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Persistence and Spatial Patterns 
in a One-Predator-Two-Prey Lotka-Volterra Model 

with Diffusion (*). 

G. CARISTI - K. P.  RYBAKOWSKI - T. WESSOLEK 

S u n t o .  - Si considera un sistema di equazioni di reazione-diffusione del tipo di Lotka-Volterra 
con due prede e un predatore. Assumendo delle ipotesi sui coefficienti che assicurano che il 
sistema ~ persistente (nel senso di Butler, Freedman e Waltman), si mostra l'esistenza di 
equilibri non omogenei e di soluzioni periodiche non omogenee rispetto alla variabiIe spazia- 
le per certi valori dei parametri di diffusione. I risultati sono illustrati da elaborazioni 
numeriche. 

1. - I n t r o d u c t i o n .  

In this paper we consider the following system of reaction-diffusion equa- 
tions 

(i) 

at ul  = d l  Aul  + ul  (~1 - ~I ul  - ~'1 u2 - 81 us ) ,  

8rUe d2zlu2 + u2(~2 - ~ 2 u l  - y ~ u 2 -  ~2u3), 

~tU3 d3Au3q-U3( -S-[ -QUl  T e 2 U 2 - e 3 U 3 )  , 

8~u~ 0, xeS~9,  t > 0 .  

x e t ~ ,  t > O ,  

Here, t9 r R N is a bounded domain of class C 2'7, for some 0 < ~, ~< 1, with outer  normal 
to the boundary. 

We make the following assumption 

(A1) d~, i = 1, 2, 3, ai ,~i ,  ~'i, ~i, ~ ,  i = 1, 2, and  s are posi t ive  constants ,  ~3 is a non-  
negat ive  constant .  

(A1) implies that  (1) is a Lotka-Volterra model describing the time-development of 
three population densities ui,  i = 1, 2, 3 in the habitat t~. Ul and u2 represent  two prey 

(*) Entrata in Redazione il 25 gennaio 1989. 
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Studi di Udine, 33100 Udine, Italy; K. P. RYBAKOWSKI and T. WESSOLEK: Institut ffir Angewan- 
dte Mathematik, Albert-Ludwigs - Universit~it, 7800 Freiburg i. Br., West Germany. 
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populations competing for the same food source, whereas u3 is a predator feeding 
both upon Ul and u2. Under assumption (A1) and for ~3 = 0, system (1) with and with- 
out diffusion was considered by a number of authors, see e.g. [3], [2] and most no- 
tably [9] where additional references can be found. 

For the most part of this paper we will make the following additional assump- 
tion 

(A2) (i) $1 ~1 - -  ~1 S > 0 and (fl) ~2 ~2 - )'2 s > O. 

(A2) means that in the kinetic model corresponding to (1) (i.e. with d i=  0) the absence 
of one of the prey populations leads to coexistence of the other prey population with 
the predator. The reader should note that (A2) is different from the assumption (H.3) 
made by MIMURA and KAN-ON in[9]. In fact, (H.3) in[9] implies that ~2~2-~,2s < 
<0 .  

System (1) is called persis tent  (in the sense of Butler, Freedman and Waltman) if 
whenever u(x,  t ) =  (u,i(x, t))~= 1,2,3 is a solution of (1) satisfying 

ui(x ,  0) I> 0 (~ 0) for all x e t~ and i = 1, 2, 3, 

then 

inf l iminfui(t)  ( x ) > 0  for i =  1,2,3, 
X E Q  t ---> ~ 

(see [3] and [2]). 
Both in [3] and in [2] conditions were given to assure the persistence of the model 

considered. 
In section 2 of this paper we extend the results from [3] and [2], and, more impor- 

tantly, clarify their biological and mathematical meaning. By including the case ~3 > 0 
we also take into account possible crowding effects of the predator. Under the persis- 
tence assumptions considered here, system (1) has a unique spatially homogeneous 
positive equilibrium ~ e R 3. In certain cases (cf. the numerical study in [2]) this equi- 
librium is asymptotically stable with respect to the full diffusive system (1). There- 
fore the question arises whether some more interesting and more complicated asymp- 
totic behavior is possible. In particular, we are asking whether the presence of diffu- 
sion can lead to the formation of spatial patterns and if so, under what conditions. 
This is a natural question to ask as it is well-known that diffusion can have destabiliz- 
ing effects on a biological system. 

In section 3 of this paper we answer the question posed above by showing the ex- 
istence of time-invariant spatial patterns (for appropriate values of the diffusion coef- 
ficients) when/~2]'1 > ill Y2, i.e. when the interspecific competition of the two prey 
populations exceeds their intraspecific competition. A similar result was also ob- 
tained in [9], but in one space dimension (N = 1) and under hypotheses different from 
ours (including hypothesis (H.3) referred to before). In section 3 we also derive condi- 
tions assuring the existence of time-periodic spatial patterns (spatio-temporal oscilla- 
tions) of (1). 
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Finally, in section 4 of this paper we discuss stability of these time-invariant and 
time-periodic spatial patterns in one space dimension and illustrate the results by nu- 
merical examples. We also show (both theorically and numerically) the existence of 
stable Hopf bifurcations in the persistent kinetic system corresponding to (1) (for an 
appropriate choice of the kinetic parameters). When the diffusion coefficients are 
suitably varied then the homogeneous periodic solution of (1) thus obtained changes 
its stability properties with respect to (1) and so gives rise to secondary (non-homoge- 
neous) bifurcations of periodic solutions and two-dimensional tori. However, this as- 
pect will not be discussed any further here. 

2.  - P e r s i s t e n c e .  

In the sequel we shall use the following notation: if a lower case letter, say w, de- 
notes a vector in R ~ (i.e. w = ( w l , . . . ,  wn)  T) then the corresponding upper case letter 
denotes the diagonal n x n matrix whose entries on the diagonal are the components 
of w (i.e. W = diag (Wl, ..., w~)). Using this notation (1) can be written in the equiva- 
lent form 

(2) 
atu  = DAu + U(~ + A u )  , 

a ~ u = 0 ,  x � 9  t > 0 .  

X �9  t > O ,  

Here d =  (dt ,  d2, ds) T, u =  (u l ,  u2, u3) r, ~ = (~1,~2,-s)  T and A is the matrix 

(3) A = ( '-ZI - r l  -~11 

The kinetic system corresponding to (2) thus becomes 

(4) i~ = U(~ + A u ) .  

As in [2], let p > N and note that - A  with Neumann boundary conditions is a sectorial 
operator on X = L p (t~) generating a family of fractional power spaces X z _c L p (t~). Fix 
1/2 ~<~< 1. Then XZc C~ 

Write X~+ = {w e X z I  w(x)  >I 0 for x e 9} and let Y = (X~+)3. 
For  every u0 �9 Y there is a unique solution t --. u(t ,  Uo ) �9 Y of (2) for t > 0, continu- 

ous at t = 0, u(0, u0) = u0. 
Moreover, sup Ilu(t)ll Y < ~. Write uol l t  := u(t,  Uo ). T h e n / / i s  a semiflow on Y. For 

t~>0 
the proofs of these assertions, cf[2], [5]. In particular, the boundedness of u follows 
from the corresponding result for r = 0 (Lemma 4.4 in [2]) and standard comparison 
theorems. 
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In the sequel we need the following abbreviations: 

(5) t 
P l  = 0~1 It2 -- r Y1,  

P~ = ~1 ?'2 - ~2 ~'1, 
P5 = ~2 0~2-- y2 8 , 

P7 $1 a2 - f12 8 ,  

P9 - 8zP4 + ~lP7 + e3P2. 

Pz = ~10~2 -- ~2 ~1 ,  

P4 = el ~1 --/~1 S ,  

P6 = ~2 ~1 --  ) ' 1 8 ,  

Ps = - 81P5 + ~zP6 + esPl, 

A simple calculation shows that 

(6) (: ( --~1 --~'1 --~1 --~1 

P s = - d e t  2 -] 'z -82 , P g = - d e t  -/32 -~2 -8~ . 

~2 --~3 ~1 S --~3 

Let  us now note the following trivial 

LEMMA 1. - Assume (A1). Then the following points are equilibria of (4), consid- 
ered as a system on R3: 

(i) E0 = 0, 

(ii) E1 = (~1/fil, 0, 0) T, 

(iii) E2 = (0, ~e/~'2,0) T, 

(iv) E3 = ( i l l  $3 + 81 $1 ) - 1 .  (&l ~3 + 81 s ,  O, P4 )T ,  

(v) E4 = (~'2 z3 + 8252) -1" (0, ~253 -[- ~2s, ps) T. 

