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A Critical Point Theory for Nonsmooth Functionals(*)(**). 

MARCO DEGIOVANNI - MARCO MARZOCCHI 

Summary. - A  new generalized notion of Il df(u)1[ is introduced, which allows to prove several re- 
sults of critical point theory for continuous functionals. An application to variational in- 
equalities is shown. 

1.  - I n t r o d u c t i o n .  

Several results of classical critical point theory [17, 18] have been recently extend- 
ed to suitable classes of non-differentiable functionals. Of course a basic tool for such a 
development is constituted by a generalized notion of Ildf(u)ll which allows to formu- 
late the notions of critical point and Palais-Smale sequence. 

The case of locally Lipschitz continuous functionals on Banach spaces has been 
treated in [4]. The notions of critical point and Palais-Smale sequence are formulated 
in terms of the Clarke's subdifferential af(u)[5]. 

By means of the notion of slope I Vfl (u), introduced in [9], a critical point theory 
for certain functionals defined on Hilbert spaces (see Definition 2.13) has been devel- 
oped in [8,10,11,16]. 

The case of functionals on Banach spaces of the form f = fo + fl with fi  convex and 
f~ of class C 1 is treated in [19]. In this case it is equivalent to use the Clarke's subdif- 
ferential or the slope, in order to state the notions of critical point and Palais-Smale 
sequence. 

Let us point out that a general critical point theory for continuous functionals can- 
not be developed by means of the mentioned notions of Clarke's subdifferential and 

o _ _  

slope. Consider in fact fi R --~ F~ defmed by f ( x )  = x - ~ f ~ .  The function f verifies 
the Palais-Smale condition in any reasonable sense and has a behaviour like in the 
Ambrosetti-Rabinowitz mountain pass theorem[l]. Of course the mountain pass 
point should be the origin, but a f ( 0 ) =  0 and IVfl(0)= + ~ .  

(*) Entrata in Redazione il 6 febbraio 1992. 
Indirizzo degli )L/L: Dipartimento di Matematica, Universit~ Cattolica, Via Trieste 17, 

1-25121 Brescia, Italia. 
(**) Lavoro eseguito nelrambito di un progetto nazionale di ricerca finanziato dal Ministero 

dell'Universith e della Ricerca Scientifica e Tecnologica (40% - 1989). 



74 M. DEGIOVANNI - M. MARZOCCHI: A critical point theory, etc. 

The aim of this paper is to propose a new generalized notion of Ildf(u)li , i.e. the no- 
tion of weak slope (see Definitions (2.1) and (2.4)), which allows to develop a critical 
point theory for continuous functionals (see Theorems (3.7), (3.9), (3.10) and (3.12)). 
This new notion is conveniently related with the previous ones (see Theorems (2.11), 
(2.14), (2.17) and (3.13)), so that the results of[4,19,20] are implied by our 
results. 

From the technical point of view, we take advantage, as in [19, 20], of the Eke- 
land's variational principle [2, 12], which allows us to reduce the global problem to a 
local one. 

Let us point out that a general critical point theory for lower semicontinuous func- 
tionals seems not to be possible. Consider f: R ~ R defined by f (x)  = x + 1 for x < 0 
and f (x)  = x for x I> 0. In this case x = 0 should not be considered as a mountain pass 
point, because the value f(0) is not correct. However at the end of section 3 we sug- 
gest a procedure to treat at least some classes of lower semicontinuous functionals 
(for instance, that of[19]). 

In the last section we show an application to an eigenvalue problem for elliptic 
variational inequalities. If  the derivative g' of the nonlinearity g is subjected to a suit- 
able lower estimate, the problem has been already solved in [3, 6, 7,15]. By means of 
our techniques, we give a result under a natural estimate on Igl. 

2. - The  w e a k  s lope .  

Throughout this section X will denote a metric space endowed with the metric d. 

(2.1) DEFINITION. - Let f." X--~ R be a continuous function and let u e X. We denote 
by I dfl (u) the supremum of the ~ �9 [0, + ~[  such that there exist ~ > 0 and a continu- 
ous map 

:)C: B(u, 8) • [0, 8] - - ,X 

such that 

Vv~B(u ,  8), Vt~[0 ,8 ] :  d(~(v,t) ,v)<<.t ,  f ( ~ ( v , t ) ) < < . f ( v ) - z t .  

The extended real number ]dfl (u) is called the weak slope of f at u. 
Let us recall a notion from [9]. 

( 2 . 2 )  D E F I N I T I O N .  - Let f: X--* R U { + Qr } be a lower semicontinuous function. We 
define the function 

~I: ep i ( f )  -* R 

putting 

epi ( f )  = {(u, ~) e X x R: f (u)  ~< ~} and ~f(u, D = ~. 
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In the following epi(f) will be endowed with the metric 

d((u, E), (v, t~)) = (d(u, v) 2 + (~ - ~)2)i/2. 

Of course epi (f)  is closed in X x R and ~f is Lipschitz continuous of constant 1. 
Consequently ]d~f ] (u, ~) ~< 1 for every (u, ~) e epi (f) .  

(2.3) PROPOSITION. - Let fi X ~ R be a continuous function and let u ~ X, ~ e R. 
Then 

I dfl (u) 

]d~fi(u,f(u)) = ~r + (Idfl(u)~ 
1 

if Jdfl(u) < + ~ , 

if idf l (u)  = + ~ ,  

IdYll(U, ~) = 1 if f (u)  < ~. 

PROOF. - We first demonstrate that 

Id~fl(u, f(u))  >i { 

I dfl (u) 
if I d f l (u)  < + 

~/1 + (I dfi (u)) 2 

1 if Idfl(u) = + 

If Idfl(u)= O, it is true. Otherwise, let 0 < ~ < ]dfi(u) and let ~ :  B(u, ~ )x  
x [0, ~]--~X be a continuous map as in Definition (2.1). 

Consider :~: B((u, f (u)) ,  r x [0, ~] --. ep i ( f )  defined by 

x ( ( v ,  ~), t) = x v, ~ , ~ - 

Since 

(())  t <~f(v) ~ t < ~ t ~  - - t ,  f :)C v, ~ ~ /1+~2  

actually we have ~((v, ~), t) e epi (f) .  
Of course ~ is continuous and 

d(X((v, ~), t), (v, ~)) = t ~ t ~ 2 1 1 / 2  

~< t2 
1 + ~  2 

~.2 t 2 

i + o  -2 
) i12 ---- t. 
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Furthermore  we have 

~f(:~((v, t~), t)) = ~ - t = ~/(v,~)  ~ _t .  

