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A Singular-Degenerate Free Boundary Problem Arising 
from the Moisture Evaporation 

in a Partially Saturated Porous Medium (*). 

HONG-MING YIN 

S u m m a r y .  - We consider a moisture evaporation process in a porous medium which is partially 
saturated by a fluid. The mathematical model is a singular-degenerate nonlinear parabolic 
free boundary problem. We first transform the problem into a weak form in a fixed domain 
and then derive some uniform estimates for the proper approximate solution. The existence 
of a weak solution is  established by a compactness argument. Finally, the regularity of the 
solution and interfaces are investigated. 

1. - I n t r o d u c t i o n .  

Assume that the soil of the earth is a homogeneous, isotropic and rigid porous me- 
dium partially saturated by a fluid. Furthermore, we suppose that the surface is dry. 
Let us examine the evaporation process of the moisture in this soil. Because of the 
heat of the sun, the water in the soil will be changed into vapor and the vapor will dif- 
fuse to the surface and be carried away. So the dry soil will appear not only on the 
surface of the earth but also below the surface as a region which varies with time. 
Here, we shall ignore the absorbent, chemical, osmotic and thermal effects of the 
soil. 

It is well-known that the flow of the fluid thorough the porous medium satisfies 
Darcy's law:  

(o.1) 

and the continuity equation: 

(0.2) 

q = -K( r  grad 

a0 0--~ = - div q, 
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where 0 is the volumetric moisture content, q is the macroscopic velocity of the fluid, 
K is the hydraulic conductivity, and ~ is the hydraulic head which may be expressed 
as the sum of a hydrostatic potential r and a gravitational potential x. If  we confine 
our attention to one-dimensional flow and have the x-axis pointing downward, we 
have the Richard's equation: 

(0.3) ao  = ! K(r 
at 8x Ox 

Between the quantities O, r and K, there exist experimental relationships 0 = 0(r 
and K = K(r if the hysteresis effect is ignored. For most soils, the functions 0(r and 
K(r possess some typical properties (of. [12], [13] and [14]): 

(1) there exists a constant r such that the functions 0(r and K(r are strictly in- 
creasing for ~ ~ r 

(2) the functions 0(r and K(r 0 as r ~ - ~ (dry part) and 0(r and K(r are 
constants for r ~ r (saturated part); 

(3) the derivatives 0'(r and K ' ( r  as r  ~ (see[14]), 

q'(r 
lim - -  = + ~  

+-,-~ K(~) 

and 0'(r ~ 0 as r  r 
When 0 is small we can always transform the equation (0.3) into the 0-equa- 

tion: 

(0.4) ~_00 = ~ D(O) 
8t ~x 8x ' 

where D(O) = K(r is the diffusivity of the soil which satisfies D(0) = 0 and the equa- 
tion (0.4) degenerates into a hyperbolic-parabolic equation. Otherwise, we transform 
the equation (0.3) into the C-equation: 

(0.5) C(r ~ t  8 [K(r ar ] 8K(r = ' 

where C(r = dO~de is the capacity of the soil which satisfies C(r = 0 when r >i r and 
K(0) = 0. Hence the equation (0.5) degenerates into a hyperbolic-parabolic and ellip- 
tic-parabolic equation. 

REMARK. - From the physical point of view, it seems to be not meaningful to de- 
fine the hydraulic conductivity and to use the Darcy's law at very low saturation soil. 
One can, however, apply the model to the movement of an ideal gas in a homogeneous 
porous medium in which u(x, t) represents the density of the gas. 
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Le t  

,~(x, t) 0 

- - ~  - - c v  

We assume K(s) -= Ks > 0 for s > 0 and str ict ly increasing for s e ( -  ~ ,  0). Thus, the 
correspondence of u and ~ is one to one. Fur the rmore ,  we see that  

~(x, t) = - ~ if and only if u(x,  t) = 0 (a d ry  state) i.e. 0 = 0; 

~(x, t) e ( -  ~,  0) if and only if u e (0, us) (an unsa tura ted  state) i.e. 0 < 0 < 1; 

,~(x, t ) e  [0, + ~ )  if and only if u e [u~, + ~ )  (a sa turated state) i.e., 0=  1. 

Express ing  the correspondence of u and 6, we wri te  ~(x, t) = ~(u(x, t)). W e  also 
wri te  O(u(x, t)) = O(,~(u(x, t))) and K(u(x ,  t)) = K(~(u(x ,  t))) for simplicity. Then we 
have the following equation from (0.5) for u: 

where 

O'(u) ut = Uxx - K(u)x ,  

1 dO 
o ' ( u )  - 

K($(u(x ,  t))) d q '  

satisfies O'(u) = + ~ for u = 0 and O'(u) = 0 for u >i us. K(u)  is str ict ly increasing for 
u e (0, us ) with K(0) = 0 and K(u)  = K~ for u ~> u~. 

In the initial s tate  u(x,  O) = Uo (x), we assume that  Uo (0) = 0 and that  there  exists a 
constant So (0 < so < 1) such that  uo (so) = us (This means that  there  exist th ree  s tates  
initially: d ry  (x = 0), unsatura ted  (0 < x < So) and saturated (so < x < 1)). On the 
boundary x = 1 we assume no flux, i.e. 

