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FILIPPO CHIARENZA - MICHELANGELO ]~RANCIOSI 

Summary. - In  this paper we study the well-posedness of the Dirichlet problem for an elliptic 
non divergence form second order equation. The coefficients are not assumed to be conti- 
nuous but their derivatives are supposed to belong to a suitable Morrey space hence generali- 
zing a classical result by C. Miranda. 

Introduction. 

In this paper we consider the uniformly elliptic equation in non divergence 
form 

75 

(0) L u  = ~ a i j ( x ) u ~ x ~ = f  
i , j  = 1 

in ~9, a bounded open set of R ~. 
We look for strong solutions of the Dirichlet problem, i.e. solutions from class 

W2'2(t~) n W~'2(t~) (for precise statement see Section 2). 
As it is well known (see [8]) the assumption aij  e W 1,n gives the wellposedness of 

the Dirichlet problem for equation (0) with f e L 2. 
This is an optimal result among the LP spaces because for aij  e W 1, ~-~ (~ > 0), the- 

re are examples showing the non uniqueness of the solution. An improvement of the 
Miranda's classical result has been given in [1] assuming the (a i j )~ ,  i, j ,  s = 1, ..., n in 
the weak L ~ space with an additional smallness condition for the weak norm of the 
coefficients. Our result is along the same line but with a different scale of 
spaces. 

More precisely, assuming that (aij)x,,  i, j ,  8 = 1, . . . ,  n, belong to V L  2p,~-~p, p > 1, 
a convenient subspace of the classical Morrey space L 2p'n-2p (for the definition see 
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Section 1) we prove an existence and uniqueness result for the Dirichlet problem (Th. 
2.1). 

The belonging of (a~j)~ to V L  ~p' ~- ep does neither imply the continuity of the coef- 
ficients a i j  , nor the fact that their derivatives are in the weak L ~ (or afortiori  in L ~ ) 
as shown in Example 2.1. 

Our result rests on some imbedding theorems proved by C. FEFFERMAN in [5] (see 
also [2], [3], [9]). These are recalled with some consequences and remarks in Section 1. 
In Section 2 and 4 we study the nondivergence equation (0) proving our main result, 
while in Section 3 we give some auxiliary results concerning a related divergence 
form equation. 

We wish to express our gratitude to Professor F. GUGLIELMINO for many helpful 
comments and suggestions. 

1. - S o m e  f u n c t i o n  s p a c e s .  

The subspace 
LP,~(~). 

For r e ]0, 8[ we set 

Let t2 be a bounded open subset of R ~ such that 

!t2(x,r)l =-I{Y et2: ] x - y l  < r }  ~ Ar~(1 )  

for r e ]0, ~[, where ~ is the diameter oft2 and A some positive constant independent of 
r and x. 

F o r ~ e ] 0 ,  n[, l ~ < p < + ~  we set 

(1.1) sup [ l f x ~ a -~  lu(Y)[PdY " 
r e]0, ~[ ~(x, r) 

of function in L p such that (1.1) is finite in the Morrey space 

(1.2) 1; sup lu(y) l p dy  = VP (r) 
x ~ D  

p e]0, r[  D(x,~) 

and we say that u ~ VLP'~(t2) if lim ~(r) = 0. We will refer to v(r) in (1.2) as the V L  p'~ 
r---> 0 

modulus of u. 
Similarly, for u e LP(t2), we set 

sup f lu(x)lP dx = ~ (~) . 

(1) If E c_R ~ is Lebesgue measurable we set IEI for its Lebesgue measure. 
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Clearly o~(~) is a decreasing function in ]0, [DI] such that  lim o~(r = 0. We will refer  
to ~(~) as the A C  modulus of lu] p. ~-~o 

We will need for fur ther  developments some properties of VL ~' ~' (t~) which we sta- 
te in the following lemmas. 

LEMMA 1.1. - Given f e VL p' ~ (~) and ~ > 0 there exist two funct ions f l ,  fe such 
that 

f = f ~ + A ;  f2 e L~(~9); Ilflllp,), < ~ .  

