ b  and thus a~  b ~ by Lemma 5.2 (i). Hence (ap)~ (b~) ~ 
which together with k/~ c_ ~ implies (a~)~ ~(b~) ~ so that  a~ b ~ By Lemma 5.2 (i), we 
get a ~ V ~ b. Consequently ~ V ~ c ~ V ~.  

Assume next that  ~ ;~ ~ .  By Lemma 5.2, we have a ~ x ~ y ~ b for some x, y e S. 
Hence 

which together with 2/p _c ~ gives ap $b~. Now Lemma 6.5 yields a~ V ~b. Conse- 
quently 2 V $ _c ~ V $. 

Therefore in all cases ~ Sv~ as required. 

COROLLARY 7.2. - For F �9 ~ ,  ~ �9 {p, P} and p �9 C(S), we have 
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( i )  = 

( i i )  p = ,o~ ~ ( ~ S l ~ )  ~ = ~Sl~. 

F or  a small set of varieties ~, we can now easily describe the greates t  congruence 
on S over ~ as well as the least Q-congruence on S. This will be achieved in the next 
two propositions. Beside the notation for varieties introduced at the outset of Sec- 
tions 4 and 6, we shall als0 need 

2 ~  = [xy  = x] ,  

5 ~  = [xyx  = x] ,  

left zero semigroups,  

rectangular  bands .  

Compare the next lemma with ([3], Corollary 3.10). 

LEMMA 7.3. - The .following s ta tements  concerning ~ e C(S) are equivalent .  

(i) p is  over 2~ .  

(iii) ~ n :~ = ~, ~ c 0). 

PROOF. - Taking into account tha t  2Z = ~ n 2~ = 2~t~ N C8, we obtain 

p is over 2 ~ p  is over both ~ and 2~ 

~ is over both ~ 5 ]  and C8 

By Corollary 4.4, we have 

,o is over ~ p n ~ = z ,  

is over 2 ~  r ~ n ~ = ~, 

and by Corollary 6.3, we have 

,z is over 2~  r ~: _c 2 ,  

p is over C 8 r  c_ 6~. 

The assertion of the lemma follows by combining these statements.  

Compare item (i) of the next lemma with ([3], Theorem 3.8). 

LEMMA 7.4. - Let  ~ e C(S). 

(i) ~ is over ~ r ~ n :)c = ~, ~ c (~. 

(ii) p is over 8 r ~ n 2 = ~ n 5~ = s. 
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PROOF. - (i) Taking into account tha t  ~ 3  = ~ n C8, we get  

is over ~ 3  r  is over both ~3 and ~8, 

is over  t ~  r  n 0 C -  ~ by  Corollary 4.4, 

is over ~8r _c 0) by  Corollary 6.3 

and the assert ion follows. 

(ii) Taking into account tha t  8 = 2~83 n ~ 8 3 ,  we get  

is over  8r is over both 2 ~ 3  and ~ 3 ,  

is over  2 t ~  r p n ~ = 

is over  ~ r ~ n ~ = 

and the assert ion follows. 

by  Corollary 4.4 

by  the dual of Corollary 4.4 

NOTATION 7.5. - For a variety ~9 of  completely regular semigroups, denote by ~ the 
greatest congruence on S over ~, i f  it exists. 

LEMMA 7.6. - Let "EL and "V be varieties of  completely regular semigroups and as- 

sume that ~ ~ , z v and V u n v exist. Then z ~ A z v =  Z ~ n ~  

PROOF. - Since ~ n v in over  %t n ~?, it is also over both %t and ~ so that  ~ n v c z~ 
and Z ~ n v C  zv  whence r ~ n v _ C z ~ A  zv. Conversely, z~ is over  ~ and zv  is over ~ so 
that  z~ A r v  is over  ~ n ~ whence z~ A ~ c z~ n ~. 

PROPOSITION 7.7. - The greatest congruence on S over 

48 e h , 

~ Z8 e r ,  

S ~S gd ~ ~ l / ~  ~r ,  

C3 ZS $ D = (~ , 

~J3 

48 sL  

~8 sH = 

~8 sh A 

zs ~h A 

~0, 

~0, 

~L :. ~rA ~D, 

sD. 