- ~ x  - K ( u )  ~ = 1 

On the front  of the moisture evaporation, which is denoted by  x = s(t), of this mov- 
ing surface at  t ime t, one has u(s(t), t) = O. Moreover,  we assume that  the evaporat ion 
velocity is 

[u~ - K(u)]I~ = s(t) = Ux (8(t) ,  t)  = g(8( t ) ,  t)  ~ O, 

since K(u(s( t) ,  t)) = K(O) = O. 
Now we can state  our mathematical  problem (P): Le t  t > 0. 
Find s( t ) :[O,T]-~[O,  1] and u ( x , t ) : S T = { ( x , t ) : s ( t ) < x < l ,  0 < t < T } - - ~ R  1 

which satisfy 

(1.1) ~(u)t = uxx - K(u)x ,  (x, t) e S t ,  

(1.2) u(s(t), t) = O, 0 ~ t <~ T ,  

(1.3) [ux - K(u)]~= l = O , O <~ t <~ T , 
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(1.4) ~(u(x, 0)) = ~(Uo (x)), 0 <~ x <- 1, 

(1.5) ux (s(t), t) = g(s(t), t), 0 <. t <. T,  

where/~(u) has the same behavior as the function O(u) as stated in assumption H(1) 
below. 

Since the first research [10] was accomplished in 1958, considerable attention has 
been paid to the investigation of the infiltration (0.3) and its generalizations (cf. [2], 
[5] and [9]). Much research, however, is concentrated on either the completely unsat- 
urated medium or the completely saturated one. A. FASANO and M. PRIMICERO [4] 
considered the liquid flow in partially saturated porous medium. They transformed it 
into a nonlinear free boundary problem in which the free boundary represents the in- 
terrace between the saturated and unsaturated regions and obtained the existence 
and uniqueness by the contractive mapping argument. C. J. VAN DUYN and L. P. 
PELETIER[13] considered the same problem with different approach. They first de- 
fined a weak form of the problem and established the existence and "uniqueness of the 
weak solution by compactness method. In [11], C. J. VAN DUYN obtained the continu- 
ity of the interface. More recently, S. XIAO et al. [14] studied an initial and boundary 
value problem with a more complicated situation in which the three physical states 
are co-existent. By the comparison principle, they derived a number of uniform esti- 
mates for the solution of a suitable approximate problem and obtained the existence 
and uniqueness of the solution under the certain conditions on the data. In this paper, 
we consider a general equation (0.5) with an evaporation process of the moisture. Un- 
like the Stefan-like free boundary problems with parabolic equations, our problem 
(1.1)-(1.5) is much more complicated since the equation is degenerate at both u = 0 
and u >i u~ as well as a free boundary is involved. It seems very hard to apply these 
previous methods to the present mathematical model. However, we use the idea in [3] 
and [15] to separate the two different kinds of degeneracy via the Sard's Lemma and 
the implicit function theorem. With the help of this separation, we can derive an equi- 
HSlder continuous modulus of the proper approximate solution by means of the maxi- 
mum principle and the integral estimates. The compactness argument allows us to es- 
tablish the existence of a solution. 

In Section 2, we transform the problem into a weak form and state the main re- 
sults. Sections 3 and 4 are devoted to the proofs of those results. 

Throughout this paper, we shall assume the following conditions are satis- 
fied: 

H(1) 

H(2) 

The function fi(s) e C[O, +~)  c~C~ +~) ,  ,~'(0) = + ~, and fi'(s) > 0  if 0 <  
< s < u ~ ,  ~ ( s ) = l  if s>~u~ and p(s) e C4(0, u~). 

The function K(s)e C ~ (R1), K(s)---0 for s e ( - ~ ,  0], K(s)=-K(u~) for s e 
�9 [u~, +~), 0 <~ K'(s) <. Ko and K(s) �9 C 4 (0, u~), where Ko is a constant. 

H(3) (i) uo(x)~C2[O, 1], u0(0)=0,  Uo(So)=u~(O<so<l) ,  u ' ( x ) > 0 ,  u~'(x)~<0, 
u~' (1) < 0. 
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(ii) The consistency conditions: 

- u~' (0) = K'(0) g(0, 0), ug (0) = g(0, 0)', , ug (1) - K(uo (1)) = 0 and u"0 (1) = 0 

hold. 

H(4) The function g(x, t) �9 C2'2(-QT) and g(x, t) >t 0 and gt(x,  t) >~ O. 

2. - T h e  w e a k  f o r m  o f  t h e  p r o b l e m  and  t h e  m a i n  r e s u l t s ,  

Since the equation (1.1) is degenerate, we cannot expect the existence of a classi- 
cal solution for the problem (P). This motivates us to look for a weak form of the 
problem. 

Let T > 0  and Q T = { ( x , t ) � 9  We take 

X =  {~ �9 C2,1(QT): ~(0, t) = ~(1,  t) = ~(x,T)  = 0}, 

as a test function space. Formally, multiplying the equation (1.1) by ~ for any ~ �9 X, 
integrating it over the region ST = {(x, t) �9 R2: s(t) < x < 1, 0 < t < T} and integrat- 
ing by parts once or twice depending on the numbers of derivatives in the original 
equation (1.1), we have 

T 1 

ST 0 0 

Introduce a jump function 

x(u)={01,, u~<0u>0' 

and set 

I u(x, t), (x, t) e St ,  

u* (x, t) = [0, (x, t) e Qr \ St .  