I t  follows that  

IdYll(u, f(u)) >I 
~V/1 + ~2 

from which 

I d~fl(u, f(u)) 
I dfl (u) 

~/1 + (I dfl (u)) 2 
if Idfl(u) < + 

and 

IdYll(U, f (u))  = 1 if t dfl(u) = + :r 

We now demonstrate that  

I d~iI(u,  f (u))  <<. 
I dfl (u) 

~/1 + t! dfl (u)) ~ 
if I d f l (u)  < + 

I f  I dGf I(u, f (u))  = 0,  it is true. Otherwise, let 0 < ~ < Idyll(u,  f (u))  and let 
~: B((u , f (u) ) ,  8)•  [0, ~]- -~epi( f )  be a continuous map as in Definition (2.1). 

Let  8' > 0 be such that  8' ~< ~ / i  - z2 and d(v, u) 2 + If(v) - f ( u ) l  ~ < ~2 for every 
v �9 B(u, 8'). 

Consider ~ :  B(u, 8') • [0, 8']--~X defined by 

:~(v, t) = :~((v,f(v)), t )  

where :~1 is the first component of ~ .  
Of course ~ is continuous and 

(( t d ( ~ ( v , t ) , v )  2 = d  ~1 (v,f(v)),  ~ , 

1 :2 :~ (v,f(v)), - f ( v )  < - �9 
- ~ 1 - 2 1 - ~2 
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Moreover 

f(~-,(V, t))"~f(~)~l((V,f(v))l 

f(v)), ~ t ) ) < . ~ f ( v , f ( v ) ) - z t = f ( v ) - Z t . v ~ _ #  2 ~ / 1 - z 2  

I t  follows 

V~_ if2 
hence 

I d~f](u, f(u)) <. 
i dfl (u) 

~r + (Idfl(u)) 2 
if Idf[(u) < + . 

Finally, if f (u)  < ~, there exists 8 > 0 such that  /z i> f(v) + 8 whenever 
(v, t~) eB((u ,  D, 8). I f  we define M: B((u, ~), 8) x [0, ~]-+ ep i ( f )  by :~((v, ~), t) = 
= (v,/z - t), we fred immediately that  I d~fl(u,  ~) = 1. �9 

The previous proposition allows us to define in a consistent way the weak slope 
also in the lower semicontinuous case. 

I f  f :  X--~ R t2 { + ~ } is a lower semicontinuous function and b e R ,  we set 

(~(f) = {u ~ X: f (u)  < + ~ }, 

fb = {u ~ X: f (u)  <<. b}. 

(2.4) DEFINITION. - Let  f:  X ~  R U { + ~ } be a lower semicontinuous function and 
let u e 0~(f). We set 

I d~fl(u,  f(u))  

I df] (u) = ( 1 - (I d~fl(  u, f(u))) 2 )1/2 

+oo 

if Id~fl(u, f (u))  < 1, 

if Id~f l (u , f (u) )= 1. 

Since the above definition is indirect, let us give a criterion to obtain a lower esti- 
mate of I dfl (u). 

(2.5) PROPOSITION. - Let f: X--> R U { + ~ } be a lower semicontinuous function 
and let u ~ (D(f). Let us assume that there exist ~ > 0, b > f (u) ,  ~ > 0 and a continu- 
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ous m a p ~ :  (B(u, 8) N f b) • [0, ~ ] - o X  such that 

VV �9 B(u,  8) A f  b, Vt �9 [0, ~?]: d(:)C(v, t), v) <~ t ,  f (:~(v,  t)) ~ f ( v )  - ~t. 

Then ldfl(u) >I z. 

PROOF. - The case I d~f I(u, f (u))  = 1 is trivial. Let us assume 

Id~f l (u , f (u ) )  < 1. 
Let ~' e]0, 8] be such that/z ~< b for (v, [ z ) � 9  8') and let us define 

~: B( (u , f (u ) ) ,  8') x [0, 8']--) ep i ( f )  

by 

t )  = v ,  , - 

Following the proof of Proposition (2.3), we obtain that :~((v,/z), t) �9 epi (f) ,  

d(~((v,  ~), t), (v, ~)) <~ t ,  

and 

t)) =  I(v, 7)  z t .  

Since ~ is evidently continuous, 

Idyl l (u ,  f (u))  >I 
V~- _[_ ~2 

which can be rewritten 

~2 <. (I d~f l (  u, f (u)))  2 = (I df[ (u)) 2 . �9 

1 - (I dGfl( u, f (u)))  ~ 

As we shall see in the next result, the weak slope is lower semicontinuous with re- 
spect to the graph topology. 

(2.6) PROPOSITION. - Let f: X ~ F~ U { + ~ } be a lower semicontinuous function 
and let u �9 (~(f). I f  (uh) is a sequence converging to u with (f(uh)) converging to f(u),  
it is 

Idfl(u) <- lim inf IdfI(uh). 
h 

PROOF. - First we treat the case in which f: X - o  R is continuous. 
If Id f l (u)= O, the assertion is true. Otherwise, let 0 < ~ < I dft(u) 

2C: B(u, ~) x [0, ~] o X  be as in Definition (2.1). 

and let 
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Since we have eventually uh ~ B(u,  ~/2), we can consider the restriction of ~ to 
B(uh, ~/2) • [0, 3/2]. It follows that Id f l (uh)  >>- ~, hence the result. 

The general case can be reduced to the previous one by means of the func- 
tion ~;S" " 

Now let us describe a case in which it is possible to compute the weak slope of a 
sum of two functions. 

(2.7) PROPOSITION. - Let  fo : X---) R U { + o~ } be a lower semicont inuous function,  
f l  : X---> R a locally Lipschitz  continuous func t ion  and let f = fo + f l .  Let  u e d~(fo) 
and let us assume that 

r sup d(v, w) : v, w e B ( u ,  r), v ~ w = O. 

Then for  every ~ >>-f(u) we have 

Id~f l (u ,  ~) = td~fol(u, ~ - f l ( u ) ) .  

In  particular, I dfl (u) = I dfo I(u). 

PROOF. - Given ~. ~>f(u), let us show that 

Id~fl(u,  ~) >I Id~fo I(u, ~. - f l ( u ) ) .  

