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The Infinitesimal Generators 
of Semigroups of Holomorphic Maps (*). 

MARCO ABATE (**). 

Let X, Y be two complex manifolds; we shall denote by Hol (X, Y) the space of 
holomorphic maps from X into Y, endowed with the compact-open topology. A one- 
parameter semigroup of holomo~phic maps (in short, a semigroup) on X is a continu- 
ous map ~: R + ~  Hol (X, X) such that ~0 = idx, the identity map of X, and 

(1) V s ,  t e R  § ~ s O ~ t = ~ s + t  . 

This notation is a continuous analogue of the concept of sequence of iterates of a map 
f e  Hol(X, X); indeed, a sequence of iterates can be characterized as a map (P: N-~  
--~ Hol (X, X) such that ~0 = idx and satisfying (1) for every s, t ~ N. 

The first paper concerning one-parameter semigroups of holomorphic maps seems 
to be [T], where problems somehow regarding the asymptotic behavior of one-par- 
ameter semigroups on 4, the unit disk in C, are studied. Later on, the typical ap- 
proach used to be via the idea of fractional iteration; loosely stated, one wants to find 
a sensible way of defining, at least locally, the r-th iterate of a holomorphic function 
for any positive real number r. For a recent work on this subject, see [C]. 

The real break-through in the study of one-parameter semigroups in one complex 
variable is due to BERKSON and PORTA [BP] and HEINS [H]. Following [W2], they re- 
lated semigroups and the theory of ordinary differential equations, being able to clas- 
sify all one-parameter semigroups on Riemann surfaces (for a unified account of their 
results see [A3]). 

Strangely, there seems to be almost no papers on semigroups in several complex 
variables; as far as we know, they have been studied only in [A1, 2] and [V]. In this 
paper we want to generalize to arbitrary complex manifolds some of the results 
of [BP]; in particular, we want to describe at some extent the relationships between 
semigroups and ODE in several complex variables. 

First of all, we fix some notations. Let X and Y be two complex manifolds. A se- 
quence {f, } c Hol (X, Y) is said compactly divergent if for every pair of compact sets 
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H r X and K r Y we have f~ (H) ~ K = 0 eventually. A family 5~r Hol (X, Y)  is normal 
if every sequence in 5 ~ has either a converging subsequence or a compactly divergent 
subsequence. A complex manifold X is taut if Hol (~, X) is normal; it turns out that if 
X is taut then Hol (Y, X) is normal for every complex manifold Y (see [Wu] and [K]). 
Standard examples of taut manifolds are provided by strongly pseudoconvex domains 
and by complete hermitian manifolds of strictly negative holomorphic sectional cur- 
vature (see [Wu]). 

If r R + -~ Hol (X, X) is a semigroup on a complex manifold X, we shall denote by 
a prime (like in ~ ) the derivatives with respect to the complex variables, and by a 
dot (like in ~) the derivatives with respect to the real variable, d~Pt will always denote 
the differential with respect to the complex variables. 

We begin proving a general fact about one-parameter semigroups: 

P R O P O S I T I O N  1. - Let ~: R + - )  Hol (X, X )  be a one-parameter semigroup on a com- 
plex manifold X. Then ~t is injective for all t >I O. 

PROOF. - First of all note that, since de t (d~ t ) - )  1 as t - ) 0 ,  for t small enough 
every ~t is locally inject ive.  

Assume, by contradiction, that ~to (zl) = CA0 (z2) = z0 for some to > 0 and Zl, z2 �9 X, 
with zl ~ z2. In particular, if t > to we have ~t (zl) = ~t- to (~t0 (zl)) = ~t- ~ (~t0 (z2)) = 
= Ct (z2); in other words, the two curves t ~ r (Zl) and t ~ ~t (z2) start at distinct points, 
meet at t = to and coincide thereafter. Let  to be the least t > 0 such that ~t ( z l )=  
= ~t (z2), and set zo = ~t0 (zl). Then no ~ can be injective in a neighbourhood of zo, and 
this is a contradiction, q.e.d. 

