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A-Equidistributed Sequences of Partitions 
and a Theorem of the De Bruijn-Post Type (*). 

FRANC0 CHERSI - ALJOSA VOLCI5 

Summary. - The notion of uniform distribution of a sequence is generalized to sequences of par- 
titions in a separable metric space X. Results concern Riemann integrability with respect to 
a probability A on X, and Riemann approximations of Lebesgue integrals. 

Introduction. 

A classical theorem by H. WEYL states that, if f is a Riemann integrable real func- 
tion on the unit interval I, then for every uniformly distributed sequence {Xn } in I 

N 1 
the averages 1 / N  ~, f (xk)  converge to f f ( x )dx ;  the convergence condition was later 

k = l  0 
shown to be sufficient for the Riemann integrability ([1], 1968). The notion of uniform 
distribution with respect to a given measure has been generalized in several ways: se- 
quences of points in a locally compact space (see [6], 1974 and [10], 1972), sequences of 
probability measures on a separable compact space ([7], 1970), in particular sequences 
of discrete measures associated to partitions of a compact interval ([5], 1975). See 
also [3], 1984. 

Given a separable metric space (X, d) and a probability measure A on X, we define 
the notion of a A-equidistributed sequence of finite partitions of X. We give a suffi- 
cient condition for the existence of such a sequence of partitions made up of A-continu- 
ity subsets (condition (c) and Theorem 1 below). This method allows to adapt the 
mentioned results of H. Weyl and De Bruijn-Post to the case of real functions on X: 
see Corollary 1 and Remark 3. Moreover: if f is bounded, but not A-Riemann inte- 
grable, every number a between its lower and upper Riemann integrals can be ap- 
proximated by a sequence of Riemann sums associated to the mentioned partitions 
(Theorem 2). Therefore, if f is bounded and A-summable, its Lebesgue integral is the 

(*) Entrata in Redazione il 24 gennaio 1989. 
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Lavoro presentato al terzo Convegno nazionale (,Analisi reale e teoria della misura- (Capri, 

12-16 settembre 1988). 



24 FRANCO CHERSI - A L J O S A  V O L C I C :  ~-equidistributed sequences, etc. 

limit of a particular sequence of Riemann sums (a result of this kind, in a different 
context, was obtained by P. MORALES: see [9], 1972). 

The meaning of condition (c), with the search for non-trivial cases, seems to be an 
interesting open problem. 

Let (X, d) be a separable metric space, ~ a probability measure on ~(X). Let Q be 
a partition, at most countable, of X into Borel sets: Q = {Ej }j ~N, Ej e ~(X). For each j 
such that ~(Ej) > 0 let Zy be a point in Ej.  Define a probability measure t~ by 

(1) f~ := E ~(Ey). ~ ,  
.i ~ N  

where ~%j is the Dirac mass at zj. 

LEMMA 1 .  - If {Qk }k ~1 is a sequence of partitions as above, verifying 

(2) lira (sup d i a m  (Ek, j) ~ = 0, 
k ~jeN J 

then for any choice of the points zk, j ~ Ek, j the corresponding sequence of measures 
{~k}, associated to {Qk} by the formula (1), converges weakly to )~. 

PROOF. - It is enough to check that 

(3) lira ~k (g) = )~(g) 
k 

for all g ~ U(X), where U(X) is the space of bounded, uniformly continuous real func- 
tions on X (see [11] II, Theor. 6.1). This follows easily from condition (2). 

Now let P = {E~ }o ~i-< ~ stand for a f ini te  measurable partition of X. 

DEFINITION 1 .  - A sequence Pk = {Ek, ~: 0 ~< i < n(k)} of finite measurable parti- 
tions is called ~2-equidistributed- iff, for any choice of points zk, i e Ek, ~, for all func- 
tions f e  Cb(X, R), the following holds: 

(4) lim 1 ~of(zk = f f  k n(k) + 1 : i) d)~. 
X 

REMARK 1. - Definition 1 generalizes the one used by S. KAKUTANI ( [ 5 ] ,  p. 370) 
concerning partitions of the unit interval. In particular: if the sequence {Pk } verifies 
condition (2) and moreover )~(Ek, ~) = 1/(n(k) + 1) for all i, then by Lemma 1 it is 
~-equidistributed. 

