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A Critical Point Theory for Nonsmooth Functionals (*)(**).

MAaRrco DEGIOVANNI - MARCO MARZOCCHI

Summary. - A new generalized notion of || df(w)|| is introduced, which allows to prove several re-
sults of critical point theory for continuous functionals. An application to variational in-
equalities is shown.

1. - Introduction.

Several results of classical critical point theory[17,18] have been recently extend-
ed to suitable classes of non-differentiable functionals. Of course a basic tool for such a
development is constituted by a generalized notion of ||df(u)|| which allows to formu-
late the notions of eritical point and Palais-Smale sequence.

The case of locally Lipschitz continuous functionals on Banach spaces has been
treated in[4]. The notions of critical point and Palais-Smale sequence are formulated
in terms of the Clarke’s subdifferential df(u) [5].

By means of the notion of slope |Vf|(u), introduced in[9], a critical point theory
for certain functionals defined on Hilbert spaces (see Definition 2.13) has been devel-
oped in[8,10,11,16].

The case of functionals on Banach spaces of the form f= f; + f; with f; convex and
fi of class C! is treated in[19]. In this case it is equivalent to use the Clarke’s subdif-
ferential or the slope, in order to state the notions of critical point and Palais-Smale
sequence.

Let us point out that a general critical point theory for continuous functionals can-
not be developed by means of the mentioned notions of Clarke’s subdifferential and

3
slope. Consider in fact ft R — R defined by f(x) =z — \/50.2 The function f verifies
the Palais-Smale condition in any reasonable sense and has a behaviour like in the
Ambrosetti-Rabinowitz mountain pass theorem[1]. Of course the mountain pass
point should be the origin, but §f(0) =@ and |Vf](0) = + .

(*) Entrata in Redazione il 6 febbraio 1992.
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The aim of this paper is to propose a new generalized notion of ||df(u)|, i.e. the no-
tion of weak slope (see Definitions (2.1) and (2.4)), which allows to develop a critical
point theory for continuous functionals (see Theorems (3.7), (3.9), (3.10) and (3.12)).
This new notion is conveniently related with the previous ones (see Theorems (2.11),
(2.14), (2.17) and (3.13)), so that the results of[4,19,20] are implied by our
results.

From the technical point of view, we take advantage, as in{19,20], of the Eke-
land’s variational principle[2,12], which allows us to reduce the global problem to a
local one.

Let us point out that a general critical point theory for lower semicontinuous fune-
tionals seems not to be possible. Consider f: R — R defined by flx) =x + 1 for x <0
and f(x) = « for 2 = 0. In this case « = 0 should not be considered as a mountain pass
point, because the value f(0) is not correct. However at the end of section 3 we sug-
gest a procedure to treat at least some classes of lower semicontinuous functionals
(for instance, that of[19]).

In the last section we show an application to an eigenvalue problem for elliptic
variational inequalities. If the derivative ¢’ of the nonlinearity ¢ is subjected to a suit-
able lower estimate, the problem has been already solved in{3,6,7,15]. By means of
our techniques, we give a result under a natural estimate on |g|.

2. — The weak slope.
Throughout this section X will denote a metric space endowed with the metric d.

(2.1) DEFINITION. — Let 2 X — R be a continuous function and let » € X. We denote
by |df|(u) the supremum of the ¢ € [0, + [ such that there exist ¢ > 0 and a continu-
ous map

X B(u, 8) X[0,8]—=X
such that
Vv e B(u, 8), Vte [0, 81: d(oc(v, t),v) <t, flo(w, 1)) <flv)—ot.

The extended real number |df](u) is called the weak slope of f at u.
Let us recall a notion from([9].

(2.2) DEFINITION. — Let f: X — R U { + = } be a lower semicontinuous function. We
define the function

G epi(f)— R
putting
epi(f) ={(u, e X xR: flu) <t} and Gu, &) =¢.
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In the following epi(f) will be endowed with the metric
d(u, £),(v, &) = (d(u, vF + - pF )=

Of course epi(f) is closed in X X R and & is Lipschitz continuous of constant 1.
Consequently |dG;|(u, &) <1 for every (u, &) e epi(f).

(2.3) PROPOSITION. — Let f: X — R be a continuous function and let we X, e R.
Then

|df](w) i 1) < + o
ldGe [ (u, fw)) = { /1 + (|df| (w))?
1 if |df{(u) =+,

ldg |(u, £)=1 if flu) <¢.

ProoF. - We first demonstrate that

Ll i |df](u) < + o,
|dGe | (u, f(w) 2 3 /1 + (Jdf| ()
1 if |dfj(u)=+=.

If |df|(u) =0, it is true. Otherwise, let 0 <o < |df](x) and let 3¢: B(u, &) X
X {0, 8]— X be a continuous map as in Definition (2.1).
Consider %: B((u, f()), &) X [0, ] — epi(f) defined by

m((”:“)rt)z Dcvy'—_t_—' y T 2 ty.
1+ o2 1+ 42

Since

flaclv, —2L <f@W) - —Z—t<u—
1+ 6% 14 42 1+¢2

actually we have X((v, u), t) € epi(f).
Of course X is continuous and

2 1/2
(X, w), 1), (0, w) = |d| ac|v, —Les V| + <] <
( ( 1+ g% V1+ a2
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Furthermore we have

g

Vitor

g

t.
\/1+62

(v, w), ) = — t=G(v, u) -

It follows that

|dgs | (u, flw)) 2 —=

\/1+a'2’

from which
|dg | (u, fu)) = |91 () if |dfl(u) < + o
V1+ (|df| ()
and

|dSs | (u, fw)) =1 if [dfj(u) = + .
We now demonstrate that

|df]| (u)

V1+ ([dfl(w)y

If |dg|(u, f(w)) =0, it is true. Otherwise, let 0 <o < |dG|(u, f(u)) and let
x: B((u, f(u)), 8) X [0, é]—epi(f) be a continuous map as in Definition (2.1).

