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Attracting Properties for One Dimensional Flows 
of a General Barotropic Viscous Fluid. Periodic Flows (*). 

H. BEIRs DA VEIGA 

Summary. - We consider the motion of a barotropic compressible fluid in a one dimensional 
bounded region with impermeable boundary, see equation (1.1). Here, u(t, q) denotes the vel- 
ocity and v(t, q) the specific volume. The quantity log v(t, q) measures the displacement of 
v(t, q) with respect to the equilibrium v =- 1. For the sake of brevity we denote here different 
norms by the simbol II [J. We show that there is a positive constant ro = ro(tL), a small ball 
B1 (r) (with radius R1 (r), !im ~ R1 (r) = 0), and a large ball B(r) (with radius R(r), r ~limo R(r) = 

= + ~) such that the following holds, for each r e [0, r0 [. (i) I f  I[f(t)[I < r for all t ~ O, and if 
II(u(0), log v(0))ll _-R(r) (i.e. (u(0), log v(0)) e B(r)) then, for sufficiently large values of t, 
II(u(t), log v(t))ll .~ R1 (r); (ii) The solutions starting at time t = O from the large ball B(r) have 
all the same asymptotic behaviour (see (1.11)); (iii) I f  f is T-periodic then there is a (unique) 
T-periodic solution ( u( t), logv(t)) inside the small bail B 1 (r). This periodic solution atracts 
all solutions which intersect the large ball B(r). Periodic solutions had been previously stud- 
ied only for very specific pressure laws, namely p(v) ~- logv and p(v) ~- v -1. 

1. - Main results.  

In this paper we consider the motion of a barotropic compressible fluid in a one di- 
mensional bounded region with impermeable boundary, for a general pressure law. 
By using material  Lagrangian coordinates, and af ter  a normalization, the equations of 
motion are 

(1.1) In vt ~ %q , u 

(t, O) = u(t, 1) = O, 

where  q e~9--]0, 1[, and t _-_ O. Here,  u(t, q) is the velocity and v(t, q) is the specific 

(*) Entrata in Redazione il 7 aprile 1989. 
Indirizzo dell'A.: Univ. of Pisa, Ist. Mat. Appl. ~,U. Dining, Via Bonanno 25/B, Pisa. 
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volume. The external force f(t, x) is given as a known function of the Eulerian coordi- 
nates (t, x). The real function p(-) has a (locally) Lipschitz continuous first derivat ive 
on ]0, + ~[. Moreover, p'(s) < O, Vs e ]0, + ~[. Without  loss of generality, we assume 
that  p(1) = 1. 

Let  us consider the conditions 

(1.2) rain v > 0, 
VE~2 

(1.3) 

1 

fv(q) dq = 1, 
0 

and 

(1.4) ~ql e [0, 1] such that  v(ql) = 1. 

For  convenience, we set  

H1 (t~) =- {v e H 1 (t~): (1.2), (1.3) are satisfied}, 

K 1 (D) = (v e H 1 (s (1.2), (1.4) are satisfied}. 

Clearly, H1 c K 1 . H i  (~) is the closure of 0~(t)) in H 1 (~). In the following we denote 
respectively by  I] II and ( , )  the norm and the scalar product  in L 2 (D), by I I~ the norm 
in L "  (t)), and by II Ilk the norm in Hk (t)). We denote by C~ the space of Lipschitz 
functions defined on [0, 1] and we set  [f]o,1 = sup If(x) - f (y ) l / Ix  -Y l ,  for x, y e [0, 1], 
x ~ y. For  convenience we drop t) from the above symbols. Hence L 2 = L 2 (t)), and so 

1 

on. We also use the notation fg  = Ig(q)dq. 
0 

For  functions f e L ~ (0, + ~; C o, ~ ), we define 

(f}o,1 -= esssup[f(t)]0,1 for t e]0, + ~ [ .  

For  functions f e  L= (0, + ~ ; L = )  we set (for convenience) II]fl]l= -= (lO/,~)l/21]fll~, 
where  I]f[[~ = ess sup If(t)l~ for t e ]0, + o~[. 