Now let r denote the field of all sets having frontier of null measure, or )~-continu- 
ity sets. 



FRANCO CHERSI - ALJOSA VOLCIC: )~-equidistributed sequences, etc. 25 

LEMMA 2 .  - For each k e N there is a partition, at most countable, of X into subsets 
{Ak,5}j~N such that: 

(I) for all k and j, Ak, j �9 C),, 

(II) sup diam (Ak, j ) <<- 2/k. 
j e N  

PROOF. - Let {xy }j ~N be a countable set of points, dense in X. Given k, for each j 
there is an open ball Bk, j with centre x] and radius r~,j such that 1/2k <<. rk, j <~ 1/k and 
Bk, j e C~ (the positive function r ~ ),(B(xj, r)) is increasing, therefore continuous at all 
but a countable set of points r; see also Remark 2 below). These balls form a covering 
of X. The sequence of sets defined as follows (where B' denotes X \ B ) :  

(5) A~, 1 :-'~ B k ,  1 ; Ak, ,l = B k ,  n (~ Bt~', n - 1 A . . .  N B~, 1,  

verifies the conditions stated above. 

Now, given a point x0 �9 X, consider the function 

f(r; Xo ) := )~(B(Xo, r)), r >1 0 

where B(xo, r) is the open ball {y e X: d(xo, y) < r}. As noticed above, f is continuous 
at all but a countable set of numbers r, where it may have jumps. Let us introduce the 
following condition relative to the couple (d,)~): 

(c) There is a point Xo such that f(r, Xo) is continuous at all r. 

REMARK 2 . - f i s  continuous at r iff )~(B(xo, r)) =)~ \( ~>rB(Xo, s)).i This equality ira- 
8 

plies that B(xo, r) belongs to r but the converse is not true, in general: the frontier 
of the ball is contained in (but not necessarily equal to) the sphere {y: d(xo, y) = r} 
(see [2], p. 204). 

Condition (c) is verified by Lebesgue measure in R n with the usual distance. 

LEMMA 3. - If condition (c) holds, there exists a sequence {Pk } of finite partitions 
of X into ).-continuity sets Ek, i (0 <<.i << . n(k)) such that: for any choice of points 
z1~, ~ Ek. i, for every bounded real function f, the following holds: 

( )E (6) lira zk ~)" 1 _ ,~(Ek. i) = 0. 
k , = n ( k )  

PROOF. - For each k ~ N let {Ak, j }j~:~T be a partition of X into ~-continuity sets; let 
s;~ be the smallest integer such that 

8k 

j = l  k '  
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moreover let 

(8) /k: = rain {~(Akj): )~(Ak, j)  > 0} 
l <~j <.s~ , 

and Ak be one set having such measure. We will partition Ak into k + 1 h-continuity 
sets: Ek, 1, ..., Ek, k each having measure lk /k ,  plus one of null measure. 

Choose xo e X as in condition (c); then also the function 

(9) r := )~(Ak A B(xo, r)) 

is continuous at all r, and for r sufficiently large it reaches the value lk. Let  rl > 0 be 
such that  r  lk/k; put 

(10) Ek, 1 := Ak A B(xo, rl ). 

In general, let rp be such that r = p.  Ik/k,  1 <<. p <~ k; for p >t 2 define 

(11) Ek, p: = (Ak n B(x0, r p ) ) \ E k ,  p _ 1. 

Each Ek, p belongs to CA and has measure equal to Ik/k. 
For any other indexj  such that  )~(Ak, j)  = lk, j > 0, so that lk, j >i lk by definition, we 

will partition Ak, j into a finite number of subsets Ek, j, q ~ CA of equal measure. The 
ratios 

)~(Ek, j, q) 
(12) ~k'Y:= )~(Ek, p) (P >~ 1, q >i 1), 

will verify, for any k and j, the inequalities 

(13) 1 ~< ,zk, j < k +__~1 
k 

Let  tk, j be the largest integer such that  

lk 
tk, j" -~ <. lk, j; (14) 

thus it verifies 

(15) tk, j >/k and (tk, j + 1) ' Ik /k  > lk.j. 