Thus, by/~(0) = 0 and z(0) = 1, we have 

1 

J jE~(u, )~  § u ,  ~xx § K(u, )~x-(g(x, ~)~(x, t ) ) x ~ ( U * ) l d x d t  : - f ~(Uo (x))~(~, 0)dx 
0 

We denote by E(5.) the graph: 

f 
O, i f ~ > O ,  

E(5.)= [0,1], if 5.=0, 

[1 ,  if ~ < 0. 
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D E F I N I T I O N .  - A bounded, measurable function u(x, t) defined on QT is called a 
weak solution to the problem (P), if 

(2.1) ] lift(u) ~t + u ~  + K(u) ~ - (g(x, t) ~(x, t))~E(u)] dx dt 
Q~ 

1 

= - f~ (u  o(x)) ~(x, o) dx,  
o 

where  E(u(x, t)) is a bounded, measurable function whose values are contained in the 
graph of E(u) and ~ is an arbi t rary function in the Banach space X. 

P R O P O S I T I O N .  - The classical solution of the problem (P) is a weak solution if we 
extend u(x, t) as 0 across the front moving boundary x = s(t) up to x = 0. 

REMARK. - Formally, for the weak solution u(x, t), the sets {(x, t): u(x, t) = 0}, 
{(x, t): 0 < u < us } and {(x, t): u(x, t) i> u~ } correspond to the dry, unsatura ted  and 
saturated physical regions, respectively. There are two interfaces: the first one is be- 
tween the sets {(x, t): u = 0} and {(x, t): 0 < u(x, t) < u~ } corresponding to the value 
u(x, t) = 0 and the other be tween  the sets ((x, t): 0 < u < u~ } and ((x, t): u >/u~ }, cor- 
responding to the value u(x, t) = u~. 

The main results in this paper  are as follows: 

T H E O R E M  1.  - Assume that the hypotheses  H(1)-H(4) hold. Then there  exists a 
weak solution u(x, t) in QT for some T > 0. Let  T* be the largest  value of T, then 
0 < T * ~ < + ~ .  In the case of T * < + ~ ,  we have u(x ,T*) -O .  Fur thermore ,  

O(x, t) ~f~(u(x, t)) is continuous. 

T H E O R E M  2 .  - Under  the conditions of the Theorem 1, we have the following 

(1) there exist two interfaces sl (t) and s2 (t) such that  O(x, t) satisfies 

O(x, t) = 0 for (x, t) e P ,  

O<O(x , t )<l  for (x,t) e R ,  

O(x, t) = 1 for (x, t) e D ,  

where  

p ~ e ~ { ( x , t ) : 0 < X < S l ( t ) , 0 < t < T . } ,  

R de~ {(x, t): sl (t) < x < s2 (t), 0 < t < T ** } [J (sl (t) < x < 1, T** < t < T* }, 

D dej {(x, t): s2 (t) < x < 1, 0 ~< t ~< T** }, 

while 0 < T* <~ T* and s2 (T**) = 1 if T** < + ~.  Moreover,  u(x, t) satisfies the equa- 
tion (1.1) in the classical sense in the region R. 
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(2) The curves x = s~(t) and x = s 2 ( t ) a r e  monotone increasing. Moreover 
sl (t) is continuous on [0, T*]. 

3. - The proof  o f  Theorem 1. 

Construct function sequences E~(u)  e C4(R1), ~ (u)  �9 C4(R  1 ) and K~(u) �9 C4(R 1) 
such that the following conditions hold: 

(1) E~ (u), ~ (u) and K~ (u) converge pointwisely to E(u) ,  ~(u) and K(u) ,  respect- 
ively, when s--. 0. Moreover for ,~(u) and K~(u), the convergence is uniform in 
[0, + ~ ) .  

(2) 

�9 I1, 
E~ (u) = strictly decreasing, 

[0 ,  

if u < 0 ,  

i f0~<u~<~,  

i f u~>s  

and E" (0) = E:' (0) = 0. 

~ (u) = 

~(~(~)/~)u, 

strictly increasing, 
~(u), 

strictly increasing, 
~(u) + ~u, 

~ <~ U <~ 2 s  , 

2e <<. u <<. us - z , 

Us --  ~ ~ U ~ Us  , 

U ~ U  s . 

I O, 

K(u )  , 

K~ (u) = | s t r ic t ly  increasing, 

[K(u~) , 

u ~ 0 ,  

O ~ U ~ U s - - ~  , 

U s - - ~ U ~ U s ,  

U P U  s 

and 0 ~< K" (u) ~< Ko. 

Furthermore,  at the corner points (0, 0) and (1, 0), the compatibility conditions 
are satisfied: u0(0) = 0, u~' (1) = 0, u~'(0) = K" (0)ud (0), ud (1) = K~(uo(1)). 

Now we consider an approximate problem (P~) in a fixed domain QT: 

(3.1) fit (u)t - ux,  + K~ (u)x - g(x,  t) E~ (u)~ = 0 in QT, 

(3.2) u(O, t) = O , O <~ t <<. T , 

(3.3) [ u ~ - K ~ ( u ) ] l x = l = O  , O < ~ t < . T ,  

(3.4) u(x ,  O) = Uo (x) ,  0 <. x <- 1.  

By the construction of E~(u), /~(u) and K~(u), we can easily see that  the 
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compatibility conditions at the corner points are satisfied up to the second order. 
So the problem (P~) has a unique classical solution u~(x, t ) e  C4'e(QT) by  [6]. 

To obtain the existence of a weak solution, we need to have certain uniform esti- 
mates  with respect  to s. The main difficulty is from the two types  of degeneracy and 
the singularity te rm E~ (u)x in (3.1). 

LEMMA 3.1. - The solution of problem (P~) is u~ (x, t) i> 0 for all (x, t) e QT. 

PROOF. - This is directly from the strong maximum principle since u ~ ( 1 ,  t ) =  
= K(u~) >I O. Q.E.D. 