A quite natural quanti ty in order to measure elements (u, v) in the phase set  L 2 x 
• H1 is Ilul[ 2 + IIv[I ~ + Iv-1 I~. It  is not difficult to verify (we will re turn  to this point later  
on) that  the above quanti ty is equivalent to ]lull 2 + ]](log v)q ]12, in the sense that,  each of 
the above quantities is bounded away from infinity (or from zero) if and only if the 
other does. However  the lat ter  is more significant here and we will s ta te  below our 
main results  in te rms of it. 

In the results below ~o denotes a positive constant which depends only on the par- 
ticular function p(.) and on ~. Moreover, 

gt: ]0 ,~o[~]0 ,  + ~ [  and t*:  ]0 ,~o[~]0 ,  + ~ [  
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are suitable decreasing functions such that 

(1.5) lira ~(r) = + oo, 
r--~0 

and 

~ ( r ) :  ]0, ~o[~]0, + ~ [  

is an increasing function such that 

(1.6) lira ~ (r) = 0. 
r-->0 

In the next section we shall prove the following result: 

THEOREM 1.1. - Let the external force f(t, x) belong to L ~ (0, +~;  C ~ ), and as- 
sume that (f)0,1 <- Co where Co is a suitable positive constant which depends only on 
p(.) and on ~. Assume that for some r e]0, r0 [ one has 

(1.7) !117t]12 < r /2 ,  

(1.8) Ilu ~ II 2 + H(log v ~ It 2 < (r) ,  

(1.9) [[~o [[2 + H(log ~o )q ll2 < 0~2 (r), 

where the initial data (u~ ~ and (~o,~o) belong to L2• 1. Let (u(t),v(t)) and 
(~(t),-~(t)) be the solutions of problem (1.1) with initial data (u ~ v ~ ) and ~o,  ~o ), re- 
spectively. Then, for each t >= t*(r) one has 

(1.10) [lu(t)[] 2 + [](log v(t))q ][ 2 + []Uq (t)[I 2 < a l  2 (r), 

and similarly for (~(t), ~(t)). Furthermore, 

(1.11) [[~(t) - u(t)[[ 2 + I[(log ~(t))q - (log v(t))q ]]~ <- cl exp (-c2 (t - t* (r))).  

In order to interpret the above statement it is worth noting that for ,,small~ exter- 
nal forces the ball (1.8) is ,4arge, and the ball (1.10) is ,~smalb~. In fact, as r o  0, the 
ball (1.8) invades L~• H1 while the ball (1.10) shrinks to the point (0, 1). 

The second part of the statement shows that the large ball (1.8) is exponentially 
attracted by a (asymptotically) unique flow. All the solutions starting from (or inter- 
secting) the large ball have the same asymptotic behaviour. 

The following result concerning periodic solutions will also be proved in Sec- 
lion 3. 

THEOREM 1.2. - L e t f  be a T-periodic function, T >  O, satisfying the hypothesis 
of Theorem 1.1. Then, there is a T-periodic solution (u(t), v(t)) of problem (1.1) 
whose orbit lies entirely inside the small ball (1.10). Each solution (~(t),~(t)) 
of the equation (1.1) that intersects the large ball (1.8) must converge asymptotically 
to the periodic solution (u, v), according to the exponential law (1.11). In particular, 
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there are no T'-periodic solutions, T'->-0, that intersect large sphere and that 
are distinct f rom the T-periodic solution (u(t), v(t)). 

For pressure laws p(v) such that k2v-1 > _ p'(v) >= kl v-1 or k2 v-2 >=p'(v) >= kl v-2 
(p'(v) < 0), periodic and quasi-periodic solutions were studied by SHELUKmN in [8]. 
For p(v) = kv -1 periodic solutions were studied by MATSUMURA and NISHIDA in [6], 
also for the piston problem. For the n-dimensional case see VALLI [10]. 

Our results a r e  partially related to those in BEIR~O DA VEmA [1], KANEL [3], 
I~ZHIKHOV [4], [5]. The proof of Theorem 1.2 uses Serrin's technique [7]. 

Related results for stationary solutions were proved in BEIR~_O DA VEIGA [2]. 

2.  - K n o w n  r e s u l t s .  

