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Some Properties of Planar Polynomial Systems 
of Even Degree (*). 

MARCELLO GALEOTTI - MASSIMO VILLARINI 

Summary. - We study autonomous systems in the plane of polynomial type. We obtain condi- 
tions for the existence of unbounded trajectories of such systems. As a consequence we prove 
that it does not exist a planar polynomial system of even degree with a global center. 

O. - I n t r o d u c t i o n .  

Let us consider a system of ordinary differential equations 

(0.1) ic = P(x,  y) , ~1 = Q(x, y) , 

where x, y e R and P(x,  y), Q(x, y) are relatively prime real polynomials. 
If n = m a x ( d e g P ( x , y ) ,  degQ(x, y)) we shall denote (0.1) as a planar polynomial 

system of degree n. The main aim of this paper is to prove that, if n is even, the sys- 
tem (0.1) has at least one unbounded trajectory. 

The most natural way to deal with this subject is to use the compactification by 
Poincar~ sphere. 

This tool leads us to a result (Theorem 2.7) which will show the existence of un- 
bounded trajectories and will describe their behaviour at infinity, too. As a conse- 
quence we will obtain an extension of analogous results concerning homogeneous sys- 
tems [SC] and systems of degree two [C1]; moreover we will be able to prove a con- 
jecture [ICNO] according to which a polynomial system of even degree cannot have a 
global center (see definition below). Finally (Theorem 2.9) for a system of odd degree 
necessary conditions for the existence of a global centre are obtained. 

Before starting to prove these results let us recall some fundamental defini- 
tions. 

(*) Entrato in Redazione il 23 ottobre 1989. 
Indirizzi degli AA.: M. GALEOTTI: Facolt~ di Economia e Commercio, Universit~ di Ancona, 

Istituto di Matematica e Statistica, Via Pizzecolli 37, 60121 Ancona; M. VILLARINI: Universita di 
Firenze, Istituto Matematico U. Dini, Viale Morgagni 67/A, 50134 Firenze. 
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A singular point S e R 2 of (0.1) is a centre if there  exists a neighbourhood of S en- 
t irely filled by closed non singular trajectories except  S. The centre region, N5, is the 
maximal neighbourhood of S with respect  to this property.  Finally, a centre S of (0.1) 
is a global center if Ns = R 2. 

1. - Behaviour at infinity of a polynomial  planar system. 

Let  us denote the system (0.1) as (R 2, (P, Q)), too. Following the t rea tment  given 
in [GV] of a classic procedure due to Poincar6, we shall define a dynamical sys tem 
(S 2, =) on the 2-sphere S 2, and we shall estabilish its topological equivalence with 
(R 2, (P, Q)). Then we shall deal with propert ies  of the field =~ : S 1 ~ TS 1, where  S 1 is 
the equator  of the sphere S 2 and =~ is the restriction of = to S ~. Such propert ies  will 
be very  useful to understand the behaviour at infinity of the sys tem (0.1). 

Let  oJ = (~1, we, 0)3) be a coordinate sys tem in R ~, and let us define the submani- 
folds in R 3 : 

R2:  0)3= 1, 

s2: 

Let  x = 0)1 Y = 0)2 be a coordinate system in R z. An analytic manifold s t ructure  on S 2 
is determined by  the local charts (A~, r (Bi, zi), i = 1, 2, 3 where: 

Ai = [0) e S 2 : 0)i > 0] B~ = [0) e S 2 : 0)i < 0], 

r Ai ~ R 2  r = (0)j/0)~, 0)k/0)~) = (Zl, z2), 

ai: Bi ~-~R2 zi(~o) = (0)j/~oi, 0)k/0)i) = (zl ,  z2), 

where j < k and j, k e [1, 2, 3 ] \ [ i ] .  We shall denote by $2+ (north hemisphere) the set  
A3 and S 2_ (south hemisphere) the set B3. Moreover  throughout  this paper  we shall 
denote the equator  of S 2 as: S 1 = [0) e $2:0)8 = 0]. Let  

h+: R2~$2+ h § = (1 /~) . (x ,y ,  1), 

h - : R 2 ~ S ~  h - ( x , y ) = - ( 1 / @ ) . ( x , y ,  1), 

where ~ = ~(x, y) = [1/(x z + y2 + 1)]1/2, be the central projection diffeomorphisms on- 
to the two hemispheres. The induced fields: 
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cannot be extended to S ~. On the contrary such an extension is possible for the 
fields: 