P R O O F .  - Let  } such that  rj(}) < (~/2F. Lett ing Ak = {x e t2: If(x)l > k) we 
have 

f 
lim j lf(x)IPdx 

K--~ +~ 
AK 

and then we can find K > 0 such that  

= 0  

A~ 

Now let f l  =fZA~, f2 = f - - f 1 ,  where ZA~ is the characteristic function of A~. Ob- 
viously f2 e L ~ (~) and II]~ II~ ~< ~:- Moreover 

liflliP"~'= xe~sup 'P)'[1 Jl Ifl(y)lPdy] ~ SUPxe~ ,  If~(y)r'dy + 

+ sup [ l - -  ~ ifl(Y)l pdy < z + If~(Y)I pdy <~ 
J ! -5 7 

~]~,~L ~(x,~) A~ 

LEMMA 1.2. - Let f e VLP')'(~)(2). Then lira IIf(x - y) -f(x)llp,~ = O. y---~ O 
P R O O F .  - We have, for ~ e]O, ~[, 

t l f ( x - Y ) - f ( x ) l l ~ =  sup 1 f , ~ - ~  I f (x  - y) - f ( x ) lPdx  <- 
r e]0,~[ ~9(z,r) 

f ~< supz~ lr ~ I f ( x -  y) - f ( x ) lPdx  + ~ I f (x  - y) - f ( x ) l P d x .  
r el0, ~[ $2(z, r) ~9 

(2) We extend f to R n setting f(x) = 0 for x e R n ~ 2 .  
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The first term on the right hand side can be made small by the assumption and the 
second is small, by the continuity of translation in L p, if we take l Yl small. 

By this lemma and a known result (see [12]) we have that if f belongs to V L  p' ~ (t)), 
the usual mollifiers converge to f in the L p'~ norm. In other words, given any f e  
e VLP'~(~) with VL p,z modulus v(r), it is possible to find a family of C ~ functions 
{fh}h>0 converging to f i n  L p'~ and with their V L  p'~' moduli vh(r)< v(r). 

The following theorems firstly proved by C. FEFFERMAN, is well known. 

THEOREM 1.1 ([5], [2], [3]). - Let v ~ L p' ~- 2p (t)) f o r  some p such that n / 2  >I p > 1. 
Then, f o r  any  u e C~ (t)), 

f U 2 (X) V(X) dx ~ C O HVHp, n_2p f IDu(x)l 2 dx, 
t~ D 

where Co is a positive constant depending on n and p only (see [3]). 

From Theorem 1.1 and Lemma 1.1 we deduce 

THEOREM 1.2. - Let n /2  >~ p > 1, v e VL2B'n-2P(t)) with V L  2p'n-2p modu lus  ~ and 
A C  modulus  of  Ivl2PoJ. Then, for  any  r  it exists K(~)>0 such that 

(1.3) f u s (x) v(x) dx <<. ~llDull~ + g(r 
D 

for  all u e C~ (tg). 
Here K(r is a positive constant depending on ~, p, n, ~ and o~. 

PROOF. - We use Lemma 1.1 with )~ = n - 2p, f =  v 2. Keeping the notation of that 
lemma we have, for any ~ > 0 

for any u e Co ~ (t)). 

REMARK 1.1. - W e  explicitely observe that the conclusions of Theorems 1.1 and 1.2 
remain true for u e W0~'2(t)). We will now briefly discuss, for later use, the validity of 
Theorem 1.2 in the case u e W 1,2 (t)). If a~ is smooth, say C 1, extending by reflection 
both v and u, it is possible to produce extensions ~ and: ~ of v and u defined in some 
open set ~, t~cC ~, belonging to V L  2p,~-2p (~) and W01'2 (~) respectively. In particular 
it is easy to see that the norms of ~ and ~ in the relevant spaces are still controlled by 
the correspondent norms of v and u. 

From this facts it clearly follows that 

(1.3) holds true for  u e Wl '2( t))  i f  at~ is C 1. 

Finally we notice that by the remarks following Lemma 1.2 and well known facts 
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about convolutions, given any function v in L 2p'n-2p, it is possible to find a family of 
C a functions {fh}h>0, converging to f in L 2p'~-2p, for which (1.3) holds with a con- 
stant K(D independent of h. 

2. - An el l iptic equat ion  in nondivergence  form. 

Tn t~, a bounded open set R ~, we consider 

I a i j ( x ) � 9  

(2.1) Lvi~12<<i,~laij(x)$i~.j ' 

where ~ > 0 is a positive constant. 
We consider in ~9 the elliptic equation 

Lu=- - ~ a i j ( x ) u ~ j = f  
i,j = 1 

and the associated Dirichlet problem 

ILu = f ,  
(2.2) [u �9 W2'2 (t)) • W~'2 (t)) , 

We will prove the following 

aij(x) = aji(x), i , j  = 1, ..., n ,  

a.e. in ~, Y~ �9 R n 

f e L2(t~). 