For the reader's convenience, in this section we present a review of those results, 
proved in [1], that will be used in the next section. For more details, the reader is ref- 
ered to [1]. 

Positive constants that depend at most on the particular function p(.) and on ~ are 
denoted by c, c0,cl, .... The symbol c may denote arbitrary different positive 
constants. 

In this section, we recall some results proved in BEIRs DA VEIGA [1]. In order to 
state these results it is necessary to introduce some auxiliar functions and some nota- 
tions. First of all it is worth noting that a natural quantity to measure elements 
(u, v) e L 2 • ~1 is Ilull 2 + IlVqll 2 + Iv -11~, which is equivalent to Ilull 2 + [[vll 2 + [IVqll 2 + 
+ Ivl~ + I v-1 I~ in the sense that both remain bounded away from zero together. How- 
ever, there are equivalent (in the above sense) quantities that appear more conve- 
nient than the above ones in order to study our problems. In this regard, and for the 
reader's convenience, let us describe the following facts. By using well known devices 
([1], [4], [5]) one shows that for each v e K 1 one has: 

exp ( -  [l(log V)q H) < Iv] = A ]v-lt~ ~< Iv[ = V Iv-ll= -<__ exp(ll(log v)q [I); 

I[(log v)q II exp ( -  [l(log v)q [[) <= []vq II A I](v-1 )q H <~ Iivq [I v II(v - 1  )q H a H(log V)q I] exp (H(log v)q [I); 

NVqll(1 + [Ivq I[) -1 <-[[VqII[VI: 1 ~ II(log V)qH <= IIVqlI ]V-' I~ <- IIVqll( 1 + H( v - '  )q[I) �9 

Hence, for elements (u, v) e L 2 • K 1, the quantity IIul] 2 + II(log v)q II 2 is equivalent to 
Ilull 2 + IIvll 2 + IIvqll 2 + II(v -1)qll 2 + Ivl  + Iv -1 In this section we will use the equivalent 
quantities ~ [u, v] and ~b 2 [u, v] + r [v], where 

(2.1) r [u, v] - (4/~)[lu[] 2 -  2(u, (log V)q) + ~ll(log v)q [I 2 

and r will be defined below. Note that 

(2.2) ~b 2 [u, v] = (3/~)I[uN 2 + II~(log v)q - uN e , 
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and that  

for (u, v) e L ~ • K ~. Moreover,  

(2.4) exp ( - (2/~)  1/2 ~[U, V]) ~ v(q) ~ exp ((2/t~)l/2r v]) 

for all (u, v) e L 2 • K 1. 
Defined (see [3], [5]) a real function 

V q e ~ ,  

z e C l ( ] 0 , + o o [ )  by ='(s)=p(s), Y s > 0 ,  = ( 1 ) = 1 .  

Note  tha t  s - =(s) > 0, if s r 1. Set  

(2.5) CZ [v] = (8/~) f v - =(v), Vv e K 1 . 

The quant i ty  ~2 [u, v] + r [v] is equivalent  to ~2 [u, v] since there  is a real, str ict ly in- 
creasing function 0 e C([0, + ~[), such that  0(1) = 0, and tha t  (see [1], equation (7.8). 
Here  0(.) is the function (8 /~ )M 2 (-) in reference [1]) 

(2.0) r [v] -< 0 (exp ((2/t~) 1/~ r v])). 

Another  main point is the following es t imate  (see [1], (7.2)): 

(2.7) 21 dtd [cz(t)+r f = , vt~o, 

if ~(t) = r v(t)], r = ely(t)] and (u(t), v(t)) is a solution of the sys tem (1.1). 
Now we recall some proper t ies  of the functions ~(r), R(r), ~1 (r), R~ (r) (see [1], sec- 

tion 6) which will be used to es t imate  the radius of significant balls in the (u, v) space. 
The main point is the behaviour of these functions. For  precise definitions and proof  
we refer  to [1], section 6 and 7. 

