# $\lambda$-Equidistributed Sequences of Partitions and a Theorem of the De Bruijn-Post Type (*). 

Franco Chersi - Aljoša Volčič

Summary. - The notion of uniform distribution of a sequence is generalized to sequences of partitions in a separable metric space $X$. Results concern Riemann integrability with respect to a probability $\lambda$ on $X$, and Riemann approximations of Lebesgue integrals.

## Introduction.

A classical theorem by H. Weyl states that, if $f$ is a Riemann integrable real function on the unit interval $I$, then for every uniformly distributed sequence $\left\{x_{n}\right\}$ in $I$ the averages $1 / N \sum_{k=1}^{N} f\left(x_{k}\right)$ converge to $\int_{0}^{1} f(x) d x$; the convergence condition was later shown to be sufficient for the Riemann integrability ([1], 1968). The notion of uniform distribution with respect to a given measure has been generalized in several ways: sequences of points in a locally compact space (see [6], 1974 and [10], 1972), sequences of probability measures on a separable compact space ([7], 1970), in particular sequences of discrete measures associated to partitions of a compact interval ([5], 1975). See also [3], 1984.

Given a separable metric space ( $X, d$ ) and a probability measure $\lambda$ on $X$, we define the notion of a $\lambda$-equidistributed sequence of finite partitions of $X$. We give a sufficient condition for the existence of such a sequence of partitions made up of $\lambda$-continuity subsets (condition (c) and Theorem 1 below). This method allows to adapt the mentioned results of H . Weyl and De Bruijn-Post to the case of real functions on $X$ : see Corollary 1 and Remark 3. Moreover: if $f$ is bounded, but not $\lambda$-Riemann integrable, every number $\alpha$ between its lower and upper Riemann integrals can be approximated by a sequence of Riemann sums associated to the mentioned partitions (Theorem 2). Therefore, if $f$ is bounded and $\lambda$-summable, its Lebesgue integral is the

[^0]limit of a particular sequence of Riemann sums (a result of this kind, in a different context, was obtained by P. Morales: see [9], 1972).

The meaning of condition (c), with the search for non-trivial cases, seems to be an interesting open problem.

Let ( $X, d$ ) be a separable metric space, $\lambda$ a probability measure on $\mathscr{B}(X)$. Let $Q$ be a partition, at most countable, of $X$ into Borel sets: $Q=\left\{E_{j}\right\}_{j \in N}, E_{j} \in \mathscr{B}(X)$. For each $j$ such that $\lambda\left(E_{j}\right)>0$ let $z_{j}$ be a point in $E_{j}$. Define a probability measure $\mu$ by

$$
\begin{equation*}
\mu:=\sum_{j \in N} \lambda\left(E_{j}\right) \cdot \grave{\partial}_{z_{j}}, \tag{1}
\end{equation*}
$$

where $\partial_{z_{j}}$ is the Dirac mass at $z_{j}$.
Lemma 1. - If $\left\{Q_{k}\right\}_{k \geqslant 1}$ is a sequence of partitions as above, verifying

$$
\begin{equation*}
\lim _{k}\left(\sup _{j \in N} \operatorname{diam}\left(E_{k, j}\right)\right)=0 \tag{2}
\end{equation*}
$$

then for any choice of the points $z_{k, j} \in E_{k, j}$ the corresponding sequence of measures $\left\{\mu_{k}\right\}$, associated to $\left\{Q_{k}\right\}$ by the formula (1), converges weakly to $\lambda$.

Proof. - It is enough to check that

$$
\begin{equation*}
\lim _{k} \mu_{k}(g)=\lambda(g) \tag{3}
\end{equation*}
$$

for all $g \in U(X)$, where $U(X)$ is the space of bounded, uniformly continuous real functions on $X$ (see [11] II, Theor. 6.1). This follows easily from condition (2).

