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J-Equidistributed Sequences of Partitions
and a Theorem of the De Bruijn-Post Type (*).

Franco CHERSI - ALJOSA VOLCIC

Summary. — The notion of uniform distribution of @ sequence is generalized to sequences of par-
titions in a separable metric space X. Results concern Riemann integrability with respect to
a probability A on X, and Riemann approximations of Lebesgue integrals.

Introduction.

A classical theorem by H. WEYL states that, if fis a Riemann integrable real fune-
tion on the unit interval 1, then for every uniformly distributed sequence {z,} in /

the averages 1/N E flz;,) converge to f flx) de; the convergence condition was later

shown to be suffic1ent for the Riemann mtegrablhty ([1], 1968). The notion of uniform
distribution with respect to a given measure has been generalized in several ways: se-
quences of points in a locally compact space (see [6], 1974 and [10], 1972), sequences of
probability measures on a separable compact space ([7], 1970), in particular sequences
of discrete measures associated to partitions of a compact interval ([5], 1975). See
also [3], 1984.

Given a separable metric space (X, d) and a probability measure 2 on X, we define
the notion of a J-equidistributed sequence of finite partitions of X. We give a suffi-
cient condition for the existence of such a sequence of partitions made up of A-continu-
ity subsets (condition (¢) and Theorem 1 below). This method allows to adapt the
mentioned results of H. Weyl and De Bruijn-Post to the case of real functions on X:
see Corollary 1 and Remark 3. Moreover: if f is bounded, but not A-Riemann inte-
grable, every number a between its lower and upper Riemann integrals can be ap-
proximated by a sequence of Riemann sums associated to the mentioned partitions
(Theorem 2). Therefore, if f is bounded and A-summable, its Lebesgue integral is the

(*) Entrata in Redazione il 24 gennaio 1989.
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limit of a particular sequence of Riemann sums (a result of this kind, in a different
context, was obtained by P. MORALES: see[9], 1972).

The meaning of condition (¢), with the search for non-trivial cases, seems to be an
interesting open problem.

Let (X, d) be a separable metric space, A a probability measure on $(X). Let @ be
a partition, at most countable, of X into Borel sets: @ = {E;};.n, E; € B(X). For each j
such that A(E;) > 0 let z; be a point in E;. Define a probability measure u by

ey wi= 2 ME)-3,,

jeN

where ¢, is the Dirac mass at z;.

LEmMA 1. - If {Q,},51 is a sequence of partitions as above, verifying

2 lim (sup diam (B, j)) =0,
k \jeN J

then for any choice of the points z; ; € K}, ; the corresponding sequence of measures
{us}, associated to {@,} by the formula (1), converges weakly to X

Proor. - It is enough to check that ‘
3) tim 1, (g) = 2(g)

for all g e U(X), where U(X) is the space of bounded, uniformly continuous real func-
tions on X (see[11] II, Theor. 6.1). This follows easily from condition (2).

Now let P = {E;}y<;<, stand for a finite measurable partition of X.

DEFINITION 1. — A sequence Py, = {E} ;: 0 <1 < n(k)} of finite measurable parti-
tions is called «A-equidistributed» iff, for any choice of points 2, ; € £ ;, for all func-
tions fe C*(X, R), the following holds:

n(k)
) lim —2— 3 fler ) = f fd.

E onk)+1i=0
. X

REMARK 1. — Definition 1 generalizes the one used by S. Kaxurant ([5], p. 370)
concerning partitions of the unit interval. In particular: if the sequence {P,} verifies
condition (2) and moreover ME} ;) =1/(n(k) + 1) for all ¢, then by Lemma 1 it is
X-equidistributed.

Now let @, denote the field of all sets having frontier of null measure, or 2-continu-
ity sets.
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LEMMA 2. - For each k e N there is a partition, at most countable, of X into subsets
{A} ; };cn such that:

(I) for all £ and j, Ak,j € G,
(II) sup diam (4, ;) < 2/k.
jeN

PrOOF. — Let {#;};.n be a countable set of points, dense in X. Given k, for each j
there is an open ball By ; with centre «; and radius 7, ; such that 1/2k <, ; < 1/k and
By, j € G, (the positive function r+> 2(B(x;, 7)) is increasing, therefore continuous at all
but a countable set of points 7; see also Remark 2 below). These balls form a covering
of X. The sequence of sets defined as follows (where B’ denotes X\ B):

:5) Ak,lzsz,l; Ak,iz:Bk,nnBlg.n—ln-'-an’,la
verifies the conditions stated above.