THEOREM 2.1. - Let t~ as above and assume its boundary aO to be locally the graph 
of  a C2 function.  Assume  (2.1) and 

(2.3) (a~j )~o e VL 2p'n- 2p (tg) (a) 

for  some 1 < p  <~n/2 and any s = 1, ..., n. Then, for  any f e L2(t~), problem (2.2) has 
a unique solution. Moreover 

(2.4) I]uHw2,=(a) <~ I~]f]IL2(a ) 

holds, with a positive constant K independent o f f .  

Before proving Theorem 2.1 we wish to show by an example how it is related to 
the existing literature. 

(a) Here and in the following the derivatives are taken in the D'(t~)sense. 
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Precisely we have: 

EXAMPLE 2.1. - Let n I> 4, t~ = B(O, 1/2), x = ( x l ,  ..., xn)  e 

1 if i = j  = 1, 

aij(x) = ~ij(2+sin I l o g ( x ~ + x ~ + x ~ ) l  ~) ff ( i , j ) r  

with ~ e ]0, 2/3[. Then we have " 

(a~y)~ e V L  8, ~ -  3 (~)  , (aji)~ ~ L ~-~ (~) 

for s = l, ... , n, j =  l, ... , n, i = l , . . . , n ,  0 < ~ < 1 .  
This in turn implies that (aij)x ~ doesn't belong to the space weak-L~(~). Moreover 

a~j(x) ,  i>~2, is not continuous in ~. 
We can conclude that the results in [8] and [1] as well as the classical results con- 

cerning continuous coefficients cannot be applied to solve the Dirichlet problem (2.2) 
with these coefficients. On the contrary the coefficients aij(x) fall in the scope of 
Theorem 2.1. We now turn to the preliminaries of the proof of Theorem 2.1. 

To begin with we observe that by Lemma 1.2 and the following remarks we can 
mollify the coefficients aij a s  well as the known term f i n  the equation L u  = f  and then 
assume them smooth, say C2(~). 

By standard arguments (see [8]) the conclusion of Theorem 2.1 will follow by an 
existence and uniqueness result for a relected divergence form equation and by bound 
(2.4) whose proof will be given in Section 4. 

3. - A re lated d ivergence  f o r m  equat ion .  

We consider in t~, bounded open subset of R ~ the differential operator 

L u  ~ .  - 
i , j = l  i = 1  

where 

(3.1) I ai j  (x) e L ~ (t~) , a i j  (x)  = aji (x)  , 

n 

[,,1 12 -< < 1 

i , j  = 1 , . . . , n ,  

a.e. in ~, for every ~ e R ~, and v is a positive constant; 

(3.2) bi ~ V L  2p'~- 2p (tg) 

for i = 1 ,  ... , n and some l < p <--. n / 2 .  
First we want to prove the following lemma which will be useful in the 

following. 
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LEMMA 3.1. - L e t f  belong to VLP,~(~) with l ~ < p <  + ~, 0 < ) , < n .  Then Yr 
3 ~  < O: E c t?, IEI < ~ ]lf)~E Ilp,), < z. 

PROOF. - Let ? > 0 be such that, r~@) < (z/2F, where ~ is the VL p')~ modulus off.  
From the absolute continuity of the integral, we obtain ~ > 0 such that 

Ec_ , iEI<   f?dx< 
E 

We have 

IlfzEllp, x= sup 1 if)~ElPdy <~ 
xEf2 

r e]O, o~ [. ~(x, r) 

o < ~ a  r-~ if)CElPdy + sup 1 ifzEl~dy < 
XE.Q 

r~<?~<# ~(x, r) 7"<r<~k D(x,r) 

<- ~ + -~ tflPdy <~. 
E 

For any f e W -1 (~), where W -1 (~r~) is the dual space of W 1'~ (~), we consider the 
Dirichlet problem 

(3.3) I L u = f  in t~, 

[u e W '2 

For any solution of problem (3.3) we prove the following 

THEOREM 3.1. - Let u be a solution of problem (3.3) and assume (3.1) and (3.2). 
Then 

f[UHw1 < t tfllw- ( ), 
with the constant K depending only on n, v, p, the VL zp,n-zp modulus of continuity of 

Ibl = ~( ~ b~) and the AC modulus of Ibl 2p. 
\ i = 1  / 

PROOF. - For any nonnegative real number K1, we set SgKI= {x eta: 
u >t K1, IDul > 0}, M~ (Ki) = cl/~]I Iblxa~1 l~/,2n_2p,~-~, where Co is from Theorem 1.1. 