To assure that  these equilibria are non-negative (i.e. have non-negative compo- 
nents) we must  make the following assumption 

(A2) (i) P4 > 0 and (ii) P5 > 0. 

This condition means that  in the kinetic model (4) the absence of one prey  population 
leads to coexistence of the other prey population with the predator.  Assume (A1) and 
(A2) and linearize (4) at Es .  Writing u = v + E3 we obtain after  a s t raightforward cal- 
culation the following linearized system: 

/~ = B ( 8 ) v  

where  

/ (7) B(3) = ksp9 , 

there  Eui are the components of Es and k3 = (ill ~8 + 81 el )-1. Similarly, linearizing at 
E4 we obtain for u = v + E4 

@ = B(4 ) v 
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with 

k4ps 

(8) B(4) = | -  p2E42 

\ ~1E43 

where k4 = (~'2 ~s + ~2 ~2 )-1. 

0 0 

- ~2 E42 - 8 2 E 4  ] 
! 

+ ~2E48 - ~3E43] 

Analyzing the characteristic polynomial of B(3) and B ( 4  ) w e  obtain: 

PROPOSITION 2. - Assume (A1) and (A2). 
Then the following properties hold. 

1) Re~(B(8) )<0  i f  and only i f  pg< O, 

2) Re ~(B(4) ) < 0 i f  and only i f  P8 < O. 

COROLLARY 3. - A s s u m e  (A1) and (A2). 
I f  Ps < 0 or P9 < O, then (4) and (2) are not persistent. 

PROOF. - Suppose, say, that  Ps < 0. Then, by  Proposition 2, E~ is a local a t t ractor  
of (4) so (4) and, a for t ior i ,  (2), cannot be persistent.  

Thus, excluding the <mongeneric~ cases Ps = 0 or P9 = 0 we can say that  a neeess- 
ary condition for the persistence of (2) is the requirement  that  Ps > 0 and P9 > 0. We 
shall show below that this is also a sufficient condition. However ,  before doing so we 
need some preliminary results: 

PROPOSITION 4. - Assume (A1). Then the following statement holds: 

a) i f  P5 > 0 and Ps > 0 then p~ > 0, 

b) i f  P4 > 0 and P9 > 0 then P7 > O, 

c) i f  Ps > 0 and P9 > 0 then det  A < 0, 

d) i f  Pi > 0 for  i = 4, 5, 8, 9, then there exists a unique solution, ~ of 

(9) ~ + A~  = 0 

has positive components, i 

PROOF. - a) Let  P5 > 0 and Ps > 0. Then ~2P6 + ~3Pl = Ps + ~1P5 > 0. I f  Pl ~< 0 this 
immediately implies P6 > 0. I f  pl > 0, then al/Y1 > a2/~'2 > s/~2 so e2al - y ls  > 0 i.e. 
p 6 > 0 .  

b) is proved in the same way. 

c) Let  P8 > 0 and P9 > 0. We claim that  det  A r 0: 

Let  b~ be the i-th column vector  of A, for i = 1, 2, 3. Assumption (A1) implies that  
b~ and bs are linearly independent. Thus, if det  A = 0 then there are ~ ,  ~3 e R such 
that  

(10) b2 : )'1 bl + )'~ bs. 
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Now (A1) easily implies )~1 > 0. Using this and inserting (10) into the first formula in 
(6) we obtain from (6) that  Ps = -~1P9, a contradiction to Ps > 0, P9 > 0. Thus det  
A =/= 0. Consequently, there  exists a unique solution g e R 3 of (9). By  Cramer 's  rule 
~1 = (det A ) - l . ( - p s ) ,  gt2 = (det A ) - l ( - p 9 ) .  

In particular, this proves 

(11) Ul "u2 > 0. 

Moreover, (10) implies that  

so Ul and u2 cannot be both n e g a t i v e .  
Hence (11) implies 

(12) ~ 1 > 0  and g 2 > 0 .  

We conclude that d e t A  = - p s . ~  -1 < 0, as claimed. 

d) Assume p~ > 0 for i = 4, 5, 8, 9. By what  has been shown so far we only have 
to prove ua > 0. Consider the two planes P1 and P2 in R a given by the equa- 
tions 

(13) 51 ul + ~'1 u2 + ~1 ua = ~1, 

(14) ~lUl + e2u2 - e2u3 = s .  

Since d e t A  r 0, P~ and P2 intersect along a straight line L. 
Let  us first show that  L intersects the planes u~ = 0 and ue = 0 at points (0, s2, sa )T 

and (tl, 0, ta)T with s2, sa, tl ,  t8 > 0. In fact (s2, Sa)T must  solve the equation 

~2 --~3/ 83 

Thus, by part  a) of this proposition, 

(15) s2 = (~1 ~a + 81 s)(]'l Ca + ~1 ~2 )-1 > 0, 

(16) sa = P6 (]'1 ~s + ~1 ~2 )-1 > 0. 

Similarly one obtains 

(17) tl = (~193 Jr" ~1 8)(/~1 g3 + ~ lg l )  -1 > 0 ,  

(18) t2 = P4 (51~ + ~1~1) -1 > 0. 

Now for every  u e R  a, u e L  if and only if there is a h e R  such that  

(19) u - ~(0, s2, Sa )r + (1 - ),)(tl, 0, ta )T. 
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This holds, in particular, for u = ~. (12), (15) and (17) imply that  ;~ > 0 and (1 - ),) > 0. 
Thus, (16), (18) and (19) ensue 

~s = ~s3 + (1 - ~) ts > 0, 

which proves our claim and completes the proof of the proposition. 

COROLLARY 5. - Assume  (A1) (A2) and let Ps > 0, P9 > 0. Then the following prop- 
erties hold: 

(i) at least one of the terms Pl,  P2 is positive. 

(ii) i f  Pl >I 0 and P2 >I 0 then P3 > 0 and, moreover, 

(20) - 8 -~- 81 (Pl/P8) + 8~ (Pe/P3) > O. 

PROOF. - Proposition 2 implies 

(--~1 --rl t 
--0~ 1 

det -~2 -Y2 -~2 = u 3 " d e t A < 0 .  
s \ 81 82 

This proves that  

(21) sps - 82p~ - 81pl < O. 

Moreover, it is clear that  

(22) al Ps = ,81Pl + "~1P2. 

Multiplying both sides of (21) by ~1 inserting (22) and rearranging,  we get  

P,P4 + P2P6 > O. 

By Proposition 2, P6 > 0, so Pl > 0 or P2 > 0, as claimed. 
Suppose that  Pl I> 0 and P2 I> 0. 
Then (i) and (22) imply P3 > 0 and so (21) becomes (20). The corollary is 

proved. 
We can now state the following persistence result: 

THEOREM 6. - Assume  (A1), (A2), Ps > 0 and P9 > O. Then (2) (and, afortio~'i, (4)) 
is persistent. 

REMARKS. - In [2], Theorem 4.5, persistence of (2) is proved under  the following 
assumptions: (in our notation) 

(H1) 88 = 0; 

(H2) (A1) and (A2) hold; 
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(H3) one of the following cases holds: 

a) p ~ < 0 a n d p 2 > 0 ,  or, 

b) p~ > 0 and P2 < 0, or, 

c) Pl > 0, P2 > 0 and (20) is satisfied. 

(Note that a plus sign is missing in [2], line (vi), p. 129, in the expression corre- 
sponding to our inequality (20)). Thus, apart from allowing ~3/> 0, Theorem 6 seems 
to be more general than Theorem 4.5 in [2] since we do not need (H3) here. However, 
Corollary 5 above just says that (H2) ,,almost, implies (H3). In fact, Corollary 5 can 
be reworded as follows: 

Assume (A1) and (A2). 
Then one of the following cases holds: 

a') Ply<0 a n d p 2 > 0 ,  or 

b') Pl > 0 and P2 ~< 0, or 

c) above. 

Thus, for ~s = 0, Theorem 4.5 in[2] is the same as Theorem 6 except that we can 
also treat  the cases (i) Pl = 0, P2 > 0 and (ii) Pl > 0, P2 = 0. 

Case Pl < 0, P2 < 0 cannot occur. Having demonstrated that Theorem 6 above and 
Theorem 4.5 in [2] do not differ too much, we can safely leave the proof of Theorem 6 
to the reader who can provide it by following almost literally the argument given in 
the proof of Theorem 4.5 in [2]. Only two remarks are in order: 

1) Proposition 4.3 in [2] and its proof extend to the cases (in our notation) 

(i) Pl <~ 0 and p~ > 0, 

(ii) Pl > 0 and P2 ~< 0. 