Let ¢’ > 0 be such that &’ < 8V/1 — o and d(v, u)* + |f(v) — f(w)|? < &* for every
ve Blu, &').

Consider 3C: B(u, ¢&') X [0, &']— X defined by

if |dfj(u) < +».

AW, t) = % ( @, f(v)),

A

¢
V)

where X, is the first component of X.
Of course ¥ is continuous and

dcv, ), v =d (Dil ((v, f),

1-¢?

<t —Iscz(@,f(v)), t )—f(v)
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Moreover

f(sc<v,t>>=f(:x1(<v,f<v>>, Vl_t_?))smz((v,f(v)), L 2)=

=9f(:x(<v,f<v>),—?———2))s9f<v,f<v>>~ =t - =t

l1-¢
It follows

|df] (w) 2 —=
1- o2

hence
|df| ()
V1 + (|dfl(w))?

Finally, if f(u)<¢&, there exists ¢>0 such that u=f(v)+¢ whenever
(v, u) € B((u, &), 8). If we define 9¢: B((u, &), ¢) X [0, 81— epi(f) by (v, p), ) =
= (v, u — t), we find immediately that |dG|{(u,&=1. =

|dgr | (u, fw) < if |dfj(u) < +o.

The previous proposition allows us to define in a consistent way the weak slope
also in the lower semicontinuous case.
IffiX—>RU{+} is a lower semicontinuous function and be R, we set

Xf)={ueX: fluy< + o},
fo={ueX: flu)<b}.
(2.4) DEFINITION. - Let f: X — R U {+ © } be a lower semicontinuous function and
let w e (f). We set

|Gy | (u, flw))
ldfl(w) =1 (1 - (|dg|(u, f(u)?)/?
+ o if |dgy|(u, f(w) =1.

Since the above definition is indirect, let us give a criterion to obtain a lower esti-
mate of |df}(u).

(2.5) PROPOSITION. — Let f: X —» R U {+ =} be a lower semicontinuous function
and let w e (). Let us assume that there exist 8> 0, b > f(u), « > 0 and a continu-
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ous map ¢ (B(u, 8) Nf?) x [0, 61— X such that
Voe B, &) NFE, Yel0, 8] O, ), v) <t,  fOr(, 1) < fv) — ot .
Then |df|(u) = a.

Proor. - The case |dG|(u,f(u))=1 is trivial Let us assume

|dGy | (u, f(w) < 1.
Let 8" €]0, 4] be such that u < b for (v, u) € B((4, f(u)), &') and let us define

X: B((u, f(w)), &') X [0, &'1— epi(f)
by

3('((7)) ),t)=:}cv,—'—t—_’ '—"'_O.__t-
¢ ( ( l+02) “ \/1+o-2)

Following the proof of Proposition (2.3), we obtain that X((v, »), t) € epi(f),
d(%((v, w), D), (v, W) < t,

and

gf(:){'((vy f‘)y t)) = 9]‘(1), |U~) - ‘_O-_—'t .

\/1+<:r2

Since X is evidently continuous,

|dgs| (u, flu)) = ——,
d \/1+cr2

which can be rewritten
2 (Idgf‘ (’LL, f(u)))z
o <
1 - (|dg | (u, fw))?

As we shall see in the next result, the weak slope is lower semicontinuous with re-
spect to the graph topology.

= (ldfj(w)*. =

(2.6) PROPOSITION. — Let f: X— R U {+ ©} be a lower semicontinuous function
and let w e OCf). If (uy,) is a sequence converging to u with (f(u,)) converging to f(u),
it is

|dfi(u) < limhinf [df| (us) .
ProoF. — First we treat the case in which f: X — R is continuous.

If |df](u) =0, the assertion is true. Otherwise, let 0 <o < |df|(u) and let
9C: B(u, &) X [0, 8] — X be as in Definition (2.1).
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Since we have eventually u, e B(u, ¢/2), we can consider the restriction of 3¢ to
B(uy,, 8/2) X [0, 8/2]. It follows that |df|(u;) = o, hence the result.
The general case can be reduced to the previous one by means of the fune-

tion G, ®H

Now let us describe a case in which it is possible to compute the weak slope of a
sum of two functions.

(2.7) PROPOSITION. — Let fy: X > R U {+ © } be a lower semicontinuous function,
Ji: X—= R a locally Lipschitz continuous function and let f=fy + fi. Let uwe O(fy)
and let us assume that

lim (sup{M:v,weB(u, r),v#w})=0.

r—0* d(?), w)

Then for every &= f(u) we have

ldGs | (u, &) = |dSGg | (u, & — fi ().
In particular, |df|(w) = |dfy | ().
PROOF. ~ Given & = f(u), let us show that

{dGs | (u, &) = |dG; | (u, £ — fi(w)).

If |dg; |(u, s—fi(u))=0, it is obvious. Otherwise, let 0<o< [dG; |(u, £—f(u)).
Let ¢ >0 and let

3¢ B((w, £ — fi(w)), 8) X [0, 81— epi(fy)

be as in Definition (2.1). Without loss of generality, we can assume that f; is Lipschitz
continuous of constant ¢ in B(u, 2¢). Let ¢'€l0, ¢] be such that (v, u —fi(v)) e
e B((u, £—f(u)), &) for every (v, u)e B((u, £), &') and let %: B((u, &), &') X [0, &'] —
— epi(f) be defined by

K((v, w), t) =
= (3(71((%#—1”1(@)), 1%5) %z((v,u - (W), 1—j_€)+ﬁ(361((v,u—ji(v))’ ﬁ?)))

