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Some Properties of Planar Polynomial Systems
of Even Degree (*).

MARCELLO GALEOTTI - MASSIMO VILLARINI

Summary. - We study autonomous systems in the plane of polynomial type. We obtain condi-
tions for the existence of unbounded trajectories of such systems. As a consequence we prove
that it does not exist o planar polynomial system of even degree with a global center.

0. — Introduction.

Let us consider a system of ordinary differential equations
0.1 =Py, §=Qy,

where z,y e R and P(x,y), Q(x,y) are relatively prime real polynomials.

If n=max (degP(x,y), deg Q(x, %)) we shall denote (0.1) as a planar polynomial
system of degree 7. The main aim of this paper is to prove that, if » is even, the sys-
tem (0.1) has at least one unbounded trajectory.

The most natural way to deal with this subject is to use the compactification by
Poincaré sphere. '

This tool leads us to a result (Theorem 2.7) which will show the existence of un-
bounded trajectories and will describe their behaviour at infinity, too. As a conse-
quence we will obtain an extension of analogous results concerning homogeneous sys-
tems [SC] and systems of degree two [C1]; moreover we will be able to prove a con-
jecture [ICNO] according to which a polynomial system of even degree cannot have a
global center (see definition below). Finally (Theorem 2.9) for a system of odd degree
necessary conditions for the existence of a global centre are obtained.

Before starting to prove these results let us recall some fundamental defini-
tions.

(*) Entrato in Redazione il 23 ottobre 1989.
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A singular point S € R? of (0.1) is a centre if there exists a neighbourhood of S en-
tirely filled by closed non singular trajectories except S. The centre region, Ng, is the
maximal neighbourhood of S with respect to this property. Finally, a centre S of (0.1)
is a global center if Ny = R2.

1. - Behaviour at infinity of a polynomial planar system.

Let us denote the system (0.1) as (R?, (P, @), too. Following the treatment given
in [GV] of a classic procedure due to Poincaré, we shall define a dynamical system
(S2,7) on the 2-sphere S2, and we shall estabilish its topological equivalence with
(R, (P, ®)). Then we shall deal with properties of the field =, : S'~> TS, where S is
the equator of the sphere S? and r.. is the restriction of = to S'. Such properties will
be very useful to understand the behaviour at infinity of the system (0.1).

Let & = (o, wg, w3) be a coordinate system in B3, and let us define the submani-
folds in R3:

RZ: 0)321,
8% witeitei=1.

 Let # = w; ¥ = wp be a coordinate system in R2. An analytic manifold structure on S2
is determined by the local charts (4;, ¢;), (B;, ), 1=1,2,8 where:

AZ=[w€S22wi>0] B;= [wES w; < 0],
¢t A R? ¢i(w) = (wj/ o, o/ ;) = (21, 22),
5 Bi»R?  gi(w) = (wj/wi;wk/wi) =(21,22),

where j<k and j,k €[1, 2, 3]\\[:]. We shall denote by S2 (north hemisphere) the set
Az and S2 (south hemisphere) the set B;. Moreover throughout this paper we shall
denote the equator of SZ as: S!=[w e S%: w3 =0]. Let

h+:R2‘—)Sf_ h+(90,y)=(1/3)'(90,y, 1)’
R :R®2—S% h™(m,y)=—-Q1/d)(2,y,1),

where ¢ = 8(x, y) = [1 /(2% + %+ 1)]'/?, be the central projection diffeomorphisms on-
to the two hemispheres. The induced fields:

P

dh [Q

}: S2e>TSE,  dh- [g}: S2>TS2
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cannot be extended to S!. On the contrary such an extension is possible for the
fields:

P
Q

where n is the degree of system (0.1). With such a method we obtain a field
n: S TS?, the Poincaré field on S? relative to (0.1), with the following analytic ex-
pression in local coordinates (2, 2;):

wg_ldh+[ }:SEF—)TS.Z,., ;ugwldh_ [g] SEHTSE,

—Q(l,ﬁ)_zlp(l’ﬂ)
2 %27 R %2 %
~ ’ (21,22)€A1,
Vv P 1 2
g (2_25 z2>
(p(Ll 2\ (2 1
— 21,2 ,
v 1 % ] 15 %2 2
—2Q % 7%
1 P(zuzz)
= , (21,22) € Ag,
_VI:Q(ZMZZ):I Do :

where V = (1 + 27 + 23)®~V/2,

REMARK 1.1. - The expression of =(z;,2,) when (2,, 2;) € B; is obtained from the
corresponding one in A; except for a factor (—1)*~L
From the analytic expression of =(z;,2,) it easily follows:

Q

restriction of = to S2, are topologically equivalent.
(b) The equator is an invariant set with respect to the flow induced on S2
by =. u
From the property (B) of Theorem 1.1 we define

THEOREM 1.1 [GV]. — (a) Systems (R 2 [PD and (8%, z, ), where the field . is the

T {8) = n(s, 0)

and so the analytic expression of the field x..: S'~ TS! is the following:

.____1 1
(1+82)1/2F(s), (5,00eS'nA,,
T (S) = 1

Arsp®r &0esSind,
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where:
F(s)=Q,(1,8)—sP,(1,8), G(s)=P,(s,1) —sQ,(s,1).

Here, and throughout this paper, we denote by @ (x,¥) and Py (x,¥), 0 <k < n, the
homogeneous part of degree k of polynomials Q(zx, y) and P(x, y). Moreover, let us re-
call that, as a consequence of Remark 1.1, the definition of =, (s), when (s,0) e S'n
nB,, i=1,2, is obtained from the definition of ., (s) when (s, 0) € S! N A; and by multi-
plication by the factor (—1)*~% This implies:

LEMMA 1.2. — Let (s,0), (5,0) € S be two antipodal points. Then:
(@) if » is odd: 7 (8) 7 (8) =0,

(b) if n is even: 7., (8) 7, (5) < 0.

Proor. — The proof is a straightforward consequence of the equality
@) =(-1)""1r.(s). =

Moreover the polynomial nature of the field =., implies:

LEMMA 1.3 [GV] [SC]. — () If (s,0), (5,0) € S* are antipodal points and 7. (s) =0
then =, (s) = 0.

(b) Only one of the following situations can happen:

(b.1) n. is identically zero,

(b.2) the set $=1(5,0) e S': 7, (s) =0] has k elements, 1<k<2(n+1).
(¢) If » is even, =, has at least two singular points.
(d) The following five properties are equivalent:

(d.1) =, is identically zero,

{d.2) F(s) is identically zero,

(d.8) G(s) is identically zero,

(d.4) xQ, (x,y) —yP,(z,y) is identically zero,

(d.5) if

n n
Pule,p)= 2, Un"FY" Qu@wy) = 2 b Y
then:

Oy = by, =0 and &y, = byiq,, Where 0sSksn-1. =

DEF. 1.1. — Let («, 0) € S* be an isolated singular point of =.., and let W and W} be
respectively the stable and unstable manifold of (x,0) in S* with respect to =.,. We say
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that
(@) « is semistable if W:# @ and WY # @

(b) a is stable if W;# 0 and WY = 0:

I
I

(¢) « is unstable if W2 =0 and WX+ 0:

A
I

LEMMA 1.4. — Let (0.1) be a system of even degree n, and let the relative field r..
be non identically zero. Then the number % of non semistable singular points of r.
verifies the equality:

h=2+4v wherev=0,1,2,....

PROOF. ~ In view of the polynomial nature of the field = (s) it is possible to define
the multiplicity of the couple of antipodal points (s, 0), (5, 0) € S as singular points of
7« (8) by their multiplicity as solutions of polynomials F(s) and/or G(s). Moreover it is
simple to see that a singular point of =.. (s) is not semistable if and only if it is a singu-
lar point of multiplicity of =.,. '

To each couple of antipodal singular points (s, 0), (5,0) € S* of = (s), with multi-
plicity v, is associated a straight line ax + by =0 a,b € R, which is a solution of multi-
plicity v relatively to the homogeneous equation

H(x,y) = 2Q, (x,y) —yP, (@, y) = 0.

It is well known [W] that H(z,y), being an homogeneous (n + 1)-form, can be ex-
pressed as
P q
H(z,y) = [ (@ +b y)] : {H (¢j@® + dywy + lij)Aj}
i= J|J=1

where:

® q
ntl= 2 v+2 2 2.
i=1

i=1

If » is even the number k of the real sclutions of H(x, y) =0 with odd multiplicity is
odd. From the equality % =2k the assertion of the lemma follows. u
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2. — Behaviour at infinity of the trajectories and system degree.

In this section we will prove a conjecture in [ICNO]. Let us define =, and »_ re-
spectively as the restriction of the Poincaré field to SZ and to SZ.