(Note that the constant c2 in the proof of case (i) of Proposition 4.3 in [2] should read 

c2 = ~'2/~2a2 and not c2 = y 2 / ~ l a 2 ) .  

2) There is a number of misprints in the proof of Theorem 4.5 in[2], which, 
however, the reader will have no trouble to correct. 

3. - S p a t i a l  p a t t e r n s .  

In the first part of this section we will prove that (under certain conditions) there 
exist time invariant spatial patterns of the persistent system (2). In other words we 
shall prove the existence of spatially nonhomogeneous equilibria of (2). This will be 
done using well-known results about bifurcation from simple eigenvalue. For the 
readers' convenience let us first recall 
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DEFINITION 7. - Let K = R or C. E,  F be Banach spaces over K and Lo , L1 : E ---) F 
be bounded K-linear operators. A number )~o �9 K is called a simple eigenvalue of the 
pair (Lo, L1 ) with an associated eigenvector Uo �9 E i f  

1) Uo :/: O, L~ Uo r O, 

2) ker (Lo - )~oL~) = [Uo], 

3) F = [Ll uo] O Im (Lo - )~oL1). 

REMARKS. - 1) 3) Implies that Im (L0-  ~oL1 ) has codimension one and so, in par- 
ticular, it must be a closed subspace of F. 

2) If  E c F with continuous natural imbedding I :  E ~ F,  and if ~o is a simple 
eigenvalue of (L0, I), then we say that ),0 is a simple eigenvalue of L0. 

The following well-known result holds: 

THEOREM 8 (see [1]). - Let K = R and Lo , L1 be as in Definition 7. Let  ~o �9 R be a 
simple eigenvalue of (Lo , L1 ) with an associated eigenvector Uo . Suppose N:  E ~ F is 
a (real) analytic map with N(O)= O, N'(O)= O. Define M: R • E- -~F by M ( ~ , u ) =  
= (Lo - ~L1 ) u + N(u). Then there exists an -i > O, an open neighbourhood A • U of 
(;%, O) in R • E and analytic maps )2 : (-~,  ~) ---> A, u* : ( - i ,  ~) ~ U such that: 

1) ~*(0) = ~o, u * ( D  = ~Uo+O(~) as ~ O. 

2) For every ( ~ , u ) e A •  U M(~ ,u )=O i f  and only i f  u = O  or (~ ,u)= 
= 02(s), u*(z)) for  some ~ �9 (-~,  ~). 

Now let m/> 1 be an integer and define (for K = R or C) 

(23) 

(24) 

E = E ~ =  ueW2 'P( t~ ,K~) :  ~v  =0  on a~9 , 

F = FK = L p (t~,Km). 

We assume, as before, p > N  and also p t> 2. Define for u e E 

(25) Lou = DoAu + B u ,  

(26) L1 u = - D1Au. 

Here, Do, D1 and B are m • m matrices (with coefficients in K), Do, D1 being diagonal 
matrices. 

Clearly L0, L1 a r e  well-defined linear and bounded operators from E to F. 
Consider the sequence 0 = ~0 < P1 ~< P2 ~< P3 ~< ... of all eigenvalues of - A on t~ with 

Neumann boundary values where each eigenvalue is repeated according to its multi- 
plicity. Let  {r } r L 2 (~9, R) be the sequence of corresponding (normalized) eigenfunc- 
tions. {r  form a complete orthonomal system on L2(~ ,R) .  For u e L2(t~,K "~) 
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and v e L e (D, R)  wri te  

(u,v> = fu .vdx .  

Note that  (u, v} ~ Km. 

Using the assumption p I> 2 we now obtain the following trivial 

LEMMA 9. - For u e E, w e F the following properties are equivalent: 

1) Lou = w 

2) For all n ~ O, M~ (u, r } = <w, Cn ) where M~ = B - p~Do. 

PROPOSITION 10. - Let Lo, L1 be defined by (25), (26). Suppose that all diagonal en- 
tries of Do are nonzero. Then the following conditions are equivalent: 

1) ~o = 0 is a simple eigenvalue of (Lo, L1 ) with an associated eigenvector Uo. 

2) There is an no > 0 and c e K ~ such that: 
(i) 0 is a geometrically simple eigenvalue of M~o with eigenvector c 

(ii) the column vector D~ c is not a linear combination of the column vectors 

of Mno , 

(iii) the matrices Mn, n :~ no, are regular. 

We can then choose uo = c.r 

PROOF. - Suppose 1) holds. Then LoUo = 0 so M~ (Uo, Cn } = 0 for all n/> 0, by Lem- 
ma 9. L e t F  = {n i> 0: (Uo, r ) :/: 0}. Set v~ = (Uo, r ) r Then {v~}~ ~r are really in- 
dependent  (iv r 0!), and Lo v~ = 0 for n >I 0. Since ker  Lo = [Uo ], it follows that  there  is 
an no I> 0 with [Uo ] = [v~ ] so there  is a c e K ~ with Uo = c. r c r 0. 

Now Lluo ~ ImLo by our assumptions. Also, 

L 1  Uo = - D1AUo = ~oD1 c. Cn~ 

so, in particular, ~ r 0, i.e. no > 0 and 

(27) Dlc'r 6 ImLo.  

For  b, b e R m, let v~ = b. r ~ = b. Cn. Lemma 9 implies that  Lov~ = ~ if and only if 
M~ b = b. I t  follows easily that  ker  M~o = [c] and Ms is regular for n r no. Since c r 0, 
(2i) and (2iii) hold. Suppose (2ii) does not hold. Then M~ob = DlC for some b e R "~. 
Thus Lo(b'r DlC'r and so Dlc.r o e ImLo,  a contradiction to (27). 

Next  suppose that  2) holds. 
Let  Uo = c.r M~oC = 0 implies Louo = O. On the other hand if Lo u = 0 then 

M~<u, r  = 0  for all n. By 2iii), <u,r = 0  for n C n o .  
This shows that  u = <u, Cn0 }r  with <u, r } e [c]. Thus u e [Uo] and kerLo = [Uo] 

with uo r 0. Define [~: E -+ F, B(u) = B .u .  B is compact. Moreover,  since the diago- 
nal entries of Do are nonzero, it fo l lowsthat  DoA: E ~ F is Fredholm with index zero. 
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Consequently Lo = DoA +/~ is Fredholm with index zero. Hence, to prove 1) it is 
enough to show that L l U  o -- ~noDlCr ~ ImL 0 . Since no > 0 and so ~0 ~ 0, this is 
equivalent to D1 c ~ ImM~0 which is 2ii). The proposition is proved. 

An application of Theorem 8 and Proposition 10 yields. 

THEOREM 11. - Assume (A1), (A2). Let Do be a diagonal 3 x 3 matrix with positive 
diagonal coefficients and D1 be any real diagonal 3 x 3 matrix. Write Mn = U A -  
- ~ D o  for n>~O. 

Suppose there is an no > 0 and c �9 R 8 such that 

(i) 0 is a geometrically simple eigenvalue of Mno with eigenvector c; 

(ii) the column vector D1 c is not a linear combination of the column vectors of 

M n  o ; 

(iii) the matrices Mn, n r no, are regular. 

Under these assumptions there is an ~ > O, a neighborhood A x Yo of (0, ~) in 
R x Y and analytic maps ,~*: (-~,~)-~A, u*:  ( - ~ , ~ ) ~  Yo such that 

a) t~*(0) =0 ,  u*(~)=Y~+~.c.r as ~ 0 ;  

b) for every ~ �9  u*(z) is an equilibrium of the system (2) with 
D = Do + ~* (~) D1 ; 

c) whenever (~, u) �9 A x Y and u is an equilibrium of (2) with D = Do + ~D1, 
then u = ~ or else u = u*(s), ~ = t~*(s) for some ~ �9 (-~, ~). 

R E M A R K .  - Actually u* is analytic as a map into the space E defined in (23). Note 
that E _c (XZ) 3. 

PROOF. - By regularity u is an equilibrium of (2) if and only if u e E and 

(28) DAu + U(~ + Au) = O. 

L e t D = D 0 + ~ D 1 ,  u = v + ~ .  
Then (28) is equivalent to 

(29) (Lo - ~L1 ) v + N(v) = O, 

where Lo, L1 are defined in (25) (26) with B = UA and N:E--->F is defined as 
N(v)(x) = V(x)Av(x) for x �9 tg. Applying Theorem 8 and Proposition 10 we get the de- 
sired result. 