Now let $P=\left\{E_{i}\right\}_{0 \leqslant i \leqslant n}$ stand for a finite measurable partition of $X$.
Definition 1. - A sequence $P_{k}=\left\{E_{k, i}: 0 \leqslant i \leqslant n(k)\right\}$ of finite measurable partitions is called « $\lambda$-equidistributed» iff, for any choice of points $z_{k, i} \in E_{k, i}$, for all functions $f \in \mathfrak{C}^{b}(X, R)$, the following holds:

$$
\begin{equation*}
\lim _{k} \frac{1}{n(k)+1} \sum_{i=0}^{n(k)} f\left(z_{k, i}\right)=\int_{X} f d \lambda \tag{4}
\end{equation*}
$$

Remark 1. - Definition 1 generalizes the one used by S. Kakutani ([5], p. 370) concerning partitions of the unit interval. In particular: if the sequence $\left\{P_{k}\right\}$ verifies condition (2) and moreover $\lambda\left(E_{k, i}\right)=1 /(n(k)+1)$ for all $i$, then by Lemma 1 it is $\lambda$-equidistributed.

Now let $\mathcal{C}_{\lambda}$ denote the field of all sets having frontier of null measure, or $\lambda$-continuity sets.

Lemma 2. - For each $k \in \boldsymbol{N}$ there is a partition, at most countable, of $X$ into subsets $\left\{A_{k, j}\right\}_{j \in N}$ such that:
(I) for all $k$ and $j, A_{k, j} \in \mathcal{C}_{\lambda}$,
(II) $\sup _{j \in N} \operatorname{diam}\left(A_{k, j}\right) \leqslant 2 / k$.

Proof. - Let $\left\{x_{j}\right\}_{j \in N}$ be a countable set of points, dense in $X$. Given $k$, for each $j$ there is an open ball $B_{k, j}$ with centre $x_{j}$ and radius $r_{k, j}$ such that $1 / 2 k \leqslant r_{k, j} \leqslant 1 / k$ and $B_{k, j} \in \mathcal{C}_{\lambda}$ (the positive function $r \mapsto \lambda\left(B\left(x_{j}, r\right)\right)$ is increasing, therefore continuous at all but a countable set of points $r$; see also Remark 2 below). These balls form a covering of $X$. The sequence of sets defined as follows (where $B^{\prime}$ denotes $X \backslash B$ ):

$$
\begin{equation*}
A_{k, 1}:=B_{k, 1} ; \quad A_{k, n}=B_{k, n} \cap B_{k, n-1}^{\prime} \cap \ldots \cap B_{k, 1}^{\prime} \tag{5}
\end{equation*}
$$

verifies the conditions stated above.
Now, given a point $x_{0} \in X$, consider the function

$$
f\left(r ; x_{0}\right):=\lambda\left(B\left(x_{0}, r\right)\right), \quad r \geqslant 0
$$

where $B\left(x_{0}, r\right)$ is the open ball $\left\{y \in X: d\left(x_{0}, y\right)<r\right\}$. As noticed above, $f$ is continuous at all but a countable set of numbers $r$, where it may have jumps. Let us introduce the following condition relative to the couple ( $d, \lambda$ ):
(c) There is a point $x_{0}$ such that $f\left(r, x_{0}\right)$ is continuous at all $r$.

Remark 2. $-f$ is continuous at $r$ iff $\lambda\left(B\left(x_{0}, r\right)\right)=\lambda\left(\bigcap_{s>r} B\left(x_{0}, s\right)\right)$. This equality implies that $B\left(x_{0}, r\right)$ belongs to $\mathcal{C}_{\lambda}$, but the converse is not true, in general: the frontier of the ball is contained in (but not necessarily equal to) the sphere $\left\{y: d\left(x_{0}, y\right)=r\right\}$ (see [2], p. 204).

Condition (c) is verified by Lebesgue measure in $\boldsymbol{R}^{n}$ with the usual distance.
Lemma 3. - If condition (c) holds, there exists a sequence $\left\{P_{k}\right\}$ of finite partitions of $X$ into $\lambda$-continuity sets $E_{k, i}(0 \leqslant i \leqslant n(k))$ such that: for any choice of points $z_{k, i} \in E_{k, i}$, for every bounded real function $f$, the following holds:

$$
\begin{equation*}
\lim _{k}\left|\sum_{i=0}^{n(k)} f\left(z_{k, i}\right) \cdot\left(\frac{1}{n(k)}-\lambda\left(E_{k, i}\right)\right)\right|=0 \tag{b}
\end{equation*}
$$