~o~-ldh+ [Q] TS~+, ~on-ldh-[Q]: S2~->TS 2_ 3 : S +  2 ~  3 

where n is the degree of system (0.1). With such a method we obtain a field 
=: $ 2 ~  TS 2, the Poincar~field on S 2 relative to (0.1), with the following analytic ex- 
pression in local coordinates (zl, z2): 

~(Z1, Z2) --~ 

~I I1 Zl~_ piA Qlz,z  ] Zl lz 
- z  p [ 1  zi] 

p [ 1  z ~ l _ o [ z ~  

- z  ' - ' ( •  z_,~ 

1 [P(zl,:2)l 
VLQ(~,,z~) j '  

1 1t] 
(Z 1 , Z 2) E A1,  

(zl, z~) e A2, 

(zl, z~ ) e As, 

where V = (1 + Zl 2 + z~) (~-1)/2 

REMARK 1.1. - The expression of =(Zl, z2) when (Zl, Z 2 ) e Bi is obtained from the 
corresponding one in Ai except for a factor ( -1)  2-1 

From the analytic expression of =(zl, z2) it easily follows: 

THEOREM 1.1 [GV]. - (a) Systems (R~, [Q]) and (S2+ , ~+ ), where the field ~+ is the 

restriction of = to S+ 2, are topologically equivalent. 
(b) The equator is an invariant set with respect to the flow induced on S 2 

by =. [] 
From the property (B) of Theorem 1.1 we define 

=~ (s) = ~(s, 0) 

and so the analytic expression of the field ~ : $ 1 ~  TS 1 is the following: 

1 , (s, 0) e S l n A 1 ,  
7:~ (s) = (1 + s 2) 1/2F(s) 

1 G(s) (s, 0) e S 1 r~ As, 
(1 + s 2)1/2 ' 
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where: 

F(s) = Q~ (1, s) - sP~ (1, s), G(8) = Pn (s, 1) - 8Qn (8, 1). 

Here,  and throughout this paper, we denote by Q~ (x, y) and P~ (x, y), 0 <- k <- n, the 
homogeneous part  of degree k of polynomials Q(x, y) and P(x, y). Moreover,  let us re- 
call that, as a consequence of Remark  1.1, the definition of ,-:~ (s), when (s, 0 ) e  S i n  
n Bi, i = 1, 2, is obtained from the definition of =~ (s) when (s, 0) e S 1 ~ A~ and by  multi- 
plication by the factor ( -1 )  ~-~. This implies: 

LEMMA 1.2. - Let  (s, 0), (~, 0 ) e  S 1 be two antipodal points. Then: 

(a) if n is odd: =~ (8). ,~. (~) I> 0, 

(b) if n is even: =~ (s). =~ (~) ~< 0. 

PROOF. - The proof is a straightforward consequence of the equali ty 

,~  (~) = ( -  1) n -  ~ ~ ( s ) .  �9 

Moreover  the polynomial nature of the field 7:~ implies: 

LEMMA 1.3 [GV] [SC]. - (a) If  (s, 0), (~, O) e S 1 are antipodal points and =~ (s) = 0 
then =~ (~) = 0. 

then: 

(b) Only 

(b.1) 

(b.2) 

(c) If  n 

(d) The 

(d.1) 

(d.2) 

(d.3) 

(d.4) 

(d.5) 

P~(x ,y)= ~ aknX~-ky k 
k = O  

one of the following situations can happen: 

=~ is identically zero, 

the set  8---[(s, 0 ) e S l :  = ~ ( s ) = 0 ]  has k elements, l~<k<~2(n+  1).  

is even, =~ has at least two singular points. 

following five propert ies are equivalent: 

=~ is identically zero, 

F(s) is identically zero, 

G(s) is identically zero, 

xQ~ (x, y) - yPn (x, y) is identically zero, 

if 

n 

Qn(x,y)= ~ bk~x~-ky k 
k = O  

ann = bon = 0 and ak~ = bk + 1, ~ where 0 ~< k ~< n - 1. �9 

DEF. 1.1. - Let  (~, 0) e S 1 be an isolated singular point of =~, and let W: and W:  be 
respectively the stable and unstable manifold of (~,0) in S 1 with respect  to =~. We say 
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that  

(a) ~ is semistable if W:  ~ 0 and W :  :~ 0: 

(b) ~ is stable if W: ~ 0 and Wi ~ = 0: 

(c) ~ is unstable if W: = 0 and W ~ r  0: 

LEMMA 1.4. - Let  (0.1) be a system of even degree n, and let the relative field =~ 
be non identically zero. Then the number  h of non semistable singular points of =~ 
verifies the equality: 

h = 2 + 4v where  ~ = 0, 1, 2, . . . .  