LEMMA 2.1. - Let (2, 0) € S! be an isolated and non semistable singular point of =., .
Then there exists a trajectory of (S%,=,) and a trajectory of (S*,z_) both having
[(«,0)] as a limit set.

ProOF. — With no loss of generality we can suppose that («,0) is a stable singular
point of z.,. Let U be a neighbourhood of («, 0) in S% such that («, 0) is the only singu-
lar point of = in U. Let @: U+~ R? be a local coordinate such that ®(z,,2,) = (u,v)
and:

&2, 0)=(0,0), x(u,v) =0 (u, v)]», &S N U) c(u,v): v=0].

Let us consider a rectangle B, R ¢ ®(U), which is centered at (0, 0) and with half sides
of length 3a and b (a,b>0). Let ¢: R—R be a C*(R) function such that:

du,v) =1 if |lul=2a,
$lu,v) =0 if lul<a,

O0s¢(m,v)<1 if (u,v) ek,
19—(’ﬁ-(u,v)=0 if (u,v)eR.
v

Finally let us consider two segments L; and L, in R with endpoints (—2a, — b),
(—2a, b) and 2a, — b), (2a, b) respectively. Let U, and U, be two neighbourhoods of
Ly and L, respectively, and o;: Uy~ TU,, g9: Ug— TU, the two constant vector
fields:

a1 (’LL, U) = [(l):l ) 92 (u’, 'U) = |:(]j:| .

By the Rectification Theorem [A] it is possible to choose U; and U, sufficiently small
such that o; and o are locally diffeomorphic to the vector field x(u,v).

If : R~ TR is any differentiable extension of s; and o, on the whole rectangle R,
we can define the vector field on E:

O(u, v) = d(u, v) alu, v) + [1 — ¢(u, V)] x(u, v),

which is topologically equivalent in R to y(u, v). Thus it is enough to prove the asser-
tion of the lemma relatively to the field &(u,v). Let us consider the points in
R:P =(—2a,b), @=(a,b), 0=(0,0), S=(-2a,0), T'=(2a,0); and let us define L as
the inner region of the closed curve formed by the segments PS, PQ, QT, by the arcs
of trajectories through S and 7 and by the point O.
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Let (v, 1) be new coordinates in the region L, with origin S and such that, for
example, P = (0, b) and Q = (4a, b). If g(t, (v, 7)) is the flow induced by &(u, v) on R, we
define the functions:

TA

P | Q
(B(zy), b)

(07 Tl)

N T P N
S N T v

=) Tp(n)
where 7€ [0, 5], as:

B(z) = v-coordinate of the first intersection point between the segment P@ and
the trajectory ¢— g(t, (0,7));

y(t) = v-coordinate of the first intersection point between the segment PQ and
the trajectory t— g(t, (4a,r)).

Both j(z) and y(z) are monotone functions, and so we can define:
Bo= }13(1) D), o= 11}}(1) ().
Let us suppose that the trajectory ¢+ g(t, (8, b)) has not the set [0] as its limit set.
Thus by the Poincaré-Bendixson Theorem there exists ¢, > 0 such that:
9y, (80, 0) =(G,b+¢),

where ¢>0. Moreover we can suppose that 0 <v<4qa. Indeed if v<0 it follows
that:

Bo=g(t',(0,7) t'>0 0<z<bd
and if v > 4a it follows that:
Bo=9t", da, 7)) t">0 0<rp<b

and both these conditions contradict the definition of g,. Now, from the continuous
dependence of the solutions of ordinary differential equations on the initial data of a
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Cauchy problem, there exists a neighbourhood Uy . of the point (8, b) such that, if
(v, 7) € Uy, . then:

“g(t: (V) T)) - g(t7 (430 3 b))“ <

?

L\Dim

for every te R such that {,<t<0.

This inequality implies that every trajectory t+>g(t, (v, 7)), where (v,7) € Uy, .,
must intersect backwards the segment PQ, and this is a contradiction with the defini-
tion of 3,. This conclusion proves that there exists at least one trajectory of the field
A(u,v) in B which has [0] as its limit set and, finally, this proves the lemma by virtue
of the definition of the field O(u, v). |

COROLLARY 2.2, — If « € R is a root of odd multiplicity of Fi(s) =0 and/or G(s) =0,
there exist a trajectory of (S%, =, ) and a trajectory of (SZ, =_) both having [(«, 0)] as
their limit set.