Proof. - For each $k \in N$ let $\left\{A_{k, j}\right\}_{j \in N}$ be a partition of $X$ into $\lambda$-continuity sets; let $s_{k}$ be the smallest integer such that

$$
\begin{equation*}
\sum_{j=1}^{s_{k}} \lambda\left(A_{k, j}\right) \geqslant 1-\frac{1}{k} \tag{7}
\end{equation*}
$$

moreover let

$$
\begin{equation*}
l_{k}:=\min _{1 \leqslant j \leqslant s_{k}}\left\{\lambda\left(A_{k, j}\right): \lambda\left(A_{k, j}\right)>0\right\}, \tag{8}
\end{equation*}
$$

and $A_{k}$ be one set having such measure. We will partition $A_{k}$ into $k+1 \lambda$-continuity sets: $E_{k, 1}, \ldots, E_{k, k}$ each having measure $l_{k} / k$, plus one of null measure.

Choose $x_{0} \in X$ as in condition (c); then also the function

$$
\begin{equation*}
\phi(r):=\lambda\left(A_{k} \cap B\left(x_{0}, r\right)\right) \tag{9}
\end{equation*}
$$

is continuous at all $r$, and for $r$ sufficiently large it reaches the value $l_{k}$. Let $r_{1}>0$ be such that $\phi\left(r_{1}\right)=l_{k} / k$; put

$$
\begin{equation*}
E_{k, 1}:=A_{k} \cap B\left(x_{0}, r_{1}\right) . \tag{10}
\end{equation*}
$$

In general, let $r_{p}$ be such that $\phi\left(r_{p}\right)=p \cdot l_{k} / k, 1 \leqslant p \leqslant k$; for $p \geqslant 2$ define

$$
\begin{equation*}
E_{k, p}:=\left(A_{k} \cap B\left(x_{0}, r_{p}\right)\right) \backslash E_{k, p-1} . \tag{11}
\end{equation*}
$$

Each $E_{k, p}$ belongs to $\mathcal{C}_{\lambda}$ and has measure equal to $l_{k} / k$.
For any other index $j$ such that $\lambda\left(A_{k, j}\right)=l_{k, j}>0$, so that $l_{k, j} \geqslant l_{k}$ by definition, we will partition $A_{k, j}$ into a finite number of subsets $E_{k, j, q} \in \mathcal{C}_{\lambda}$ of equal measure. The ratios

$$
\begin{equation*}
\rho_{k, j}:=\frac{\lambda\left(E_{k, j, q}\right)}{\lambda\left(E_{k, p}\right)} \quad(p \geqslant 1, q \geqslant 1), \tag{12}
\end{equation*}
$$

will verify, for any $k$ and $j$, the inequalities

$$
\begin{equation*}
1 \leqslant \rho_{k, j}<\frac{k+1}{k} . \tag{13}
\end{equation*}
$$

Let $t_{k, j}$ be the largest integer such that

$$
\begin{equation*}
t_{k, j} \cdot \frac{l_{k}}{k} \leqslant l_{k, j} \tag{14}
\end{equation*}
$$

thus it verifies

$$
\begin{equation*}
t_{k, j} \geqslant k \quad \text { and } \quad\left(t_{k, j}+1\right) \cdot l_{k} / k>l_{k, j} . \tag{15}
\end{equation*}
$$

By the same method as above, the set $A_{k . j}$ is partitioned into the $\lambda$-continuity subsets $E_{k, j, q}, 1 \leqslant q \leqslant t_{k, j}$, each one of measure $l_{k j} / t_{k j}$, plus a $\lambda$-continuity set of measure zero. By construction

$$
\begin{equation*}
\rho_{k, j}=\frac{l_{k j}}{t_{k j}} \cdot \frac{k}{l_{k}} . \tag{16}
\end{equation*}
$$

Inequality (14) implies the left-hand side of (13); inequalities (15) imply $\rho_{k, j}<\left(t_{k, j}+\right.$ $+1) / t_{k, j} \leqslant(k+1) / k$, i.e. the right-hand side of (13).