It is, applying the triangular inequality,
A%, 2 + fi(®),(1 + &), @, 2 + f,)) =

= (3, ), ), (v, 2+ L) ~ £ (96 (@, ), 9)) <

< d(d(v, 1), 9),(v, D) + [A0G (v, 1), 9)) —(W)| Ss+es=(1+¢)s.
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Furthermore, it is

gf(‘%((’v’ F"): t)) = 3'(;2((/”’ - _.fl('v))y —]_-t{»-—s_;‘) +f1 (f}Cl (('Uﬁ ~* —.fl(v))7 “l_t*_—a)) <

sy _.fl(v) - 61 i < +fl1(3cl((vy.u' —fl('v))’ ﬁ:)) =

g

< G, ) - (ﬁ? —-s)t.
Hence
|dGei(u, &) = ﬁ_—s —¢
and, since ¢ can be made arbitrarily small,
g |(u, &) = o,
which implies
|ds 1 (w, &) = |Gy, | (u, & = fi(w) .

The opposite inequality is obtained by replacing the function f; with the function f
and the function f; with the function (—f;). =

In the following of this section we want to compare the notion of weak slope with
other notions in the literature.

(2.8) DEFINITION (see[9]). — Let f: X — R U { + = } be a lower semicontinuous func-
tion and let u € M(f). We define

lim sup flu) — f(v)
[V (u) = v AU, V)
0 if % is a local minimum .

if % is not a local minimum,

The extended real number |Vf](w) is called the (strong) slope of f at w. It is readily
seen that |df](u) < |Vf](u).

(2.9) DEFINITION (see(9]). — Let X be a Banach space, A an open subset of X and
ffA->RU{+®} a lower semicontinuous function. For every u e ®(f) we denote
by 8~ f(u) the (possibly empty) set of ’s in X' such that

lim g L) 7S = (2 v =)

z0.
v o =]

The elements of 3~ f(u) are called subdifferentials of f at w.

The following properties are easily verified.
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(2.10) PROPOSITION. — Let f: X > R U {+ « } be a lower semicontinuous function
and let w e A(f). Then the following facts hold:

(@) if g: A— R is Fréchet differentiable atf u, it is
3 (f+g)u) ={a+dg(u): e d flu)};
b) if a €3 flw), it is for every we X

(o, w) < lim inf flu + tw) = fw)
P et 14 ’

(¢) if A and f are convex, 3~ f(u) agrees with the subdifferential of convex
analysis;

(d) if aed fw), it is |Vfl(u) < ||«||;

(e) 0~ flu) is (strongly) closed and convex in X'

In the following result we consider C* perturbations of convex functions. For such
a class a critical point theory has been elaborated in[19].

(2.11) THEOREM. — Let A be a convex open subset of a Banach space X, let fy: A —
— R U {+ » } be a convex and lower semicontinuous function, f;: A — R a function of
class C* and let f=f, + f;. '

Then the following facts hold:

(@) Yue @(f): |dfi(u) = |Vf|(u);
(b) for every w e W(f) it is |df|(u) < + @ if and only if 3~ f(u) = 0 and in that
case

ldf](u) = min {|||: « € 3~ flu)}.

ProOF. — We first observe that by Proposition (2.10) the set 3~ fy(u) is weak*-
closed. Since

7 flu) = {a + dfy(u): 2 €0 fy(u)},

0" f(u) is weak*-closed too. It follows that, if O~ f(u)= @, there exists
min {[la]: « € 8~ fw)}.

It is obviously enough to consider the case dfi (u) = 0. Then by Proposition (2.7)
we can assume f; = 0.

By Proposition (2.10) it holds

3™ flu) # B= |df](u) < | Vf|(w) < min {||al|: « € 3~ f()}.
Now assume that 0 ¢ 3~ f(u) and let ¢ > 0 be such that
Vo: ae ™ flu)=>||a| > o.
By [19, Lemma 1.3] there exists w € A such that f(w) < f(u) — ol|w — u. Since fis
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lower semicontinuous, there exists ¢ > 0 such that
Yo e B(u, 8): flw) < f(v) — ofjw - v]|.

Unless reducing 4, it can be supposed w ¢ B(u, 28). We define 3C: B(u, ¢) X
x [0, 81— X by
w—

H(w, i) =v+1t .
llw ~ ]|

The map X is evidently continuous and [|3¢(v, t) — v|| = £. Moreover, since 0 <
< @tflw-vl) <1, it is

flc(v, 1) < flv) + (flw) - f(v)) < f(v) = at.

t
lw = vl

By Proposition (2.5), it is |df|(#) = o. Therefore 8~ f(u) = @ implies |df|(u) =
= + oo, while 37 f(u) # @ implies

ldf|(u) = min {||«l: x € 3~ f(w)}. =

(2.12) COROLLARY. — Let X be a Finsler manifold of class C* and let f: X — R be a
function of class C*.
Then we have |df](u) = |Vf|(u) = |df(w)| for every ueX.

PrOOF. — If fis defined in a convex open subset of a Banach space, the thesis fol-
lows from Theorem (2.11) with f = 0.

In genera), for every ¢ > 0 there exists a neighbourheod U of % and a diffeomor-
phism @ from U onto a convex open subset of T, X such that ¢ and ¢ ~! are both Lips-
chitz continuous of constant 1+ ¢. By the previous step the thesis follows. ®

We point out that the critical point theory for C' functions on C? manifolds is a
classical topic[17]. The case of C! manifolds has been studied in[20].