By the same method as above, the set Ak.2 is partitioned into the ;(-continuity subsets 
Ek, j, q, 1 <~ q <<. tk, j ,  each one of measure l~j/t~, plus a ~-continuity set of measure zero. 
By construction 

lkJ k 
(16) ~, j  . . . .  . 

tkj lk 

Inequality (14) implies the left-hand side of (13); inequalities (15) imply ,zk, j < (tk, j + 
+ 1)/tk, j <~ (k + 1)/k, i.e. the right-hand side of (13). 
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For  each k let us put 

8k 

(17) nk := ~ tk, j,  
j = l  

i.e. the total number of the ;(-continuity sets Ek, j, q having strictly positive measure 
(for at least one value o f j  it is tk, j = k); we will find an upper bound and a lower bound 
for nk. ~k 

Let  us renumber as Ek, i, 1 <. i <~ nk, all the sets Ek, j, q. Since ~ ;((Ek, i) ~< 1 and 
each addend is at least lk/k, then i= 

(18) ~ nk ~< ~ .  

On the other hand, by construction 

(19) 
sk lk sk 

j = l  j = l  ' 

from this and from (13) follows 

8k 

1 ~1 k + l  (20) 1 - ~ < tk, j" k2 "lk j= 

and therefore 

1 - 1/k .k 2 
(21) nk > - -  ; 

(k + 1)'/k 

moreover, for all k t> 2 we get  1 - 1/k >i (k + 1)/(k + 4). 
Let  us show that, for k ~> 2 and all i between 1 and nk, 

(22) - 4  lk ~ < ~ ( E k i ) -  1 ~ <  I k .  
k2 ' nk k2 

Inequality (21) above yields 

1 < (k + 4)./k _ lk l_L 
(23) n-k k2 k + 4. k2,  

from which follows 

1 lk 1 > . . . .  4 lk " 
(24) ;((Ek, i ) -  -~ >t k n~ k 2 

Moreover, by means of (13) and (18): 

1 I k k + l  IA = l_Lk" 
(25) ;((Ek, i ) -  ~ ~< ~-" - - - - ~  - k k 2 '  
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thus (22) is proved. Finally, the ~-continuity set 

~k 

(26) Ek, o : = X \  [J Ek, 
sk 

has the same measure as X\NU1Ak, j , =  hence ~< 1/k. 
Now let 21//= sup If(x) l. The absolute value in (6) is less than or equal to 

x e X  

1 _Z(Eko) + M ' ~  -~k -)~(Eki) ; (27) M" ~ , i=1 . ~ 

from (18) and (22) it follows that 

'~k I ~1 ~lz -k'4 (28) -  (Ek, < n .4. < 
I 

so that (6) is proved. 

THEOREM 1. - If condition (c) holds, there exists a sequence {Pk } of finite parti- 
tions of X, verifying (I) and (II) of Lemma 2 (except, for each k, for one h-continuity 
set Ek, o of unknown diameter), which is )~-equidistributed. 

])ROOF.- For each k e N  let {Ak, j} j~ N b e  a partition of X into ,~-continuity sets, 
such that sup diam (Ak,5) ~< 2/k (Lemma 2); for each k let Pk = {Ek, ~: 0 ~< i ~< nk }, the 

j e N  
finite partition described in Lemma 3. From Lemma 1 applied to the sequence 
{Pk  }k/> 1 and from the fact that ~(Ek, o) <<- 1/k (the diameter of Ek, o has not been esti- 
mated), it follows that: for any choice of zk.i e Ek~ i and for every f E  Cb(X, R) 

(29) 
~b k 

lim ~ f(zk, i)')~(Ek i) = ffd) . 
k i=O x 

Thus (6) and (29) imply 

nk 

(30) limk nk-k i = 0 1  ~ f(zk, ~) = f fd) . .  
x 

COROLLARY 1. - Under the same assumptions, if f is a bounded, ),-Riemann inte- 
grable function on X, then for any choice of the points zk, i e Ek, i equality (30) still 
holds. 