Now, given a point x; € X, consider the function
flr; @)= A(Blw, 7)), r=0

where B(x,, 7) is the open ball {y e X: d(w,, y) < r}. As noticed above, fis continuous
at all but a countable set of numbers r, where it may have jumps. Let us introduce the
following condition relative to the couple (d, A):

(c) There is a point x, such that f(r, xy) is continuous at all

REMARK 2. - fis continuous at 7 iff A(B(xg, 7)) = )\( N Bz, s)). This equality im-

plies that B(x,, ¥) belongs to &, but the converse is not true, in general: the frontier
of the ball is contained in (but not necessarily equal to) the sphere {y: d(xy, y) = r}
{see[2], p. 204).

Condition (¢) is verified by Lebesgue measure in R™ with the usual distance.

LEMMA 3. — If condition (c) holds, there exists a sequence {P; } of finite partitions
of X into X-continuity sets Ej; (0 <i<n(k)) such that: for any choice of points
2 i€ By, ;, for every bounded real function f, the following holds:

n{k)

/ 1 _ A\ _
z_gof(zk,i)'(% /\(Ek,z))( 0.

{8 lim
k

ProOF. - For each k e NV let {4, , };.~ be a partition of X into A-continuity sets; let
s, be the smallest integer such that

1

Sk
<7 M4, ) =1 - -
) jgl (A, ;) P
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moreover let
(8) lk:: . rr}ins {)\(Ak,]) )\(Ak,j) > O} y
EYES
and A; be one set having such measure. We will partition 4, into k& + 1 X-continuity

sets: Ey 1, ..., By , each having measure [, /k, plus one of null measure.
Choose #,€ X as in condition (¢); then also the function

9 ¢(r):= A4, N By, 1))

~ is continuous at all r, and for » sufficiently large it reaches the value [;. Let r; > 0 be
such that ¢(r) = I, /k; put

(10) Ey 1:=A,N By, ).
In general, let v, be such that ¢(r,) =p-l;/k, 1 <p <k; for p =2 define
(11) Ek,p:z(AknB(xm Tp))\Ek,p—l'

Each E, , belongs to ¢, and has measure equal to [ /k.

For any other index j such that A4, ;) = ; > 0, so that [, ; = [, by definition, we
will partition A; ; into a finite number of subsets E, ; , e G, of equal measure. The
ratios

(12) pk,j:=i\gﬁkf:—)) p=zlqg=zl),
will verify, for any k and j, the inequalities

(13) 1<g,< @—;;“—1

Let t;, ; be the largest integer such that

(14) b, %’ < U i3

thus it verifies

(15) th;Zk and i+ Db /k > ;.

By the same method as above, the set A, ; is partitioned into the A-continuity subsets
E. ;4,1 < q <1, each one of measure l;; /t;, plus a A-continuity set of measure zero.

By construction

lkj k
16 A
( ) Pl{;’] tk] lk

Inequality (14) implies the left-hand side of (13); inequalities (15) imply ¢, ; < (t,; +
+ 1/t ; < (k + 1)/k, ie. the right-hand side of (13).
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For each k let us put
Sk
(1 1= ‘21 b, j»
=

ie. the total number of the A-continuity sets E) ; , having strictly positive measure
(for at least one value of j it is ¢;, ; = k); we will find an upper bound and a lower bound
for ny,.

Let us renumber as K ;, 1 < ¢ < ny, all the sets K ; ,. Since E MEG ;) <1and
each addend is at least [ /k, then

-

(18) n< &

On the other hand, by construction

l
19) Etkj on ZA(AM)A—%

from this and from (13) follows

20) 1- Loy krd
ki

and therefore

1-1/k

@D VEEHA

k2

moreover, for all k=2 we get 1 - 1/k =k + 1)/(k +4).
Let us show that, for k= 2 and all i between 1 and n,,

{ l

22) -4? <2y, = 5 < ;6%
Inequality (21) above yields

1 (k+4)-1, _ @ _ _lk_
(23) n-k< e —k+4 peE
from which follows

1 b 1 Iy

(24) )\(Ek,i)—' ‘]; = 7;:— - 71,; > '—4‘k—2

Moreover, by means of (13) and (18):

(25) A(Ek,i)—-%;s—.____=_.
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thus (22) is proved. Finally, the A-continuity set

(26) Byo:=X\ U B,

has the same measure as X'\ ‘U1Ak’ j» hence <1/k.
J=
Now let M = sup | f(x)|. The absolute value in (6) is less than or equal to
zeX

Ty

1

@7 M| o = XEio) | +M- Z = —A(EP 1)}
from (18) and (22) it follows that

< 1 Iy 4
28) 21 M) | Smede S <

so that (6) is proved.

THEOREM 1. - If condition (¢) holds, there exists a sequence {P;} of finite parti-
tions of X, verifying (I) and (II) of Lemma 2 (except, for each k, for one A-continuity
set Ey o of unknown diameter), which is 2-equidistributed.