The function M1 (K~) is nonincreasing for K1 1> 0 and tends to zero at the infinity. 
Let us prove that it is also continuous. In fact we prove that 

lira [l[IbIza~+~tl-]llblxa~]l I = O, 
h-~O 
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for any nonnegative real number K. We note that  

and for any s>O,  by Lemma 3.1, there exists ~ > 0  sueh that  

implies 

If  M1 (0) ~< 1/2 we set K~ = 0, otherwise we select K~ such that  M~ (K1) = 1/2. I f  
K I > O ,  for any K ~ e [ 0 , K I [  we set t ~ K ~ = { x e ~ : K 2 < ~ u < K 1 } ,  M2(K2)= 
= cl/~]l Iblz~lN,~_~ ~ -~. Again, if M~ (0) ~< 1 /2  we take K2 = 0, on the contrary we se- 
lect K2 such that  Me(K~)= 1/2. Repeating this process we show tha t  there 
exists 

4cl/2 -1 ( \1/4p 

j 
such that  Kt = 0, where ~: ~(~) < (,,2/16co) ~/2p and ~ is the V L  2p'~-~p modulus of conti- 
nuity of I b[. 

In fact if M~(0) ~< 1/2 we h a v e t  = 1, otherwise 3 m  > 1, m e N:  M~(K~) = 1/2  Vi e 

e {1 , . . . ,m}  and m / 2  = cl/2v -1 b 1/2 i~1111 IZa~l~/~_2p. Le t  us fix then P: (rj(?)) 1/2p < 
< v/4c  1/2. We have 

b 1/2 III Iz~l~,/,~-~p-< sup 
0<r<? 

f . 11/4p 1 2p Za~ dy 
r~_ ~p Ibt + 

t~(x, r) ..1 

]1/4p 
1__!__ f Lbl~Pdy ~n-2p 

and then 

Iblx~E~l~/p,~_2p ~ m(~@)) 1/2p n u 
i=l 

~.(,~-~p)/4p .= Ibl2Pdx 

<~ m 4c~/2 + 1 \1/4p - -  7.~/4p_1/2 "tbl 2p dx  . 

From this we obtain 

1 tj v ~.~/4p-1/2 ~ Ibl2Pdx " 

We consider K1, ..., Kt and set ul = (u - K1 )+ - max (u - K1,0). Since u is a sol- 
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ution of problem (3.3) we have 

f( ~, a~u~(~)~- ~ b~u~u~)d~= <f,u~>, 
\ i , j= l  i = 1  

from which using (3.1), (3.2) and Theorem 1.1 

~flDull2dx<~llfllw-i(D)llulllw~'~(~)+(Ilbl2u~dx)!/2(jlDull2dx) 

Hf IIw-~(~)Ilu~ilw~,~(~) + c~/2 IIIblz~ I~/~,~- ~p f IDu~ 12 dx . 

Remembering that M~ (K1) = c~/211]blzaK~l~/,e~_ ~p Y - 1  ---- 1/2, w e  deduce 

Now for any q e {2, ..., t} we set in 

u q = 0  

%q ~-- U - -  K.q 

~ = K~_ I - Kq 

For any q e {2, ..., t} we have 

i f  U < Kq , 

if Kq<~u<K9_~, 
if u ~ K q _ l .  

i, 1 a i j u x ~ ( u q ) x i -  i= l  bi?~xiUq d x =  (f, uq} 

q 

f b~u~u~dx= ~ f bi(u~)~uqdx 
h = l  

t) DKh 

and then 

q 

<(f, uq)+ ~ ~ f Ibi(uh)~uqldx 
h=l  i = 1  

~QKh 

from which 

f [Duq[ ~ dx <~ IIflIw-~<,,)l[uqllw~,=<,~) + cj/2li]blx~lg2~_2~ IDu~l 2 dx + 
D (! )lj2(j ;2 

+C~o/2 E Illblz,Kq ~1/2 ~p,=- 2p I Dual 2 dx t Duql 2 dx . 
h = l  
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Then 

and 
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q - 1  

711u~llw',:(,) < Ilfll~-,(~) + 2 ~=, 

2 q 
Iluallw,,2<~) < 711fllw-,(~), 

for any q =  1, 2, ... t. The theorem is then proved if we notice that Ilu+ilw~,2<~)< 
t 

~< Y~ I[UhHw,.2(a)and use a similar argument for u - =  min(u, 0). 
h = l  

Now we define for u, v e W01'2(t~) the bilinear form 

B(u, v) = aijux~vxj-  biuxlv dx. 
i, 1 i =  1 

Using Theorem 1.1 we deduce immediately that this form is continuous. Moreover 
we have 

LEMMA 3.2. - There exists a positive constant ~, such that 

v 2 
B(u, u) >1 7Jlullw, ~(~)- rNull~, 

for any u e W~'2(t~). 