PROOF. - In view of the polynomial nature of the field z~ (s) it is possible to define 
the multiplicity of the couple of antipodal points (s, 0), (~, 0) e S 1 as singular points of 
=~ (s) by their multiplicity as solutions of polynomials F(s)  and/or  G(s). Moreover  it is 
simple to see that  a singular point of =~ (s) is not semistable if and only if it is a singu- 
lar point of multiplicity of =~. 

To each couple of antipodal singular points (s, 0), (~, 0) e S 1 of =~ (s), with multi- 
plicity ~, is associated a straight line ax + by = 0 a, b ~ R ,  which is a solution of multi~ 
plicity v relatively to the homogeneous equation 

H(x, y) = xQ~ (x, y) - yP~ (x, y) = 0. 

I t  is well known [W] that  H(x, y), being an homogeneous (n + 1)-form, can be ex- 
pressed as 

H ( x , y )  = ~ l (a ix  + biy)"~ . + d jxy  + ljy2)~ 
i ~] 

where: 

P q 
n + l =  ~ ~i+2 E )~j. 

i=1 j = l  

If  n is even the number  k of the real solutions of H(x,  y) = 0 with odd multiplicity is 
odd. From the equality h = 2k the assertion of the lemma follows. �9 
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2. - Behaviour at infinity of  the trajectories and system degree. 

In this section we will prove a conjecture in [ICNO]. Let  us define 7:+ and 7:_ re- 
spectively as the restriction of the Poincar~ field to $2+ and to $2_. 

LEMMA 2.1. - Let (~, 0) e S ~ be an isolated and non semistable singular point of =~. 
Then there exists a trajectory of ($2+, 7:+ ) and a trajectory of ($2_, 7:_ ) both having 
[(~, 0)] as a limit set. 

PI~OOF. - With no loss of generality we can suppose that (a,0) is a stable singular 
point of 7:~. Let U be a neighbourhood of (~, 0) in S 2 such that (~, 0) is the only singu- 
lar point of 7: in U. Let ~: U ~ R  2 be a local coordinate such that ~(zl, z2)= (u,v) 
and: 

�9 (~,0) = (0,0), Z(u,v):-7:[~-l(u,v)], ~ ( S l n  U) c [(u,v): v = 0]. 

Let us consider a rectangle R, R c ~(U), which is centered at (0, 0) and with half sides 
of length 3a and b (a, b > 0). Let r R ~ R  be a C ~ (R) function such that: 

r v) = 1 if ]u I ~> 2a, 

r v) = 0 if lul < a,  

0 ~ r  if (u,v) e R ,  

~vr (u, v) = (u, v) 0 if R .  

Finally let us consider two segments L1 and L2 in R with endpoints ( - 2 a , -  b), 
( -  2a, b) and (2a, - b), (2a, b) respectively. Let U1 and U2 be two neighbourhoods of 
L1 and L2 respectively, and ~1:U1 ~ TU1, ~2:U2 ~ TU2 the two constant vector 
fields: 

l 
By the Rectification Theorem [A] it is possible to choose U 1 and U2 sufficiently small 
such that :1 and :2 are locally diffeomorphic to the vector field z(u, v). 

If z: R ~ TR is any differentiable extension of al and z2 on the whole rectangle R, 
we can define the vector field on R: 

O(u, v) = r v) z(u, v) + [1 - r v)] Z(U, v), 

which is topologically equivalent in R to Z(u, v). Thus it is enough to prove the asser- 
tion of the lemma relatively to the field O(u, v). Let us consider the points in 
R:P  = ( -  2a, b), Q = (2a, b), O = (0,0), S = ( -  2a, 0), T = (2a, 0); and let us define L as 
the inner region of the closed curve formed by the segments PS, PQ, QT, by the arcs 
of trajectories through S and T and by the point O. 
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Let  (v, v) be new coordinates in the region L, with origin S and such that,  for 
example, P = (0, b) and Q = (4a, b). If  g(t, (~, ~)) is the flow induced by O(u, v) on R, we 
define the functions: 

P 

(0, %'1) 

b) 
Q 

L 

S ~ T 
V 

where v e [0, b], as: 

fi(z) = v-coordinate of the first intersection point be tween  the segment  PQ and 
the t ra jec tory  t ~ g ( t ,  (0,v)); 

~(z) = v-coordinate of the first intersection point be tween  the segment  PQ and 
the t ra jec tory  t ~ g ( t ,  (4a, z)). 