(2.13) DEFINITION (see[8,11]). — Let A be an open subset of a Hilbert space, let
frA—>RU{+»} be a lower semicontinuous function and let p = 0. We say that fis
a function with p-monotone subdifferential of order p, if there exists a continuous
function

x (@NHF x R*—>R*
such that
(2= 8, u =)= = ylu, v, fw), FO)( + [l + [8IP)w — off
whenever u, ve 0Xf), €0~ flu), Be 9™ f(v).

A critical point theory for functions with g-monotone subdifferential of order two
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has been elaborated in[8,10,11] by a suitable evolution theory. However that ap-
proach does not allow C' perturbations.

(2.14) THEOREM. — Let A be an open subset of o Hilbert space, let fo: A— R U
U{+ »} be a lower semicontinuous function with p-monotone subdifferential of or-
der two, fi: A— R a function of class C* and let f=f, +f;.

Then the following facts hold:

(@) Yu e O(f): |dfl(u) = |Vf|(w);
(b) for every w e (f) it is |df|(u) < + « if and only if O~ f(u) # 0 and in that
case

|df|(u) = min {|la|: « e 3~ f(u)}.

PROOF. — Again by Proposition (2.7) it is sufficient to treat the case f; = 0.

For every ve @(f) let V:[0, F(v)[— @(f) be the curve of maximal slope for f such
that ¥(0) = v defined on its maximal interval (see [11, section 3}).

We recall that either J(v) = + o or

Jim o) = — =

or there exists

lim ©()edA.

t— )

t

Let ¢ > 0 and let ¥(t) = [(c + [[V'(s)|) dr. For every v e ®(f) and s e ¥([0, I(»)[)
we set (v, s) = K?(W“I(s)g.

Let we @(f), let 6> 0 be such that B(u,2¢)cA and f is bounded below on
B(u, 2¢) and let b = f(u) + 4.

By the maximality of [0, J(v)[ it follows that ¢ is defined on (B(u, ¢) N ®(f)) X
x [0, ¢].

Of course I is Lipschitz continuous of eonstant 1 with respect to the second vari-
able, so that

19¢(, s) = vl = 3¢, 5) = (v, O] < 5.
Furthermore we have

¥i(s)

2.15)  foC(v, 8)) = f(0(F 1 (s))) = f(w) — j [9'(2)|Pdr =

0

5 (g1 2
=f(”>‘f [ACaO)|

Joetlvert@)
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Let us prove that 3¢: (B(u, ¢)Nf by x [0, 81— A is continuous. It suffices to con-
sider a sequence (v,) in B(u, 8), converging to v e B(u, ¢), with f(v,) < b and s € [0, ¢]
fixed.

It is oC(vy,, 8) = ¥, (¢,), where 9,:[0, J(v,)[— @(f) is the curve of maximal slope
for f with ©,(0) = v, and

th
5= [+ [v@Dds
0

for a suitable ¢, < J(v;,).

Since (t,) is bounded, we can suppose t, —t.

We claim that £ < J(v). If not, there would exist = > 0 with 0 <t — 7 < () such
that 9(t — 1) ¢ B(u, 23).

On the other hand we have [11, Theorem 3.71 ¥, (f, — 7) — ©(f — 7), which is a con-
tradiction because

‘K‘)h(th - T)EB(’M/, 23).

Sinee we have also

) t+ Jlu)
9, -9 in L0, 5 ,
we obtain
t
§= J(a + 9@ dr,
0
hence

H(vy, 8) = O, (t,) = 0) = H(v, 5).

Therefore I is continuous.
Assume now that 0¢ 3~ f(u) and take o > 0 such that

Vo: ae 8™ flu)=|al > 0.
Unless reducing &, we have by [11, Theorem 1.18]
Yv e B(u, 28) N f?, Vo:aed fW)=|al > 0.

By (2.15) it follows that

foc(w, 8)) < flv) - . Cf: =5
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hence by Proposition (2.5)

|af] () =

g
eto
By the arbitrariness of ¢ we get |df](u) = 0.
Therefore we have |df|(u) = + o if 37 f(u) =@ and
|df|(w) = min {||«]: « € 3~ f(u)}
if 37 f(u) = 0. Since 3~ f(u) # @ trivially implies
[df} () < |Vf(u) < min {[|«]: « e 87 f(u)},

the thesis follows. =

Finally, we establish a relation between the weak slope and the Clarke’s subdif-
ferential for locally Lipschitz continuous functions. We recall that a critieal point the-
ory for such a class of functions has been elaborated in[4].

(2.16) DEFINITION (see[5]). - Let X be a Banach space, A an open subset of X|
fi A— R a locally Lipschitz continuous function and u € A. We set

+ tw) —
Vwe X: £°(u; w) = lim sup f(”—ﬁ?——f@
t—0t

fu)={aeX"': fOu; w) = (a, w) for all win X}.

It turns out[5] that af(u’) is non-empty and weak*-compact.

(2.17) THEOREM. ~ Let X be a Banach space, A an open subset of X and f: X >R a
locally Lipschitz continuous function.
Then for every ue A it holds

|df|(w) = min {||«|: « € 3f()}.
Proor. — If the right hand side is zero, the fact is trivial. Otherwise, let us
take
0 < ¢ < min {|j«|: « € 3f(u)}.

It is known[5] that the function f°(u; -) is convex, positively homogeneous and
continuous.

By [19, Lemma 1.3] it follows that there exists w e X such that

FOu; w) < — afwf.
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We can suppose that |w| = 1. Let ¢ > 0 be such that B(u, 28) cA and
flv+tw) < flv) - at

whenever » e B(u, ¢) and [0, ]
Then, if we define 3: B(u, ¢) X [0,8]—A by

H(v, t) =v+ tw,

we find that |dff(u)=o. ™

3..— Continuous functionals.
In the following X will still denote a metric space endowed with the metric d.