PrOOF. — For each ke N let {4 ;};.ny be a partition of X into A-continuity sets,
such that sup diam (4;, ;) < 2/k (Lemma 2); for each k let P, = {E) ;: 0 <i<n,}, the

finite partltlon described in Lemma 8. From Lemma 1 applied to the sequence
{Py}r>1 and from the fact that A(E} o) < 1/k (the diameter of Ej, , has not been esti-
mated), it follows that: for any choice of z, ;€ E;, ; and for every fe ¢*(X, R)

29) lim 3 S0, A ) = [fd.
- b
Thus (6) and (29) imply

(30) lim 7—@1; zo f ) = J fdo.

X

CoROLLARY 1. — Under the same assumptions, if f is a bounded, 2-Riemann inte-
grable function on X, then for any choice of the points z; ; e E} ; equality (30) still
holds.

PROOF. — The sequence of discrete measure, associated to {P; } by the choice of the
21,8, converges weakly to A. By assumption the set of discontinuity points of fis a A-
nullset, therefore (29) still holds.
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This Corollary is a new version of the mentioned well-known of H. WEYL
([12], 1016, p. 314).

LeMMA 4. - Suppose condition {c) holds and let {P, } be a sequence of finite parti-
tions of X as in Theorem 1. Then: given a bounded real function f on X, there are two
sequences {u,} and {v,} of diserete probability measures associated to {P,}, such
that both converge weakly to A and moreover: the sequence u;(f) converges to the
upper Riemann integral of £, the sequence v, (f) converges to the lower Riemann inte-
gral of f.

0
PR?OF. — For each k e N and ¢ between 0 and n, there are two points wj, ; € £}, ; and
v, ; € By ; such that:

3 fo0,) > sup s 45 fw) <inf f+ T

By 128

(for i = 1 the interior of E) ; is not empty, since K} ; € &, and A(E} ;) > 0; for i =0 it
might be A(E ;) = 0, but nothing would change in the sums below).
Define

143

(32) 2= 20 M(By, 1),
<

and

(33) URES }_30 By i) 0y, -

By Lemma 1 and by the inequality A(E}, o) < 1/k both {w, } and {v, } converge weakly
to A. Let f* be the smallest u.s.c. function = f, and f, be the greatest Ls.c. function
<f. Trivially, f is summable relative to each of the measures p, and v;; f* and f, are
summable relative to A, and

(34) j frdy = Erfdx, j fodh= j fd

X X X n
X

(by definition or by approximation, according to the point of view: see[8] p. 375
and [4], 1.9.1).
We will prove the following: there exist

35) lim j fduy, = ] frdx and  lm J fdy, = j Fudr.
X X X

X
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The equality f* (x) = lim sup f(y) implies that, for each couple (%, %)
And

(36) (sup f)-l,%k,izf*-lgvk’i
Eovk,i

and therefore

@D | fdm=2 2By ) fn ) > 2 |frdr- 2D B = [ rrar- 1
: 3 P P

1

X E, X
[
(recall that A(Ey, ;) = A&y ;). Thus:
38) lim inf J fdu, = J f*da.
On the other hand
(39) j f¥da = limsup [f*du, = lim sup j fduy,
k— o k— o
X X

because of the weak convergence of {;} to 2. Inequalities (38) and (89) imply the
first of (35). The second of (85) is proved in the same way, using the inequality

(“0) () 14 S5 1,
By,

and the weak convergence of {v,} to A.

LEMMA 5. — Suppose (c) holds and let {P; } be as in Theorem 1. For every bounded
real function f, for every ¢ e [0,1] there is a subsequence {¢; .}, of discrete probabili-
ty measures associated to {P,} such that: there exists the limit

(41) lim &, . (f) = O(t)

and @ is a Lipschitz-continuous function of ¢, such that

(42) B(0) = j fodr, B(1) = j FHda.
X X

PrOOF. - For each G;-set K}, ; let wy, ;, vy, ; be the interior points specified in Lem-
ma 4. Given ¢ as above and any ¢ > 0, there exist » = 0 and ¢ = é(e) > 0 such that

43) MB@y, )=t and AB(xy, r+38)=t+c¢,

by assumption (c). Let k = k() be an integer such that 2/k < 4, and P, the corre-
sponding finite partition as in Theorem 1; then

44) maxdiam (B, ;) <5 while A(Ey o) < .