Both ~(~) and ~,(~) are monotone functions, and so we can define: 

~0 = lira ~(~), Y0 = lira r(~). 
z~0 ~ 0  

Let  us suppose that  the t ra jec tory  t ~ g ( t ,  (/~o, b)) has not the set  [0] as its limit set. 
Thus by the Poincar~-Bendixson Theorem there exists to > 0 such that: 

g(to, (~o, b)) = (~, b + ~), 

where ~ > 0. Moreover we can suppose that  0 ~< ~ < 4a. Indeed if ~ < 0 it follows 
that: 

~o = g(t ', (0, ~ )) t' > 0 0 <~ ~1 <- b 

and if ~ > 4a it follows that: 

~o = g(t", (4a, z2 )) t" > 0 0 ~< ~2 ~< b 

and both these conditions contradict the definition of ~0. Now, from the continuous 
dependence of the solutions of ordinary differential equations on the initial data of a 
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Cauchy problem, there exists a neighbourhood Uto,~ of the point (~0, b) such that, if 
(v, ~) ~ Uto,~ then: 

LIg(t, (v, - g(t,  (Z0, b))tL < 2 '  

for every ~ e R such that to ~< t ~< 0. 
This inequality implies that every trajectory t ~ g ( t ,  (v, ~)), where (v, z) e U~.~, 

must intersect backwards the segment PQ, and this is a contradiction with the defini- 
tion of ~0. This conclusion proves that there exists at least one trajectory of the field 
O(u,v) in R which has [0] as its limit set and, finally, this proves the lemma by virtue 
of the definition of the field O(u, v). w 

COROLLARY 2.2. - If ~ e R is a root of odd multiplicity of F(s) = 0 and/or G(s) = 0, 
there exist a trajectory of ($2+, =+ ) and a trajectory of (S_ 2 , =_ ) both having [(~, 0)] as 
their limit set. 

PROOF. - The assertion is a consequence of Lemma 2.1 and of the equivalence be- 
tween the semistability condition of (~,0) as a singular point of =~ and the odd multi- 
plicity of ~ as a root of F(s) = 0 and/or G(s) = O. " 

COROLLARY 2.3. - Let (0.1) be a system of even degree n, such that =~ is not iden- 
tically zero. Then there exist a trajectory of ($2+, =+ ) and a trajectory of ($2_, =_ ), 
both having [(~,0)] as their limit set. 

PROOF. - This corollary is still a consequence of Lemma 2.1, and of Lemma 1.3, 
which implies the existence, for even degree systems, of two singular and not 
semistable points of ~ ,  at least, m 

REMARK 2.1. - By using the symmetry of the phase portrait on the Poincar6 
sphere we can suggest a qualitative description of the Poincar6 field of systems veri- 
fying the hypotheses of Corollary 2.2 and Corollary 2.3: 

We shall now consider the case where =~ is identically zero: we shall prove that in 
such situation, independently from the degree n of the system (0.1), there exist many 
points on S 1 (actually they form an infinite subset of the equator of the Poincar6 
sphere) which constitute the limit sets of trajectories of ($2+, =+ ) or of ($2_, =~). 

Let us introduce some notations. Let R P  2 be the projective plane and let R P  be 
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the projective line, which we always consider as an embedded submanifold of R P  2. 
The sphere S 2 is a double covering o f R P  2 and the equator  S 1 of the sphere is a double 
covering of R P .  Therefore if (~1, ~2,0) e R P  r R P  2, with (x, y, z) homogeneous coor- 
dinates in R P  e, we have correspondingly two points in S 1 (the points of the fiber of 
the double covering): by using the coordinate sys tem we chose on S ~, such points are, 
for instance, (~, 0) = (~.z/$~, 0) and the diametrically opposed one. 