In particular, it may happen that ~t �9 Aut (X), the group of holomorphic automor- 
phisms of X, for all t>~0. In this case �9 extends to a one-parameter group, i.e., to a 
continuous group homomorphism of (R, +) to Aut (X). Actually, i f X  is taut then �9 is 
a one-parameter group iff ~t0 is an automorphism for some to > 0: 

P R O P O S I T I O N  2. - Let ~: R + - )  Hol (X, X )  be a one-parameter semigroup on a taut 
manifold X. Assume ~to �9 Aut (X) for some to > 0; then ~ is a one-parameter semi- 
group of automorphisms. 

PROOF. - Since ( ~ t o / n )  n = ~to e Aut (X) for all n e N * ,  we clearly have ~no e Aut (X) 
for all r e Q +. By continuity, ~ o  e Aut (X) for all r �9 R + (for X taut implies Aut (X) is 
closed in Hol (X, X); see [Wu]). q.e.d. 

In this paper we shall need a few facts on ordinary differential equations; namely, 
we shall use the following basic existence theorem: 

THEOREM 3. - Let t~ be an open subset of R ~, and F: t) - )  R N a real analytic map. 
Then for any compact subset K oft) there are 8> O, a neighbourhood U c ~ of K and a 
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real analytic map  u: (-8, 8) x U -* t) such that 

(2) { ~tt (t, x) = F(u(t ,  x)) ,  

u(O, x) = x .  

Furthermore,  the solution of  (2) is unique in the sense that i f  there are 8' > O, another 
neighbourhood U' r t9 of  K and another map  u': ( -~ ' ,  8') x U' -* t) satisfying (2), then 
u = u'  on [(-8, 8) x U] (~ [(-8',  8') x U']. Final ly ,  i f  t) actually is a domain  in C a and 
F : t ) - * C  n is holomorphic, then for  every t � 9  the map  u(t,.): U - , t )  is 
holomorphic. 

A proof can be found in [N] or [HS]. 
The link between the previous theorem and one-parameter semigroups is provid- 

ed by the following (well-known) corollary: 

COROLLARY 4. - Let t) be an open subset of R N, F: t)----) R N a real analytic map,  
and K a compact subset of t ) .  Choose 8> 0 and a neighbourhood U c t) o f  K such that 
there is a real analytic solution u: ( -8 ,  8) x U -* t) o f  the Cauchy problem (2). Then 
for  every s, t �9 ( -  8, 8) and x �9 K such that s + t �9 ( -8 ,  8) and u(t, x) �9 U we have 

(3) u(s,  u(t,  x)) = u(s + t, x ) .  

PROOF. - Fix to e (-8,8) and x0 e K  such that u(to,Xo) �9 U, and take 8' ~<8-ltol.  
Now define vl, v2: (-8 ' ,  8') -* t) setting vl (s) = u(s, u(to, Xo)) and ve (s) = u(s + to, Xo ). 
Then Vl and ve are two real analytic solutions of 

dr 
-~s = F o r ,  

v(O) = U(to , Xo ) . 

By uniqueness, Vl = re, and (3) is proved, q.e.d. 

In other words, the solution of the Cauchy problem (2) is locally a one-parameter 
group. In particular, if X is a complex manifold and F is a holomorphic vector field on 
X such that  the Cauchy problem 

- ~  = F o r  

~(0, z) = z ,  

has a global solution ~: R + x  X - *  X, then �9 automatically is a one-parameter semi- 
group, holomorphic in z and real analytic in t. In this case, F is called the infinitesi- 
mal  generator of ~. Note that, by the uniqueness s tatement of Theorem 3, ~ is com- 
pletely determined by its infinitesimal generator. 
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Following [BP], we now show that  every one-parameter semigroup is obtained 
in this way: 

THEOREM 5. - Let O: R § ---) Hol (X, X )  be a one-parameter semigroup on a complex 
manifold X. Then there is a holomorphic vector field F on X such that 

(4) a_O0 = F o O. 
at 

In particular, 4) is analytic in t. 