1<sisny
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Define the discrete measure ¢ ; as in (1), with the following choice of the points: for
each E,, ; intersecting the ball B(x,, 7) the point w,, ;; for each E} ; intersecting the
complement of B(xy, v + &) choose vy, ;; for all the others and for E,, , take any interior
point z; ;. Let us consider the function

f*@ if xeBxy, ), r=7(),

f«(@) otherwise,

(45) Jix) = {

which is bounded and Borel measurable. Let

(46) B(t) = 5£ £,(x) dx
X

defined on [0, 1] and Lipschitz continuous with a constant M;=2-sup | f(x)].

Equalities (42) are obvious. We will prove that, for every t € [0, 1], there is a se-
quence of integers k, such that (41) holds. Given £ &[0, 1] and >0, let & be the inte-
ger k(e) and ¢, , the discrete measure associated to Py, both described above. Then,
writing B, instead of B(x,, 7) and B, instead of Blxy, 7+ 8):-

47 ¢k,t(f)‘__:9gfd¢k,t+ f{r; fdgy, + § fdgg, .-
B; B,\B, X\B;

At each point x€B,: (f 1z )*(@)=f*(x), and at each ze X\ By (f*1x )@ =
= f, (2). Therefore, by the same reasons as in Lemma 4, there exist

48) lim §fde, = §f*dr, lm § fdge .= § fudn.
B, B, X\B; X\B:
Moreover
(49) Lfﬁ fdg o~ § ftdA]st-e.
\.B, B:\B,

Now: take ¢ =1/ and a corresponding ¢ = ¢&(1/n) as above; let k, be an integer such
that 2/k, <d(1/n). Then the subsequence ¢; . of discrete measures just defined veri-
fies equality (41), because of (47), (48) and (49).

THEOREM 2. — Let (X, d) be a separable metrie space, A a probability on X verify-
ing condition (¢). There is a Ar-equidistributed sequence {P}} of finite partitions into
A-continuity sets such that: for every bounded real function f on X, for every number
« between the lower Riemann integral and the upper Riemann integral of f, there is a
subsequence of discrete measures {¢, },.y associated to {P} such that

(50) lim § fdgy, = a.
X
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Proor. — By Lemma 5, there is a ¢ e[0,1] s.t. 8(t) = o; take ¢ := ¢, ; defined
above.

COROLLARY 2. ~ If f is bounded and A-summable, there exists a sequence of Rie-
mann sums, associated to the sequence of finite, @,, X-equidistributed partitions
{P;. }xcn, which converges to A(f).

REMARK 3. - Let f: X — R be bounded but not Riemann-integrable; define the se-
quences {p;} and {v;} as in Lemma 4. Then the sequence

(51) H‘l(f)a Vl(f)’ XY Iu'k(f)y Vk(f))

does not converge. If fis not bounded on the support of A, for each k e N there is at
least one of the sets E}, ; (with strictly positive mesure) such that fis unbounded on it.
Therefore for each k there is a choice of the points 2, ; € E} ; such that

(52) i & ;0 f(zk,i)i >k

and thus the sequence of averages in (30) does not converge.
This is a new version of the De Brujin-Post theorem (see[1], 1968).

REFERENCES

[1] N. G. DE BruaiN - K. A, PosT, A remark on uniformly distributed sequences and Riemann
integrability, Indag. Math., 30 (1968), pp. 149-150.

(2] J. DucunpJi, Topology, Allyn and Bacon Inc. (1966).

[3] E. Huawka, The Theory of Uniform Distribution, AB Academic Publishers, Berkhamsted
(1984).

[4] K. JacoBs, Measure and Integral, Academic Press (1978).

[5] S. KAKUTANI, A problem of equidistribution on the unit interval, in: Measure Theory, Ober-
wolfach (1975), pp. 369-375; Lect. Notes in Math., 541, Springer-Verlag (1976).

[6] L. KutpErS - H. NIEDERREITER, Uwniform Distribution of Sequences, J. Wiley (1974).

[71 K. ScHMIDT, [/ber einen Zusammenhong zwischen gleichverteilten Punkt- and Massfolgen,
J. Reine Angew. Math., 244 (1970), pp. 94-96.

[8] L. ScuwAR1Z, Radon Measure on Arbitrary Topological Spaces and Cylindrical Measures,
Tata Institute of Fundamental Research, Oxford Univ. Press (1973).

[91 P. MORALES, Mean value theorem for the m~integral of Dinculeanu, Canad. Math. Bull, 15
(2) (1972), pp. 243-251.

[10] H. NIEDERREITER, On the existence of uniformly distributed sequences in compact spaces,
Compositio Math., 25 (1972), pp. 93-99.

[11] L. R. PARTHASARATHY, Probability Measures on Metric Spaces, Academic Press
(1967).

[12] H. WryL, Uber die Gleichverteilung von Zahlen mod. Eins, Math. Ann., 77 (1916, reprint
1964), pp. 313-352.