For each $k$ let us put

$$
\begin{equation*}
n_{k}:=\sum_{j=1}^{s_{k}} t_{k, j} \tag{17}
\end{equation*}
$$

i.e. the total number of the $\lambda$-continuity sets $E_{k, j, q}$ having strictly positive measure (for at least one value of $j$ it is $t_{k, j}=k$ ); we will find an upper bound and a lower bound for $n_{k}$.

Let us renumber as $E_{k, i}, 1 \leqslant i \leqslant n_{k}$, all the sets $E_{k, j, q}$. Since $\sum_{i=1}^{n_{k}} \lambda\left(E_{k, i}\right) \leqslant 1$ and each addend is at least $l_{k} / k$, then

$$
\begin{equation*}
n_{k} \leqslant \frac{k}{l_{k}} . \tag{18}
\end{equation*}
$$

On the other hand, by construction

$$
\begin{equation*}
\sum_{j=1}^{s_{k}} t_{k, j} \cdot \rho_{k, j} \cdot \frac{l_{k}}{k}=\sum_{j=1}^{s_{k}} \lambda\left(A_{k, j}\right) \geqslant 1-\frac{1}{k} ; \tag{19}
\end{equation*}
$$

from this and from (13) follows

$$
\begin{equation*}
1-\frac{1}{k}<\sum_{j=1}^{s_{k}} t_{k, j} \cdot \frac{k+1}{k^{2}} \cdot l_{k} \tag{20}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
n_{k}>\frac{1-1 / k}{(k+1) \cdot l_{k}} \cdot k^{2} \tag{21}
\end{equation*}
$$

moreover, for all $k \geqslant 2$ we get $1-1 / k \geqslant(k+1) /(k+4)$.
Let us show that, for $k \geqslant 2$ and all $i$ between 1 and $n_{k}$,

$$
\begin{equation*}
-4 \frac{l_{k}}{k^{2}} \leqslant \lambda\left(E_{k, i}\right)-\frac{1}{n_{k}} \leqslant \frac{l_{k}}{k^{2}} . \tag{22}
\end{equation*}
$$

Inequality (21) above yields

$$
\begin{equation*}
\frac{1}{n_{k}}<\frac{(k+4) \cdot l_{k}}{k^{2}}=\frac{l_{k}}{k}+4 \cdot \frac{l_{k}}{k^{2}}, \tag{23}
\end{equation*}
$$

from which follows

$$
\begin{equation*}
\lambda\left(E_{k, i}\right)-\frac{1}{k} \geqslant \frac{l_{k}}{k}-\frac{1}{n_{k}}>-4 \frac{l_{k}}{k^{2}} . \tag{24}
\end{equation*}
$$

Moreover, by means of (13) and (18):

$$
\begin{equation*}
\lambda\left(E_{k, i}\right)-\frac{1}{n_{k}} \leqslant \frac{l_{k}}{k} \cdot \frac{k+1}{k}-\frac{l_{k}}{k}=\frac{l_{k}}{k^{2}} ; \tag{25}
\end{equation*}
$$

thus (22) is proved. Finally, the $\lambda$-continuity set

$$
\begin{equation*}
E_{k, 0}:=X \backslash \bigcup_{i=1}^{n_{k}} E_{k, i} \tag{26}
\end{equation*}
$$

has the same measure as $X \backslash \bigcup_{j=1}^{s_{k}} A_{k, j}$, hence $\leqslant 1 / k$.
Now let $M=\sup _{x \in X}|f(x)|$. The absolute value in (6) is less than or equal to

$$
\begin{equation*}
M \cdot\left|\frac{1}{n_{k}}-\lambda\left(E_{k, 0}\right)\right|+M \cdot \sum_{i=1}^{n_{k}}\left|\frac{1}{n_{k}}-\lambda\left(E_{k, i}\right)\right| \tag{27}
\end{equation*}
$$

from (18) and (22) it follows that

$$
\begin{equation*}
\sum_{i=1}^{n_{k}}\left|\frac{1}{n_{k}}-\lambda\left(E_{k, i}\right)\right| \leqslant n_{k} \cdot 4 \cdot \frac{l_{k}}{k^{2}} \leqslant \frac{4}{k} \tag{28}
\end{equation*}
$$

so that (6) is proved.
Theorem 1. - If condition (c) holds, there exists a sequence $\left\{P_{k}\right\}$ of finite partitions of $X$, verifying (I) and (II) of Lemma 2 (except, for each $k$, for one $\lambda$-continuity set $E_{k, 0}$ of unknown diameter), which is $\lambda$-equidistributed.