Proor. — The assertion is a consequence of Lemma 2.1 and of the equivalence be-
tween the semistability condition of {«,0) as a singular point of =, and the odd multi-
plicity of « as a root of F(s)=0 and/or G(s) =0. N

COROLLARY 2.3. — Let (0.1) be a system of even degree n, such that r.. is not iden-
tically zero. Then there exist a trajectory of (S%,=,) and a trajectory of (S2,x_),
both having [(«,0)] as their limit set.

PRrOOF. — This corollary is still a consequence of Lemma 2.1, and of Lemma 1.3,
which implies the existence, for even degree systems, of two singular and not
semistable points of 7., at least. n

REMARK 2.1. — By using the symmetry of the phase portrait on the Poincaré
sphere we can suggest a qualitative description of the Poincaré field of systems veri-
fying the hypotheses of Corollary 2.2 and Corollary 2.3:

We shall now consider the case where r. is identically zero: we shall prove that in
such situation, independently from the degree » of the system (0.1), there exist many
points on S! (actually they form an infinite subset of the equator of the Poincaré
sphere) which constitute the limit sets of trajectories of (S%,7,) or of (S2,=_).
Let us introduce some notations. Let RP? be the projective plane and let RP be
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the projective line, which we always consider as an embedded submanifold of RPZ
The sphere S is a double covering of RP? and the equator S! of the sphere is a double
covering of RP. Therefore if (¢, %,0) € RP c RP%, with (x, ¥, ) homogeneous coor-
dinates in RP%, we have correspondingly two points in S* (the points of the fiber of
the double covering): by using the coordinate system we ehose on S?, such points are,
for instance, («,0) = (5/%,0) and the diametrically opposed one.

If (¢,,%,0) € RP, we can consider the vector & = (£, &) and its orthogonal vector
L= (-§,4). Let us define:

Gf(x’ y) = <’:g} ] E'—L> = '—EZP(xy ?/) =+ El Q(xa y)

(here {,) denotes the scalar product in R?).
The algebraic curve:

¢§: EZP(%?/)—&Q(W,W = 07

is the &isocline of (0.1). The map &~ ¢, defines a bundle of algebraic curves of degree
n in RP?: the isoclines of system (0.1). As an elementary consequene of the definition
of polynomials F(s) and G(s), and by simple properties of a bundle of algebraic curves,
we state:

LEMMA 2.4. — (a) Let («,0) € S1, with a = & /& or « = £,/&. Then («, 0) is a singular
point of ., if and only if (¢, &, 0) is an intersection in RP? between RP and ¢; (or, as
we will use to say, if (§,&,0) is a point at infinity of ¢;).

(b) The point (&, &,0) € RP is a base-point of the bundle of isoclines of system
(0.1) (i.e. a point which belongs to every isocline of the bundle) if and only if
Pr, &)+ Q5 ,&)=0. =

Now we give another condition of existence of unbounded trajectories for system
of type (0.1):

LEMMA 2.5. - Let (§,%,0) ¢ RP such that:

(@) (&1,%,0) is a point of r-multiplicity, r=1, of the isocline ¢,
(b) the projective line is a component of [-multiplicity, 0<{<w, of the iso-
cline ¢,
(¢) (£1,%,0) is not a base-point of the bundle of isoclines of system (0.1),
(d) r=(+1)mod2.
Then, if « = &/& or « = & /&, at least one of the two antipodal points, («, 0) and

(z,0), constitutes the limit set of a trajectory of one of the systems (S%,=.),

(8%, 7).
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REMARK 2.2. — The «geometrie» hypotheses (a)-(c) have the following algebraic in-
terpretation. Let:

% k
Pa,y)= 2 Pr@,y)= 2 2 apx®ty",
k=0 k=0 h=0

n [ k
Qa,y) = 2 Q@,y)= 2 2 byat "yt
k=0 E=0 k=0
Then hypotheses (a)-(c) are equivalent to hypotheses (a)'-(c)’, where:

(@) let0sisr—landO0<k<n. Forevery(l;,ls) e NyX Nysuchthat » =1, +
+ly+n—Fk it results that:

7 k _
S 3 (F R ) G - 5 ) B =0
k=0n=0\ I ly

and moreover there exists ((;, 1) € Ny X Ny such that I, + I, +n—k = » and

L& (k—h\ (k5 4 o
PP (k- )'(Z)lelz!(fzahk‘&bhk)&"f hob.g-h =,

k=0n=0\ 2

(b)' it results that: &am — & by, =0 when 0<h<k, n—1l+1<k=<n and there
exists h € Ny, such that: &az ,_;— & b5 o # 0;

(¢)' (a consequence of Lemma 2.4): P2(&,5) + Q2(5,5) > 0.