LEMMA 3.2. - The solution u~ (x, t) satisfies u ~  (x, t) >I 0 for all (x, t) ~ QT. 

PROOF. - Let  v = u~ (x, t). Since u~ (x, t) >I 0 and u~ (0, t) which implies that  u~ (x, t) 
takes a minimum value 0 at every  point on the boundary x = 0, we have v(0, t ) =  
= u~  (0, t) I> 0. Note  that  v(1, t) = K(u~ (1, t)) t> 0 and v(x,  O) = ug (x) >I O. I t  follows that  
v I> 0 on the parabolic boundary ap Q~ of QT. I t  is clear that  v satisfies 

(3.5) fl: (u~) vt - v ~  - [K~' (u~) - g(x, t) E"  (u~)] v~ + 

+ [ f l ' ~ ( u ~ ) u ~ t + K ~ ' ( u ~ ) v - g ( x , t ) E " ( u ~ ) v - g ' ( x , t ) E ' ( u ~ ) ] v = O  in QT. 

Make the transform 

V(X, t) = e~ot v(x,  t) , 

where ~ I> n[fl~' (u~) u~t + K~' (u~) v - g(x, t) E~' (u~) v - g ' (x ,  t) E'~ (U~)]IIL + ~(Q~) �9 
Since ~(x, t)la~Q ~ = e-~3v(x,  t)lapQ r >I O, it follows from the maximum principle for 

the equation (3.5) that  ~(x, t)/> 0 for all ( x , t )~ -QT .  Therefore,  v(x,  t ) ~ O  for all 
(x, t) e QT. Q.E.D. 

LEMMA 3.3. - The solution u~ has the proper ty  u~t (x, t) <~ 0 for any (x, t) e QT. 

PROOF. - Let  w(x,  t ) =  u~t (x, t). Then w satisfies 

P x E '  fl: (u~) wt - w~x + [K~ (u~) - g( ) ~ (u~)] wx + 

+ [ ~  (u~) w + K:' (u~) u~x - g(x, t) E:' (u~) u~  ] w = gt (x, t) E"  (u~) u ~  in QT, 

w(0, t) = 0, O<~t<-T ,  

[ w ~ ( x , t ) - K ' ( u ~ ( x , t ) ) w ( x , t ) ] l ~ = l = O ,  O < . t < . T ,  

w(x ,  O) = ~ (u~----~l [U~xx - K" (u~) u ~  + g(x, t) E'~ (u~) u ~  ] t = o' 0 <<. x <~ 1. 

By the condition H(3) and the construction of the E~ (u) and K~ (u), we know that  
u~' <~ 0, u~ i> 0, K~' (u) I> 0, E" (u) ~< 0 and u~' (1) < 0. So we have w(x,  0) ~< 0 and 
w(1, 0) < 0. Then there exists T~ > 0 such that w(1, t) < 0 for 0 ~< t <~ T~ ~< T. 
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Let  T* = sup {t: 0 < t ~< T and w(1, t) < 0 for 0 < t ~< t}. Obviously, T* i> T~ > 0. 
We asser t  that  T* = T. Otherwise, assuming the result  is not true, we see w(1, T* ) = 
= 0. It  is clear that  

wla~Q~ ~ O, 

where QT* = {(x, t) �9 QT: 0 < x < 1, 0 < t < T* }. Since g t ( x ,  t)E~(u~), <. 0 by H(4) and 
u~(x ,  t) >i 0 by Lemma 3.2, the maximum principle argument  similar to that  of Lem- 
ma 3.2 implies w(x, t) <.<. 0 for all (x, t) �9 QT*. Since w(1, T* ) = 0, w(x, t) attains a maxi- 
mum value a t  the point (1, T* )  in the region QT~*. Applying strong maximum princi- 
ple, we have w~ (1, t)l t = T~* > O. But w~ (1, T * )  = K" (u~ (1, T* ))w(1, T* ) = 0, this leads 
a contradiction. Thus, T* = T and w(x, t) <~ 0 for any (x, t) �9 QT. Q.E.D. 

COROLLARY 3.4. - There exists a constant M~ not depending on r such that  

0 ~< u~ (x, t) < M1 for any (x, t) �9 QT. 

PROOF. - The result  follows immediately from Lemma 3.1, 3.2 and 3.3. 
Q.E.D. 

LEMMA 3.5. - There exists a constant M2 not depending on ~ such that  

lu~x(x, t)i < M 2  on QT. 

P R O O F .  - We introduce an auxiliary function w = L1 x, where  L1 is a constant to be 
determined later. Let  Z(x,  t) = w(x, t) - u~(x, t). Then Z(0, t) = 0, Zx(1, t) = L1 - 
- K~ (u~ (1, t)) > 0 f fwe  take L~ >t K(u~ ) + 1. This implies that  Z(x,  t) cannot take a mini- 
mum value on the boundary x = 1. Moreover, by  u0 (0) = 0, one has 

Z(x,  O) = L1 x - Uo (x) >I 0, 

if L1 I> lu~i + 1. 
Now we define operator  ~ by 

aW a~W aW # W  = ~ (u~) + k" (u~) ~ - g(x, t) E" (u~) 
at ax 2 ~ x  ax " 

Then, 

5:Z = K[  (u~) L 1 - g(x, t) E "  (u~) L 1 ~ O, 

since E" (u~)<-0 and K" (u~)I> 0. I t  follows by the strong maximum principle that  
Z(x,  t) cannot take negative minimum values in the interior of QT. Hence Z(x,  t) >I 0 
on QT, i.e. u~(x , t )<~Lx on QT. 
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Thus, we have 