Proof. - For each $k \in N$ let $\left\{A_{k, j}\right\}_{j \in N}$ be a partition of $X$ into $\lambda$-continuity sets, such that $\sup _{j \in N} \operatorname{diam}\left(A_{k, j}\right) \leqslant 2 / k$ (Lemma 2); for each $k$ let $P_{k}=\left\{E_{k, i}: 0 \leqslant i \leqslant n_{k}\right\}$, the finite partition described in Lemma 3. From Lemma 1 applied to the sequence $\left\{P_{k}\right\}_{k \geqslant 1}$ and from the fact that $\lambda\left(E_{k, 0}\right) \leqslant 1 / k$ (the diameter of $E_{k, 0}$ has not been estimated), it follows that: for any choice of $z_{k, i} \in E_{k, i}$ and for every $f \in \mathcal{C}^{b}(X, \boldsymbol{R})$

$$
\begin{equation*}
\lim _{k} \sum_{i=0}^{n_{k}} f\left(z_{k, i}\right) \cdot \lambda\left(E_{k, i}\right)=\int_{X} f d \lambda . \tag{29}
\end{equation*}
$$

Thus (6) and (29) imply

$$
\begin{equation*}
\lim _{k} \frac{1}{n_{k}} \sum_{i=0}^{n_{k}} f\left(z_{k, i}\right)=\int_{X} f d \lambda . \tag{30}
\end{equation*}
$$

Corollary 1. - Under the same assumptions, if $f$ is a bounded, $\lambda$-Riemann integrable function on $X$, then for any choice of the points $z_{k, i} \in E_{k, i}$ equality (30) still holds.

Proof. - The sequence of discrete measure, associated to $\left\{P_{k}\right\}$ by the choice of the $z_{k, i}$ 's, converges weakly to $\lambda$. By assumption the set of discontinuity points of $f$ is a $\lambda$ nullset, therefore (29) still holds.

This Corollary is a new version of the mentioned well-known of H. WEyl ([12], 1016, p. 314).

Lemma 4. - Suppose condition (c) holds and let $\left\{P_{k}\right\}$ be a sequence of finite partitions of $X$ as in Theorem 1. Then: given a bounded real function $f$ on $X$, there are two sequences $\left\{\mu_{k}\right\}$ and $\left\{\nu_{k}\right\}$ of discrete probability measures associated to $\left\{P_{k}\right\}$, such that both converge weakly to $\lambda$ and moreover: the sequence $\mu_{k}(f)$ converges to the upper Riemann integral of $f$, the sequence $v_{k}(f)$ converges to the lower Riemann integral of $f$.

Proof. - For each $k \in N$ and $i$ between 0 and $n_{k}$ there are two points $w_{k, i} \in \stackrel{0}{E}_{k, i}$ and $v_{k, i} \in \stackrel{\emptyset}{E}_{k, i}$ such that:

$$
\begin{equation*}
f\left(w_{k, i}\right)>\sup _{\substack{0 \\ E_{k, i}}} f^{\prime}-\frac{1}{k} ; \quad f\left(v_{k, i}\right)<\inf _{\substack{0 \\ E_{k, i}}} f+\frac{1}{k} \tag{31}
\end{equation*}
$$

(for $i \geqslant 1$ the interior of $E_{k, i}$ is not empty, since $E_{k, i} \in \mathcal{C}_{\lambda}$ and $\lambda\left(E_{k, i}\right)>0$; for $i=0$ it might be $\lambda\left(E_{k, 0}\right)=0$, but nothing would change in the sums below).