Now the question arises as to whether the assumptions of Theorem 11 can ever be 
satisfied. We shall now show that they can, and that in fact, this is roughly the case ff 
and only if p~ < 0. 

We first need a lemma, whose proof is straightforward: 



356 G. C A R I S T I  - K .  P .  R Y B A K O W S K I  - T. W E S S O L E K :  Persistence, etc.  

LEMMA 12. - Assume (A1) and (A2). Let h ~ R 3 be arbitrary and let p(h, h) = - 
_ )3 + as (h) h s + al (h) h 1 + ao (h) be the characteristic polynomial of HUA.  

Then 

ao = hi hs h3 Ul U2 U3 det A ,  

al = - hl hsul usp3 - hlh3UlU3 (/~1r + Q~I) - h2h3 usu3 (~'2~8 + ~2~s) , 

a2 ---- - -  h l U l ~ 1  - h2 u2 ) ' 2  - h 3 u 3  r 

COROLLARY 13. - I f  the assumptions of Theorem 11 are satisfied, then P3 < O. 

PROOF. - There is an no > 0 such that  0 is an eigenvalue of UA - ,z~oD0 . Thus ~o > 
> 0 and Pn0 is an eigenvalue of H-UA where H = Do 1. I f  p3 >/0 then Lemma 11 and our 
preceding results imply that  ai(h) < 0 for i = 0, 1, 2. This gives p(,~o, h) < 0, a 
contradiction. 

Corollary 13 admits a converse, in a certain sense: 

THEOREM 1 4 .  - Assume (A1) and (A2). Suppose also that Ps > O, P9 > 0 and P3 < O. 
Final ly  let no > 0 and ~o be a simple eigenvalue of - A on t) with N e u m a n n  boundary 
values. Then there are matrices Do and D1 such that all assumptions, and conse- 
quently, the conclusions of Theorem 11 hold. 

P R O O F ,  - Since z = ~no is simple, it follows that  there is an ~ > 0 such that  for every 
n =~ no, n > 0, ~n 4= ~o and ~n I> s. For  h e R 8 let hi(h) i = 1, 2, 3 be the zeros of p(-, h) 
ordered in the lexicographic order. 

Choose hi > 0 arbitrarily and let h = (hi, hi ,  0) T. Then a0 (h) = 0, al (h) = h~ cl, 
a2 = - hi cs, where Cl, cs > 0 are independent of hi .  

Consequently 

)~1 (h i ,  h i ,  O) = - h 1 bl ,  hs (h i ,  h i ,  O) - O, h3 (h i ,  h i ,  O) = h I bs, 

where bl ,b2>O do not depend on hi.  Choose h~' = p / b s .  Define h ~  (h~ ,h* ,O)  T. 

Then 

~l(h~ < 0, h2(h~ h~(h~ = p >  0. 

In particular, this implies that  for h near h ~ hi (h) is real valued and varies smoothly 

with h. 
In fact h~(h) is a simple eigenvalue of H U A  with the normalized eigenvector 

ci(h) ~ R 3. Therefore ci(h), too, varies smoothly with h. 
Write c(h) = c~(h). 
I t  is clear that  

(30) c(h ~ = ( a l ,  as,  O) T 

where al,  a~ e R \ { 0 } .  
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We claim that 

(31) H .  c(h) ~i Im ( H U A  - p) 

for h close to h ~ 
Otherwise there is a sequence h ~  h ~ b ~ e R 3 with 

(32) H n. c (h  ~ ) = H ~ U A b  ~ - ~b ~ . 

Since H U A c ( h ) -  ~c(h)-= 0 we may assume 

(33) b n • c ( h ~ ) .  

We claim that {b ~ } is bounded. 
In fact otherwise we may assume that Ibnl----> ~ as n--, ~. 
Let v n =  b~/]b~  I. 

(32) yields 

(34) H ~ U A v  ~ - ~v~---~ 0 

for n---> ~. 
Taking subsequences if necessary we may assume vn---~ v ~ ]v~ = 1, and thus 

(35) H ~  ~ = pv ~ . 

It follows that v ~ = c(h~  

On the other hand (33) implies that v ~ 1 7 7 1 7 6  a contradiction. 
Thus, indeed, {b ~ } is bounded. 
Hence we may assume bn--> b ~ so that 

HO-OAb o _ zb o = H o c(h  ~ ) .  (36) 

By (30) 

H ~ c(h ~ = h *  c(h  ~  

Thus c(h ~ e Im ( H ~  - ~) which contradicts the fact that ~ is a simple eigenvalue of 
H ~  (31) is proved. 

Now define for (hi, h3) close to (h*, 0) 

R ( h l  , h3 ) = ),8 (h i ,  h i ,  h3) - ~ . 

i t  follows that 

R ( h ~  , O) = O, a R  (h~ , O) = b2 > O. 
ah l  

By the implicit function theorem there is a smooth function f defined for h8 near 0 
such that f (0 )=  h~ >0 ,  R ( f ( h 3 ) , h 3 ) =  O. Choose h 3 > 0  so small that for h = 
= ( f ( h 3 ) ,  f ( h s  ), hs ) 

(37) f(h3) > 0, 
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(38) ~ (h) < 0, 

(39) 1~2 (h) I < ~, 

(40) 
m 

Hc(h) ~ Im (HUA - ~) . 

Let Do = H -1. 
Then the eigenvalues ~1 of H-UA satisfy ~ < 0, i~21 < ~, ~2 r 0, )~ = ~. For every 

;~ e R, ker (UA - ~Do ) = ker (HUA - ~). All this and our choice of ~' clearly imply that 
(i) and (iii) hold for c = c(h). 

By (40) c 6 Im(UA-pD0) .  
Choosing D~ to be the identity matrix we see that all assumptions of Theorem 11 

are satisfied. The proof is complete. 

REMARKS. - 1) Biologically, P3 < 0 means that the interspecific competition of the 
prey populations is larger than their intraspecific competition. 

2) As was observed in the Introduction, MIMURA and KAN-ON ( [ 9 ] ,  section 4 pp. 
145-146) state an existence result for nonhomogeneous equilibria of system (1) in one 
space dimension ( N =  1) and under certain hypotheses (H.1)-(H.4). 

In particular, their hypothesis (H.3) (p. 141 of[9]) translates in our notation as 

(H.3) P4 > 0 and P5 < O, 

while in Theorem 14 we assume 

(A2) p 4 > 0  a n d p ~ > O .  

Thus, the two results concern different situations. 

3) For a bounded domain ~ r R N Of class C 2, let A~ denote the Laplacian on Q 
with N e u m a n n  boundary conditions. In Theorem 14 (and also in Theorem 18 below) 
we make the assumption that certan nontrivial eigenvalues of A~ are simple. This as- 
sumption is, in general, hard to verify in practice. 

If N = 1, all eigenvalues are simple, but if N > 1, this is no longer true, in general. 
In fact, if e.g. N = 2 and t~ is the unit disc, then all nontrivial eigenvalues of A~ are 
double eigenvalues. 

Nonetheless, the simplicity of all eigenvalues of A~ is a generic property with re- 

spect to the domain t~. 
More precisely, the following result holds: 

THEOREM T. - Let t~ c R N be an arbitrary bounded domain  of class C 2 and k >i 2 be 

an arbitrary integer. 
Then, for  any  ~ > 0 there is a map ~: R Y  ~ R N of class C ~ satisfying II~IIC~(R.~ R.V) < 

< ~ and such that the operator A~, of  the perturbed domain  t~'= (I + ,~)(t~) has only sim- 

ple eigenvalues. 
Theorem T was proved by HENRY (see [13] for an announcement of this result) 
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and also independently, by one of us (see [10]). Theorem T says that by an arbitrary 
~,small, perturbation of the original domain we can achieve the simplicity of all eigen- 
values of the Laplacian with Neumann boundary values. Actually, it is proved in [13] 
(and in [10]) that the set of all domains ~ such that zl~ has only simple eigenvalues is of 
second cathegory in the set of all domains ~ (endowed with the Micheletti metric, 
cf[8]). 

PROPOSITION 15. - Suppose that (A1) and (A2) hold and that Ps > O, P9 > O, P8 < O. 
If, f o r  some no > O, 0 e ~(Mno) then: 

(i) there is a io e {1, 2, 3} such that d~ <. I]-UAII/p,~, 

dl Ul IP31 
(ii) -~8 < - 

u3 Y2 ~8 + ~2 ~2 

IP I - - <  

d3 ~3 ~1 ~8 + r ~ '  

there, tl ]1 is the matr ix  norm  induced by an arbitrary vector norm  on R ~. 