PROOF. - Since �9 is a semigroup, it suffices to show that  90/at exists at t = 0. 
Then we can fix a coordinate neighborhood Do, a domain D ce Do and so e (0, 1) such 
that  0([0, s0 ] • D) cc Do, reducing ourselves to the case of domains in C n, where n is 
the dimension of X. 

Let  K be a compact convex subset of D. We can choose ~ e (0, ~0/2) such that  the 
convex hull h: of 0([0, ~] • K) is still contained in D. In particular we can choose 

e (0, ~] such that  

sup x ]l < 1 / lo  
z e K  

for all t ~< 8, where O~ is the Jacobian matrix of Or, Iv is the n • n identi ty matr ix and 
I1"11 here denotes the usual operator norm. Hence for all t e [0, 8] and z e K 

(5) []~2t (z) - 20t (z) + z[I = 

ct (z) 

f f  d[Ot-idD]! <~ ~O][Ot(z)-zN, 

where the integration path is the segment from z to Or(Z), and thus is contained 
in ~:. 

Therefore for every t e [0, 8] and z e K 

(6) 10 

Let  k e n  be such that  2 k ~  > 1, and put 

M = 22k/3 sup {[lOt (z) - zlll z e K, t e [2 -k, so]}. 

Then (6) implies 

(7) Yt e [0, so ] Vz e K llot (z) - zll <~ Mt 2/~ . 

Now repeat the same argument  on a compact convex subset KI of D containing prop- 
erly h:, coming up with a constant M1 > 0 such that  

Vt e [0, So ] Vz e K1 tl  (z) - zll < MI t 2/~ 
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Then the Cauchy inequalities produce a constant M > 0 such that 

(8) v t � 9  V z � 9  II~pi(z)-I~l[<Mt~/3. 
If we plug (7) and (8) in (5), we find that for all t �9 [0, ~] and z �9 K 

1l~2~ (z) - 2~t (z) § zll < ~4t ~/~ I]~ (z) - zll < M~lt 4/3 �9 

Thus 

[r (z) - z ~t (z) - z 
2t t ~ - ~  tl/S ' 

for z e K and t �9 (0, a]. Hence 

~(2 -~, z) - z 
lira - F(z) 

n-- .  ~ 2 - n  

exists uniformly on Compact subsets of D, defining a holomorphic function F: D ---) C ~, 
i.e., a holomorphic vector field on D. 

For Zo �9 D and to > 0 small enough, ~([0, to] • {Zo}) is a compact subset of D. 
Hence 2~[~(t + 2 -n, Z0) -- ~(t, Z0)] tends uniformly to F(~(t, Zo)) for t �9 [0, to]. This 
implies 

t 

~(z) = z + f F ( ~  (z)) ds ,  
0 

and so 

0~ t = F  
Ot =o 

on D. But D was an arbitrary coordinate neighborhood, and thus (4) is 
proved, q.e.d. 

So every one-parameter semigroup is the solution of a Cauchy problem, and there 
is a one-to-one correspondance between infinitesimal generators and one-parameters 
semigroups. 

A first application of this observation is the following. A point Zo in a complex 
manifold X is a f ixed point of the semigroup ~ if ~t (Zo) = Zo for all t/> 0. We can tell 
fixed points using the infinitesimal generator: 

PROPOSITION 6. - Let q): R + --> Hol (X, X)  be a one-parameter semigroup on a com- 
plex manifold X, and let F be its infinitesimal generator. Then Zo �9 X is a f ixed point 
of �9 i f f  F(zo ) = O. 
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PROOF. - If Zo e X is a fixed point of r then (4) immediately yields F(zo ) = O. Con- 
versely, assume F(zo)= O, and set ~(t)= ~(t, z0). Then ~ solves the Cauchy prob- 
lem 

{ ~tt = F o ~ ,  

4(0) = Zo. 

Since F(zo) = 0, ~ -- Zo is a solution and, since F is holomorphic, it is the only solution. 
Hence ~ - z0, and Zo is a fixed point of ~. q.e.d. 

Our main goal now is the characterization of the holomorphic vector fields arising 
as infinitesimal generators of one-parameter semigroups; we shall eventually de- 
scribe a characterization valid in a large class of taut manifolds. 