If I d ~  I(u, ~-fz  (u)) = 0, it is obvious. Otherwise, let 0 < z < t d ~  I(u, ~-f~(u)). 
Let ~ > 0 and let 

M: B((u, ~-$~ (u)), 6) • [0, ~]--* epi(fo) 

be as in Defmition (2.1). Without loss of generality, we can assume tha t f i  is Lipschitz 
continuous of constant ~ in B(u, 2~). Let ~ 'e]0,~]  be such that ( v , ~ - f l ( v ) ) e  
e B ( ( u ,  E.-f l(u)) ,  ~) for every (v, t z )eB((u ,  ~), ~') and let ~:  B((u,  ~), ~') • [0, ~ ' ] ~  
-~ epi ( f )  be defined by 

~((v ,  ~), t) = 

- 

It is, applying the triangular inequality, 

d(~((v ,  ~ +f~(v)),(1 + ~)s), (v, ~ +fl(v)))  ; 

<<. d(:)C((v, A), s), (v,),)) + If1 (9(:1 ((v,)~), s)) - f l  (v) l ~< s + es = (1 + ~)s.  
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Furthermore, it is 

( ~ 1 ( ~ ( ( v , ~ ) , t ) ) = ~  (v, ~ - Z  (v)), ~ + Z  ~c~ (v, t)) - fi (v)), T-~-~ 

(( t +X ~cl (v , ,~- f~(v) ) ,TT-~  < ~< ~ -f~ (v) - :T-+-~ 

(: ) ~<~s(v '~ ) -  i + ~  ~ t .  

Hence 

IdGfl(u, ~) >i 
l + s  

and, since ~ can be made arbitrarily small, 

which implies 

Id~sl(u, ~) i> : ,  

]d~f I(u, ~) t> ]dG~ I(u, ~ - fl (u)). 

The opposite inequality is obtained by replacing the function fo with the function f 
and the function ~ with the function ( - f l ) .  [] 

In the following of this section we want to compare the notion of weak slope with 
other notions in the literature. 

(2.8) DEFINITION (see [9]). - Let f: X---) R U { + :~ } be a lower semicontinuous func- 
tion and let u e (~(f). We define 

I Vfl (u) = l limv_~usup f(u)d(u,-f(V)v) if u is not a local minimum, 

! 0 if u is a local minimum. 

The extended real number I Vfl (u) is called the (strong) slope of f a t  u. It is readily 

seen that I dfl (u) <<. t Vfl (u). 

(2.9) DEFINITION (see [9]). - Let X be a Banach space, A an open subset of X and 
f: A --, R U { + ~ } a lower semicontinuous function. For every u e 6~(f) we denote 
by a- f (u)  the (possibly empty) set of s  in X' such that 

- f ( u )  - ( ~ ,  v - ~} 
lim inf f(v) >I O. 

w u  I I v - u l l  

The elements of a - f ( u )  are called subdifferentials o f f  at u. 

The following properties are easily verified. 
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(2.10) PROPOSITION. - Let f: X--)  R U { + ~ } be a lower semicontinuous function 
and let u e (~(f). Then the following facts hold: 

(a) i f  g: A---) R is Frdchet differentiable at u, it is 

8 -  ( f +  g)(u) = {a + dg(u): a e 8 - f (u )}  ; 

(b) i f  ~ �9 8 - f ( u ) ,  it is for every w �9 X 

(a, w) ~< lira inf f ( u  + tw) - f ( u )  ," 
t o O  + t 

(c) i f  A and f are convex, 8 - f ( u )  agrees with the subdifferential of convex 
analysis; 

(d) i f  ~ � 9  it is IVfl(u)-< I1~II; 

(e) 8 - f ( u )  is (strongly) closed and convex in X'. 

In the following result we consider C 1 perturbations of convex functions. For such 
a class a critical point theory has been elaborated in [19]. 

(2.11) THEOREM. - Let A be a convex open subset of a Banach space X, let fo: A 
F~ U { + ~ } be a convex and lower semicontinuous function, fl : A ---) R a function of 

class C 1 and let f = fo + f l .  
Then the following facts hold: 

(a) Vu �9 6~(f): I dfl (u) = I Vfl (u); 
(b) for every u e (~(f)  it is Idfl(u) < + ~ i f  and only i f  a -  f (u )  ~ 0 and in that 

case 

Idfl(u) = min {ll ll: a-f(u)}. 

PROOF. - We first observe that by Proposition (2.10) the set a- fo(u)  is weak*- 
closed. Since 

8-  f ( u )  = {a + dfl(u): ~ e 8- f i (u )} ,  

8 - f ( u )  is weak*-closed too. It follows that, if 8 - f ( u ) # 0 ,  there exists 
rain {I]all: ~ e O-f(u)}. 

It is obviously enough to consider the case dj~ (u) = 0. Then by Proposition (2.7) 
we can assume f~ = 0. 

By Proposition (2.10) it holds 

8 - f ( u ) .  O ~  Idfl(u) <. Iv f l (u )  -< min  {ll~ll: ~ ~ a - f ( u ) } .  

Now assume that 0 ~t 8 - f ( u )  and let ~ > 0 be such that 

w :  a-f(u) ll ,ll > 

By [19, Lemma 1.3] there exists w ~A such tha t f (w)  < f ( u )  - ~l]w - ul]. Since f i s  
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lower semicontinuous, there exists ~ > 0 such that 

Vv e B(u,  •): f (w)  < f (v )  - zllw - vii. 

Unless reducing 3, it can be supposed w ~tB(u, 28). We define aC: B(u, ~)•  
• [0, 8]--+X by 

~ ( v , t ) = v + t  w - v  
IIw- ll 

The map ~C is evidently continuous and II~(v, t ) -  vll= t. Moreover, since 0 ~< 
<~ (t/llw - vii) ~< 1, it is 

f (M(v ,  t)) <. f (v )  + t ( f (w)  - f ( v ) )  <~ f (v )  - at. 
IIw - vii 

By Proposition (2.5), it is Idfl(u)>I z. Therefore 8 - f ( u ) =  ~ implies Id f l (u )=  
= + ~ ,  while 8 - f ( u )  ~ 0 implies 

Idfl(u) >i min {ltall: a ~ a - f ( u ) } .  �9 

(2.12) COROLLARY. - -  Let X be a Finsler manifold of  class C 1 and let f'. X - +  R be a 
function of  class C 1. 

Then we have I d f ( u )  = IVfl(u) = Ildf(u)ll for  every u ~ X .  

PROOF. - If f is defined in a convex open subset of a Banach space, the thesis fol- 
lows from Theorem (2.11) with fi  = 0. 

In general, for every ~ > 0 there exists a neighbourhood U of u and a diffeomor- 
phism $ from U onto a convex open subset of T~X such that ~ and ~P -1 are both Lips- 
chitz continuous of constant 1 + s. By the previous step the thesis follows. �9 

We point out that the critical point theory for C 1 functions on C 2 manifolds is a 
classical topic[17]. The case of C t manifolds has been studied in[20]. 

(2.13) DEFINITION (see [8,11]). - Let A be an open subset of a Hilbert space, let 
f: A --. R U { + r } be a lower semicontinuous function and let p I> 0. We say that f is 
a function with v-monotone subdifferential of  order p, if there exists a continuous 

function 

such that 

Z: (CO(f))2 • R2__> R+ 

- 8 ,  u - v )  - z ( u ,  v , f ( u ) ,  f (v ) ) (1  + I[ ]1 + II ll )Hu - vlt 2 

whenever u, v e CO(f), ~ e a - f ( u ) ,  fl e ~- f (v ) .  