Define

$$
\begin{equation*}
\mathfrak{u}_{k}:=\sum_{i=0}^{n_{k}} \lambda\left(E_{k, i}\right) \cdot \stackrel{o}{w}_{w_{k, i}} \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{k}:=\sum_{i=0}^{n_{k}} \lambda\left(E_{k, i}\right) \cdot \grave{v}_{v_{k}, i} \tag{33}
\end{equation*}
$$

By Lemma 1 and by the inequality $\lambda\left(E_{k, 0}\right) \leqslant 1 / k$ both $\left\{\mu_{k}\right\}$ and $\left\{\nu_{k}\right\}$ converge weakly to $\lambda$. Let $f^{*}$ be the smallest u.s.c. function $\geqslant f$, and $f_{*}$ be the greatest l.s.c. function $\leqslant f$. Trivially, $f$ is summable relative to each of the measures $\mu_{k}$ and $\nu_{k} ; f^{*}$ and $f_{*}$ are summable relative to $\lambda$, and

$$
\begin{equation*}
\int_{X} f^{*} d \lambda=\int_{X}^{-} f d \lambda, \quad \int_{X} f_{*} d \lambda=\int_{\bar{X}} f d \lambda \tag{34}
\end{equation*}
$$

(by definition or by approximation, according to the point of view: see [8] p. 375 and [4], I.9.1).

We will prove the following: there exist

$$
\begin{equation*}
\lim _{k} \int_{X} f d \mu_{k}=\int_{X} f^{*} d \lambda \quad \text { and } \quad \lim _{k} \int_{X} f d \nu_{k}=\int_{X} f_{*} d \lambda \tag{35}
\end{equation*}
$$

The equality $f^{*}(x)=\underset{y \rightarrow x}{\limsup } f(y)$ implies that, for each couple $(k, i)$

$$
\begin{equation*}
\left(\sup _{\substack{E_{k, i}}} f\right) \cdot 1_{E_{k, i}}^{9} \geqslant f^{*} \cdot 1_{E_{k, i}}^{0} \tag{36}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\int_{X} f d \mu_{k}=\sum_{i} \lambda\left(E_{k, i}\right) \cdot f\left(w_{k, i}\right)>\sum_{i} \int_{\substack{\dot{B} \\ E_{k, i}}} f^{*} d \lambda-\frac{1}{k} \sum_{i} \lambda\left(E_{k, i}\right)=\int_{X} f^{*} d \lambda-\frac{1}{k} \tag{37}
\end{equation*}
$$

(recall that $\left.\lambda\left(E_{k, i}^{0}\right)=\lambda\left(E_{k, i}\right)\right)$. Thus:

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} \int_{X} f d \mu_{k} \geqslant \int_{X} f^{*} d \lambda . \tag{38}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
\int_{X} f^{*} d \lambda \geqslant \limsup _{k \rightarrow \infty^{+}} \int_{X} f^{*} d \mu_{k} \geqslant \limsup _{k \rightarrow \infty} \int_{X} f d \mu_{k}, \tag{39}
\end{equation*}
$$

because of the weak convergence of $\left\{\mu_{k}\right\}$ to $\lambda$. Inequalities (38) and (39) imply the first of (35). The second of (35) is proved in the same way, using the inequality

$$
\begin{equation*}
\left(\frac{\inf }{\frac{Q_{k, i}}{E_{k}} f}\right) \cdot 1_{E_{k, i}}^{0} \leqslant f_{*} \cdot 1_{E_{k, i}}^{0} \tag{40}
\end{equation*}
$$

and the weak convergence of $\left\{\nu_{k}\right\}$ to $\lambda$.
Lemma 5. - Suppose (c) holds and let $\left\{P_{k}\right\}$ be as in Theorem 1. For every bounded real function $f$, for every $t \in[0,1]$ there is a subsequence $\left\{\phi_{k_{n}, t}\right\}_{n}$ of discrete probability measures associated to $\left\{P_{k}\right\}$ such that: there exists the limit

$$
\begin{equation*}
\lim _{n} \phi_{k_{n}, t}(f)=\Phi(t) \tag{41}
\end{equation*}
$$

and $\Phi$ is a Lipschitz-continuous function of $t$, such that

$$
\begin{equation*}
\Phi(0)=\int_{X} f_{*} d \lambda, \quad \Phi(1)=\int_{X} f^{*} d \lambda . \tag{42}
\end{equation*}
$$