I f  (~ ,  ~e, 0) e R P ,  we can consider the vector  ~ = ($~, ~e) and its orthogonal vector  
~• = ( - ~ ,  ~) .  Let  us define: 

G~ (x, y) = , ~l -~2 P(x, y) + ~1 Q( , y) 

(here ( ,  > denotes the scalar product in Re) .  
The algebraic curve: 

r ~2 P(x, y) - ~1 Q(x, y) = 0, 

is the &isocline of (0.1). The map ~ ~ r defines a bundle of algebraic curves of degree 
n in R P  e : the isoclines of system (0.1). As an e lementary consequene of the definition 
of polynomials F(s) and G(s), and by simple propert ies  of a bundle of algebraic curves, 
we state: 

LEMMA 2.4. - (a) Let  (~, 0) e S ~, with ~ = ~2//~1 or ~ = ~1/~2. Then (~, 0) is a singular 
point of n~ if and only if (~1, ~2,0) is an intersection in R P  2 be tween  R P  and r (or, as 
we will use to say, if (~1, ~.2,0) is a point at infinity of r 

(b) The point (~.~, E.2,0) e R P  is a base-point of the bundle of isoclines of sys tem 
(0.1) (i.e. a point which belongs to every  isocline of the bundle) if and only if 

2 P~ (~1, ~2 ) -~- Q~ (~1, ~-2 ) -- 0. I$ 

Now we give another condition of existence of unbounded trajectories for sys tem 
of type  (0.1): 

LEMMA 2.5. - Let  (~1, $2 ,0)e  R P  such that: 

(a) (~1, ~2,0) is a point of r-multiplicity, r~> 1, of the isocline r 
(b) the projective line is a component of /-multiplicity, 0 < 1 < r, of the iso- 

cline r 

(c) (41,42,0) is not a base-point of the bundle of isoclines of sys tem (0.1), 

(d) r-= (1 + 1) mod 2. 

Then, if ~ = ~/~.1 or ~ = ~1/$2, at least one of the two antipodal points, (~, 0) and 
(~, 0), constitutes the limit set  of a t ra jec tory  of one of the sys tems ($2+, =+), 
(S_ 2 , ~_ ). 
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REMARK 2.2. - The ~,geometric~ hypotheses (a)-(c) have the following algebraic in- 
terpretation. Let: 

P ( x , y ) =  P ~ ( x , y ) =  ~ F. a ~ x ~ - ~ y  ~, 
k=O k=O h=O 

k 
Q(x , y )=  ~ Q~(x ,y )=  ~ ~ b ~ x ~ - ~ y  ~. 

k=O k=O h=O 

Then hypotheses (a)-(c) are equivalent to hypotheses (a)'-(c)', where: 

(a)' let 0 ~< ~ ~< r - 1 and 0 ~< k ~< n. For  every (11,/2) e No • No such tha t  ~ = l~ + 
+ 12 + n - k it results that: 

k~oh=o\  ~1 12 

and moreover there exists ((11, ~2)e No • No such that  11 + 12 + n -  k = r and 

k - . 11 ! -12 ! (~2 ahk -- ~1 bhk ) ~.~- ~- ~" ~h- ~ = 0 ; 
o o 

(b)' it results that: ~ a ~  - ~ b~ = 0 when 0 ~< h <~ k, n - 1 + 1 ~< k ~< n and there 
exists h e No, such that: ~ a~, ~_ t - ~1 b~, ~_ t r 0; 

(c)' (a consequence of Lemma 2.4): P~(~l~e) + Q~(~,  ~e) > 0. 

PROOF OF LEMMA 2 . 5 .  - From Lemma 2.4 each of the points (~, 0) and (5, 0) in the 
s ta tement  of the lemma is a singular point of the Poincar~ field ~. F rom hypotheses 
(b) the isocline r has the following equation in projective coordinates: 

n - I  

z t F. (~2ahk--~lbhk)Xk-~yhz~-k-~=O. 
k=O 

Let  us denote r the algebraic curve of order n - 1 with equation 

n - l  

(~2ahk- ~l bhk)Xk-hYhZ ~-k - t  = O. 
k=0 

By hypothesis (a), (~1, ~2,0) e r I t  is well known that  a real point of an algebraic 
curve in R P  2 is topologically isolated only if it has an even multiplicity: so by hypoth- 
esis (d) there exists a real branch R~ of r and so a real branch of r too, with the fol- 
lowing properties: 

(~) (~1, ~ ,  0) e R E, 

(~) the points of R~ are points of odd multiplicity of r 

Let  r + and ~+ be two parallel straight lines in R P  2, with (~1, ~2,0) e r § We sup- 
pose to choose r + and ~+ in such a way that  R~ is the only branch of r inside the half 
strip included between r + and ~+. Of course we can neglect the case r + c R~ or ~+ c R E 
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because in this situation r § or ~+ should contain an unbounded trajectory and the as- 
sertion of the lemma would be immediate. 