(8.1) DEFINITION. — Let f: X — R be a continuous funetion. A point % € X is said to
be critical (from below) for f, if |df|(u) = 0. A real number ¢ is said to be a critical
value (from below) for f, if there exists uweX such that |df|(u)=0 and f(u)=c.

(3.2) DEFINITION. — Let f: X — R be a continuous function and ¢ € R. We say that f
satisfies the Palais-Smale condition at level ¢, if from every sequence (uy) in X with
|df](uy ) — 0 and f(uy) — c it is possible to extract a subsequence (u;,) converging in
X (by Proposition (2.6) the limit of (u,) is necessarily a critical point for f).

In this chapter a fundamental tool is constituted by the following Ekeland’s varia-
tional principle[2,12].

(3.3) THEOREM. — Let X be a complete metric space and f: X - R U {+ « } a lower
semicontinuous function. Let »> 0, ¢ >0 and u € X be such that

flu) < ir}}f f+re.

Then there exists ve X such that
f@) < flw), dw,u)<r, YwelX: flw)=zf(v)-— adlw, ).

In the rest of the section we will make repeated use of the following consequence
of Ekeland’s principle.

(3.4) COROLLARY. — Let X be a complete metric space end f: X >R U {+x} a
lower semicontinuous fumction. Let vr>0, ¢ >0 and EcX be such that E =0
ond

1gff<1r}}ff+m.
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Then there exists ve X such that

f(v)<ir)}ff+rc, dv, E)y<r, |dfl(v) <o.

Proor. ~ Let u e E and s’ €10, of be such that flu) < ir}}f f+ re'. By Ekeland’s
principle there exists v € X such that f(v) < f(u), d(v, ) <7 and

Ywe X: flw) = f(v) ~ o' d(w, v).
It follows f(v) < ir)}f f+re, dlv, E)<r and
ldf|(v) < |[VA|(®) < o' <o. n

(3.5) LEMMA. — Let X be a metric space and 2 X — R a continuous function. Let K
be a compact subset of X and o >0 such that

inf{|df](u): ue K} >q.

Then there exist a mneighbourhood U of K in X,8>0 and a continuous
map H: X X [0, ¢]— X such that:

a) V(u, t) e X x [0, &1 d(oc(u, t), u) < ¢
b) Y(u, t) e X X [0, 81: f(3C(u, t)) < flu);
¢) Y(u,t)e UxI[0,8]: f(oC(u, t)) <flu) - do.
PRrOOF. ~ For every u e K let us choose 4, > 0 and
Hy: Bu, 3,) X [0,6,]1>X
aceording to Definition (2.1). Let u, ..., u, € K be such that
Kc U B(u- la
=i ‘R 2 u )

We set ¢; = Su;» ;= Iy, and choose
3 1 N 1'\
0<3<m11"1{—2~01,...,§dn}.

Let us take a neighbourhood U of K in X and continuous functions 6;: X—[0, 1]
(1<) <n) with

n n
supt()ng(uj, -;-aj), WweX: X 0;0)<1, Woel: D 6,()=1.
ji=1 j=1
We claim that for every j =1, ..., % there exists a continuous map

A X x[0,8]>X
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such that

J
Y(u, t) e X X [0, 61: d(%X;(u, t), w) < (};lﬁh(u))t,

V(u, £) e X X [0, 81 (3 (u, 1)) < flu) — c(hé_l e,,(u))t.

To prove that, in the first place we set

O\1)5

o (u, 6 (w)t) if ue B(ul,
al).
Evidently %, satisfies the requested conditions.
Let now 2 <j <n and suppose we have defined X,_,. Since

'-‘)tl (u1 t) =

DO DDk

u ifugB(ul,

-1
AKX, — 1 (uy 1), u) S (hz Gh(u))t £48< %é‘j,
=1
it is
VueB(uj, —;-é‘j): X, -1(u, 1) € B(w;, 8;).
Then we define

M (D{j_l(u, t), Gj(u)t) if u EB(uj, ';—8]),
3(,](%, t) =
%1 (u, 1) if uag(uj %aj).

By the inductive hypothesis, it is easy to verify that ;. satisfies the requested

conditions.

To conclude the proof, it is sufficient to set 3= X,. ®&

In the following we will denote by & the family of the compact non-empty subsets
of X. The set & will be endowed with the Hausdorff metric

(4, B) = max {maz( d(a, B),max d(b, A},

We recall that, if (X, d) is complete, then (&, b) is complete[14].
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Given a continuous function f: X — R, we define a function F: & — R setting
HK) = max f.
It is easily verified that the function & is continuous with respect to the metric D.
Now we apply the notion of weak slope to Ljusternik-Schnirelman theory. Ac-
cording to[13], we shall consider the category defined by means of open coverings.

Therefore every closed subset C of X possesses a neighbourhood U with caty U =
= caty C. It follows that for every % =1 the set

Iy={KeQ&: catyK=h}

is closed in (8], D).
As known, if X is an ANR, the category in the sense of[13] agrees with the cate-
gory in the sense of [17], defined by means of closed coverings.

(3.6) LEMMA. — Let X be a metric space and f+ X — R a continuous function. For
every h =1 let &, = F|r,.
Let KeTly, o> 90, >0 be such that

Yu e K: f(u)?ml?x f—e=|df|(w) = 0.
Then |dF,|(K) = o.

PrROOF. — Let ¢’ €]0, o[ and let U and 3 X X [0, ¢] — X be obtained applying
Lemma (3.5) to the compact set

{ueK: flu) = max f- p}

and to o',
Let ¥ be a neighbourhood of X in I, such that

. - £
VAe"&‘).mjxmel?xf 5
VAe ¥ {ueA: f(u)?ml?xf—p}gU.