PROOF. - This follows easily from Corollaries 4.4 and 6.3 and Lemmas  7.3, 7.4 
and 7.6. 
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The above proposition uses the upper  ends of the 2^ -  and $V_classes of ~ and is 
based upon (greatest) congruences over certain varieties ~ of completely regular  
semigroups. We now consider the dual situation which will use the lower ends of the 
2^ -  and FV-classes of ~ and will be based upon (least) U-congruences. 

LEYIMA 7.8. - The following s tatements  concerning ~ e e(S) are equivalent. 

(i) ~ is a s 

(ii) :)C c_ ~, ~ V ~ = o~. 

(iii) ~_c~, ~ V @ =  o~. 

PROOF. - Taking into account that  s  = ~ N ~g = s  N eS, we obtain 

is a s  is both a ~-  and a 2g-congruence,  

~ p  is both a s  and a eS-congruence. 

By Corollary 4.5, we have 

and by Corollary 6.4 

is a R-congruence ~* ~ c ~, 

is a ~ - c o n g r u e n c e  ~ 5~ c_ ~, 

is a J2g-congruence ~ ,o  V ~ = co, 

,~ is a CS-congruence r V 59 = oJ. 

The assertion of the lemma follows by combining these statements.  

LEMMA 7.9. - Let  ~ e C(S). 

(i) ,~ is a 5r <~ :~ c ~, ~ V 59 = co. 

(ii) ,~ is a 8-congmtence r @ c ~. 

PROOF. - (i) Taking into account that  5 ~  = ~ A eS, we get  

is a ~ - c o n g r u e n c e ~  is both a :8 and a eS-congruence,  

is a 03-congruence ~ :)C c_ ~ by Corollary 4.5, 

is a eS-congruence r  \ /59  = ~o by Corollary 6.4 

and the assertion follows. 

(ii) I t  is well known that  59 is the least semilattice congruence on S. 

NOTATION 7.10. - For  a variety  ~ of  completely regular semigroups, denote by Ov 

the least ~?-congruence on S. 

I t  is well known that  for varieties ~t and ~, we have 0n A 0n = 0n v v. This can be 
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used for describing 0~v~ ~ when 0~ and 0v are known. We thus state briefly some of 
these -basic 0v,. 

P R O P O S I T I O N  7.11. - The least 

~-congruence ~s o~h = ~ * ,  

25~3-congruence zs O~r = ~*  , 

8-congruence ~s oJ d = (J~, 

CS-congruence ~s Og D , 

2~-congruence ~s Og L , 

~-congruence ~s o9 H . 

The following result will be useful in drawing the diagrams of some of the congru- 
ences we have encountered. 

LEMMA 7.12. - Let  2, �9 ~ and ,t, ~ �9 C(S) be such that ~ N 2, = ~ and ~ V 2, = oJ. 
Then ~ c ~. 

PROOF. - Let a~  b. Then a b - l ~ b  ~ so that ab-1~  N 2,(ab--~) 2 which by hypothesis 
implies that ab -1 ~ E(S) .  Let e = a ~ and f =  b ~ The hypothesis implies that e p V Sf. 
In order to show that e ~f, we consider several cases. 

If $ = ~ ,  then e ~ V ~ f  whence e ~ f  by Lemma 5.2(i). Next let ~ = 2 .  Then 
ef~ n 2 f e f  which by hypothesis implies that e f = f e f .  Also by hypothesis e~ V 2 f  
which by Lemma 5.2 (ii) implies that e pe f  and f p f e .  Therefore e p e f = f e f ~ f .  

Finally, let 5' = 0~. Then ef,t N O~fe which by hypothesis yields e f = f e .  Also by 
hypothesis e~ V ~ f  which by Lemma 5.2(iii) implies that e ~ x ( g y p f  for some 
x, y e S .  Hence x ~ 1 7 6 1 7 6 1 7 6  which gives x ~  ~ since x~ ~ But then 
epf. 

In all cases we have a~ b ~ which together with ab -1 �9 E(S )  c ker~ by Lemma 2.1 
implies that a p b. Therefore 2 _c ~. 