A critical point theory for functions with p-monotone subdifferential of order two 
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has been elaborated in[8,10, 11] by a suitable evolution theory. However that ap- 
proach does not allow C ' perturbations. 

(2.14) THEOREM. - Let A be an open subset of  a Hilbert space, let fo : A --> R U 
U { + ~ } be a lower semicontinuous funct ion with pmonotone  subdifferential of  or- 
der two, fl  : A ~ R a funct ion of  class C 1 and let f = fo + f l .  

Then the following facts hold: 

(a) Vu e (~(f): I dfl (u) = I Vfl (u); 

(b) for  every u e (~(f)  it is Idfl(u) < + ~ i f  and only i f  a -  f (u )  ;~ 0 and in that 
case 

Igfl(u) = min {lla]l: ~ e a - f ( u ) } .  

P R O O F .  - Again by Proposition (2.7) it is sufficient to treat the case f~ = 0. 
For every v e 0)(f) let ~: [0, $(v)[--) 69(f) be the curve of maximal slope fo r f such  

that ~ ( 0 ) - - v  defined on its maximal interval (see [11, section 3]). 
We recall that either 5~(v)= + ~ or 

lim f(~?(t)) 
t ~ 5 ~ ( v )  

or there exists 

- -  oD 

lira ~(t) e aA. 
t ~ ~ ( v )  

Let ~ > 0 and let ~(t) = I (~ + IIv'(z)ll) de. For every v e d)(f)  and s e }F([0, f(v)[) 

we set ~(v ,  s) = ~(F-~(s ) l .  
Let u e 0)(f),  let 8>  0 be such that B(u,  2r162 and f is bounded below on 

B(u,  28) and let b = f ( u )  + 8. 
By the maximality of [0, 5~(v)[ it follows that 9C is defined on (B(u, 8) A 69(f)) x 

x [0, 8]. 
Of course 2C is Lipschitz continuous of constant 1 with respect to the second vari- 

able, so that 

II~(v,  s) - vii = l ib (v ,  s) - ~c(v, o)ll ~ s .  

Furthermore we have 

(2.15) f (M(v ,  s)) = f ( ~ ( F - l ( s ) ) )  = f (v )  - 

i - - l ( s  ) 

f Ii~,(~ l(~))lp =f(v) - 

0 ~ + i [ ~ , ( ~ _ 1 ( ~ ) ) ]  Ida.  
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Let  us prove that  M: (B(u, 8) N f  b ) • [0, ~ ] - o A  is continuous. I t  suffices to con- 
sider a sequence (vh) in B(u~ 8), converging to v e B ( u ,  8), with f(vh) ~< b and s e [0, 8] 
fixed. 

I t  is :)C(vh, s) = ~h (th), where ~h:[0,  $(vh)[ -o  50(f) is the curve of maximal slope 
for f with ~ ( 0 )  = vh and 

~h 

s = f ( s  + I [~(v) l l )dv  
0 

for a suitable th < $(v~). 
Since (th) is bounded, we can suppose th---) t. 
We claim that  t < 5~(v). If  not, there would exist z > 0 with 0 < t - z < 5~(v) such 

that ~ ( t  - z) qt B ( u ,  2~). 
On the other hand we have [11, Theorem 3.7] "~h (th - z) ---) "V(t - ~), which is a con- 

tradiction because 

Since we have also 

we obtain 

hence 

~h ( th -- ~) e B(U, 28). 

~ - - .  ~ '  t + ~r(u) ) 
in L 1 0, 2 ' 

t 

s = f (s + II ~'(z)II) d r ,  
0 

~C(vh, s) = %(t~)  -~ v ( t )  = ~ ( v ,  s).  

Therefore :)C is continuous. 
Assume now that 0 ~t a - f ( u )  and take a > 0 such that 

Ya: a e a -  f ( u ) ~ t ] a H  > z .  

Unless reducing 8, we have by [11, Theorem 1.18] 

Yv e B ( u ,  26) A f  b, Ya: a a O - f ( v ) ~ ] ] , ] ]  > z.  

By (2.15) it follows that 

Cy 2 

f (M(v,  s)) ~< f ( v )  - s ,  
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hence by Proposition (2.5) 

i f 2  

tdfl(u) >1 - - .  

By the arbitrariness of ~ we get I dfl (u) >I ~. 
Therefore we have Idfl(u) = + ~ if a - f (u )  = 0 and 

Idfl( ) rain {t1 11: a-f(u)} 

if ~- f (u)  ~ 9. Since a- f (u)  ~ ~ trivially implies 

Idfl(u) <- IVfl(u)  -< rain {11 11: ~ a - f (u )} ,  

the thesis follows. �9 

Finally, we establish a relation between the weak slope and the Clarke's subdif- 
ferential for locally Lipschitz continuous functions. We recall that a critical point the- 
ory for such a class of functions has been elaborated in [4]. 

(2.16) DEFINITION (see [5]). - Let X be a Banach space, A an open subset of X, 
fi A-- .  R a locally Lipschitz continuous function and u e A. We set 

Vw eX: f ~  w) = lirn sup 
V ---~ ~t 

t - , 0  + 

f ( v  + tw) - f ( v )  

af(u) = { ~ e X ' :  f ~  w)/> (a, w) for all w in X}.  

It turns out [5] that af(u) is non-empty and weak*-compact. 

(2.17) THEOREM.- Let X be a Banach space, A an open subset of X and f'. X---, R a 
locally Lipschitz continuous function. 

Then for every u e A it holds 

Idfl(u) >I min {11~11: ~ ~ a f (u )} .  

PROOF. - If the right hand side is zero, the fact is trivial. Otherwise, let us 
take 

0 < < min  {11 11: ~ af(u)}. 

It is known[5] that the function f ~  .) is convex, positively homogeneous and 
continuous. 

By [19, Lemma 1.3] it follows that there exists w e X such that 

f ~  w) < - ~11~11. 
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We can suppose that ~ Ilwll = 1. Let 8 > 0 be such that B(u,  28) c A  and 

f ( v  + tw) <~ f ( v )  - ~t 

whenever v e B(u ,  8) and t E [0, 8]. 
Then, if we define PC: B(u,  8) • [0, 8 ] -+A by 

PC(v, t) = v + tw ,  

we find that I dfl (U) >1 z. " 

3 . , -  C o n t i n u o u s  funct ionals .  

In the following X will still denote a metric space endowed with the metric d. 