REMARK. - This result says that a necessary condition for the applicability of The- 
orem 11 is that (i): not all diffusion coefficients are too large, and (ii): d3 is not too 
small relative to dl and d2. 

PROOF. - (i) I f0  e ~(M,~) then ,~no E z(D-1-UA) so ,~n0 ~< IID-1-UAII <- ~ max d~ .IIUAil 
and (i) follows. [1<i~<3 ) 

(ii) Let H = D -1. From Lemma 12 it follows that al (h )>  0 since otherwise 
p(,O~o, h ) <  0. The formula for a~ (h) clearly implies (ii). 

We shall now discuss the existence of periodic solutions of (2). To this end, let 
K = C in (23)-(26) and define for ~ e R, u e E 

L(,~) u = (Lo - ~L1) u . 

Using Lemma 8 and the proof of Proposition 9, the following result is easily 
established: 

LEMMA 16. - Let M n ( t t )  -= UA - ~ (Do + [~D1 ) fo r  n >_ 0 and ~ c C. )~ ~ ~(L(~)) i f  and 
only i f  there is an no >>- 0 such that )~ ~ z(M~0(t~)). ~ is a s imple eigenvaIue of  Lo (with 
an  eigenvector uo) i f  and only i f  there is an no >I 0 such that 

(i))~ is an algebraically s imple eigenvalue of  M~o , 

(ii) 2 ~ z(M~) f o r  n r no. 

I n  this case Uo = c.r where c-r 0,' 

[c] = ker (M~0 - ~). 
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We shall now state (without proof) the following theorem, which follows from 
results in [5], [4] and Lemma 16: 

T H E O R E M  17. - A s s u m e  that: 

1) The diagonal entries of Do are positive. 

2) There exists -fi, ~ > 0 such that for  all ~ �9 I~ = [-5 ,  5]: 

(i) ~(L(~)) = ~1 (,~) w ~2 (~), 

(ii) Zl(~)= {)~(~),~(~)} where ;~(t~),~(,~) are simple eigenvalues of L(,~), 
),(~) = ~(~)  + i~(~), ~(o) = o, ~'(o) r o, ~(o) = ~o > o, 

iii) Re z2 (~) < - 80. 

Let no >t 0 be such that )~(0) �9 z(M~ o). Then there is ~ > 0 and an analytic funct ion 
~: (-~,  ~) --> R with ,~(0) = 0 and for  every - ~ < z < ~ there is a T(s)-periodic Solution 
u~ of (2) with D = Do + ~* (D D1 such that 

(a) sup l l l u  ~ (t) - ~ - ~(y~ sin~0 t + y2 cos~o t) r 0 for  ~-~ 0 +, where y~, Y2 �9 
t e R  

�9 R Ilylll+lly ll>0. 

2= 
(b) T(~) = ~o + 0(~2 ) as ~ ~ O. 

REMARKS. - 1)  Under the assumptions of Theorem 17 there are no nonhomoge- 
neous equilibria u of (2) with D = Do + ~D~ with l t~l small and u close to ~. 

In fact, u is an equilibrium of (2) if and only if u = v + ~  and M(,~,v):= 
= L(~) v + N(v) = 0 (see (29)). 

Now M(~, 0) ~ 0, D~M(~, O) = L(~). 
L(0) is Fredholm with index zero and 0 ~ ~(L(0)) so Ker L(0) = {0}. Thus L(0) is an 

isomorphism and by the implicit function theorem v = 0 is the only solution of 
M(~, v) = 0 for t~1, Ivl small. 

2) If ~(0) �9 :(M~0) then Re~(,u)< -~o for Ilzl small by 2 (iii). This implies that  
s �9 z(M~o) for I.~t small. Since s162 )~(0) for I~1 small, by 2(ii), this implies that,  
under the assumptions of Theorem 17, necessarily no > 0, and thus in particular, the 
bifurcating periodic solutions are nonhomogeneous by (a). Hence these solutions are 
time-periodic spatial patterns of (2). 

We shall now obtain an analogue of Theorem 14 for time periodic solutions of (2). 
This will be computationally more difficult since it involves solving cubic equations 
rather than quadratic ones. 

Before stating the theorem, we introduce some notations: t~(~), T~(~) and d~(~) 
will be, respectively, the trace, the sum of all the principal minors of order two and 
the determinant of MR (~) = UA - ,~ (Do + ~D1 ). Then, the characteristic polynomial 
of M~(t~) is given by: 

(41) p~(~, s = - ~s + t~ (t~))2 _ T~(~))~ + d~ (t~) �9 
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T h e  same quantities for the matrix B = ( b i j ) i , j  = 1, 3 - -  UA will be denoted by t, T and d. 
Further, for a general 3 x 3 matrix M, M~j will be the determinant of the submatrix of 
M obtained by deleting the i-th row and the j-th column of M. 

Consider the following set of inequalities: 

(42) Tt - d < 0 ; 

(42a) rl = t(u2 ]'2 + u~ ~ ) - (B22 + B~8 ) > 0, 

(42b) r2 = t(ul ~1 + u3 ~)  - (Bll + B~3 ) > 0, 

(42C)m 

(42d)m 

(43) 

sl = r[ + 4(Y~ Y2 + u3 z3 )(Tt - d) > 0 ; 

82 = r22 ~- 4(u1~1 -~- u3 ~3 )(Tt - d) > 0 ; 

~m_ 1pro1+ 1 < (r I -- ~1 ) ( r l  + ~1 ) -1  ; 

~Om-1Pmll < (r2 - -  V~2) (F2  + V~2)-I  ; 

T t - d > O .  

Then, we have the following 

THEOREM 18. - A s s u m e  (A1), (A2), p9> O, and T > 0 .  
Moreover, suppose that at least one of  the fol lowing hypothesis (B1)-(B3) 

holds: 

(B1) a) p1 <#2, 
b) (42) is satisfied, 

c) the inequalities (42a) or (42b) are satisfied; 

(B2) there is an m > 1 such that 

a) Pro-1 <~m <~m+l ,  

b) (42) is satisfied, 

c) the inequalities (42a), (42c)m or the inequalities (42b), (42d)m are 
satisfied; 

(B3) Re =(B)< 0 and (43) is satisfied. 

Under these assumpt ions  there are matrices Do and D~ are integer no > 1 such 
that all the hypotheses (and consequently the conclusions) of  Theorem 17 are 
satisfied. 

Moreover, no = 1 i f  (B1) or (B3) holds and no = m i f  (B2) holds. 

R E M A R K .  - Note that Pk < Pk + 1 for k = 1 and Pk- 1 < Pk < Pk + 1 for k > 1 just  mean 
that ~k is a simple eigenvalue of - A  on t} with Neumann boundary values. 

PROOF. - First, we will prove the existence of Do (positive diagonal matrix) in or- 
der that L0 has a pair of purely imaginary eigenvalues. 

From Lemma 16, it is enough to show that there exists a Do for which p~ (0, ~) has 
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a pair of pure imaginary roots, for some n _> 0. It is easily seen that this occurs if and 
only if 

(44) T~ (0) > 0 

and 

(45) T~ (0) t~ (0) - dn (0) = 0 

and that ff (44)-(45) hold, the roots of p~(0,;() a r e  +_i(Tn(O)) 1/2 and tn(O). Let 
~o = (T~ (0)) 1/2. 

Straightforward computations yield the following formulas: 

(46) Tn (0) = T - ~ {(bll + ba3 ) de + (b~2 + bs3 ) dl + (bll + be2 ) de } + 

+ ~2n(dlde + dede + dlde) .  

(47) d~ (0) = - p~ dl de de + ~ (bn  de de + b22 dl de + bs3 dl de) - 

- ,~ (Bll dl + B22 de + B88 de ) + d ,  

where d~ i = 1, 2, 3 denote the diagonal coefficients of Do. From (47), it immediately 
follows that T >  0 implies T . (0 )>  0 (i.e. (44)) for any positive Do. Moreover, using 
(46) and (47), we get that (45) is equivalent to 

(48) q~ (dl, de, de ) = - P~n (2dl de de + d~ d~ + d~ de + d~ de + de d~ + d~ de + dl d~ ) + 

+ 2,~2n t(dl de + d~ de + de de ) + ~2n {(b22 + b~8) 41 ~ + (bll + bs~ ) 422 + (bll + b~2 ) d~ } + 

+ ~,(rldl  + rede + rsde) + Tt - d = O, 

where we set 

r3 = t(~lZl + ~2r2) - (Bll + B22). 