Let ¢’ =min{p/(2¢"), 8} and let X: ©Xx [0, &'] -1, be defined by
KA, t) =30(A x {t].
It is easy to verify that % is continuous and
b(A(4, ), A) <t.

Let now Ae V. If ue A and f(u) < max f—¢, it is for every te[0, ¢']

FOC(u, 1) < flu) < max f ~ o < max f - % < F(A) - o't.
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Otherwise, if v e A and f(u) = ml?x f—e, it is for every te [0, ¢']
FOC(u, 1) S flu) =o't < F(4) — o't
In any case we have
VAde©, Viel0,8]: F(XA, 1) < FA) —o't,

hence |dF,[(K) =o'
The assertion follows by the arbitrariness of s’ €10, s[. ®

Now we can prove the first result concerning Ljusternik-Schnirelman catego-
ry.

(8.7) THEOREM. — Let X be a complete metric space and f: X — R a continuous
function. For 1 < h < sup {catyK: K is a compact subset of X} let

e, = iphf F= Klgﬁh (mf?x ).
Then, if for some h =1, m=1 it is
—0 < ¢ = . T Gyt
and if f verifies the Palais-Smale condition at level c,, it holds
caty {u e X: |df|(u) =0, flu) =¢,} = m.

In particular, ¢, is a critical value for f

ProoF. — Let ¢ =¢;, and let
K,={ueX: |df|(w) =0, flu)=c}.

By contradiction, assume there exists a neighbourhood U of K, with caty U <
<m — 1. For every ¢ >0 let

NAK,) ={ueX: du, K,)<e}.

Sinee the Palais-Smale condition at level ¢ holds, K, is compact. Therefore we can
suppose that U = Ny, (K,) with » > 0.
There exists ¢ > 0 such that

uegN,(K,) and c—oc<flu)sc+o=|df|(n)=0.

For every ¢’ > ¢ there exists A; € I'y . -1 such that F(A,) <c'. Let

Ay =A\ N (K,).
Then caty Ay = h, F(Ay) <c¢' and A, N N (K,) = 0.



M. DEGIOVANNI - M. MARZOCCHL: A crifical point theory, etc. 91

It follows that, setting
E={Ael'y: ANNy.(K,) = 0},
it is
iréf Fp, = l'%lhf F,.

Being &, bounded from below, by Corollary (3.4) there exists A eI, such

that
FA)<c+o, DA EY<r, |dFR|A)<o.
Itis ANN,(K,) =0 and of course max f=e¢, so that
Vuecd: flu) = max f—o=|dfl(u) = o.

By Lemma (3.6) it follows
[dF |(4) =2 o,

which is a contradiction. =

For the two next results concerning Ljusternik-Schnirelman category, some reg-
ularity on the metric space is required.

Instead of imposing X to be an ANR, we prefer to consider a weaker condition,
which has the advantage to be homotopically invariant.

(3.8) DEFINITION. — A metric space X is said to be weakly locally contractible, if for
every % € X there exists a neighbourhood U of # contractible in X.
This means that caty{x} = 1 for every z e X.

(3.9) THEOREM. — Let X be a complete and weakly locally contractible metric space
and f: X — R a continuous function. Suppose that f is bounded from below and that
Jor every bef(X) and for every c¢<b the Palais-Smale condition at level c
holds.

Then f has at least

sup {caty K: K is a compact subset of X}

points whick are critical from below.

Proor. - If
1<k <sup{catyK: K is a compact subset of X},

the Palais-Smale condition at level ¢; holds.
Furthermore, every singleton in X has category 1. By Theorem (3.7) the thesis
follows in a standard way. =
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(8.10) THEOREM. — Let X be a complete and weakly locally contractible metric
space and f: X — R a continuous function such thot

(a) igff> -0}

(b) for every b e fIX) and for every ¢ < b the Palais-Smale condition ot level ¢
holds;

(¢) sup{catyK: K is a compact subset of X} = + .

Then the supremum of f is not achieved and
sup ¢, = sup f,
h X

where (c,) is the sequence defined in Theorem (3.7).
In particular, there exists a sequence (uy) in X with |df|(u,) =0 and flu,) —

—~>sup f.
X

PROOF. — Let ¢ = sup ¢,. Let us suppose that the assertion is false. In that case, it

B
is ¢ < + = and the Palais-Smale condition at level ¢ holds.
Furthermore the set

K={ueX: |dfl(w)=0 and fu) <c}

is compact.
By the weak local contractibility there exists » > 0 such that caty (N (K)) =
=k < 4+ . Let ¢> 0 be such that

ueN,(K) and c—ro<sflu)sc+ro=l|dfl(u)za

and let - be such that ¢ < ¢, + ro.
If ¢/ > ¢, ., there exists A; eI’y ., with F(4,) <c’. Setting

Ay =A;\ Nep (K),

it is Ao el';,, FlAy) <c¢' and A, NN, (K) = 0.
Setting

E={Ael,: AN N, (K) =0},
it results

HE}f ihsch+k$0<ch+’l'd=i;lf 5’%""7’0’.
h
By Corollary (3.4) there exists A e I', such that
FA)<e, +re, DA E)<T, |dFn|(4) < @.

It follows that A NN, (K) =0 and then
YuecA: flu)=c—re=|df|(u) Zo.
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Since ¢ — 7o < ¢, < F;,(A), by Lemma (3.6) we deduce that
l[dF, [(A) = o,

which is a contradiction. W

Now we want to prove a saddle point theorem in the spirit of[1, 18] for continuous
functions.