Now 

au~ (0, t) 
- -  ~ L 1 .  

ax 

0u~(0, t) _ au~ (x, t) x = ~> 0 
ax ax 0 ' 

by Lemma 3.1. Moreover, by the boundary condition (3.3), 

au~ (1, t) 
- K~ (u~ (1, t)) 

ax 

and u~ (x, 0 )=  u~ (x) are uniformly bounded. It follows that 

OU apQr ~ x  < max {L1, Co + 1, K(us )}, 

which is independent of ~. Since u~t(x, t) <. 0 by Lemma 3.3, it follows from equation 
(3.1) that 

0 > _  r ~ ( u ~ ) u .  = 

+ g(x, t) E~ (u~)~ =- ~x [u~x - K~ (u~) + g(x, t) E~ (u~)] - g'(x, t) E~ (u~). U ~xx K~ (u~ )~ 

Integrating the above inequality from 0 to x, we obtain 

u~ - K~ (u~) + g(x, t) E~(u~) <. ;g'(x,  t) E~(u~) dx + [u~ - K~iu~) + g(x, t) E~(u~)] x = 0 ~< C 
o 

for all (x, t) e QT because of IE~ (u~)l ~ 1, IK~ (u~)t <- K(us) + 1 and Iu~ (0, t) I ~< L~, 
where C is independent of ~. 

Thus, w e  have 

u~(x, t) <. K~(u~) + Ig(x, t)E~(u~) I + C <~ Ko + Ig(x, t)l + C 

which is uniformly bounded for all (x, t) �9 QT. One combines the above inequality with 
Lemma 3.2 to obtain 

lu~(x,t)l <<-M2 on QT, 

where M2 is a constant which is independent of ~. Q.E.D. 

In order to obtain the equi-continuity of u~(x, t) or ~(u~(x, t)), we cannot use the 
usual arguments for the problem (3.1)-(3.4) because of the terms ~ (u) and H~ (u). We 
overcome this difficulty by separating the two different kinds of degeneracy via 
Sard's Lemma and the implicit function theorem. 
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SARD'S LEMMA. - Suppose f :  g2 e R ~ R ~ is a C2-function, where t) is a bounded 
region. Then the set { c e R ( f ) :  for all (x, t)eg2 with f (x ,  t ) = c  and V f ( x , t ) =  
= {fx (x, t), f t  (x, t)} = 0}, which is all the critical values in the range off(x,  t), is a null- 
measure set in the sense of R 1-Lebesgue. 

LEMMA 3.6. - For  a.e. a (0 < a < us), there exists a curve x = h~(t) which is a 
monotonic increasing function of t such that  

A:  = {(x, t): h~ (t) < x ~< 1, 0 ~< t ~< T(~)} - ((x, t): u~ (x, t) i> ~}, 

B2 = ((x, t) �9 QT: 0 <- u~(x, t) < a} = - Q T \ A : ,  

where 0 < T(D ~< T and h:  (t) = 1 ff T(~) ~< t ~< T. 

PROOF. - By Sard's lemma, we know that  for a.e. non-critical value a of u~ (x, t) 
with 0 < a < u~ and any (x, t) e l"~ = ( (x, t) �9 Qr : u~ (x, t) = ~) , u~ (x, t) has the property  
that  

(3.6) Vu~ (x, t) = {u~ (x, t), u~t (x, t)} ~ 0. 

According to the existence and uniqueness theorem of the implicit function, we know 
tha t / ' ~  consists of the graphs of finitely many smooth curves which do not intersect  
each other. We assert  tha t / '~  is composed of the graph of one smooth curve x = h:  (t). 
Assume the result  is not true. F i rs t  of all, no segment I in F~ (that means the graph of 
the segment  I is contained in/'~) exists such that  I is parallel to x-axis. Otherwise, on 
such a segment I,  because of u~ (x, t) - a, one has u~ = u~,~ = 0. Hence u~t = 0 from the 
equation (3.1). This contradicts with (3.6). Now assume that  at t = to �9 (0, T], there 
exist points (x0, to ) and (Xl, to ) � 9  with x0 :/: xl .  Without loss of generality, let xo < 
< xl.  Then u~ (Xo, to) = a and u~ (Xl, to) = a. Since u~ (x, t) I> 0 by Lemma 3.2, it follows 
that  u~ (x, to) -- a for x �9 [Xo, xl ]. Hence the interval J = [x0, Xl ] is contained in F~ (in 
the sense of grap/h) and J is parallel to the x-axis. This is a contradiction. So F:  com- 
prises a graph Of one smooth curve. Next  we show that  F:  can be represented by the: 
graph of a function x = h:  (t) which enters at a point (Xl, 0) and exits at (x2, T) or 
(1, T(D) with 0 < T(~) < T and h~ (T(~)) = 1 (0 < Xl < 1, 0 < x2 < 1). Indeed, since 
Uo (0) = 0 and Uo (x0) = u~, there exists a Xl (0 < xl < Xo) such that  u0 (Xl) = ~ by 0 < 
< a < u~. The inequality ud (x) > 0 implies that  u~, (x, t) > 0 in a neighborhood N~ = 
= {(x, t): Ix - Xll < r, 0 < t < r}. Le t  T(~) = sup {t* : u~  > 0 for 0 < t < t*, x e [0, 1]}. 
By the implicit theorem, there exists a function, denoted by h: (t), such that  on 
[0, T(~)] 

/ ~  = {(h$ (t), t): 0 ~< t ~< T(D}.  