Now, assume (42) and (42a). From (48), we deduce that 

% (dl, O, O) = ~ (b~ + b33 ) d~ + ~ r l  dl + Tt - d 

and looking at the signs of the powers of dl in this expression, we get for any n > 0 the 
existence of d* > 0 such that q~(d~, 0, 0) > 0. Since qn(0, 0, O) = Tt - d < 0, and by 
continuity, we get for any n > 0 a positive diagonal Do such that (45) is satis- 
fied. 

Analogously, we can argue when (42b) is assumed instead of (42a), just consider- 
ing q~ (0, de, 0). 

On the other hand, if (43) holds and we take dl = de = de = d, we obtain for any 
n > 0 q~ (0, 0, 0) > 0 and lira q~ (d, d, d) = - ~. 

Hence, again for any n > 0 we get the desired Do. 
Now, assuming T > 0 and (42)-(42a) ore (42)-(42b) or (43) and given n > 0 and Do 

determined as above, we consider p~ (~, ~) with D~, for the moment, arbitrary positi- 
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ve diagonal, p~(~, )~) is a smooth function defined on R • R ~ with values in R e, ff we 
identify C with R e in the usual way: ;~ = a + i ~  (a,r). 

Since p~ (0, + iro ) = 0 and det [D(~,~), p~ ] (0, 0, + ~o ) = 4r4o + 4flo ~ t~ (0) > 0, we can 
apply the implicit function theorem and get  the existence of smooth 
~(~)=~(.~)+ir(t~) and ~(~) for ,~ in some interval I,  containing 0 such that  
P~ (~,)~(t~)) = 0 and p~ (t~, ~(~)) = 0 for any ~ e I~, ~(0) = 0 and r(o) = rio. Moreover,  by 
standard computations, we get  

(49) ~'(0)  ---- -- [2~ 2 + t ,  (0)2 ] -~ - ~ [ T n ( t Z )  tn(~Z) - dn(/~)]~ : 0 

and if, for the sake of brevity, we denote Mn (0) by M = (mij) i , j  = l, 3, 

d 
~1 ~ -  [T~ (t~) t~ (t~) - d~ (~)], =o = 

= [ -  (me2 + ms3 ) t~ (0) - (M2e + M33 )] d l +  [ -  ( m l l  + m33 ) tn (0) - ( M l l  -~- M33 )] d 2 + 

+ [ - - ( m l l  -~- m22 ) tn(O ) -- ( M l l  -4- M22)] d 3 . 

Note that  di i = 1, 2, 3 denote the diagonal elements of D1, which are to be deter-  
mined! Since the coefficient Of d3 is always negative (cf (A1) and (A2)), it is al- 
ways possible to choose positive dl, d~, d8 for which s 1 6 2  0. 

With such a choice of D 1 in correspondence of n > 0 and Do, we have verified part  
of hypothesis 2 of Theorem 17: it remains to show that  ~(~) and ~(~) are simple and 
2(iii). 

Assume that  ~ is a simple eigenvalue of - A on t~ with Neumann boundary values 
and determine Do and D~ as in the previous part  of this proof. ~(0) = i/~o and ~(0) are a 
simple eigenvalues of L0, since ~ is simple and they cannot be eigenvalues of Ms (0) 
for n r no (in fact, Tn (0) ~ Tm (0) if n ~ m). The same proper ty  holds for t~ r 0. 

Extending (46) and (47) for ~ :/: 0, we see that  for any n~>0 and ~ e I , ,  t~(~) < 0, 
T~(~, )>0 and d ~ ( ~ ) < 0 .  Consequently, all the real roots of p~(~,~), i.e. the 
real eigenvalues of L(~) are negative. Now, assume that  p~(~, .) has the roots 

+ i/~ and ~,, then we have: 

(50) 2a + $ = t n (~) ,  

(51) 2a 'r+ a s +f12 = T~(~), 

(52) (a2 + r2 ) ~" = d~ (~). 

Using (50) and (51), (52) becomes 

(53) -8as+8tn(~)ae-2(t2(,u)+ Tn(t~))~+ Tn(~)t~(~)-d~(t~)=O. 
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From this equation and since ~ is real, we get  that  

(54) %(Do +~D1) = T~(~) t~ (t~) - dn(~) < 0 

is a sufficient condition for ~ to be negative. 
Assume (42)-(42a) and denote by dl and dl,  the positive roots of qm (all, O, O) = O. If  

Do = diag(d~ d~ d~)_ and O1 = diag(d~ , d ~2, d~), we recall that  we have chosen d ~ 

such that dl < d o < c/1. 
I f  n = 0, (54) is (42), hence assume n =/: m and n r 0. Suppose, for the moment  that  

re ~< 0, then the only positive contribution to q~ (Do + ~D1 ) can be given by  q~ (d o + 
+ ~d~, O, O) = am (~/~m (d ~ + ~d I ), 0, 0). 

If  m = 1, taking into account the sign of the powers of d, in q~ (dl, 0, 0) and since 
(~:n}~ is monotone, q~(d ~ +~d~,  0, 0) will be negative for any n > 1, if 

(55) ~ > (d1)- l [p1p~l~1-  d~ for any t~ e I ~ .  

This inequality can be satisfied if d o is chosen close to dl ~ and I~ is sufficiently small. If  
m >  1, we need that 

p~ p~n 1 [d o + ~d~ ] > ~1 for n > m 

and 

~"  p~l [dO + ~d~ ] < c/1 for n < m, n r 0. 

To get  these inequalities for any ~ e I~, if is sufficient that  

- i  P ~ - 1 ~ + 1  < d1"3~ 1 = (rl - V~I)"(rl + X/~I) -1 , 

which is (42c). 
If  r2 > 0, it is sufficient to choose also d o small enough. 
Analogously, we can deal with the case (42)-(42b), taking (42d) in place of 

(42c). 
At  last, assume (43) and m = 1. Recall that  in our construction Do = diag (d, d, d) 

and ql (Do) = 0. If  we evaluate q~ (Do) for n > 1 we see that  it equals ql (Do) plus some 
terms whose sum is less than a negative constant independent on n. Hence, if/~ is suf- 
ficiently small, (54) holds for any ~ e /~  and n >  1. I f  n =  O, we use directly 

(43). 
We will prove that the real parts  of the eigenvalues of L(~) belonging to ~2(~) = 

-- z(,,)/{~(~), ~(~)} cannot get  arbitrarly close to 0. Suppose on the contrary that  { ~n } 
is a sequence in I~ convergent to 0 and ~ ( t ~ ) e  ~(,un) be such that  R e 2 ( ~ ) - ~  0. 

Having in mind Lemma 16, each )~(~) is an eigenvalue of one of the matrices 
M k ( ~  ) with k r m: say Mk(n)(~ ). Then, if k(n) = -k for infinitely many indices, it will 
follow that  M~(0) has a purely imaginary eigenvalue, which is a contradiction. Other- 
wise, k ( n ) ~  + ~.  In this case, we perform some computations, using a well-known 
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method for solving cubic polynomial equations (see, [12] p. 515). We can write the 
roots of Pk(~) ( ~ ,  ") in terms of tk(~) (f~), Tk(n) ( ~ )  and dk(~) ( ~ )  and verify directly that 
in any case it is possible to choose Do, satisfying all the previous conditions and for 
which Re~(~)- -~  0 does not hold. 

REMARK. - The assumptions of Theorem 18 are given in terms both of A and ~ and 
of the components of ~. One could in principle give them all in terms of A but the re- 
sulting expression would be very clumsy. 

REMARK. - To check (B3), it is sufficient to use the well-known formulas which 
give explicitly the roots of a cubic polynomial in terms of its coefficients, 
(see, [12]). 

REMARK. - In the case of the bifurcation of non-homogeneous equilibria from ~, 
we have seen that ps < 0 is almost a ,,necessary and sufficient condition,. When we 
consider the bifurcation of time-periodic spatially non-homogeneous solutions, we can 
prove the  following: 

assume (A1) and (A2), Ps > 0, P9 > 0, (42) and P3 > O, then, for any positive di- 
agonal matrix Do, Lo never has purely imaginary eigenvalues. 

In fact, if the assumptions above hold, all the terms in q~(Do) are negative and 
consequently, (45) is never satisfied. 