Proof. - For each $\mathcal{C}_{\lambda}$-set $E_{k, i}$ let $w_{k, i}, v_{k, i}$ be the interior points specified in Lemma 4. Given $t$ as above and any $\varepsilon>0$, there exist $r \geqslant 0$ and $\delta=\delta(\varepsilon)>0$ such that

$$
\begin{equation*}
\lambda\left(B\left(x_{0}, r\right)\right)=t \quad \text { and } \quad \lambda\left(B\left(x_{0}, r+\delta\right)=t+\varepsilon,\right. \tag{43}
\end{equation*}
$$

by assumption (c). Let $k=k(\varepsilon)$ be an integer such that $2 / k<\delta$, and $P_{k}$ the corresponding finite partition as in Theorem 1; then

$$
\begin{equation*}
\max _{1 \leqslant i \leqslant n_{k}} \operatorname{diam}\left(E_{k, i}\right)<0 \quad \text { while } \lambda\left(\mathrm{E}_{\mathrm{k}, 0}\right) \leqslant \frac{1}{\mathrm{k}} . \tag{44}
\end{equation*}
$$

Define the discrete measure $\phi_{k, t}$ as in (1), with the following choice of the points: for each $E_{k, i}$ intersecting the ball $B\left(x_{0}, r\right)$ the point $w_{k, i}$; for each $E_{k, i}$ intersecting the complement of $B\left(x_{0}, r+\delta\right)$ choose $v_{k, i}$; for all the others and for $E_{k, 0}$ take any interior point $z_{k, i}$. Let us consider the function

$$
f_{i}(x):= \begin{cases}f^{*}(x) & \text { if } x \in B\left(x_{0}, r\right), \quad r=r(t),  \tag{45}\\ f_{\circledast}(x) & \text { otherwise },\end{cases}
$$

which is bounded and Borel measurable. Let

$$
\begin{equation*}
\Phi(t):=\oint_{X} f_{t}(x) d \lambda \tag{46}
\end{equation*}
$$

defined on $[0,1]$ and Lipschitz continuous with a constant $M_{f}=2 \cdot \sup _{x}|f(x)|$.
Equalities (42) are obvious. We will prove that, for every $t \in[0,1]$, there is a sequence of integers $k_{n}$ such that (41) holds. Given $t \in[0,1]$ and $\varepsilon>0$, let $k$ be the integer $k(\varepsilon)$ and $\phi_{k, t}$ the discrete measure associated to $P_{k}$, both described above. Then, writing $B_{r}$ instead of $B\left(x_{0}, r\right)$ and $\bar{B}_{\delta}$ instead of $\bar{B}\left(x_{0}, r+\delta\right)$ :

$$
\begin{equation*}
\phi_{k, t}(\ddots f)=\oint_{B_{r}} f d \phi_{k, t}+\oint_{\bar{B}_{i} \backslash B_{r}} f d \phi_{k, t}+\oint_{X \backslash \bar{B}_{\varepsilon}} f d \phi_{k, t} . \tag{47}
\end{equation*}
$$

At each point $x \in B_{r}:\left(f \cdot 1_{B_{r}}\right)^{*}(x)=f *(x)$, and at each $z \in X \backslash \bar{B}_{\delta}:\left(f \cdot 1_{X \backslash \bar{B}_{z}}\right)_{*}(z)=$ $=f_{*}(z)$. Therefore, by the same reasons as in Lemma 4, there exist

$$
\begin{equation*}
\lim _{k} \oint_{B_{r}} f d \phi_{k, t}=\oint_{B_{r}} f * d \lambda, \quad \lim _{k} \oint_{X \backslash \bar{B}_{z}} f d \phi_{k, t}=\oint_{X \backslash \bar{B}_{z}} f_{*} d \lambda . \tag{48}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
\left|\oint_{\bar{B}_{i} \backslash B_{r}} f d \phi_{k, t}-\oint_{\bar{B}_{i} \backslash B_{r}} f_{t} d \lambda\right| \leqslant M_{f} \cdot \varepsilon . \tag{49}
\end{equation*}
$$

Now: take $\varepsilon=1 / n$ and a corresponding $\delta=\delta(1 / n)$ as above; let $k_{n}$ be an integer such that $2 / k_{n}<\delta(1 / n)$. Then the subsequence $\phi_{k_{n}, t}$ of discrete measures just defined verifies equality (41), because of (47), (48) and (49).