F :  [0, +~[-- ,]0,  + ~ [  is a continuous function, such that  
% 

F(O)=O, F(y)>O if y > 0 ,  F(+~)---- lira F(y)=O. y--.+~ 

R: ]0, ro [--~]Yo, + ~ [  and p: ]0, ro [-~]ro, + ~ [  are strictly decreasing functions such 
tha t  ,~(r)< R(r), Vr e]0, ro [. Moreover,  

(2.8) lira ~(r)= lira R(r) = +~.  
r-~O r~O 

R1 : ]0, ro [--~]0, Yo [ and ~1 : ]0, ro [-->]0, Yo [ are strictly increasing functions such tha t  
.~1 (r) < R1 (r), Yr el0, r o [. Moreover,  

(2.9) lim P1 (r) = lira R1 (r) = 0. 
r-~0 r~0  
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Finally, for all r e]0, r0 [ and for all (u, v) e L 2 x H1, one has (*) 

I~ 2 [u, v] < 2 (r) ~ ~2 [u, v] + r Iv] < R 2 (r) ,  

(2.10) [r [u, v] < p~ (r) ~ ~2 [u, v] + r [v] < R[  (r). 

The above constants to, Yo, Yo and the functions F,  ~, R, ~1, R1 depend only on t~ 
and p(-). Let  the initial data (u ~ v ~ belong to L e •  H1 and the external  force f(t, x) 
belong to L ~ (Q=), where  Q= = Q • + ~[, and denote  by (u(t), v(t)) the global weak 
solution of the problem (1.1) constructed as in [1], section 4. Then 

u �9 C([0, + ~ [ ; L  2) c~ L~oc([0, +oo[;H~),  v �9 C([0, +oo[ ; /~ l ) .  

If, in addition, f � 9  1 CO,1) Lion([0, +~[ ;  then  the  solution (u, v) is unique, moreover  
strong well-posedness holds. More precisely, if (u ~ , v ~ and (u~ (t), v~(t)) are se- 
quences as above and if o 0 (u~, v~) converges to (u ~ v ~ in L 2 x H I as n--~ + ~,  then  
(u~(t),v~(t)) converges to (u(t), v(t)) in L 2 x  H 1, the convergence being uniform on 
bounded intervals [0, T] (moreover,  un--~ u in L2(0, T;H1), V T > 0 ) .  See [1], sec- 
tion 5. 

F r o m  Theorems 7.2, 7.3, 7.4 of[l] ,  in particular,  the following resul t  follows. We 
point out tha t  there  are not  smallness assumptions on f(t), as t goes to oo. 

THEOREM 2.1. - L e t  (u~ ~ � 9 2 1 5  1, f eL~(Q~),  and let r<ro .  

(i) i f  

(2.11) IIIfNl= < r 

and if  

(2.12) ,~2 [u 0, v o ] + r [v 0 ] < R 2 (r) 

(in particular, i f  ~2 [u o, v o ] < p2 (r)) then 

(2.13) ~2 [u(t), v(t)] + r [v(t)] < R 2 (r), 

(ii) I f  (2.11) holds and if  

(2.14) ,~2 [u o, v o ] + r [v o ] < R12 (r) 

(in particular if  ~2 [u o, v o ] < p~ (r)), then 

(2.15) ~2 [u(t), v(t)] + r [v(t)] < R12 (r), 

(iii) I f  

(2.16) lilflll~ < r /2  

Vt>=O. 

Vt>=0. 

(*) Since R2(r) = ~Z(r) + 0(exp [(2/~)1/~(r)]); see [1], eq. (6.7). 
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and i f  (2.12) holds, then (2.15) holds for  all t >= T* where 

R 2 (r) 
(2.17) T* =- ~2[u~ v~ + r176 < - -  

rp1 (r) r~l (r)" 

3. - P r o o f s .  

We star t  by proving the following 

LEMMA 3.1. - Here No �9 ro ] and c2 are positive constants which depend only on 
and p(.). Let (u(t), v(t)) be the solution of  (1.1) with the initial data (u*, v* ) �9 H~ • 
• H1. Assume  that for  some r �9 No [ f satisfies (2.11), ~ [u*,  v* ] + r [v* ] < R~ (r), 
and ][u~ [I 2 < a(R~ (r) + r 2) where a >= c2. Then 

IlUq (t)l[ 2 < a(R~ (r) + r 2 ), Yt >= O. 