We need a digression in distribution theory. Let C~ (X) denote the space of 
smooth real-valued functions with compact support in a manifold X, and let 0~'(X) de- 
note the space of distributions on X. We shall say that a distribution T e (~'(X) is non- 
positive, and we shall write T ~ 0 ,  ff (T, ~)~<0 for any ~ e C ~ ( X )  such that ~>~0 
everywhere. 

Let u e C~ and denote by u ' e  (~'(R) its distributional derivative. If u e 
CI(R), we know that u' ~<0 iff u is not increasing; we claim that this is true in 

general. 

PROPOSITION 7. - L e t  u e C~ Thus u'  <. O i f f  u is not increasing. 

PROOF. - Let { ~k } c Cc (R) be a sequence of functions such that for all k e N we 
have 

(i) Pk/> 0; 

(ii) ~k (t) = 0 if I tl >I l /k ;  

(iii) fp~dt = 1; 
R 

(iv) Pk ( - t )  = Pk (t) for all t e R. 

Set 

f l 
(9) uk (t) = u �9 ~k (t) = J u(s) Pk (t - s) ds = J u(t + s) Pk (s) ds .  

R R 

It is well known (see [Ru, pp. 155-161] and [Br, pp. 66-72]) that 

(a) uk ~ C ~ (R) for all k e N; 

(b) uk---)u as k -*  + ~, uniformly on compact subsets; 

(c) u~( t )= (u ' , z t~k)  for all t e R  and k e N ,  where "~tp~(s)=~k(t-s); 

(d) u~ ~ u '  as k--* + ~ in (~'(R). 
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Assume u'  ~< 0. Then, by (c), u~ <. 0; it follows that every uk is not increasing and, by 
(b), u is not increasing. 

Conversely, assume u not increasing. Then, by (9), every u~ is not increasing; 
therefore u~ ~< 0 in the classical sense. By (d), this implies u'~<0, and we are 
done. q.e.d. 

Now we come back to complex manifolds. A Finsler metric H: TX---~ R § on a com- 
plex manifold X is an upper semicontinuous real-valued nonnegative function defined 
on the tangent space TX of X such that 

(i) for every z �9 X, v �9 TzX and ), e C we have 

g(z; 2v) = l~]H(z; v); 

(ii) for every compact subset of K of X there is a constant CK > 0 such 
that 

Yz e K Yv e T~X H(z; v) >I CKllVll, 

where Ilvtl is the length of v computed with respect to any given hermitian metric on 
X. If H is continuous, we shall speak of a continuous Finsler metric. 

The integrated form of a Finsler metric H is the function dH : X x X--> R + de- 
fined by {1 } 

Yz, w �9 X dH (z, w) = inf f H(r(t); ~(t)) dt , 
0 

where the infimum is taken with respect to the set of piece-wise differentiable curves 
r: [0, 1]---~X such that ],(0)= z and ~,(1)= w. 

The integrated form dH of a Finsler metric H is a distance inducing the original 
topology on the manifold X, by (ii). We shall say that H is complete if dH is a complete 
distance. We remark that, by the Hopf-Rinow theorem, H is complete iff the closed 
rill-balls are compact. For more informations on Finsler metrics, consult [R]. 

In this paper we shall be mainly concerned with two examples of Finsler metrics. 
First of all, if h is a hermitian metric on a complex manifold X, then the function 
H: TX---> R + given by 

Yv �9 TX  H(v) = [h(v, v)] v2 

is clearly a continuous (even smooth) Finsler metric; H is complete iff h is 
complete. 