Theorem 2. - Let ( $X, d$ ) be a separable metric space, $\lambda$ a probability on $X$ verifying condition (c). There is a $\lambda$-equidistributed sequence $\left\{P_{k}\right\}$ of finite partitions into $\lambda$-continuity sets such that: for every bounded real function $f$ on $X$, for every number $\alpha$ between the lower Riemann integral and the upper Riemann integral of $f$, there is a subsequence of discrete measures $\left\{\phi_{k_{n}}\right\}_{n \in N}$ associated to $\left\{P_{k}\right\}$ such that

$$
\begin{equation*}
\lim _{n} \oint_{X} f d \phi_{k_{n}}=\alpha . \tag{50}
\end{equation*}
$$

Proof. - By Lemma 5, there is a $t \in[0,1]$ s.t. $\Phi(t)=\alpha$; take $\phi_{k_{n}}:=\phi_{k_{n}, t}$ defined above.

Corollary 2. - If $f$ is bounded and $\lambda$-summable, there exists a sequence of Riemann sums, associated to the sequence of finite, $\mathcal{C}_{\lambda}$, $\lambda$-equidistributed partitions $\left\{P_{k}\right\}_{k \in N}$, which converges to $\lambda(f)$.

REMARK 3. - Let $f: X \rightarrow \boldsymbol{R}$ be bounded but not Riemann-integrable; define the sequences $\left\{\mu_{k}\right\}$ and $\left\{\nu_{k}\right\}$ as in Lemma 4. Then the sequence

$$
\begin{equation*}
\mu_{1}(f), \quad \nu_{1}(f), \ldots, \mu_{k}(f), \quad v_{k}(f), \ldots \tag{51}
\end{equation*}
$$

does not converge. If $f$ is not bounded on the support of $\lambda$, for each $k \in N$ there is at least one of the sets $E_{k, i}$ (with strictly positive mesure) such that $f$ is unbounded on it. Therefore for each $k$ there is a choice of the points $z_{k, i} \in E_{k, i}$ such that

$$
\begin{equation*}
\left|\frac{1}{n_{k}} \sum_{i=0}^{n_{k}} f\left(z_{k, i}\right)\right|>k \tag{52}
\end{equation*}
$$

and thus the sequence of averages in (30) does not converge.
This is a new version of the De Brujin-Post theorem (see [1], 1968).

## REFERENCES

[1] N. G. De Brujin - K. A. Post, A remark on wniformly distributed sequences and Riemann integrability, Indag. Math., 30 (1968), pp. 149-150.
[2] J. Dugundji, Topology, Allyn and Bacon Inc. (1966).
[3] E. Hlawka, The Theory of Uniform Distribution, AB Academic Publishers, Berkhamsted (1984).
[4] K. Jacobs, Measure and Integral, Academic Press (1978).
[5] S. Kakutani, A problem of equidistribution on the unit interval, in: Measure Theory, Oberwolfach (1975), pp. 369-375; Lect. Notes in Math., 541, Springer-Verlag (1976).
[6] L. Kuipers - H. Niederreiter, Uniform Distribution of Sequences, J. Wiley (1974).
[7] K. Schmidt, Über einen Zusammenhang zwischen gleichverteilten Punkt-and Massfolgen, J. Reine Angew. Math., 244 (1970), pp. 94-96.
[8] L. Schwartz, Radon Measure on Arbitrary Topological Spaces and Cylindrical Measures, Tata Institute of Fundamental Research, Oxford Univ. Press (1973).
[9] P. Morales, Mean value theorem for the m-integral of Dinculeanu, Canad. Math. Bull., 15 (2) (1972), pp. 243-251.
[10] H. Niederreiter, On the existence of uniformly distributed sequences in compact spaces, Compositio Math., 25 (1972), pp. 93-99.
[11] L. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press (1967).
[12] H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann., 77 (1916, reprint 1964), pp. 313-352.


[^0]:    (*) Entrata in Redazione il 24 gennaio 1989.
    Indirizzo degli AA: Dipartimento di Scienze Matematiche, Università di Trieste, I-34100 Trieste.

    Lavoro presentato al terzo Convegno nazionale «Analisi reale e teoria della misura» (Capri, 12-16 settembre 1988).