COROLLARY 7.13. - For  2' ~ ~ we have 

sPCo)p, ~P = 2 ,0C~,  = O)p. 

PROOF. - The first inclusion follows directly from Lemma 7.12. The first equality 
follows from Theorem 5.5 and the second from Theorem 3.5. 

Notice the duality of the statements in Corollary 7.13. In Diagram 1, we apply 
Notations 7.5 and 7.10. Full lines indicate true meets and joins. 
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Os = o9 d .= r = TC S 

0 ~  = ~o 1 / ~ ,  o9 r : 0 ~ : ~  

" / \ \  / I 
I \ / I 
I x / \ / I 
I \ / I 

" % /  
(oH = % ~ = vc~ 

/ ' , ,  

0,1D OCS ~ ~ ~ ~ ~ ~ 

Cd= ~'S 

Diagram 1. 

8. - A d i a g r a m  a n d  a n e t w o r k .  

The diagram in question represent the A-subsemilattice of H ( e ( S ) )  generated by 
the set 

u {5," 15,  

The network announced is obtained by fLxing 5' E ~ and ~ H e(S) and then forming 
the sequence ~p, pp, ~pp, ppp, . . . .  We thereby obtain a sublattice of e(S). Particularly 
interesting networks are obtained by letting ~: = ~o and varying 5" over all of ~t~. 

PROPOSITION 8.1. 

(i) F o r  5" H GS~, we  have  5"^ n 5"v = r 

(ii) ~^ N ~ ^  =0 )  ^. 

(iii) .e v Iq ~ v  = 3C^. 

PROOF. - (i) If 2 5"  ̂ (~ 5"v P, then b y  Corollaries 4.2 and 6.2 and Lemma 4.3, we 

get, 

),/(2 A ~), ~/(,k A ~) c p~ N 5" = 
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which evidently implies that s = 6- The case ~ = (~ forms the content of ([4], Corol- 
lary 3.2). 

(ii) We must show that for any ),, 6 e C(S), 

(6)  n2=pn2, ~ N ~ = ~ N ~ c ~ i N 0 ) = 6 N @ .  

Zf the left hand side of (6) holds, then by Lemma 3.6 (ii) we obtain 

n (D = (~, n v n = (6 n z ) v ( 6  n =6  n 

The opposite implication in (6) is trivial. 

(iii) The argument here follows along the same lines using Lemma 5.6 (ii). 

Proposition 8.1 (i) indicates that a congruence 6 on S is uniquely determined by its 
#^- and SV_classes. It  thus should be possible to express 6 by means of 6 N t? and 
6 V $. This we do in the next result. 

PROPOSITION 8.2. - Let 6 e C(S) and a, b �9 S. Then 

a 6 b c ~ a ( 6 V ~ ) ~  ab-1 e ker(  6 n ~C)* 

<~a(6 V s176 

~ a 6 V  @b, 

a~ R .r176176 ab -1 E ker(  6 n s 

a b 6 A ~ b a ,  a b - l e  ker(6 n @). 

PROOF. - Let a6 b. Then 6 c_ (6 V ~)o and thus a(6 V :~)~ Also ab -16b~ whence 
ab-16 n %(ab-1) 2 so that ab -1 e ker(  6 n ~c)*. 

Let a(6 V PC)~ and ab-1 ~ ker(p n ~)*. Then a6 V 3Cb so, by Lemma 5.2 (i), we 
have a~ ~ whence a~176176 Since we always have a~163176176 it follows that 
a~ ns176176  Since M e 2 ,  the hypothesis also implies that a(6Vs176  and 
ab-1 �9 ker(  6 n s 

Let a(  6 V s176 a~ n s176176 and ab-1 e ker(  6 n s By Lemma 5.2(ii), we 
have a~176 ~ and b~176 ~ By hypothesis, we have a~176176176176 whence 
a~176176176176176176 Also (~ n s c p so that ab -1 e ker6, which together with 
a~ ~ yields a6b by Lemma 2.1. 

The equivalence of a 6 b and the last expression is the content of ([4], Lem- 
ma 3.1). 