By hypothesis (c) it is also possible to choose r + , ~+ and a segment l, orthogonal to 
r*, such that the half strip L, with boundary aL = r + u ~+ u l, contains R, and no 
other real points of r and does not contain any point of the isocline r By the defini- 
tion of the isocline ~,: 

and by virtue of property (8) it follows that if (x, y) e r § and (x', y') �9 ?+ then: 

G~(x, y) G~(x', y ')  < O. 

According to this condition, and except from the inversion t ~ - t, there are only the 
following three possible situations: 

Re \ , ~_ Gr < 0 ~+ 
L 

(I) 

?,+ 

Gr 

(II) 

G~<O 

Gr 

L 

r + 

(III) 

G~<O 

G~>O 

L 

r § 

By hypothesis (c) and the definition of L it is easy to prove that the situation in fig. (I) 
is not possible. In the situation of fig. (II) it is clear (see, for instance, [L], pag. 213) 
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that  every  t ra jec tory  through a point in L has an image in (S+ ~ , =+ ) or in (S~_, ~_ ) hav- 
ing [(a, 0)] or [(~, 0)] as limit set. The situation sketched by fig. (III) implies (see still 
[L], pag. 215) the existence of at least a t ra jec tory  of (S+ ~ , =+ ) or of (S~_, ~_ ), having 
[(~, 0)] or [(~, 0)] as limit set. So the proof of the temma is complete. " 

We can now s tudy the case of sys tems of type  (0.1), satisfying =~ ~ 0. 

LEMMA 2.6. - Let  us consider a system of type  (0.1), and let the relative field =~ be 
identically zero. Let  us denote ~ = [($1, $2,0) e RP: P~ (x, y) + Q~ (x, y) = 0]. Then: 

(a) the set  ~ has k elements, O<.k<~n - 1, 
\ 

(b) for  every $ e R P \ 5 ~ , \ $  = (~1~ ~e, 0), one of the two antipodal points (~,0), 
(~, 0) e S 1, ~ = E.2/~, or ~ = E.1/~, ~ forms the limit set  of at least a t ra jec tory  of (S~+, =+ ) 
or of (S_ ~ , ~_ ). 

PROOF. - The proof consists in verifying that  if ~ e R P \ 5  the hypotheses  of Lem- 
ma 2.5 are satisfied. Let  ~= ( ~ , ~ , 0 ) e R P  be a fixed point. Another  point V = 
= (w,  ~2, O) ~ R P  belongs to the isocline r if and only if (V~, v2) is a solution of the ho- 
mogeneous equation: 

~2 P~ (x, y) - ~ Q. (x, y) = 0. 

By virtue of Lemma 1.2 and by the hypothesis that  =~ -- 0, the above equation is 
equivalent to: 

n - 1  n - 1  
~ E ak~xn-kY k - ~ l  E " ~ - k o  k t * k _ l , n ~  y =v,O 

k=O k = l  

or :  

n - 1  
(2.1) (~2x-~ly)  F~ ak~x~-ky k = O. 

k=0 

By equation (2.1) the intersection points be tween  r and R P  are, in addition to 
(~1, Z.2,0), the solutions of: 

n--1 
(2.2) ~ ak~xn-k - l y  k = O. 

k=0 

This is an ( n - 1 ) - f o r m  which cannot by identically zero (in such case P~(x, y ) -  
~- Q~ (x, y) -- 0) so, by (2.1) it follows that the points in R P  belonging to every  isoctine r 
are the points corresponding to the k solutions of (2.2), with 0 ~< k ~< n - 1. 