PROOF. - For  convenience, we will sometimes use the notation ,#2 (t) = 6 2 [u(t), v(t)], 
r (t) = r [v(t)]. Let  r < r0. By theorem 2.1 (ii) one has ~2 (t) + r (t) < R~ (r) =< ~o 2 and 
by (2.4) one gets  c -1 <-v(t, q)<-c, for a suitable c. By mult iplying equation (1.1)2 by 
Uqq and in tegrat ing in ~2 one has 

1 d ilUq]f2 + clluqall2 < ell(log V)ql111u~111/2t1%11 + c<ll(log v) ll + ]llfl]l~ )]lUqqt], 
2 dt = 

since luql.<=  [lUqtll/ tl%q[I Recall that  f Uq = 0. By Young's inequali ty it readily 
follows tha t  

1 d iiuql[2 + c3tlUqll2 ~ c4R4 (r)NUqll2 + c[R~ (r) + re] .  
2 dt 

Note that  IlUqll <- (1/V%tlUqq[J. By fixing No �9 ro] so tha t  cnR~(r)<= c~/2, and by tak- 
ing into account tha t  R1 (') is an increasing function, it follows tha t  

(3.1) 

for each r �9 ro [. 
= c / e  3 . �9 

In 

d l]uqtl2 + c~Huql] 2 <-_ c(R~ (r) + r 2 ) 

particular,  Dt l]uq [] 2 = 0 if lluq [12 > c2 (R~ (r) + r 2 ), where  c2 = 

LEMMA 3.2. - L e t  r �9 ro [ and assume that (2.16) and (2.12) hold, where (u ~ v ~ �9 
�9 Le •  [-I 1. Then, there is a positive constant -~ such that 

(3.2) [luq (t)ll 2 < ~(R~ (r) + r 2 ) ,  Yt => 1 + T *, 

where T* is defined by the equation (2.17). 
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PROOF. - By Theorem 2.1 (iii) one has 

(3.3) ~2 (t) + r (t) < R12 (r), Vt >= T *. 

Hence, (2.7) and (2.4) yield 

1 d r 
2 dt [~2(t) + (t)] +cll%l]2~clllf}ll~. 

By integrat ing with respect  to t on [T*, T* + 1] and using (3.3) it follows tha t  

T * + I  

f Huq (v)ll 2 & < ~(R~ (r) + r ) ,  
T* 

where ~ is a suitable positive constant.  We assume tha t  ~>--c2. Consequent ly,  
Iluq(to)ll2<-d(R~(r)+r2), for some to e [ T * , T *  + 1]. Lemma  2.2 shows tha t  (3.2) is 
satisfied. " 

In the following we consider two solutions (u, v), (~, v-) of the problem (1.1) with  
initial data (u ~ v~ (~0,$o) e L 2 x ~1  satisfying 

I~ , [u o, v o ] + r [v o ] < R '~ (r), 

(3.4) [~2 ~ o ,  ~0 ] + r [~o ] < R z (r), 

for some r e]0,ro[  such tha t  ]llflll~ < r .  Set, for convenience, 

(3.5) w = ~ - u ,  z = ~ - v ,  l = (log v-)q - (log v)q. 

F rom Theorem 1.1(i) and from (2.4) it follows tha t  there  is a constant  N e [1, + oo[ 
such tha t  

(3.6) N-~ <- ~(t, q) A v(t, q) < ~(t, q) V v(t, q) <- N , Y(t, q) e Qoo . 

For  each N e [1, + ~[ define 

L(N)  =- sup 
N l<-_s,s'~N 

p'(s) - p(s) 
8 - - 8 1  

Set k = - p ' ( 1 ) .  I t  readly follows from equation (1.1) tha t  

I '~t ~ Wq , 

(3.7) [wt = ,~(~-1 ~q _ v-1 Uq)q - (p(v) -p(V))q + f [ ~ ]  - f [ v ] ,  

q 

where f[v](t, q) = f t, fv(t,  ( o  E')d~) ' 
respect  to q, one gets 

l d fw2+>f9 lw3 (3.8) 2 dt 

etc. By mult iplying (3.7)2 by w and in tegra t ing  with 
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(3.9) 

Since Ip(~) - p ( v )  + kv I <=L(Iv - 11 + !v])iz Vv,~ e [N-1,N],  and [ZWq = (1/ 2) Dtf  ~, it 
follows that 

1 d 
(llwl12 + klHi2) + ~ f ~-1 ~ < 2 dt 

<-~N2Iluqll J~]~ [IWqll + Llvi~ IIwal/+ LIv]~ Iv - ll~ NWq[[ + f (f[-g] - f [ v ] ) w .  