(3.1) DEFINITION. - Let f: X -+  ]R be a continuous function. A point u E X is said to 
be critical ( f rom below) for f, if I dfl (u) = 0. A real number c is said to be a critical 
value ( f rom below) for f, if there exists u e X  such that Id f l (u )=O and f ( u ) = c .  

(3.2) DEFINITION. - Letf i  X-- ,  ]R be a continuous function and c e R.  We say t h a t f  
satisfies the Palais-Smale condition at level c, if from every sequence (uh) in X with 
I dfl (uh) --+ 0 and f (uh )  -+ c it is possible to extract a subsequence (Uhk) converging in 
X (by Proposition (2.6) the limit of (uh~) is necessarily a critical point for f) .  

In this chapter a fundamental tool is constituted by the following Ekeland's varia- 
tional principle [2,12]. 

(3.3) THEOREM. - Let X be a complete metric space and f: X--+ R U { + co } a lower 
semicontinuous function. Let r > 0, z > 0 and u ~ X be such that 

f ( u )  < inf f +  r~. 

Then there exists v ~ X such that 

f ( v )  <~ f ( u ) ,  d(v, u )  < r ,  Vw e X: f ( w )  >>-f(v) - zd(w, v) .  

In the rest of the section we will make repeated use of the following consequence 
of Ekeland's principle. 

(3.4) COROLLARY. - Let  X be a complete metric space and f: X--+ R U { + oo } a 
lower semicont inuous function. Let  r > 0, ~ > 0 and E c X be such that E # 0 

and 

i n f f <  i n f f +  r z .  
E 
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Then there exists v e X such that 

f ( v )  < inf f +  rz  , d(v, E)  < r ,  I dfl (v) < 

PROOF. - Let  u �9 E and z'  e]0, ,[ be such that f ( u )  < inf f +  r , ' .  By Ekeland's 

principle there exists v �9 X such that f ( v )  <- f (u ) ,  d(v, u) < x and 

Vw �9 X: f ( w )  >t f ( v )  - ~' d(w, v) .  

I t  follows f ( v )  < inf f +  rz, d(v, E)  < r and 
X 

I dfl (v) <. l Vfl (v) ~ z '  < ~. " 

( 3 . 5 )  L E M M A .  - Let X be a metric space and f: X---> F~ a continuous function. Let K 
be a compact subset of  X and z > 0 such that 

inf { I dft (u): u ~ K} > ~. 

Then there exist a neighbourhood U of  K in X,  8 > 0 and a continuous 
map  PC: X • [0, 8 ] --) X such that: 

a) V(u, t) �9 X • [0, 8]: d(PC(u, t), u) <~ t; 

b) V(u, t ) � 9  x [0, 8]: f(PC(u, t)) ~ f ( u ) ;  

c) V(u, t) �9 V • [0, 8]: f(PC(u, t)) <-f(u) - ~t. 

P R O O F .  - For  every u �9 K let us choose 8~ > 0 and 

PC~,: B(u ,  8u) x [0, 8 u ] ~ X  

according to Definition (2.1). Let  ul ,  . . . ,  u~ E K be such that 

n 

We set 8 3- = 8~, PCj = PCuj and choose 

{1 , ,  1 , , }  
0 < 8 < r a i n  ~ o l , . . . , ~ n  �9 

Let  us take a neighbourhood U of K in X and continuous functions Oj: X ~  [0, 1] 
(1 ~<j ~< n) with 

suptOjc_B uj, 2 ,  j , Oj(v) <- l ,  0 j ( v ) = l .  
j = l  j = l  

We claim that for every j = 1 , . . . ,  n there exists a continuous map 

:~j: X x  [0, 8] ---~X 
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such that 

it is 

V(u, t) e X x  [0, ~]: d(:~;(u, t), u) <~ h~lOh(u) t, 

V(u,t) eXx[O,~]: f (~j(u, t ) )<~f(u)-~ O~(u) 
1 

To prove that, in the first place we set 

{ :)Cl(U, Ol(U)t) if ueB(Ul, 1~1), 
:~1 (u, t) = 1 

u i f u ~ t B ( u l , ~ l ) .  

Evidently ~1 satisfies the requested conditions. 
Let now 2 ~< j ~< n and suppose we have defined :~j_ 1. Since 

d(:~j_ 1 (u, t), u) -< 0h(u) t ~< ~ < 2 ~' 

Then we define 

t. 

VueB uy, ~)~j- 1 (U, t) e B (u j ,  ~j).  

( 

(U, t) = ~ ~C1 ( ~ j -  1 (U, t), Oj (U) t) 
~j  

[ ~j  - 1 (U, t) 

By the inductive hypothesis, it is easy to verify that :~j. satisfies the requested 
conditions. 

To conclude the proof, it is sufficient to set 2 C - - ~ .  m 

In the following we will denote by ~ the family of the compact non-empty subsets 
of X. The set ~ will be endowed with the Hausdorff metric 

b(A, B) = max { max d(a, B),max d(b, A)}.  
aeA beB 

We recall that, if (X, d) is complete, then (~t, b) is complete[14]. 
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Given a continuous function fi X-~  F~, we define a function ~: ~ -~ R setting 

5 (g )  = mKax f .  

It is easily verified that the function ~ is continuous with respect to the metric b. 
Now we apply the notion of weak slope to Ljusternik-Schnirelman theory. Ac- 

cording to [13], we shall consider the category defined by means of open coverings. 
Therefore every closed subset C of X possesses a neighbourhood U with catx 0 = 
= catxC. It follows that for every h/> 1 the set 

/'h = {K ~ 2:  catxK/> h} 

is closed in (2,  b). 
As known, if X is an ANR, the category in the sense of[13] agrees with the cate- 

gory in the sense of [17], defined by means of closed coverings. 

(3.6) LEMMh. - Let X be a metric space and f: X ---> R a continuous function. For 
every h >1 1 let J:h = 5:lrt,. 

Let K � 9  ~ > O, ~ > 0 be such that 

Vu �9 K: f ( u )  >I max f -  ~ ~ l dfl (u) >! ~. 
K 

Then I d#h I(K) >I ~. 

PROOF. - Let z' e]0, z[ and let U and ~C: X • [0, 8] --->X be obtained applying 
Lemma (3.5) to the compact set 

{u  ~ K: f ( u )  >! max f -  ~} 

and to ~'. 
Let ~ be a neighbourhood of K in I~h such that 

YA e ~: max f I> ~- A mKaxf-  2 '  

Y A e  V: { u � 9  j ( u )  >I max f - ~ }  c U. 
K 

Let 4 ' =  min{~/(2z ' ) ,  8} and let :~: ~ •  [0, ~']--*Fh be defined by 

:~(A, t) = ~C(A • {t}). 

It is easy to verify that :~ is continuous and 

b(3~(A, t), A) ~< t .  