(8.11) LEMMA. - Let X be a metric space, f X — R a continuous function, (D, S) a
compact pair and y: S — X a continuous map. Let us consider

9= {peCD; X): p|s=¢}

endowed with the uniform metric b and let us define a continuous function F. @ — R
by

5(;0) = mg.x(fo gp).
Let pe®, 0>0, 0 >0 be such that

max (foy) < max(fop),

VieD: f(p(9) > max(fop) — o= |df

(p(®) 2z 0.
Then |dTF|(p) = 0.

PROOF. —~ Without loss of generality we can assume
mgx (fo ',b) < mgx (fo go) - 3p .

Let ¢’ €]0, o[ and let U and 9¢C: X x [0, ¢]— X be obtained applying Lemma (3.5) to
the compact set

{89 flo(9) = max(fop) - o}

and to ¢’. Of course we can assume f(u) > mgx(fo v) — 2¢ for every ue U.

We can also suppose that 3C(u, t) = » whenever f(u) < mgx( fog) — 3p. Otherwise

we substitute 3C(u, t) with 9C(u, tA(%)), where A: X — [0, 1] is a continuous function
such that A(u) =0 for f(u) < mgx(fo @) — 3¢ and A(u) =1 for flu) = mgx(fo o) —
- 2p.

Let ¥ be a neighbourhood of ¢ in @ such that

. £
VeV mgx(fon) Bmgx(fo;o) 5

Ve v {n(&): fin() = max (fop) =} cU.
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Let ¢’ =min{p/(25"), 8} and let X: ¥ X [0, &']—> @ be defined by
Vee D: 9n, 1)(E) = AH(n(8), 1) .
It is easy to verify that X is continuous and
D(X(n, ), n) St

Let now ne™V and ¢eD. If f(n(f))smgx(fog;)—p, then it is for every
tel0, &'

S, (@) = Fo(n(E), 1) <f(n(H) < max(fop) ~p < max(foy) = £ < Fn) "1,

Instead, if f(n(£)) > max(fo) - p, then it is for every &[0, 8']
F(X(n, £)(®) = f(9(n(8), 1) S f((®)) — o't S Fn) — o't
Then,
Viel0,d']: AH(n, 1) STF(y) —c't

and therefore |dF|(p) =o'
The assertion follows by the arbitrariness of ¢' €]0,o[. ®

(8.12) THEOREM. — Let X be a complete metric space, f> X — R a continuous func-
tion, (D,S) a compact pair, J: S— X a continuous map and

¢ ={peCD; X): p|s=¢}.
Let us suppose that @ = ¢ and
Vo e d: msa.x(fo¢) < mDax(fogo).
Then, if f verifies the Palais-Smale condition at level
c= ;uEn; (mDaX(foqo)),
it follows that ¢ is a critical value for f.

PROOF. — Let us suppose that ¢ is not a critical value for f. Since the Palais-Smale
condition at level ¢ holds, there exists ¢ > 0 such that
ue®(f) and c-o<flu)<c+o=|df|(w)=a.

Let us define & ® — R as in Lemma (8.11). Being & bounded from below, by
Corollary (3.4) there exists ¢ € @ such that

He)<c+o, |dF|(¢) <o.



M. DEGIOVANNI - M. MARZOCCHI: A critical point theory, etc. 95

It is
f(6(9) = max(fog) — o= |df] (5(5)) > 5.
By Lemma (3.11) it follows |dF|(¢) > o, which is a contradiction. ™

So far we have treated the critical point theory for continuous functions. If f: X —
— R U {+ =} is lower semicontinuous, it is possible to consider the continuous func-
tion & epi(f)— R. By Definition (24) we have |df|(x)=0 if and only if
|dGs|(u, f(u)) =0 and also (u;,) is a Palais-Smale sequence for f if and only if
(4, f(uy)) is a Palais-Smale sequence for &;.

The essential difficulty is that we do not know in general the behaviour of
|dGe | (u, £) when f(u) < & However, as we shall see in the next result, we can calcu-
late |dG;|(u, &) when fis a C' perturbation of a convex function. Therefore it is possi-
ble to obtain in our setting the results of [19].

(3.13) THEOREM. — Let A be a convex open subset of a Banach space X, let f: A —
— R U {+ » } be a convex and lower semicontinuous function, f;: A — R a function of
class C! and let f=f + f;.

Then for every ue GXf), &> f(u) it holds

ldgs|(u, &) =1.

PRroOOF. - Let u e ®(f) and & > f(u). It is obviously enough to consider the case
dfi (u) = 0. Then, by Proposition (2.7) we can suppose f; = 0.
Let 3C: B((u, &), &) X [0, é]— epi(f) be defined by

H((v, @), t) =
t —_
=|v+ v y = (= flw)) L
Vo = wlp + |u - fu)|? Vilo = ulf + Ju - fw)|?
where ¢ > 0 is such that f(u) < &— 24
Since
( s(u — v) 3
(v - <f) + (fw) - f(v)) <
Vv - alp + |« - fa)? Vi = ulP + |« - fa)?

<u— (= flw) £ :
Vo —ulp + |u — fa))?

we actually have 3C((v, u), s) eepi(f). It is easily verified that ¢ is continuous
and

d(9C((v, w), ©), (v, ) = £.
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On the other hand we have
G (9w, ), 8)) = = (& = f(w)) l -
Viv = alf + |u - fu)|*
(e = flu)) £—o—flu)

s=< gf(’vs ;u) - 8,
Vo = wlf + | — fw) |2 Ve + (6 + 5 - fw)

= gf(?)y [J—) -

which implies
&E—3— flu)
Vet + E+ ¢~ fw)?

|dgs [(u, &) =

Since ¢ can be made arbitrarily small, we conclude that

ldgl(u,5)=1. =

4. — Eigenvalue problems for variational inequalities.