I f  T(D = T or x = h : (T(~) )=  1, we have the desired result. Otherwise, assume 
T(~) < T and 0 ~< h~ (t) < 1. I t  is clear that  x = h: (T(~)) > 0 since u~ (h:  (T(~)), T(e)) = 
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= a > 0. Fur thermore ,  

(3.7) 

Let  

and 

(hl = 0. 

Q1 = {(x, t) e QT: 0 < x < h~(t), 0 < t < T(~)}, 

Q2 = {(x, t) e QT: hl (t) < x < 1, 0 < t < T(D}. 

Since hl (t) is smooth, the interior cone proper ty  at point (h:' (T(~)), T(e)) is satisfied in 
at least one of the regions Q~ and Q2. By the maximum principle, u~ (x, t) attains a 
strictly maximum value at (hl (T(D), T(~)) on Q~ and u~ (x, t) attains a strictly mini- 
mum value at (hl (T(e)), T(r  Q2. If  the interior cone proper ty  holds for Q1, the 
strong maximum principle (cf. [15]) implies that  u~  (h~ (T(D), T(~)) < 0 which contra- 
diets with (3.7). Similarly, we can obtain a contradiction of (3.7) when the  interior 
cone property  holds for Q2. Therefore, T(e)= T and 

-- {(hi(t), t): 0 <~ t < T} .  

The rest  of our Lemma follows from the maximum principle. 
To obtain the monotonicity of h~ (t), let tl < t2 and u~ (hl (tl), tl ) = u, (h~ (t~), t2 ) = 

= a. It  follows by the mean value theorem that  

= ~ _ ~ h ~ , 0 u~ (h~ (t 1), t 1 ) u~ (h~ (t 2 ), t 2) = u~x (~1, tl )[hl (tl) - h~ (t2)] + u~t ( ~ (t2), ~2)(tl - t2) 

where ~1 is between h~ (tl) and hl (t2) and ~2 between tl and t2. 
Since u~x(x, t) >i 0 and u~t(x, t) <~ 0 on Q, we have 

hl < hl (t2), 

i.e. hi(t)  is a monotonic increasing function. Q.E.D. 

The reader  is referred to paper [15] for a more detailed analysis of the s t ructure  of 
the level sets of solutions of parabolic equations. 

In what follows we need the following result. 

LEMMA 3.7. -- Suppose f (x)  e C 1 [0, 1] and (1)lf'(x)t ~ A,  (2) f ( x ) d x  <~ B for any 
a, b e [0, 1]. Then If(x) I ~ max {2B, (2AB) 1/2 for all x e [0, 1]}. 

PROOF. - See C. J. VAN DUYN [13]. 

Now we fix ~(0 < a < us) which is not a critical value of u~ (x, t). 
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LEMMA 3.8. - On the region A~, the function ~,(u~) is equi-HSlder continuous in x 
and t with exponents 1 and 1/2, respectively. 

PROOF. - On the region A~, u~ (x, t) >>- ~ implies E~ (u,) - 0 and then E~' (u,) -= 0. 
Moreover, fi" (u,) is uniformly bounded with respect to ~ by the hypothesis H(1), pro- 
vided that ~ is small enough such t h a t ,  < ~/2. The bound of fi: (u~) may depend on ~, 
but not on ~. 

Set O,(x,t) =~(u,(x,t)) .  We have IO~(x,t)l <~ I~: (u,)llu,~l <~M2C(~) = Ms(~), 
where M3 (~) is independent of ,. 

For any rectangle [a, b] x [t~, te] c A: ,  we utilize the equation (3.1) and Lemma 
3.5 to obtain 

IJb[Or (x, b t~ 
t2)-O~(X, tl)]dx =jtJf i~(u~)tdxdt  

By Lemma 3.7, we have 

Io~ (x, tl ) - o~ (x, t2 )1 <- M~ Itl - t211/z , 

for any (x, t~)eA: ( i=1 ,2) ,  where M~ depends only on 

t =a  

and known data. 
Q.E.D. 

LEMMA 3.9. - On the region B~, u, (x, t) is equi-HSlder continuous in x and t with 
exponents 1 and 1/2, respectively. 

PROOF. - On the region B2, ~ (u~) ~> a(~) > 0, where a(~) is a constant not depend- 
ing on ,. For any (xo, to) e B2, we take At > 0 such that [xo, So + ~/-~] • [to, to + At] c 

xo + ~ t t  to + ,~t 

~o to 

Xo + V~t  to+At 

xo to 

by the Lemma 3.5. 
We use the mean value theorem for integrals to obtain 

~o+~ 

t f [~(u~(x, to+At))-~,(u~(x, to))]dx = 

= I[ ~ (u, (x*, to + A t)) -/~, (u~ (x*, to))]l V ~ / >  a(~)Ju~ (x*, to + A t) - u~ (~*, to)l V ~ ,  
where x* e (Xo, Xo + V ~ ) .  

c B~. Then 

f [/L (u~ (x, to + A t)) - s (u~ (x, to))] dx 
xo 
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I t  follows that  

lu~(xo, to + ~t) - u~(xo, to)l <~ 

<- l u~ (Xo , to + ~t)  - u~ (x* ,  to + ~t)  l + l u~ (x* ,  to + ~t)  - u~ (x* ,  to )t + 

+ lug(x*, to) - u~(xo, to)l <~ 2M5 IXo - x* l  + C~ IAtl ~/2 <~ M6 IAtl 1/2, 

where  M6 depends only on known data and ~. Q.E.D. 

With the above results  in hand we can establish the following important  

corollary. 