Let now A e ~. If u e A  and f ( u )  <<. max f -  ~, it is for every t e [0, 8'] 
K 

f ( ~ ( u ,  t)) ~ f ( u )  <~ max f -  ~ <<. f -  ~ K mAax 2 <~ ~ h ( A ) -  ~ t .  
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Otherwise, if u e A  and f ( u )  i> mgaX f -  p, it is for every t e [0, 8'] 

f(~C(u, t)) <<. f ( u )  - ~' t <<. 5~h (A) - z '  t .  

In any case we have 

VA e ~, Yt e [0, 8']: 5~(~(A,  t)) ~< ~ ( A )  - z ' t ,  

hence l d#h t (K) />  ~'. 
The assertion follows by the arbitrariness of ~' ~]0, ~[. " 

Now we can prove the f:rst result  concerning Ljusternik-Schnirelman catego- 

ry. 

(3.7) THEOREM. - Let X be a complete metric space and f'. X---) R a continuous 
function. For 1 <. h <~ sup (ca tzK:  K is a compact subset of  X }  let 

ch = inf 5 ~= inf (mKax f ) .  
Fh K ~ Ft~ 

Then, i f  for  some h >i 1, m >>. 1 it is 

- -  ~r ~ C h ~-- . . .  ~ Ch + ra _ 1 

and i f  f verifies the Palais-Smale condition at level ch, it holds 

c a t x { u e X :  J d f J ( u ) = 0 ,  f ( u ) = c h }  >~ m .  

I n  particular, ch is a critical value for  f. 

PROOF. - Let  c = ch and let 

Kc = { u e Z :  l d f t ( u ) = 0 ,  f ( u ) = c } .  

By contradiction, assume there  exists a neighbourhood U of Kc with catx U ~< 

~< m - 1. For  every e > 0 let 

3r = {u e X: d(u, Kc) < s}.  

Since the Palais-Smale condition at level c holds, K~ is compact. Therefore  we can 

suppose that  U = 2r (Kc) with r > 0. 
There  exists z > 0 such that  

u ~t J~r(Kc) and c - ~ <~ f ( u )  <~ c + z ~  ldf](u) >~ ~. 

For  every c '  > c there exists A: e Fh + m - : such that  #(A: ) < c ' .  Let  

A2 = A : \  A~2~(K~). 

Then catxA2 I> h, #(A2) < c '  and -42 N N2~ (K~) = 0. 
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it is 

It follows that, setting 

E = {AeYh:  A ~3r = 0}, 

inf ~ = inf ~ .  
E Yh 

Being ~ bounded from below, by Corollary (8.4) there exists A e Fh such 
that 

~ ( A )  < c + z,  b(A, E) < r,  IdOl(A)  < z.  

It is A N 3r (Kc) = 0 and of course max f 1> c, so that 
A 

Yu cA:  f (u)  >i mAaX f - -  ~ Idfl(u) >>- z.  

By Lemma (3.6) it follows 

IdOl(A)  >>. ~, 

which is a contradiction. �9 

For the two next results concerning Ljusternik-Schnirelman category, some reg- 
ularity on the metric space is required. 

Instead of imposing X to be an ANR, we prefer to consider a weaker condition, 
which has the advantage to be homotopically invariant. 

( 3 . 8 )  D E F I N I T I O N .  - A metric space X is said to be weakly locally contractible, if for 
every u e X there exists a neighbourhood U of u contractible in X. 

This means that catx{x} = 1 for every x EX. 

(3.9) THEOREM. - Let X be a complete and weakly locally contractible metric space 
and f: X--~ R a continuous function. Suppose that f is bounded from below and that 
for every b a f (X)  and for every c <~ b the Palais-Smale condition at level c 
holds. 

Then f has at least 

sup {catxK: K is a compact subset of X} 

points which are critical from below. 

PROOF.- If 

1 ~< h ~< sup {catzK: K is a compact subset of X} ,  

the Palais-Smale condition at level ch holds. 
Furthermore, every singleton in X has category 1. By Theorem (3.7) the thesis 

follows in a standard way. �9 



92 M. DEGIOVANNI - M.  MARZOCCItI: A critical point theory, etc. 

(3.10) THEOREM. - Let X be a complete and weakly locally contractible metric 
space and f: X - ) R  a continuous funct ion  such that 

(a) i n f f >  - oo ; 

(b) for  every b e f ( X )  and for  every c <. b the Palais-Smale condition at level c 
holds; 

(c) sup {catzK: K is a compact subset of X} = + r162 

Then the s u p r e m u m  o f f  is not achieved and 

sup ch = sup f ,  
h X 

where (Ch) is the sequence defined in Theorem (3.7). 
In  particular, there exists a sequence (uh) in X with I dfl (uh) = 0 and f (uh )  --) 

- ) s u p  f .  
X 

PROOF. - Let  c = sup ch. Le t  us suppose that  the assertion is false. In that  case, it 
h 

is c < + ~ and the Palais-Smale condition at level c holds. 
Fur thermore  the set 

K = {u  EX: fd f l (u)  = 0 and f ( u )  <<. c} 

is compact. 
By the weak local contractibility there  exists r > 0 such that  catx(JC2~(K))= 

= k <  +cr  Le t  ~ > 0  be such that  

u ~ 3r and c - rz  <~f(u) <<. c + r a ~  ld f l (u)  >i 

and let h be such that  c < ch + rz. 
I f  c '  > ch + k, there  exists A1 �9 + k with 5~(A1 ) < c '. Setting 

A2 = AI \ ~2r (K), 

it is A2 � 9  5~(A2) < c '  and A2 A ~2~ (K) = 0. 
Setting 

E = {A �9 Fh: A A 2~. (K) = 0 }, 

it results 

inf 5~h ~< ca + k ~< c < ch + r~ = inf 5~a + r~.  
E Fh 

By Corollary (3.4) there  exists A ~/ 'h  such that  

5~a (A) < ca + rv ,  b(A, E)  < r ,  

I t  follows that  A A ~'r (K) = 0 and then 

Id~hl(A)  < ~r. 

Yu  � 9  f ( u )  >i c -  r a ~  Idf l(u)  >i ~. 
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Since c -  r~ < ch ~< ~h(A), by Lemma (3.6) we deduce that  

IdtThl(A) >i ~, 

which is a contradiction. �9 

Now we want  to prove a saddle point theorem in the spirit of[l ,  18] for continuous 
functions. 

(3.11) LEMMA. - Let X be a metric space, f'. X - .  F~ a continuous function, (D, S)  a 
compact pair  and ~: S--~ X a continuous map. Let us consider 

= { g e  C(D; X): 91s = ~} 

endowed with the un i form metric b and let us define a continuous funct ion  t7: ~ ---> 
by 

:T(9 ) = max ( f  o 9) . 
D 

Let 9 e ~, ~ > O, ~ > 0 be such that 

maXs ( f~  ~) < mDax ( f~  9) , 

v~ �9 D: f(9(~)) >I m a x ( f o  9) - ~ ~ l dfl  (9(~)) >t ~. 