ProoF OF LEMMA 2.5. — From Lemma 2.4 each of the points («, 0) and (z, 0) in the
statement of the lemma is a singular point of the Poincaré field . From hypotheses
(b) the isocline ¢, has the following equation in projective coordinates:

n-1
¢ 2 Gpap— E by ) a T hyt e E =0,
K=0

Let us denote ¢; the algebraic curve of order n — ! with equation

n—~1
kZO(Ezaxhk“‘ El bhk)xk—hyhzn—k—l = 0

By hypothesis (@), (£1,&,0) € ¢;. It is well known that a real point of an algebraic
curve in RP? is topologically isolated only if it has an even multiplicity: so by hypoth-
esis (d) there exists a real branch R; of ¢;, and so a real branch of ¢;, too, with the fol-
lowing properties:

(O() (51752,0) ER57
(8 the points of R; are points of odd multiplicity of ¢:.

Let »* and 7* be two parallel straight lines in RP?2, with (5, %,0) e v*. We sup-
pose to choose »* and 7* in such a way that R; is the only branch of ¢, inside the half
strip included between »* and #*. Of course we can neglect the case r* c R;or 7" c R;



MARCELLO GALEOTTI - MASSIMO VILLARINI: Some properties, elc. 309

because in this situation »* or 7* should contain an unbounded trajectory and the as-
sertion of the lemma would be immediate.

By hypothesis (¢) it is also possible to choose »*,7* and a segment [, orthogonal to
r*, such that the half strip L, with boundary oL =r* u7* Ul, contains R, and no
other real points of ¢;, and does not contain any point of the isocline ¢ . By the defini-
tion of the isocline ¢;:

LP(x,y) — 5 Q@ y) =G:(x,y) = <(g) , El> =0

and by virtue of property () it follows that if (x,4) e r* and (x',y’) € #* then:
Gy (x,y) G (', y") <0.

According to this condition, and except from the inversion ¢+ — ¢, there are only the
following three possible situations:

R, . G,<0 -,
\ L

G§>O

R \ —_ Ge<0 P
—~ 7
an \K

e Pt
Gé >0
L
(I11) AN
> G,>0

By hypothesis (¢) and the definition of L it is easy to prove that the situation in fig. (I)
is not possible. In the situation of fig. (II} it is clear (see, for instance, [L], pag. 213)
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that every trajectory through a point in L has an image in (S2, =, ) or in (S2, =_) hav-
ing [{«, )] or {(z, 0)] as limit set. The situation sketched by fig, (IIT) implies (see still
[L1, pag. 215) the existence of at least a trajectory of (S%,x,) or of (8%, x_), having
[(e, )] or [(x, )] as limit set. So the proof of the lemma is complete. |

- We can now study the case of systems of type (0.1), satisfying =, = 0.

LeEMMA 2.6, — Let us consider a system of type (0.1), and let the relative field z.. be
identically zero. Let us denote § = [(£,&,0) e RP: P2(x,y) + QF(x, ) = 0]. Then:

(a) the set 3 has k elements, 0sk<sn-—1,

{(b) for every fe RP\:b\E =(&,&,0), one of the two antipodal points («, 0),
(2,0) € S, a = &/& or a = & /&, forms the limit set of at least a trajectory of (8%, ")
or of (S2,x.). . .

PrOOF. — The proof consists in verifying that if £ e RP\ J the hypotheses of Lem-
ma 2.5 are satisfied. Let &= (§,%,0) e RP be a fixed point. Another point » =
= (11, n2, 0) € RP belongs to the isocline ¢; if and only if (;, 72) is a solution of the ho-
mogeneous equation:

&P, (x,y) — 5 Qu(x,y)=0.

By virtue of Lemma 1.2 and by the hypothesis that =, =0, the above equation is
equivalent to:

n—1 n=1
52 2 aknxn—kyk—sl 2 ak—l,nxn—kykzo’
k=0 k=1
or:
n—1
@.1) Ge—&y) 2 apaz" fy"=0.