Of course, Proposition 8.2 actually implies Proposition 8.1 (i). In Diagram 2, we 
represent the A-sublattice of H(c(S)) generated by {~?^ ISe  ~ }  U {t? v 15~e G~} 
using the relations established in Proposition 8.1. 
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~1~ A 
d) V 

d) A U ~v 
Diagram 2. 

The next lemma provides a further interesting relationship among the notation 
introduced. 

LEMMA 8.3. - F o r  2 e ~ and ~ e ~(S), we have 

~--lO p A ~ P - -  ~p V ~p* 

PROOF. - Indeed, 

(pP A,o P) F1 2 = (pP N 2)  A ~P = (~ r-] 2) A pP = p N 2 ,  

(pPAp P)V 2_c~PV ~'= pV ~'_c(~ pA,~ P) V 2 

and equality prevails. Now Proposition 8.1(i) implies that ~P A ~P = ~. The argument 
for p = @p V ~op follows along the same lines. 

The lattice generated by a min ~P-network is described by our next result. Mono- 
tonicity of the operators sub p and sub P plays an essential role in its proof. 

THEOREM 8.4. - For ~P e G2~, p e C(S) and n >t O, we have 

(i) p(pp)n A p(pp)n : ~(pp)~p V ~(pp).zp, 

(il) ,Q(ppy~p V ~(pp),p ~- ~(pp)n+l A p(pp)n+l, 

where  ~( )o = ~. 

P R O O F .  - Let a = pP  and b = Pp. 

(i) The case n = 0 amounts to p = pp V pp which was established in Lemma 8.3. 
Hence assume that n > 0. By Proposition 8.1 (i), to show the desired equality, it suf- 
fices to prove that the two sides of the given equation have the same intersections and 
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joins with 5,. Indeed, on the one hand, 

( e~  A ~b~) f~ 5, = ~ (~ (~b~ n 5,) 

= pa n N ( P b " - ' P  ~ 5,) 

= (pa,~Apb,,- ,p)  f"} 5, 

= p a~ fq 5 ' 

and on the other hand, 

(~Oa~ p V ~Obnp) r"} ,_~ ~anp A ,~ = ~Oan ~ t.~ 

(lOanp V [~bnp ) ('~ 5 , C  (~Oan p V ~b n) ('~ 

= (~,, , ,p) n 5, 

= pa-N 5, 

and therefore 

since ~ p  = ~pb ~ C pbn , 

by definition of sub p 

and on the other hand, 

(pa',p V ,ob,,p) V ~ = pa~p V (,~b',P V 5,) 

= ( ~ -  V p b '~) V 5, by definition of sub P ,  

= ~bn V ~? since p~p = ,zPpb~ -CPb~ 

and therefore 

(8) ( ~ p  V ~b,~p) V 5' = ( ~ p  V ~ p )  V 5,. 

The desired equality follows by (7) and (8) in view of Proposition 8.1 (i). 

(ii) The argument here is of the same general type as above and is omitted. 

DEFINITION 8.5. - F o r  5' e ~ and  ~ e C(S), we call the set { p, ~p, pp, ,zpp, ppp, ... } 
the min 5,-network for ~. 

since [~bnp = ~pa ~ C_~an , 

by definition of sub P 

by definition of sub p 

since pbn-~p = ~pa~-I  D_ pa n , 

by definition of sub p 

(7) (p~ A,:b~) N 5,= (~np V~b~p) N 5'. 

Further, on the one hand, 

(p~p A p~n) V 5,_c ~b~ V 5,, 

(Pa~ A ~b~) V ~_~ ( ~  A p~p) V 5, 

: ~bnP V t~ 

= p b ,  V s, 
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Now the min S-network for ~ together with the meets and joins provided by Theo- 
rem 8.4 forms the sublattice of r generated by this network. Its diagram has a 
very simple form as follows. 

P 

PP ~ ~P 

' % P ~  ~PP 

As an example of min S-networks, we consider ~ = oJ. To this end, we use Nota- 
tion 7.10 and in addition we need the following varieties: 

g3~ = [(xy) ~ = (x~ yO)0 ], cryptogroups (bands of groups), 

5 ~= [x = y], trivial semigroups. 