The second example is given by the Kobayashi metric. Let X be a complex 
manifold; the Kobayashi (pseudo)metric xx: TX---~R + is defined by 

xz(Z;V) = inf{l~l l 3~ �9 Hol(A,X): ~(0) = z, d~0(~) = v}, 
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for any z e X and v e T~X. Its integrated form is the Kobayashi (pseudo)distance 

kx. 
Clearly, the Kobayashi metric satisfies (i) in the definition of a Finsler metric; fur- 

thermore, it is upper semicontinuous. A complex manifold X is said hyperbolic if • is 
a Finsler metric, that is if y-x satisfies (ii) in the definition of a Finsler metric: it turns 
out that X is hyperbolic iff kx is a true distance on X. The Kobayashi metric of a taut 
manifold is a continuous Finsler metric. A complex manifold X is said complete hy- 
perbolic if xx is a complete Finsler metric; it turns out that every complete hyperbolic 
manifold is taut. Examples of complete hyperbolic manifolds are provided by strong- 
ly pseudoconvex domains, complete hermitian manifolds with negative holomorphic 
sectional curvature, and by manifolds covered by complete hyperbolic manifolds. For 
proofs and more informations see, for instance, [Ro], [Kol, 2] and [A3]. 

I f H  is a Finsler metric on X, we shall say that a mapfE  Hol (X, X) is a H-contrac- 
tion if 

Vv e TX H(df(v)) <. H(v); 

if the equality holds for every v e TX we shall say t h a t f i s  a H-isometry. For instance, 
by definition every holomorphic map is a contraction, and every automorphism of X 
an isometry, for the Kobayashi metric. 

A one-parameter semigroup ~ on X is a semigroup of H-contractions if ~t is a H- 
contraction for every t 1> 0; analogously, ~ is a semigroup of H-isometries if ~t is a H- 
isometry for every t I> 0. 

Now let H be a continuous Finsler metric on a complex manifold X, and F1, Fz two 
holomorphic vector fields on X. Then d(H oFt) is a current on X (i.e., a differential 
form with distributional coefficients), and d(H o F1 )" F2 is a distribution on X. For in- 
stance, if H comes from a hermitian metric, then H is smooth out of the zero section, 
and so d(H o F1) is the usual differential out of the zero set of F1. 

Now we are finally able to prove our main theorem, characterizing the infinitesi- 
mal generators of semigroups of H-contractions: 

T H E O R E M  8.  - Let H be a complete continuous Finsler metric on a complex mani- 
fold X. Then a holomorphic vector field F on X is the infinitesimal generator of a 
one-parameter semigroup of H-contractions i f f  

(10) d ( H o F ) . F  <~ O. 

PROOF. - Assume first F is the infinitesimal generator of a semigroup ~: R + -* 
--~ Hol (X, X) of H-contractions. Choose Zo c X; then for every tl > te > 0 and every v c 
e T~oX we have 

H(~tl (z o ); d(q~tl )(z 0 )-v) = 

-- H(~t~ - t2 (~t~ (Zo)); d~t~ - t2 (~t2 (Zo))" (d~t~ (Zo)" v)) <~ H ( ~  2 (Zo); d(~a )(z0 )" v). 
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Therefore for every  z0 e X and v e T~oX the continuous function 

t ~ H ( ~  t (Zo); d~)t (Zo)" v)  = H o d~t (v) 

is not increasing. Thus Proposition 7 yields 

I = d H  o d~(O, v) = d H  o d F  o d~P(O, v) = d 
(11) 0 I> -~  [H o d~t (v)] J t = 0 

= dH o dF(v) = d(H o F) (v ) .  

In particular, we can take v = F(zo) obtaining 

0 >t d(H o F)(zo ) " F(zo ), 

and (10) is proved. 
Conversely, assume (10) holds. Fix zo e X, and let r : [0, ~0) --> X be the unique 

maximal solution of the Cauchy problem 

(12) 
de ~- =Fo~, 

r  = z0 .  

To show that F is an infinitesimal generator,  it suffices to prove that  ~zo = + ~ for all 
zo ~X.  

If  F(zo ) = O, then r = Zo, and so there  is nothing to prove. If  F(zo ) r 0, then r is 
a non-constant real analytic map; therefore it cannot be eventually constant, and thus 
F(r (t)) ~= 0 for all t e [0, 3~ o). 