By equation (2.1) the intersection points between ¢; and RP are, in addition to
(&, %,0), the solutions of:

n-—-1
@2.2) U " F Ty P =0,
k=0
This is an (r— 1)-form which cannot by identically zero (in such case P,(x,y) =
= Q, (%, ¥) = 0) so, by (2.1) it follows that the points in RP belonging to every isocline ¢,
are the points corresponding to the & solutions of (2.2), with 0<k<n—1.
This conclusion, together with Lemma 2.4, proves the statement (a).
We can now observe that every £ e RP\ J is a simple point (i.e. with multiplicity
one) of the isocline ¢.. Moreover no isocline ¢; can have the projective line RP as its
component. Indeed if RP were a component of ¢, £ = (&, &,0), it ought to be satis-
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fied the identity:
&GP, @,y =5Q, (1),
or
Sy =5by,, 0<k=sn

and by Lemma 1.3 and the hypothesis =.. = 0 this implies that P, (z, y) = Q, (z, y) =0,
impossible.

Finally, every £ € RP\J verifies hypotheses (a)-(d) of Lemma 2.5, and the asser-
tion follows. n

REMARK 2.3. — In general it is not possible to extend Lemma 2.6 and to claim that
the same results are true for every é e RP. An example is the system [C2]:

i=—-y+aly, §=x+axys.
The trajectories of the system are (contained in) the conics
22+ (1 -7y =7 reR>.

This system satisfies the condition =, = 0. Moreover the points (0, 1,0), (1,0,0) e RP
verify PZ(x,y) + Q2 (x, ) = 0. The points in S! corresponding to (0, 1, 0) are limit sets
of trajectories of (S%, . ) and of (S2, z_); on the contrary no one of the two antipodal
points in S* which correspond to (1, 0, 0) is the limit set of a trajectory of (S2, =, ) or of
(8%,7_) (see the following figure):

By using Corollary 2.3 and Lemma 2.6 we can state our main result:

THEOREM 2.7. - Every system of type (0.1), with even degree u, and with
n: 82> TS? as the associated Poincaré field on S? has at least one trajectory of

(S%,z,) and one trajectory of (S2,=_) having a point of the equator of S? as a limit
set. o .
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By using this theorem it is easy to prove the following statement, which repre-
sents a conjecture in [ICNO]:

COROLLARY 2.8. — A system of type (0.1) and even degree is such that the equator
S? of the Poincaré sphere eannot be the limit set of any trajectory of (S2 US2,x, _)
(here =, _ is the restriction of the Poincaré field on S2 U S2), nor can be the accumula-
tion set of closed trajectories. In particular, even degree polynomial planar systems
cannot have a global centre. |

REMARK 2.4. — For every odd integer n there exist polynomial planar systems of
degree n with a global centre. For instance [C2]:

n

r=y", Y=-—x n any odd integer,

has a global centre at the origin.

REMARK 2.5. - It is well known [GV] that the equator S! of the Poincaré sphere
cannot be a closed trajectory of the system (S?,r) associated to a system (0.1) with
even degree. It might seem natural trying to prove Corollary 2.8 using this property.
But, for instance the proposition:

«If (0.1) has a global centre, the equator of the Poincaré sphere is a closed tra-
jectory for the associated Poincaré field»

is false, as shown by ([SC], pag. 87):

9b=y, Q=—2x3,

which has a global center at the origin and two antipodal singular points on the equa-
tor of the Poincaré sphere.
Finally, we state some necessary conditions for the existence of global centers of

polynomial systems:

THEOREM 2.9. — Necessary conditions for the existence of a global center of a sys-
tem of type (0.1) and degree » are:
(@) n is odd;
(b) the coefficients of P,(x,y) and Q,(x, %) do not verify:
Ui = b0 =0, G =bpy1, Oshsn—1;
(¢) polynomials F(s) and G(s) have not real roots of odd multiplicity;
(d) there does not exist any point £ e RP which verifies hypotheses

(@)~(d) of Lemma 2.5 (or, in alternative, the hypotheses (a)'-(d)’ of Remark 2.2).



MARCELLO GALEOTTI - MASSIMO VILLARINI: Some properties, etc. 313

PROOF. — Statement (a) follows from Corollary 2.8, and statement (b) is a conse-
quence of Lemma 2.6. The statement (c) is essentially the Corollary 2.2, and the
statement (d) follows from Lemma 2.5. L]
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