Hence, when (42) holds, P3 < 0 is necessary, but the following example shows that 
P3 < 0 is not sufficient. 

Take 

i l l = l ,  •1=2, ~1--1, a 1 = 4 ,  

~2=1 ,  ~2=1,  ~2=3,  ~2=5 ,  

e l = z ,  s 2 = l ,  e3= l + s ,  s=O. 

Then, ~ = (1, 1, 1) and easy computations show that, if ~ > 0 is sufficiently small, 

(56) p4>0,  p s > 0 ,  p s > 0  and Pg>0,  p~<0,  s~<0  and s 2 < 0 .  

It is immediate to establish the following result: 

assume (A1), (A2), Ps > 0, P9 > 0 and (42). Then if S 1 < 0 and s2 < O, Lo never 
has purely imaginary eigenvalues for any choice of Do. 

In fact, sl < 0 and s2 < 0 imply that % (dl, O, 0) and % (0, d2,0) are non positive for 
any positive dl and d2. 

Now, since all the p~ and s~ and ~ depend continuously on the coefficients of A and 
on a, the inequalities (56) still hold if we choose s ~ 0 sufficiently small. In this way, 
we obtain a matrix A and ~ for which Hopf bifurcation does not occur. 
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4. - Stability of bifurcating solutions and numerical examples. 

The numerical computations presented in this section were carried out on the 
SPERRY 1100/82 at Freiburg University. The system was solved employing differ- 
ence methods with variable mesh size. We used the routine SLIPI from the SLDGL 
Subroutine Library, developed at Karlsruhe University. 

Throughout this section, we assume N = 1 and ~ = (0, 1). Then - A u = -- u" and 
all eigenvalues for the Neumann problem are simple and given by 

(57) ~n = n 2 ~ ,  n I> 0, 

with corresponding eigenfunctions 

(58) r - 1, 

(59) r (x) = V2 cos (n=x) n >t 1, x e t~. 

Assume the hypothesis of Theorem 11. Since Ker M T = (Im Mno) T it follows that there 
is a c* e R ~ with 

(60) [c* ] = ker MT0 . 

Now assumption (ii) of Theorem 11 implies that 

(Die, c*) r  

Also (iv) implies that (c, c*) r  0. 
Here, (., .) is the scalar product in R 3. Given c, c* we can always arrange that 

(61) (DI c, c* )/(c, c*) < 0 

(multiplying D1 by - 1 if necessary). In addition to the assumptions of Theorem 11 
consider the following hypothesis 

(v) there is a 80 > 0 such that 

Re(~(Mn0)\{0}) < - 8 0 ,  ae~(M~) < - 8 0  for n C n o .  

F o r k > t 0 ,  k r  set 

(62) bk = 1/2(Mk)-1 CAc, 

(63) q = CAbo + (1/2) CAb~ o + BoAc + (1/2)B2~Ac,  

(here we use our convention that if w = ( w l , w 2 , w 3 ) T e R 3  then W =  
= diag (wl, w2, w3)). Now the following, essentially well-known result holds: 

PROPOSITION 19 (see e.g. [6], [11], [5]). - Assume the hypothesis of Theorem 11. In 
addition suppose that (61) and (v) hold. 

I f  (q, c* )/(Dl c, c* ) > O, then the bifurcating equilibrium u*(~) in Theorem 11 is 
asymptotically stable for small ~; i f  (q,c*)/(Dlc,  c * ) < 0 ,  then u*(z) is unstable. 
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The proof is obtained by developing u*(~), [1"(r into the Taylor series with respect 
to ~, and determining the coefficients successively. One obtains 

1 (q, c*) 
[1*(D=[11~+[12s2+h.o.t. where [11----0, [12= n~r~ (DIe, c*)" 

Now (61) implies that u = ~ is stable for [1 < 0 and unstable for [1 > 0. Fur ther  ,~2 > 0 
implies that we have supercrital bifurcation, while for [1~ < 0, the bifurcation is sub- 
critical. Now the principle of the transfer of stability implies the result. 

We choose the following kinetic parameters 

(64) 

a1=2.1 ,  ~1=2.3,  V1=3.0, $1=0.5,  

:r fl2=3.0, ~'2=2.0, $e=1.7,  

s = 0 . 8 ,  ~1=0.9, ~2=2.0, ~ = 0 ,  

The assumptions (A2) (A2) are satisfied. Moreover Ps > 0, P9 > 0 thus persistence 
obtains. 

The equilibrium ~ is given approximately as 

(65) ~- (0.58, 0.14, 0.69) r.  

We choose the diffusion matrix D of (2) in the form 

(66) 

Here 

(67) 

(68) 

D = D '+  pD"+ [1D". 

D'= diag (0.01, 0.01, 0.05), 

D"= diag (0, 0, 1). 

We try to determine p so that for Do = D '+  pD", D1 = D" the assumptions of Propo- 
sition 10 hold. Let 

(69) Mn([1) = UA - n2 ~ ( D  ' + [1D") 

and vary [1 in I, = [0, 0.03]. Then: 

(70) for n I> 0, n r 1 [1 e I, Re ~(M~ ( [1)) < - 0.03; 

(71) for [1 e I , ,  the matrix Mn([1) has the eigenvalues ~i([1), i =  1,2,3 with 

Re~l,2 (~) < - 0.7, ~3(0) ~- - 0.02, )~ (0.03) = + 0.02. 

Thus there is a critical value in approximately given by 

,~. ~ 0.01 

for which ~ (fi)= 0. 
Also, (61) is satisfied. 
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X 1 

Figure 1 

Finally, 

(q,c*) 
1.15. 

 (Dlc, c*) 

So that  all hypothesis of Proposition 10 (and Theorem 11) hold. Thus, sett ing p = ~ in 
(66) we get  tha t  for ~ > 0, ~ small, there is a stable nonhomogeneous equilibrium 
u* (~)(x) ~ ~ + ~- c- cos =x of (2) where ~ = tz*(e). 

This is illustrated in the following figures 1, 2, 3 where the time-behaviour of a 
solution u(x, t) with the initial value 

ul (x, O) = 0.3 (1 + cos ~x), 

u2(x, O) = 0.3 (1 - cos ~x), 

u~ (x, 0) = 0.3 (1.5 + cos ~x), 

is plotted for ~ > 0 small. 
We see tha t  the solution rapidly (,beomes,, t ime invariant and spatially nonhomo- 

geneous. 
We shall now turn to determining stability of the bifurcating periodic solutions in 

Theorem 17. 
Note that  in the formulas to follow, with the exception of U, the bar  over a vector 

or a matrix denotes its complex conjugate. 
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The following result  is essentially known: 

PROPOSITION 20 (cf .  [7], [4],  [5]) .  - Assume all hypotheses of Theorem 17, ~'(0) > 0. 
Let c,c* e C S \ { 0 }  be such that 

[c] = ker  (M~o - i~o), [c* ] = ker  (Mn~0 + i~o ) ; 

( c , c * )  = 1.  (72) 

Define 

(73) 

(74) 

(75) 

gl = (1/2) (2i~o--UA)-ICAc, g2 = (1/2) (2i~o--UA+4h~r:2Do)-~CAc; 

bl = - ( -UA)- IReCA~,  b2 = - ( - O A - 4 n ~ D o ) R e C A - 5 ;  

q = CAb~ + (1/2) CAb2 + -CAg~ + (1/2) -CAg2 + G~A-5 + 

+ (1/2) G2A-d +B~Ac + (1/2)B2Ac.  

I f  Re (q, c*) < 0 then the bifurcating periodic solution u~ in Theorem 17 is orbitally 
asymptotically stable (for small ~ > 0), and i f  Re(q, c*) > O, u~ is instable. 

The proof of Proposition 20 is carried out by successively determining the power 
series coefficients of u~ and ~*(~) in ~ and using the principle of t ransfer  of stability. 
Details are omitted. 

We shall now give a numerical example. Let  

[ ~1 = 4.0, ~1 = 3.5, Y1 = 3.0, ~1 = 0.5, 

(76) ~ a z = 2 0 . 0 ,  ~2= 11.7, ~,~= 1.5, ~2=6.3 ,  
/ 
i s  = 1.0, ~1= 1.0, ~e = 1.3, ~ = 0 .  

With this choice of the kinetic parameters  (A1) (A2) hold. Moreover Ps > 0 p~ > 0. 
Thus (2) is persistent (for any D). The equilibrium ~ is given as 

~- (0.55, 0.34, 2.01) T. 