Assume, by contradiction, ~0 < + :r we claim that  r is contained in a 
compact subset of X. Indeed, we have (setting r = r 

d H ( r  r = d(H o r 1) = d(H oFo r 1) = d(H o F ) .  r = 

= d (HoF) ( r162  ~< 0, 

by (10). Hence, again by Proposition 7, the function t ~ H(r o (t); r (t)) is not increas- 
ing; therefore for all t e [0, ~zo) we have 

t 

f dg(zo,  ~o(t)) <. H(~o(s); ~o(S))ds <. ~oH(zo, F(zo) ) ,  
0 

and so Czo ([0, ~zo)) is contained in a closed dH-ball K, which is compact because H is a 
complete Finsler metric. 

Let  ~1>0 and u: ( - ~ I , 3 i ) x K - - ) X  be given by Theorem 3 applied to K, and 
choose to e [0, ~zo) such that  ~ -  to < 81. Then the uniqueness s ta tement  of Theorem 3 
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shows that the function ~: [0, 81 + to )-~ X given by 

Ir if  t < 3~o, 

r = [u( t  - to, r (t0)) if t >t to, 

is still a solution of (12), against the maximality of ~0, q.e.d. 

A first corollary of Theorem 8 is: 

COROLLARY 9. - Let H be a complete continuous Finsler metric on a complex 
manifold X. Then the set of infinitesimal generators of one-parameter semigroups of 
H-contractions on X is a cone in the space of hoIomorphic vector fields on X with ver- 
tex at the zero section. 

PROOF. - In the proof of Theorem 8 we saw that F e Hol (D, C ~) is an infinitesimal 
generator iff (11) holds for every v e TX. The assertion is then clear, q.e.d. 

We are also able to characterize the infinitesimal generators of one-parameter 
groups: 

COROLLARY 10. - Let H be a complete continuous Finsler metric on a complex 
manifold X. Then a holomorphic vector field F is the infinitesimal generator of a 
one-parameter group of H-isometrics on X if f  

(13) d ( X o F ) . F  = O. 

PROOF. - Assume F is the infinitesimal generator of a one-parameter group 
~: R--* Aut(X) of H-isometrics, and set ~ = ~t and ~t  = O-t for t>~0. Then ~+, 
�9 - : R + --~ Hol (X, X) are one-parameter semigroups on X of H-contractions with in- 
finitesimal generators F, respectively - F ,  and Theorem 8 implies (13). 

Conversely, assume (13) holds; then both F and - F  are infinitesimal generators 
of one-parameter semigroups of H-contractions ~, respectively ~. The uniqueness of 
the solution of the Cauchy problem 

{ - ~  = F o e ,  

r -- z0, 

in a neighbourhood of 0 for every z0 e X then implies ~t o ~t = idD for t small enough, 
and hence always, q.e.d. 

Recalling our examples of Finsler metrics, we get the following: 
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COROLLARY 11. - Let X be a complete hyperbolic manifold. Then a holomorphic 
vector field F on X is the infinitesimal generator of a one-parameter semigroup on X 
i f f  d(xx o F ) . F  <~ O. 

PROOF. - Indeed, every  one-parameter  semigroup on X is a semigroup of xx-con- 
tractions and, being X complete hyperbolic, we can apply Theorem 8. q.e.d. 

We should remark  that i f D  r162 C ~ is a strongly convex smooth domain, then • is 
smooth out of the zero section; see [L]. 

Another  standard metric to consider is the Bergmann metric; see [Ko2] for defini- 
tion and properties.  Since the Bergmann metric is invariant under  holomorphic auto- 
morphisms, we get  

COROLLARY 12. - Let X be a complex manifold such that its Bergmann metric bx 
is complete, and denote by Bx the complete continuous Finsler metric associated to 
bx. Then a holomorphic vector field F on X is the infinitesimal generator of a one- 
parameter group on X i f f  d(Bx oF) .F  =- O. 