In this section we give an application of the theory developed in the previous sec-
tions. Let Q be a bounded open subset of R?, n =3, let g: 2 XR—-R be a
Carathéodory function with g(, —s) = — g(, s) and let g € H'(Q), ¢ = 0. We want to
consider the eigenvalue problem

rweRXK,
“.1) A J’ (DuD(w — u) + g(x, u)(v —u)) de = ju(v —uw)der Wvek,
0 G ‘

where
K={ueH}(Q): ~p<u<pael}.

We assume that there exist a e L®"*2(Q), be R and p <2n/(n —2) such
that

4.2) —a(x)|s| — bs? < sg(z, s) < alx)|s| + bls|P.

Problem (4.1) has been already treated in[83,6,7,15], provided that the difference
quotient

gz, s) ~ gz, 1)
s—1

is subjected to a suitable lower estimate. On the other hand only a one-sided version
of (4.2) is assumed.
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However, in the mentioned papers an essential tool is constituted by the evolution
theory of[8,11], which guarantees existence and uniqueness for the evolution prob-

lem associated with (4.1).
For this reason, the case in which only an estimate of |g(x, s)| is assumed cannot

be treated by that approach.
We set

8

Gz, 5) = j g(x, t)dt

0

and we define fy: H{ (@) >R U {+x} and fi: H} (2) - R by

%leu[zda& ifuek,
Jo(u) = q

+ o if we H} (O\K,

filu) = fG(x, w)dx .

Q

Let p>0 and let S= {ueHOI(.Q):juzdx=pz}. We define Ig: Hi(Q)—>R U
U{+o} by 0

0 ifues,

Is(u)={ . ;
+o  if we Hy (Q\S,

and FKNS—R by f=f+f.

(4.3) DEFINITION (see[6]). - Let K be a convex subset of a Hilbert space X, M a C!
hypersurface in H and e K N M. The sets K and M are said to be tangential at u, if
there exists x e R\ {0} such that

YweK: u((u),w—u)z0,
where v(u) is a normal unit vector to M at wu.

In our particular situation, since 0 ¢ K we have that S and K are tangential at
ue SN K if and only if

VveK:J’u(v*u)deO.
9

(4.4) THEOREM. ~ Let us assume that o* < [ ¢®da. Then there exists a sequence (1)

A
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in R and a sequence (u,) in KNS such that

)\hJ’(DuhD(v—uh) + g(x, up)(v — up)) die = Juh('v —u)de Veek,
g g

11]{!11},1:0.

Proor. - If K and S are tangential at some w € K N S, it is sufficient to set A, =0
and u, = u for every h.

Therefore let us assume that X and S are not tangential at any point of K N S. Let
X be the quotient space obtained from K N S by identifying » with —u, endowed
with the metrie

d((u),[v]) = min {|Ju — o[, ||« + v|}.

It is readily seen that X is complete. Moreover, in[7, Lemma 1.14] it is proved
that X contains compact subsets of arbitrarily large category. Since fis even, there is
an induced functional f: X — R, which is of course continuous. By (4.2) f is bounded
below. Since K and S are not tangential at any point, by [6, Theorem 1.10] (fy + Ig)
has g-monotone subdifferential of order two. From [10, Theorem 3.14] it follows that
KNS=a(fy+Ig) is an ANR, hence X is an ANR.

Let us show that f verifies the Palais-Smale condition at level ¢ for every
ceR.

Let ([u;]) be a sequence in X with |df|(u;1)— 0, f(Iu,]) — c. Then we have
|df|(uy,) — 0 and f(u;,) — c. By (4.2) it follows that (u;) is bounded in H{(Q).Uptoa
subsequence, we can assume that (u;) is weakly convergent to ue K N S.

Again by [6, Theorem 1.10] we have « €3~ (fo + Ig)(uy) if and only if

a=f—puy, i HQ)

with e 3 fy(u;,) and u € R. Moreover, from

YveK: ‘U.J-uh(’l) — ) de < fy(v) — fo(uy) — (o, v — up)
0

we deduce || < C(1 + |J«]), because K and S are not tangential at u.

On the other hand, by Proposition (2.10) and Theorem (2.14) we have |df|(u,) =
= |lay + dfs (uz)|| for some a;, € 37 (f + Is)(u). Since by (4.2) (df; (5 )) is strongly con-
vergent in H (), it follows that («;) is also strongly convergent in H ~* (). There-
fore oy, =S, — wyu, With ), bounded in R. Since (u;) is strongly convergent in
H1(Q), we have that (8,) is strongly convergent, up to a subsequence, to some
Be H ' (Q). By the convexity of f; it follows that

fow) = Tim fi(w,),

ie. (u;,) is strongly convergent in H§(Q) to u.
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By Theorem (3.10) there exists a sequence (u;) in K NS with |df] (%) =0 and
flu) = + . By (42) it follows that [|Dw,|*dx — + =. Let p, e R be such that

—g(x, up,) + mpup, € 07 fo(ug), Le.

f(Du,LD(v — ) + gz, w, Yv — uy)) de Btuhfuh(v —upyde VeoekK.
g g

The choice v = 0 gives

pre® 2 J | Duy, |? dic + J%hg(x, uy,) da = j | Dy, |2 dee = Cllallan/in + 2 || Du o — be%,
g g g

so that u,— + oo,
Then it is sufficient to set A, =u; ! for p, >0. N

{4.5) REMARK. - Of course it is interesting to known when we can state that A, = 0
for every h, i.e. when K and S are not tangential at any point. This question has been
solved in[7], where a characterization of the ¢’s for which K and S are not tangential
is given. For instance, if ¢ € C(Q) N H'(2) and {x € Q: ¢(x) > 0} is connected, then K
and S are not tangential at any point, provided that p2 < j;ozdw.

o
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