We define D as in (66) with 

D'= diag (0.30, 0.04, 0.001), 

and ,o to be determined. 
Define M~(~) as in (68), for ~ e I,  = [0, 0.03]. 
We then obtain for t~ e /~  : 

(77) R e ~ ( M n ( t ~ ) ) < - 0 . 0 5  f o r n ~ > 0 ,  n r  

(78) 

D"= diag (0, - 1, 0), 

~(M1 (~)) --- {~(~), ~(~),,:(~)} wi th  ~(~) = ~(~) + /# (~) ,  ~(~) > 1.8, ~(0) ~ - 0.08, 
~(0.03) ~- 0.04, ~(~) < - 5.6. 
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Thus there is a critical value ~, ~ = 0.02, such that  ~(fi) > 0, ~'(~) > 0. Hence, sett ing 
~ = fi in (66) we obtain from Theorem 17 the bifurcation of periodic solutions u~. To 
prove their  stability we first calculate c, c * e  C 3 

c ~- (0.27 + i0.26, -0 .30 - il .08, -1 .31 + i0.13) T, 

c* ~ 2. ( -0.40 + i0.59, -0 .19 - i0.75, -0 .80 + i0.30) T . 

Then we get 

bl ~ (3.38, -2.60, - -5 .32)  T, 

b2 ~ (0.95, -0.04, 0.26) T, 

gl ~ ( -0 .07 - i0.32, -0 .83 + i0.67, 0.52 + i0.62) T, 

g2 = (0.12 - i0.08, -1 .37 + i0.52, 0.53 + i0.90) T. 

This finally gives 

Re(q, c*) = - 0.35. 

Thus the bifurcating periodic solutions are orbitally asymptotically stable. In the fol- 
lowing figures we plot the Ul-component of a solution u(x ,  t) of (2) with D = D ' +  (fi + 
+ ~ ) D "  for fi + ~  = 0 (figure 4, i.e. ,~ ~ - 0.02) and then for ~ + ~  = 0.03, (figure 5, i.e. 

,,~ ~ 0.01). The initial value of u(x,  t) is, in both cases: 

U 1 (X, 0) = 1.0 + COS r:X, 

u2 (x, 0) = 1.0 - cos =x, 

u3(x,  0) = 1.5 + cos 7:x. 

We see that  for th = - 0 . 0 1  the  solution rapidly approaches the homogeneous equilibri- 
um ~, while for ,~ ~ 0.01 it tends to a time-periodic spatial pattern.  

REMARK. - Examples of bifurcation of stable nonhomogeneous equilibria and peri- 
odic solutions of one-predator-two-prey Lotka-Volterra models are also given 
in [6], [7]. However, these examples are not persistent. 

In our final example we will show that,  for appropriate values of the kinetic pa- 
rameters,  the kinetic system (4) has stable limit cycles. To this end, let ~ e R 3 be ar- 
bi t rary and consider the perturbed system (4) in the following form 

(79)~ i~ = U(~ + ~ + A u ) .  

Assume (A1) and (A2) for (79)~ with [~ = 0. I t  follows that  det A < 0, so there is a 
unique solution ~ of 

(80) ~ + A u  = O. 
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Set ~ ( ~ ) =  ~ + ~ .  Then ~(t~) is the unique solution of 

(81) a + ~ + A u  = O. 

Writing u = v + ~ + t~u we obtain from (79) 

(82) i; = (,~U + U +  V ) A v .  

We make the following assumption 

(w) There are t~l > 0, 8o > 0 such that  for ~ ~ [-~1,  ~1 ] the matrix ( ~ U  + U ) A  has the 
eigenvalues ;((t~), ~(~), P(~) with ;~(t~)= ~(~)+ i8(~) and 

(i) ~(0) = 0, ~'(0) > 0, 8(,~) > 0, 

(ii) ~(~) < - 80. 

(w) jus t  implies that  at ~ = 0 there is a Hopf bifurcation of a periodic solution u, of 
(79),(~), ~(0) = 0, u0 = g(0), u. ~ g(~(~)), ~ > 0 small. 

u, are also homogeneous periodic solutions of the diffusive system 

IG u = D A u + U ( ~ + ~ + A u )  x ~ Q ,  
(83)~ [ a~ u = 0 x ~ at) ,  

for every choice of D. 
Fix D. Choose c, c* e C 3 such that  

[c] = ker (UA - i8o ), [c* ] = ker ((-UA) r + i8o ) ,  

where 80 = 8(0) and such that  

(84) (c, c* ) = 1. 

Define 

(85) b = - (UA) -1 [2 Re CA-d - (Re CA~, c* ).  c - (Re CA-d, -6* ). -d], 

(86) g = (2i8o - -UA) -~ [CAc - 1 /2 (CAc ,  c* ). c - 1 / 2 ( C A c ,  -6* ). c] , 

(87) e = i8~ 1 (CAc,  c* ). (Re CA-d, c* ) + (CAb + -CAg + GA-~ + B A G  c* ) .  

Then the following result  holds: 

PROPOSITION 21. - Consider  (83), and  a s s u m e  (A1) (A2) at Ix = O. Moreover,  as- 
s u m e  that  (w) holds,  a n d  in  addi t ion  

Re ~(Mn (6r < - ~o f o r , ~ e [ - ~ l , ~ l ] ,  n--/=no, 
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where 

(88) M~(,~) = (~U + ~7)A-n~7~ D. 

Finally, let (84) hold. Define e by (87). 
I f  Re e < 0 then the periodic solution u~ , ~ > 0 small, is orbitally asymptotically 

stable with respect to (83)~(~), and unstable, i f  Re e > 0. 

The proof is, again, 
details. 

Now choose 

an application of the stability transfer.  We omit the 

(89) ~2 = 20.6, /~2 = 12.5 

and let all the other kinetic parameter  be as in (76). 
u = ~(0) is given as ~(0) ~ (0.51, 0.38, 2.17) T 
Choose ~ as 

(90) ~ = ( 0 , - 1 ,  0) r 

and D as 

(91) D = diag (0.08, 0.05, 0.002). 

Vary t~ in I~ = [0, 0.2]. Then we get  for tz e I~ 

(1) R e ~ ( M n ( ~ ) ) < - 0 . 0 5  f o r n ~ > l ,  

(92) (2) zMo(~) = {~(~),~(~),~(~)}, ~(t~) =~(~)+i~(~),  

~(0) ~ - 0.13, ~(0.2) ~ 0.06, ~(~) > 0.59, p(,~) < - 2.0. 

Thus for some critical value of the parameter  ~, given approximately by ~ ~ 0.13 it 
follows that  ~ )  = 0, ~'(~) > 0. 

Moreover, 

~(~) ~- (0.55, 0.35, 2.08) T. 

Computing b, g and e in (85)-(89) we obtain 

(93) Re e ~ - 134.0. 

Thus the bifurcating time-periodic spatially homogeneous solutions u~ are orbitally 
asymptotically stable. 

In figures 6, 7 below we plot the Ul-component of a solution u(x, t) of (83)~ for 
,~ = 0, t~ = 0.2 respectively. The initial value is given in both cases by 

ul(x, O) = 1.3 + 0.2cos ~x, 

(94) ~u2 (x, 0) 0.2 + 0.2 cos =x, 
/ 
[u~ (x, 0) 1.8 + 0 .2cos=x,  
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to 

Figure 8 

For ~ = 0 the equilibrium ~(0) is asymptotically stable with respect to (83)0 and this is 
also confirmed in figure 6. For ~ = 0.2 u(t~) is unstable, and the homogeneous periodic 
solution u~ with ~(~) = 0.2 is asymptotically stable. Again this is confnnned by figure 7 

By suitably varying the diffusion coefficients one can achieve a loss of stability of 
the periodic solution. In fact, suppose that (A1), (A2) and (w) hold but suppose that 
there is m/> 1 and for ~ e I~ a k(~) e ~(Mm (~)) with Re k(t~) >> 80 > 0. Then, by a sim- 
ple continuity argument, u~ must be unstable with respect to (83)~(~), for small s > 0. 
We shall now use this observation and replace D in (91) by a perturbed matrix 

(95) b = D + diag(0.05, 0, 0). 

Then for some m t> 1 the matrix M.~ (~) defined in (88) (with D replaced by D) has an 
eigenvalue k(~)> 0.03. In figure 8 above we plot the ul-component of the solution 
u(x, t) of (83)~ for ~ = 0.2, D =/9, and u(x, 0) given by (94). This figure also confirms 
that the periodic solution u~ is now unstable with respect to (83)~(~). 
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