Then I d ~  1(9) ~ ~. 

P R O O F .  - Without loss of generality we can assume 

max (fo ~) ~< max (fo 9) - 3~. 
S D 

Let ~' �9 ~[ and let U and ~ :  X • [0, 8] - - ,X be obtained applying Lemma (3.5) to 
the compact set 

{9(~): f(9(~)) I> max(fo  9) - P} 

and to z'. Of course we can assume f ( u )  > max (fo 9) - 2~ for every u �9 U. 
D 

We can also suppose that  ~ ( u ,  t) = u whenever f (u )  ~< max( fo  9) - 3p. Otherwise 
D 

we substitute ~ ( u ,  t) with 2C(u, t~(u)), where ;~: X---~ [0, 1] is a continuous function 
such that  2(u) = 0 for f ( u )  <<. m a x ( f o g )  - 36 and ~(u) = 1 for f ( u )  ~ max( fo  9) - 
- -  2 ~ .  D D 

Let  \9 be a neighbourhood of 9 in ~ such that  

V~ e ~: max( fo  V) ~> max( fo  9) P 
D D 2 '  

VV �9 V: {V(~): f(rj(~)) I> mDax(fo 9) - 6} c U. 
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Let  now V e ~  and 
t e [ 0 ,  8'] 

Let  8 ' =  min{o / (2a ' ) ,  8} and let ~ :  ~ x [0, # ] - - + r  be defined by 

V~ e D: ~(~, t)(~) = ~(~(~), t ) .  

I t  is easy to verify that  ~ is continuous and 

~(~(~, t), 7) < t .  

~ D .  If  f ( v ( D ) < m a x ( f o ~ ) - ~ : ,  then it is for every 
D 

0. r f(t~(V, t)(~)) =f(:)C(V(D, t)) ~<f(~(~)) ~< mDax(fo ~) - p ~< mDax(fo)7) - ~ < 5~V) - t .  

Instead, if f(V(D)~> mDax(fo~) -  ~, then it is for every t e [0, ~'] 

f(:~(v, t)(D) =f(~C(~(~), t)) ~<f(~(~)) - z ' t  ~< ~(V) - z ' t .  

Then, 

Vt e [0, 8']: 5(:~(~, t)) < 5~(~) - ~ ' t  

and therefore I d ~  (~) >I ~'. 
The assertion follows by the arbitrariness of r el0, ~[. �9 

(3.12) THEOREM. - Let X be a complete metric space, f: X--+ R a continuous func- 
tion, (D, S) a compact pair, r S--) X a continuous map and 

~ = {~ e C(D; X): ~ls = ~}. 

Let us suppose that ~ ~ 0 and 

V ~ :  max(fo~)) < m a x ( f o ~ ) .  
S D 

Then, i f  f verifies the Palais-Smale condition at level 

c = inf (mDax (fo ~)) 

it follows that c is a critical value for f. 

P R O O F .  - Let  us suppose that  c is not a critical value for f. Since the Palais-Smale 
condition at level c holds, there exists r > 0 such that  

u ~ ( f )  and c - z < < . f ( u ) ~ c + ~ ] d f l ( u ) > ~ z .  

Let us define ~." ~--+ R as in Lemma (3.11). Being 5 ~ bounded from below, by 
Corollary (3.4) there exists ~ e ~ such that 

5~(~) < c + ~, Id.T[(~) < a.  
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It is 

f (~(~) )  I> m a x ( f o  ~) - ~ Idf l (~(~))  I> ~ .  

By Lemma (3.11) it follows I d~l (~) i> ~, which is a contradiction. [ ]  

So far we have treated the critical point theory for continuous functions. Iff." X--* 
--. R t2 { + ~ } is lower semicontinuous, it is possible to consider the continuous func- 
tion ~ f : ep i ( f ) - -~R.  By Definition (2.4) we have ]d f i (u)=O if and only if 
i d ~ f i ( u , f ( u ) )  = 0 and also (uh) is a Palais-Smale sequence for f if and only if 
(uh, f(u~)) is a Palais-Smale sequence for ~f. 

The essential difficulty is that we do not know in general the behaviour of 
I d~fI(u ,  ~) when f (u )  < $. However, as we shall see in the next rese t ,  we can calcu- 
late ]d~fl(u , ~) whenf i s  a C 1 perturbation of a convex function. Therefore it is possi- 
ble to obtain in our setting the results of [19]. 

(3.13) THEOREM. - Let A be a convex open subset of  a Banach space X, let fo: A ---) 
R U { + ~ } be a convex and lower semicontinuousfunction, f i  : A --~ R a function of  

class C 1 and let f = fo + f t .  
Then for  every u e d)(f), ~ > f ( u )  it holds 

Id~f ](u, ~) = 1. 

PROOF. - Let u e 6~(f) and ~ >f (u) .  It is obviously enough to consider the case 
dfl (u) = 0. Then, by Proposition (2.7) we can suppose fl = 0. 

Let ~C: B((u,  $), 8) • [0, 8] --* epi ( f )  be defined by 

~c((v,  u) ,  t) = 

t ( u  - v )  
= V +  

 /]lv - utl + - f ( u ) l  

where 8 > O is such that f ( u )  < ~ - 28. 
Since 

, ~ - (~  - f ( u ) )  ) 
X/liv - ull 2 + - f ( u ) i  2 

s (u  - v) ) s 
. . . .  <. f ( v )  + ( f ( u )  - f ( v ) )  <. 

f v + ~/li v - u i l  2 + ] ~ - f ( u ) l  2 ~ / l l v - u i [  e + I ~ - f ( u ) l  e 

<<. ~ - (~  - f ( u ) )  s 

~ / H v - u l l  2 + I/.r - f (u) l  2' 

we actually have ~((v, t~), s)E epi(f) .  It is easily verified that :~ is continuous 
and 

d(~( (v ,  ~), i), (v, ~)) = t .  
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On the other hand we have 

~f(~c((v, ~), s) )  = ~ - (~  - f ( u ) )  s 

~/llv = ull 2 + I: -~ - f (u ) l  2 

= ~f(v ,  ~)  - 
(~, - f ( u ) )  

~/ l lv  - ull ~ + I~ L f ( u ) l  2 

- ~ - f ( u )  
s <<. ~f(v ,  ~) - s ,  

~ / ~  + (~ + ~ - f ( u ) Y  

which implies 

- ~ - f ( u )  

~ / :  + (~ + ~ - f ( u ) )  ~ 

Since ~ can be made arbitrarily small, we conclude that 

td~f l (u ,  ~) >I 1. m 

4. - Eigenvalue problems for variational inequalities. 