We can compute explicitly (10) in a particular case. Let  B ~ be the unit ball for the 
standard euclidean norm I1"11 on C ~. On B n the Kobayashi and the Bergmann metrics 
coincide, and they are given (cf. [FV]) by 

~B'(Z; V) -- i [[(z, v)l 2 + (1 --Ilzll2)llvll~] 1/2, 
1 -]lz]{ 2 

where  (., .) is the standard hermitian product on C ". Therefore 

~X B 
: - -  (z; v) = 
~z j  

I h. o 1 2zj x ~  (z, v) + 
2(1 -Nzll 2) 

(v, z) ~j-ilvjl~ ~j 

~n(z;  v)(1 - Ilzll 2) 

and 

~:B v" 1 
avj (z; v) = 2xB, (Z; V)(1 -- [[Zl] 2)2 

Hence Theorem 8 and a computation yield 

[(z, v)~ + (1 - Nzll2) ~j]. 

COROLLARY 13. - A  holomorphic map F: B ~---) C ~ is the infinitesimal generator of 
a one-parameter semigroup on B n i f f for  all z e B n we have 

(14) 2[[IG(z)l[ 2 - t(G(z), z)] 2 ] Re (G(z), z) + (1 - Ilzl[ ~" )2 Re (dF. F(z), G(z)) <~ O, 

where 

G(z) = (1 -Hzll2)F(z) + (F(z), z)z .  
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In particular, if n = 1 we have G -= F and (14) becomes 

(15) Y z e A  Re[2-iF +(1-1zt2)F']<~O. 

In [BP], BERKSON and PORTA described a different characterization of infinitesi- 
mal generators on A. We end this paper by showing how to deduce their characteriza- 
tion from ours, proving: 

PROPOSITION 14. - A  holomorphic function F: A ~ C is the infinitesimal generator 
of a one-parameter semigroup on A iff  

(16) r ( z )  = (z - ~)(~z - 1 ) f ( z )  

for some z ~-~ and some holomorphic function f ' . / ~ C  with Ref~>0 every- 
where. 

PROOF. - Assume first F c Hol (A, C) satisfies (15). Then F is the infinitesimal gen- 
erator of a one-parameter subgroup ~: R + ~  Hol (A, ~). Without loss of generality we 
can suppose ~ not trivial, i.e., F ~ 0. Then there exists a unique point z e 3, called the 
Wolff point of ~, such that either ~ e A is the unique fixed point of ~, or z e aA and 
~t--* z as t -~ + ~, uniformly on compact sets (this is shown in [BP]; a simpler proof is 
in [A3]). Now, Schwarz's and Wolffs lemmas (for the latter, see [Wl] and [Bu]) imply 
that for every z e z~'the function 

I1 - ~ t  (z)l 2 
t ~  

1 - I ~ ( z ) t  2 

is not increasing. Differentiating at t = 0 we get 

Re [(1 - ~)(~ - ~) F(z)] ~< 0. 

Set f(z) = (~z - 1) -1 (z - v)-i F(z); f is well-defined for if z e A then F(~) = O by Proposi- 
tion 6. Then Ref>~ 0 and 

F(z) = (z - z)(~z - 1)f(z),  

as claimed. 
Conversely, suppose F is given by (16) for suitable z and f. Assume first 

Re f (zo)= 0 for some z0 e A. Then the minimum principle for harmonic functions 
yields f~- ia  for some a ~ R ,  and (15) is easily verified. 

Assume then Re f ( z )>  0 for all z e A. Then the Schwarz-Pick lemma applied to 
( f -  1 ) / ( f+  1) yields 

If'(z)] 1 
(17) Yz e A 2 Re f(z) <" - - ' 1 -  Izl 2 
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Using (16) we find 

2~r  + (1 - Izl2)F ' = (1 -Izt2)(:~z - 1)(z - ~ ) f ' -  [Iz - zl 2 + I~z - 112] f .  

Hence (17) yields 

Re [25F + (1 - tzl2)r '] = (1 - Izl z) Re [(z - z)(~z - 1) f ' ]  - [tz - zl 2 + I~z - 112 ] R e f <  

~< (1-IZl 2 ) l z - z l l = , z -  l l l f ' l  - [ ! z - z l  2+ l:~z- 112] Ref~< - ( ] z - ~ l - I  Yz-  l ! ) 2 R e f  ~<0, 

and we are done. q.e.d. 
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