PROOF. - The sequence of discrete measure, associated to {Pk } by the choice of the 
zk, ~'s, converges weakly to ~. By assumption the set of discontinuity points o f f  is a ~- 
nullset, therefore (29) still holds. 
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This Corollary is a new version of the mentioned well-known of H. WEYL 
([12], 1016, p. 314). 

LF, MM_~ 4. - Suppose condition (c) holds and let {Pk } be a sequence of finite parti- 
tions of X as in Theorem 1. Then: given a bounded real function f on X, there are two 
sequences {~k } and {~k } of discret, e probability measures associated to {Pk}, such 
that both converge weakly to ~ and moreover: the sequence t~k (f)  converges to the 
upper Riemann integral off ,  the sequence vk (f)  converges to the lower Riemann inte- 
gral of f. 

o 
PROOF. - For  each k e N and i between 0 and nk there are two points wk, ~ e E k ,  and 

0 
vk, ; s Ek, ~ such that: 

1 .  i0nf f + -k (31) f(wk, ~ ) > sup f - -  k '  f(vk, i ) < 1 

(for i t> 1 the interior of Ek, i is not empty, since Ek, ~ c ~ and ~(Ek, i) > 0; for i = 0 it 
might be )~(Ek, o) = 0, but  nothing would change in the sums below). 

Define 

~k 

(32) ~k ' -  ~ )v(Ek, i)" ~%~,, 
i = 0  

and 

(33) vk : = ~ ),(Ek, i )" ~'~, ~. 
i = 0 

By Lemma 1 and by the inequality ),(Ek, o) <<- l l k  both {t~k } and {v~ } converge weakly 
to ~. Let  f *  be the smallest u.s.c, function /> f, and f .  be the greatest  1.s.c. function 
~<f. Trivially, f is summable relative to each of the measures ~k and vk ; f *  and f .  are 
summable relative to )<, and 

(34) ff*d)<= ifdZ, ff, ffd', 
x U x 

x 

(by definition or by approximation, according to the point of view: see [8] p. 375 
and [4], 1.9.1). 

We will prove the following: there exist 

(35) lim~ fm.  = ff*d , and lim  = ff, 
X X X X 
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The equality f *  (x )=  lim sup f(y) implies that,  for each couple (k, i) 
y---)x 

(36) (sup f )  �9 1~.~ ~> f * .  1~.~ 
\Ek, i 

and therefore 

f ~ f f  1 ~  f 1 (37) fdb~k = ~ )~(Ek i ) "f(wk, i) > * d)~ - -~ )~(Ek ~ ) = f * d)~ k 
X a X 

Ek, 

0 
(recall that  ,X(Ek, i) = ,~(Ek, ~)). Thus: 

(38) liminfk._,o~ I f dtzk >~ I f *  d)~ . 
x X 

On the other hand 

(39) I f * d 2 ~  lim sup ] f*d~k >> - lim sup Ifdt~k, 
k~oo, k ~  

X X X 

because of the weak convergence of {~k } to ,1. Inequalities (38) and (39) imply the 
first of (35). The second of (35) is proved in the same way, using the inequality 

(40) ( i n f f / "  1}k, ~ ~< f , "  1}k, ~ 
Ek, i ] 

and the weak convergence of {vk } to ,L 

LEMMA 5. - Suppose (c) holds and let {Pk } be as in Theorem 1. For  every bounded 
real function f, for every t e [0,1] there is a subsequence {eke, t }~ of discrete probabili- 
ty measures  associated to {Pk } such that: there  exists the limit 