In this section we give an application of the theory developed in the previous sec- 
tions. Let t] be a bounded open subset of R ~, n i>3 ,  let g : t ~ •  be a 
Carath~odory function with g(x, - s )  = - g(x, s) and let ~ e H1 (~9), ~ I> 0. We want to 
consider the eigenvalue problem 

(4.1) ~ ( D u D ( v - u ) + g ( x , u ) ( v - u ) ) d x > > -  u ( v - u ) d x  V v e K ,  

t~ D 

where 

K = { u e H ~ ( D ) :  - ~ < u ~ < z  a.e.}. 

We assume that there exist a eL2~/(~+2)(t)), b e R  and p < 2 n / ( n - 2 )  such 

that 

(4.2) - a ( x ) l s  I - bs 2 <~ sg(x, s) <~ a(x)Isl  + blsl p. 

Problem (4.1) has been already treated in [3, 6, 7,15], provided that the difference 

quotient 

g(x, s) - g ( x ,  t) 

8 - t  

is subjected to a suitable lower estimate. On the other hand only a one-sided version 
of (4.2) is assumed. 
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However, in the mentioned papers an essential tool is constituted by the evolution 
theory of[8,11], which guarantees existence and uniqueness for the evolution prob- 
lem associated with (4.1). 

For this reason, the case in which only an estimate of lg(x, s) l is assumed cannot 
be treated by that approach. 

We set 

$ 

G(x, s) = I g(x, t )d t  
o 

and we define f i :  H~ (t~) ~ R U { + ~ } and fl : Ho 1 (t?) --> R by 

1 iDui2dx  
fo(u) = 2 I 

+ ~  

if u e K ,  

if u e H ~ ( O ) \ K ,  

fl (u) = I G(x, u) dx. 

Let p > 0 and let S = {u e H~ (t~): f u 2 dx = ~2 }. We define Is: H~ (~) ---) R U 
U{+oo}  by 

0 f l u e S  
I s (u)  = 

+ ~ if u e H o  l ( t ? ) \ S ,  

and f: K fl S---) R b y f = f i  +)q. 

(4.3) DEFINITION (see [6]). - Let K be a convex subset of a Hilbert space X~ M a C 1 

hypersurface in H and u e K A M. The sets K and M are said to be tangential  at u, if 
there exists ~ ~ R \ { 0 }  such that 

Vw e K: ,~(v(u), w - u) i> 0, 

where v(u) is a normal unit vector to M at u. 

In our particular situation, since 0 ~ K we have that S and K are tangential at 
u ~ S N K i f a n d  only if 

Vv ~ K: I u(v - u) dx <~ O. 

(4.4) THEOREM. - L e t  us assume that ,~2 < I ~ 2 dx. Then there exists a sequence (~h) 
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in R and a sequence (uh) in K f"l S such that 

t~ t)  

lim ~h = O. 
h 

V v e K ,  

PROOF. - If K and S are tangential at some u e K A S, it is sufficient to set ;(h = 0 
and uh = u for every h. 

Therefore let us assume that K and S are not tangential at any point of K N S. Let 
X be the quotient space obtained from K N S by identifying u with - u, endowed 
with the metric 

d([u], Iv]) = min { l l u  - vii, Ilu + vii}. 

It is readily seen that X is complete. Moreover, in [7, Lemma 1.14] it is proved 
that X contains compact subsets of arbitrarily large category. Since f is even, there is 
an induced functional f :  X ~  R,  which is of course continuous. B y  (4 .2) f  is bounded 
below. Since K and S are not tangential at any point, by [6, Theorem 1.10] (f0 + Is) 
has ~0-monotone subdifferential of order two. From [10, Theorem 3.14] it follows that 
K N S = O~(fi + Is) is an ANR, hence X is an ANR. 

Let us show that f verifies the Palais-Smale condition at level c for every 

c E R .  
Let ([uh ]) be a sequence in X with ]df] ([uh ]) --* 0, f([uh ]) ~ c. Then we have 

Idfl(uh) ~ 0 and f(uh) --* c. By (4.2) it follows that (uh) is bounded in H~ (~). Up to a 
subsequence, we can assume that (uh) is weakly convergent to u e K N S. 

Again by [6, Theorem 1.10] we have ~ e a - ( f i  + Is)(uh) if and only if 

o~=~-Fzuh in H - I ( ~ )  

with ~ e a-fo(uh) and tz e R.  Moreover, from 

VvEK:  ~ I u h ( v  uh)dx<~fo(V)--fo(Uh)--(a,V--Uh) 
t2 

we deduce I/zl ~< C(1 + Ilall), because K and S are not tangential at u. 
On the other hand, by Proposition (2.10) and Theorem (2.14) we have I dft (uh) = 

= II:r + dr1 (Uh)ll for some ~h e a -  (fi + Is)(uh). Since by (4.2) (dj~ (uh)) is strongly con- 
vergent in H -1 (t2), it follows that (ah) is also strongly convergent in H -1  ( t ) ) .  There- 
fore ah=flh--t~huh with /xa bounded in F~. Since (uh) is strongly convergent in 
H - l ( ~ 2 ) ,  w e  have that (fla) is strongly convergent, up to a subsequenee, to some 
fl �9 H- l ( t ) ) .  By the convexity o f f i  it follows that 

fo(u) = lim f i (uh) ,  

i.e. (uh) is strongly convergent in Hol(t~) to u. 
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By Theorem (3.10) there  exists a sequence (uh) in K D S with I dfl (uh) = 0 and 
f (uh) -*  + ~ .  By (4.2) it follows that  f IDu~12dx~ + ~ .  Let  t ~ h e R  be such that  

-g(x ,  uh) + ~;~uh e a- f0  (uh), i.e. 

f ( D u h D ( v - u h ) + g ( x ,  uh)(v-uh))dx>~hfua(v-uh)dx VveK. 
t~ t)  

The choice v = 0 gives 

f lD  12dx+ f lD. 12dx-Cll.ll2.,(.§ 

so that  ,~h--~ + oo. 
Then it is sufficient to set  ~ h = t~ ~ 1 for ~ ~ > 0. 

(4.5) REMARK. - Of course it is interesting to known when we can state that  ~;~ ~ 0 
for every h, i.e. when K and S are not tangential at any point. This question has been 
solved in [7], where a characterization of the p's for which K and S are not tangential 
is given. Fo r  instance, if ~ e C(~2) A H i (~O) and {x e t~: ~o(x) > 0} is connected, then ]K 
and S are not tangential at any point, provided that  p2< ]~2dx" 

t~ 
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