This conclusion, together  with Lemma 2.4, proves the s ta tement  (a). 
We can now observe that  every  ~ R P \ J  is a simple point (i.e. with multiplicity 

one) of the isocline r Moreover  no isocline r can have the projective line R P  as its 
component. Indeed if R P  were  a component of r ~ = (~,  ~.2,0), it ought to be saris- 
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fled the identity: 

or  

~ Pn (x, y) =- ~1 Qn (x, y) , 

~2 akn = ~1 bkn ~ 0 <~ k <- n 

and by Lemma 1.3 and the hypothesis =~ ~ 0 this implies that  Pn (X, y) =- Q~ (x, y) =- O, 
impossible. 

Finally, every  ~ e R P \ 5  verifies hypotheses  (a)-(d) of Lemma 2.5, and the asser- 
tion follows. �9 

REMARK 2.3. - In general it is not possible to extend Lemma 2.6 and to claim that  
the same results  are t rue for every  $ e R P .  An example is the sys tem [C2]: 

ic = - y + x2 y , ~] = x + xy  ~ . 

The trajectories of the sys tem are (contained in) the conics 

x 2 + ( 1 - r 2 ) y 2 = r  2 r e R  2. 

This sys tem satisfies the condition =~ ~-0. Moreover  the points (0, 1, 0), (1, 0, 0 ) e R P  
verify P~(x ,  y) + Q~(x, y) = 0. The points in S 1 corresponding to (0, 1, 0) are limit sets 
of trajectories of (S~+, =+ ) and of (S_ 2 , r,_ ); on the contrary no one of the two antipodal 
points in S '  which correspond to (1, 0, 0) is the limit set  of a t ra jec tory  of ($2+, =+ ) or of 
($2_, z_ ) (see the following figure): 

f t 
By using Corollary 2.3 and Lemma 2.6 we can state our main result: 

THEOREM 2.7. - E v e r y  system of type  (0.1), with even degree n, and with 
re: S 2 ~ T S  2 as the associated Poincar~ field on S 2, has at  least one t ra jec tory  of 
($2+, =+ ) and one t ra jec tory  of ($2_, =_ ) having a point of the equator  of S 2 as a limit 
set. m 
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By using this theorem it is easy to prove the following statement, which repre- 
sents a conjecture in [ICNO]: 

COROLLARY 2.8. - A  system of type (0.1) and even degree is such that the equator 
S 1 of the Poincar~ sphere cannot be the limit set of any trajectory of ($2+ u $2_, =+ _ ) 
(here =+ _ is the restriction of the Poincar6 field on $2+ w S ~_ ), nor can be the accumula- 
tion set of closed trajectories. In particular, even degree polynomial planar systems 
cannot have a global centre. �9 

REMARK 2.4. - For every odd integer n there exist polynomial planar systems of 
degree n with a global centre. For instance [C2]: 

= yn, ~ = -  x ~ n any odd integer, 

has a global centre at the origin. 

REMARK 2.5. - It is well known [GV] that the equator S 1 of the Poincar6 sphere 
cannot be a closed trajectory of the system (S 2, =) associated to a system (0.1) with 
even degree. It might seem natural trying to prove Corollary 2.8 using this property. 
But, for instance the proposition: 

~If (0.1) has a global centre, the equator of the Poincar~ sphere is a closed tra- 
jectory for the associated Poincar6 field~ 

is false, as shown by ([SC], pag. 87): 

i t = y ,  ~] = - 2x ~ , 

which has a global center at the origin and two antipodal singular points on the equa- 
tor of the Poincar6 sphere. 

Finally, we state some necessary conditions for the existence of global centers of 
polynomial systems: 

THEOREM 2.9. - Necessary conditions for the existence of a global center of a sys- 
tem of type (0.1) and degree n are: 

(a) n is odd; 

(b) the coefficients of P~(x, y) and Q~(x, y) do not verify: 

a ~  = b0~ = O, a ~  = bk + 1, n 0 ~< k ~ n - 1 ; 

(c) polynomials F(s) and G(s) have not real roots of odd multiplicity; 

(d) there does not exist any point ~ e R P  which verifies hypotheses 

(a)-(d) of Lemma 2.5 (or, in alternative, the hypotheses (a)'-(d)' of Remark 2.2). 
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PROOF. - Statement (a) follows from Corollary 2.8, and statement (b) is a conse- 
quence of Lemma 2.6. The statement (c) is essentially the Corollary 2.2, and the 
statement (d) follows from Lemma 2.5. �9 
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