COROLLARY 3.9. - The sequence { fl~ (u~ (x, t))} is equi-continuous on region QT if 

is small enough. 

PROOF. - Let  (xo, to) be an arbi t rary  fixed point on QT. We want  to show that  for 
any r > 0, there exists a ~ = ~(r)> 0 such that  

I ~ (u~(x, t)) -~(u~(xo,  to))l < r 

if (x, t) e U~ = {(x, t) ~ QT: Ix - Xol + It - to I ~/2 ~< ~} for a small ~. 
First ly,  since fl~ (u) converges to fl(u) uniformly, hence, for any r > 0 there  exists a 

small ~o such that 

ffl~ (u) - fl(u) t < r / 6 

for any u e [0, M1 ] if ~ < so- 
Secondly, since ~(u) is uniformly continuous on [0, M1 ], we have 3o = 3o (r) > 0 such 

that  

Lu - u't <3~ 

Ifl(u) - ~(u')l < r / 6 

Case 1. If  both (x, t) and (xo,to) e A : ,  then, from Lemma 3.8, 

tfl~ (u~ (x, t)) - fie (u~ (Xo, to))l ~< max {M2, M5 }[Ix - Xo I + I t - to 11/2 ] ~ r / 2 ,  

provided that  we choose 3 < 31 -- r / (2  max {M2, M5 }). 

Case 2. If both (x, t) and (xo, to e B : ,  then there exists 32 = ~o/(max {Ms, M6 }) > 

> 0 such that  

lug(x, t) - u~(Xo, to)t < max {Ms, M6 }[Ix - Xol + It - to 1] 1/2 < ao. 
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Then, if ~ < ~0, 

l~ (u~(x, t) ) - ~ (u~ (xo, to) )l < Ifl~ (u~ (x, O) - ~(u~ (x, t) )l + Ifl(u~ (x, t) ) -,~(u~ (xo, to))l + 

+ Ifl(u~(Xo, to)) -fl~(u~(xo, to))I <~ r /6  + r /6  + r /6  = r / 2 ,  

provided that  ~ < ~2. 

Case 3. Without loss of generality, let (x, t )e  A:  and (Xo, to)e B: .  Then there  
exists a point (x*, t* ) e A~ (~ B: .  Hence 

I/~ (u~ (x, t)) - ~ (u~ (x0, to))l ~< Ifl~ (u~ (x, t)) - ~(u~ (x*, t* ))1 + 

+ Ifl~ (u~ (x*, t* )) - fl~ (u~ (Xo, to ))1 < r /2  + r /2  = r,  

provided we choose that  ~ = rain {o~, ~2 } for s < so- 
This concludes our result. Q.E.D. 

By the Arzela-Ascoli compactness Lemma, there  exists a subsequence (still de- 
noted by fir (u~ (x, t)) for convenience) of the { fit (u~ (x, t))} such that  fie (u~) converges 
uniformly on QT. We denote the limit function by O(x, t). I t  is clear that  O(x, t) is a con- 
tinuous function because the convergence of the sequence is uniform. Now we 
define 

D = {(x, t): (x, t) e QT, O(x, t)}, 

s = {(x, t): (x, 0 e Qr,  0 < o(x, t) < 1}, 

R = ((x, t): (x, t) e QT, O(x, t) = 1}. 

Then D u P u R = Qr and P is a open set because of the continuity of the funtion 
O(x, t). 

Using weak compactness of the L2-space, we have subsequences (still denoted 
by the original symbols) u~ (x, t ) - -  u(x, t), fit (u~)--~ ~(x, t), K~ (u~)--~ K(x, t) and 
E~ (u~) ~ E(x,t)  when ~ ~ 0, where ~,---~, means that  the sequences converge weakly in 
the sense of Banach space L ~ (QT). 

In order  to obtain a weak solution, we need to prove that  ~(x, t ) =  fl(u(x, t)), 
I~(x, t) = K(u(x, t)) and E(x, t) = E(u(x,  t)) for a.e. (x, t) e Q~.. 

LEMMA 3.10. - For  almost all (x, t ) e  QT, we have ~(x, t )= fl(u(x, t)), [~(x, t )  
= K(u(x, t)) and E,(x, t) = E(u(x,  t)), where  the last equality holds in the sense of graph 
of the E(u). 

PROOF. - The equalities ~(x, t) = ~(u(x, t)) and K(x, t) = K(u(x, t)) can be demon- 
s t rated similarly to those of C. J. VAN DUYN [13], and XIAO SHUTIE et al. [14]. In fact, 
for any point (Xo, t0) in D u P,  the continuity of the function O(x, t) implies that  we 
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have a neighborhood N(xo, to) such that  

1 +  O( xo , to) 
0 ~ ~ (u~ (x, t)) < 2 < 1, (x, t) ~ N(xo, to). 