The min ~-network of co: 

09 = 06~ ~ r = 0 ~  ~0 h = 083 ~ r = Og3~, . . . ,  

the min oC-network of o): 

the min 0~-network of ~: 

03 =- O~T , 09 L : 02~ , 091 : Oa~$,  ... , 

co = O~ 
/ N  

OCS = co D ~ ~ 

tODd = codD ~ $ 

COd ~ OS 

By monotonicity, a min 0~-network has at most 4 vertices for any p ~ r 
One may also consider the following networks: 

~, Pl,  ~r,  ~~ ~rl, "'" , 

~, ~L ,  ,~R~ ,OLR, ~RL~ . . . .  
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9. - Re la t ionsh ip  with  kernels  and (left  and right)  traces. 

For a congruence ~ on a regular semigroup, the left and the right traces of ~ were 
defined in ([2], Definition 4.1) by 

l t r ~ = t r ( ~ V ~ )  ~ r t r ~ = t r ( ~ V ~ )  ~ 

respectively. The following relations on the congruence lattice play an important role 
in the study of congruences on (completely) regular semigroups: 

)~K~c~ker~ = ker~, 2 T ~ t r 2  = t r6 ,  

~ Tt~c~ltr~ = ltr~, ~ T~  r = rtr,~. 

For numerous properties of these relations, see [2] and [3]. We mention here only that 
K is a complete A-congruence, but generally not a V-congruence, whereas the others 
are all complete congruences on ~(S). Going back to our completely regular semi- 
group S, we have the following relationships with some of the concepts studied so 
far. 

Compare the next proposition with ([3], Theorems 6.3 and 6.12). 

PROPOSITION 9.1. - K = :~^, T = :~v, T~ = 2v,  T~ = ~v.  

PROOF. - Let 2,# e C(S). Assume that )~K~. Let a 2  ~ ~Cb. Then ab-1E  ker~ and 
a ~  b ~ The hypothesis implies that a b - l e  ker,o which together with a ~  b ~ by 
Lemma 2.1 implies that a p b. Hence ~ N M c p A ~ and equality follows by symme- 
try. Therefore 2 M^ ~. 

Conversely, suppose that 2 2C ̂  ~. Let a e ker L Then a ~ N ~ a  ~ which by hypothe- 
sis yields a # a  ~ so that a e ker#. Thus ker)~ c ker# and equality follows by symmetry. 
Therefore ;~ K#. 

Suppose next that ~ T p. Let a 2 V 2C b. By Lemma 5.2 (i), we have a~ b ~ which by 
hypothesis yields a~ b ~ Again by Lemma 5.2 (i), we conclude that a# V ~ b .  Conse- 
quently ), V ~ c ~ V ~ and equality follows by symmetry. Therefore ~ ~ v  P. 

Conversely, assume that , t ~  v #. Let e tr,~f. Then e,t V :~f  so by hypothesis 
e~ V :~'f. Now Lemma 5.2(i) implies that e ~ f  so that e tr&f. Thus t r2  c trp and 
equality follows by symmetry. Therefore 2 T#. 

It is proved in ([3], Theorem 6.3) that Tr = ~v  (in our present notation) in the 
wider context of regular semigroups. That T~ = s  now follows by duality. 

Beside establishing a connection between the relations $^ and ~v for $ e ~ with 
the relations K, T, Tz and Tr, and thus between the Green relations approach to con- 
gruences and the kernel-trace approach for completely regular semigroups, the above 
proposition may serve as a source of further ideas as to possible properties of our rela- 
tions t? ̂  and t~ v. In'fact, many properties known for the relations K, T, Tl, Tr auto- 
matically hold for M^, ~C v, 2v and ~v  in view of the above proposition, but they could 
possibly be extended to either ~^ or ~v. Somewhat in the opposite direction, one 
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could t ry  to extend the results we have seen here for congruences on completely regu- 
lar semigroups to the more general context of regular  (or only inverse) semi- 

groups. 
In addition to the identifications in Proposition 9.1, we also have that  U = ~ v  and 

thus V =  0) v A MA in the notation of[3]. Finally ~ ^  (1 ~ v  = ~ by Proposition 9.1 

since K Q T = r These results shed fur ther  light on Diagram 2. 
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