(41) l'ma Ck~,t (f)  = ~(t) 

and ~ is a Lipschitz-continuous function of t, such that  

(42) ~(0) = I f . d ~ ,  ~(1) = I f *  d~. 
x x 

PROOF. - For  each C~-set Ek, i let wk, i, vk, ~ be the interior points specified in Lem- 
ma 4. Given t as above and any s > 0, there exist r I> 0 and ~ = ~(~)> 0 such that  

(43) )~(B(xo, r)) = t and )~(B(xo, r + 8) = t + ~, 

by assumption (c). Let  k = k(D be an integer  such that  2 / k  < 8, and Pk the corre- 
sponding finite partit ion as in Theorem 1; then 

1 
(44) 1 max_< i -< ~ diam (Ek, i ) < ~ while 2(Ek, o) ~< ~-. 
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Define the discrete measure G, t as in (1), with the following choice of the points: for 
each E~, i intersecting the ball B(xo, r) the point wk, i; for each Ek, i intersecting the 
complement of B(xo, r + 8) choose vk, ~; for all the others and for Ek. o take any interior 
point zk, ~. Let us consider the function 

(45) 
J f *  (x) if x eB(xo, r), 

ft (x) := ~ f .  (x) otherwise, 

r = r(t), 

which is bounded and Borel measurable. Let 

f 
(46) ~(t) := ~ft (x) d~ 

X 

defined on [0, 1] and Lipschitz continuous with a constant Mr= 2.sup If(x)l. 
Z 

Equalities (42) are obvious. We will prove that, for every t e [0, 1], there is a se- 
quence of integers k~ such that (41) holds. Given t e [0, 1] and ~ > 0, let k be the inte- 
ger k(D and G, t the discrete measure associated to Pk, both described above. Then, 
writing Br instead of 3(Xo, r) and B~ instead of B(xo, r + ~): 

(47) Ck, t( f)=~fdck,  t+ ~ fdck, t + ~ fdCk, t. 
B~ ~\8~ X \ ~  

At each point x e Br: (f" 1B~)* (X) = f * (X), and at each z e X \ B~: (f.  lx \ ~ ) ,  (z) = 
= f ,  (z). Therefore, by the same reasons as in Lemma 4, there exist 

(48) lim~fdCk, t=~f*dZ ,  lim ~ fd~k,t = ~ f . d ~ .  
k k 

Moreover 

(49) 
\B~ 

Now: take s = 1/n and a corresponding ~ = ,2(1/n) as above; let k~ be an integer such 
that 2/k,, < ~(1/n). Then the subsequence eke, t of discrete measures just defined veri- 
fies equality (41), because of (47), (48) and (49). 

THEOREM 2. - Let (X, d) be a separable metric space, 2 a probability on X verify- 
ing condition (c). There is a ),-equidistributed sequence {Pk } of finite partitions into 
h-continuity sets such that: for every bounded real function f on X, for every number 

between the lower Riemann integral and the upper Riemann integral offi there is a 
subsequence of discrete measures {G~}~N associated to {P~ } such that 

(50) lira 
x 
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P~OOF. - By Lemma 5, there is a t e [0,1] s.t. ~ ( t )=  ~; take Ck~ := Cko, ~ defined 
above. 

COROLLARY 2. - If  f is bounded and ~summable,  there exists a sequence of Rie- 
mann sums, associated to the sequence of finite, C~, ~-equidistributed partitions 
{Pk}~N,  which converges to ;~(f). 

REMARK 3. - Let  f: X - ~  R be bounded but not Riemann-integrable; define the se- 
quences {~k } and {vk } as in Lemma 4. Then the sequence 

(51) [zl(f),  vl(f),  ..., ~k(f ) ,  va(f) ,  ... 

does not converge. If  f is not bounded on the support of ~, for each k e N there is at 
least one of the sets Ek, ~ (with strictly positive mesure) such that  f is unbounded on it. 
Therefore for each k there is a choice of the points zk, ~e Ek, ~ such that  

(52) -~k f(z~, i) > k 

and thus the sequence of averages in (30) does not converge. 
This is a new version of the De Brujin-Post theorem (see [1], 1968). 
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