I t  follows by the definition of/L (u) and 9(u~) = 1 that  

O <~ u~(x't) <~-~ ( l + ~176176 ) < 

Therefore,  by Lemma 3.9, u~(x, t) must be convergent  to u(x, t) uniformly as ~ ~ in 
N(xo, to). This implies 

~ (u~ (x, t)) --~ ~(u(x, t)) 

and 

I~ (us (x, t)) ~ K(u(x, ~)), 

uniformly in N(xo, to) as ~ ~ 0. The proof of the equalities in region R is exactly same 
as those in [13]. Next  we need to show that  E(x, t) -- E(u(x, t)). For  any (x0, to) E P u 
u R,  we find 0 < O(Xo, to ) ~< 1. Since 0 is continuous on QT we can choose a neighborhood 
N(xo, to) r QT and a constant co such that 0 < co <- O(x, t) ~< 1 for all (x, t) ~ N(xo, to). 
Note that  ~(u~(x, t)) converges to O(x, t) uniformly on Q~, we have 0 < Co/2 < 
< ~ (u~(x, t))<~ 1 when ~ is small enough. Since/3~(u) converges to ~(u) uniformly on 
[0, + ~), one has a positive constant c* independent of z such that  us(x, t) > c* > 0 on 
N(xo, to). I t  follows that  E~ (u~ (x, t)) = 0 in N(xo, t) by the definition of E~ (u). Since 
(x0, to ) is arbi t rary in P w R we see that  E~ (u~ (x, t)) converges to 0 as z goes to 0 for 
a.e. (x, t) e P u R. I t  implies that  /~(x, t) = 0 for a.e. (x, t) e P u R. Note  that  
u(x, t) > 0 for a.e. (x, t) e P u R,  we have that  E(u(x, t)) = 0 for a.e. (x, t) e P u R by  
the definition of E(u). Hence E(x, t) = E(u(x, t)) -- 0 for a.e. (x, t) e P u R .  On the re- 
gion D, u(x, t) = O, for a.e. (x, t) e D .  Then 0 ~< E(u(x, t)) ~< 1 on D in the sense of al- 
most  everywhere .  Observe that  0 ~</~(x, t) ~< 1. This implies that  E,(x, t) = E(u) in the 
sense of the graph in D. Q.E.D. 

Now we prove that u(x, t) is a weak solution. 
Le t  To = sup {~: (x, ~) e P u R} > 0. 

Case I :T-~To .  For  a n y 0 < T < T 0 ,  u~(1, t ) > ~ i f 0 ~ < t < ~ T < T o a n d ~ i s s m a l l  
enough. Therefore H~ (u~ (1, t)) = 0 when 0 < t ~< ~' and ~ is sufficiently small. Fo r  any 
~(x, t) e X, 0 <~ t ~< ~', multiplying the equation (3.3) by ~ and integrating it over Q~ 
and letting ~--~ 0, we find 

1 

q~ 0 

Finally, let T -*  To. 
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Case 2: To < T,. Then u(x, T0) = 0 and u(x, t) satisfies the integral equality (2.1) 
on [0, To]. 

Since T is arbitrary, the proof of Theorem 1 is done. 

REMARK. - Once one has the equi-continuous estimate for u~ (x, t) one can establish 
the existence of a weak solution. Unfortunately, in general the weak solution u(x, t) 
is not continuous in QT (cf. [13] and [14]). 

COROLLARY 1. - The weak solution u(x, t) satisfies equation (1.1) in the classical 
sense in the region P. 

PROOF. - In fact, for any (x0, to) e P, the set Pr = {(x, t): (x, t) e QT, Ix - xoi + i t -  
- to l < r} r P i f r  is small enough. By virtue of Lemma 3.6, we know that u~(x, t) con- 
verges uniformly on the set Pr. By the hypotheses H(1), H(2) and the standard regu- 
larity theory of weak solution of nondegenerate parabolic equations, we immediately 
obtain the result. 

COROLLARY 2. - -  The weak solution u(x, t) has the following properties: O(x, t) = 
= ~(u(x, t)) is increasing monotonically with respect to x and decreasing monotonically 
with respect to t. 

PROOF. - This result follows directly from Lemma 3.2 and Lemma 3.3. 
Q.E.D. 

4. - The proof  o f  the  Theorem 2. 

In this section, we shall study additional properties of the weak solution. The sets 
D, P and R correspond to the dry, unsaturated and saturated regions, respectively. 
Of course, we are interested in the shapes of D, P and R. We also ask how much 
smoothness the interfaces possess. For each t e [0, T], define 

sl (t) = sup (x e [0, 1]: O(x', t) = 0, if 0 < x' < x, (x, t) ~ QT }, 

s2(t) = sup{x e [0, 1]: O(x, t) < 1 for (x, t) e Q~}. 

Since o(x, t) is increasing monotonically for each fixed t and decreasing monotoni- 
cally for each fixed x, we know that si (t) (i = 1, 2) is well-defined and si (tl) < si (t2) if 
ti < t2 (i = 1, 2). Moreover, Sl (t) < s2 (t) on [0, T]. We assert that the curve x = sl (t) is 
continuous in the [0, T*). 

In fact, if this is not true, then there exists to e (0, T*)  such that Sl ( to-  0 )<  
< sl(to+ 0) since s l ( t ) i s  monotone increasing. Therefore, we can take a small 
rectangle contained in P with top side sl ( to-  O)s~(to + 0). Now u(x, t) is strictly 
positive in that small open rectangle and satisfies equation (3.3) by Corollary 
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3.1. But u(x, t) = 0 on the top side of that  rectangle, this contradicts the maximum 
principle. 

From the definition, we know that  

D = {(x,t): 0 ~< x~< s l(t), 0 < t < T * } ,  

P = {(x, t): sl (t) < x < se (t), 0 < t < T** } w {Sl (t) < x < 1, T** < t < T* }, 

and 

R = {(x ,  t): s2(t) < x < 1, 0 < t < T**  }, 

where 0 < T * * < T * ~ < + ~ ,  s 2 ( T * * ) = l  if T * < + ~  
t e [T**, T*). 

and s2(t)-=l  for 

REMARKS. - The uniqueness of the problem (1.1)-(1.5) is an open question. I t  
would be interesting to know more about the regulari ty of the interfaces sl (t) and 
s2 (t). 
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