PROOF. - For any u e W0 ~'2 (~) we have 

f i,~.~=laijUxiUxjdx-f i~lbiuxfU dx~B(u,u). D 
Then, by (3.1), for any ~>0  

2 Z 2 1 ~llullw,,~(~) < 711ull~,,~(,)+ ~ f Ibl~u~dx + B(u, u), 
D 

and using Theorem 1.2 the conclusion follows choosing ~ properly. 
By Fredholm alternative, using Theorem 3.1 and Lemma 3.2 the next theorem 

follows. 

THEOREM 3.2. - I f  (3.1) and (3.2) hold, then there exists an unique solution of pro- 
blem (3.3). Moreover the following bound holds 

Ilull,~,,:(,) < KIIfll~-,(<~), 
with K a positive constant depending only on ~, ~(r), ~o(~), Co, n, p where ~(r) is the 

VL~P,~-2P modulus of continuity of lbl = ( ~ b~)l/2 and a(r is the AC modulus of 
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4. - P r o o f  o f  T h e o r e m  2.1.  

Let  t~ as in the s ta tement  of Theorem 2.1 and assume (2.1) and (2.3). We can rewri- 
te equation Lu = f  in the form 

(4.1) Lu=- ~ (aijUxj)~+ ~ (aij)~u~j=f. 
i,j  = 1 i,j = 1 

We assume that  aij(x) a n d f b e l o n g  to C2(~). We will prove (2.4) for solutions u 
e C 2 ( ~ ) n  C3(t)) of the Dirichlet problem 

Lu = f , = o ,  

with K depending only on v, n, p, v(r) and ~(z), where v(r) and o~(~) are respectively 
F n 71/2 

the VL 2p'n-2p modulus of continuity of A -- | ~ ((aij)~)2] and the AC modulus of 
A 2p. Li,j,s = 1 j 

Let  t~' be an open subset of~9 with ~9' cc t~, h e C 1 (t~) such that  h ~- 1 in tY, 0 ~< h <~ 
~< 1 in ~. Le t  1 ~< s ~< n and consider v(x) = h(x )u~ ,  as a tes t  function. From (4.1) we 
get 

- f  ,~ l (a i juxs)x~hux~dx+f i~ , (a iJ )~ux jhu~.dx=f fhu~o �9 = 
D t~ s 

Then 

s 17 

s i , j  = 1 

+f 
s y2 

h(aiJ)x'uxj Ux~x~ I dx + 

t f h u ~ l  dx = 11 +...  + I5. 

Using (3.1) we have 

(4.2) 
n 

V f i~= l(UXixs)2 d x  ~ I1-{- . . .  -{-15. 
tg' 

Also, for any ~ > 0 

(4.3) 

r  2 K 2 I ]~1 "< K 7 IiUxsx8112 + I lnul l2 ,  

i[(iDul)J  + HDull , 



296 FILIPPO CHIARENZA - MICHELANGELO FRANCIOSI:  A generalization, e t c .  

where K is a positive constant depending on n, h and the L ~ norms of the coeffi- 
cients aij. 

We now set As 2 = ~ ((aij)~) 2. Then 
i , j  = 1 

Using Theorem 1.2(4) we obtain for any ~, z > 0 

if 184 -~ (qDuD~)2dx + ~ (A~lDul)2dx< 
t) t~ 

Letting ~ = 2z 2 we get 

E2 f . f l j  l 
<<.K (([Dul)~)2dx + ~ ID2ul2dx + ~ IDut2dx . 

(4.4) I3<K iDUul2dx+ ! fDul2dx 
80.3 

D 

A similar bound holds fo r /4 .  
Finally we consider/5.  We have 

~ f  l f f 2 d x .  (4.5) I5<<- -~ ]D2ul2dx + 
Q 

From (4.2), (4.3), (4.4), (4.5) we obtain 

U]IL2(~,)<K(s+~) iD2ul2dx+K + 1 1 

where K depends also on sup [Dh]. 

By Theorem 3.1, fixing ~ + ~< ~/2K we deduce 

(4.6) ~l[D2UllL2(,,) < ~ ~ e 7119 uH2 + hq[/l[~, 

where K depends on n, p, v, v(r), oJ(~) and sup [Dh[. 
Then with standard techniques (see e.g. [6], p. 187) we obtain a majorization 

(4) See Remark 1.1 
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formula like (4.6) near  the boundary that  added to (4.6) gives 

liD < Kllfll , 

where  K depends on n, p, ~, v(r), ~(~) and t}. 
This concludes the proof of Theorem 2.1. 
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