Note that (cf. [1], (5.3)) 

(3.10) I Jvt~ -< ~tlzlt, 
[Iv - 1t~ _-< Nil(log V)qll. 

Since (log v)t = v-lUq, the equation (3.7)2 may be written as 

(3.11) wt = ~lt - (p'(v) vq - p'(v) Vq ) +f[~] - f [v] .  

On the other hand - p '~)  ~q + p'(v) Vq = - ~p'(~) l + (vp'(v) - ~p'(v-))(log V)q. Then, by 
multiplying (3.11) by 1 and integrating on t~ with respect to q, one gets 

(3-12) ' ~ d  f f ' f 2 dt IllN2 + a(N)l[l[12- wtl <-Lo (N) I(log V)q ]tv] Ill + (f[v] - f [~] )  l, 

where by definition 

Since 

one obtains 

(3.13) 

~(N)-= rain - s p ' ( s ) ,  
N-I<=s<=N 

Lo ( N )  - sup 
N-l<=s<s,<~N 

sp'(s) - s' p'(s') 

8t--S 

d  wl+f iw  y u wq f wt I = --~ 

df d i[itl2+~(N)lll[12 ~ wl< 
2 dt = 

< v - l w 2 §  lUql fl(logv)~l Jvl Itl + -f[-v-])l. v-V lvW [~ J + Lo f (f[v] 

Now we multiply the equation (3.9) by 4/t~ and we add side by side to the equation 
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(3.13). By using (3.10) it readily follows that 

l d (~2(t) + ~llztl2)+3N-111wqtl2+~(N)llllt2<5NSilUqlllllllllwqll+ (3.14) 2 dt = 

+ 4 L N  2 ~-llllll211wqll + 4 L N  2 ~-1N(log v)qlltllllllwqll + L0 Nil(log v)qllt[ll[ 2 + 

+ ] f ~ ] - f [ v ] l ~  (4~ -111wll + Illll), 

where, for convenience (see (2.1)), 

~2 (t) - r [w(t), (~/v)(t)] = 4~ -1 ILw(t)ll 2 - 2(w(t), l(t)) + ~tll(t)ll 2 . 

Note that (cf. (2.3)) 

1 -1  < 3 -1  (3.15) ~(4t~ IIwH 2 +.~lllll 2) <--~2(t): ~(4~ IIw[I 2 + [11112). 

For convenience, we denote by C positive constants which depend at most on ~, 
p(.), and N, and which are nondecreasing function of N for N e [1, + ~[. By using this 
notation and Cauchy-Schwarz inequality, (3.14) yields 

1 d (}2(t) + 4k _ltHi2) + C_lHwqt[2 + C_lHlll2<< (3.16) 2 dt 

<= c(lluqll s + Illll s + H(log v)qll s + I](log v)qll)M[ 2 + cN[f]o,1 (Hwll + ]llll)lllt[. 

Note that If[~] - f [ v ] t ~  <= [71o,1 Izl~ -< N[f]0,1 ]lll]. " 

Assume again that (3.4)holds and assume that (1.7) is satisfied. Theorem 2.1 (iii) 
shows that 

k 2 [u(t), v(t)] + r [v(t)] < R~ (r) 
(3.17) 

2 ~(t), ~(t)] + r [~(t)] < R~ (r) Vt => T*. 

Since R12 (r) _-< R~ (ro), it follows that the left hand sides in equations (3.17) are bound- 
ed by ~02 , for t >_-T*. Hence, by equation (2.14), there is a suitable N e [1, + ~[, that 
depends only on t~ and p(.), such that (3.6) holds if t >= T*. Consequently, for t -> T*, 
the equation (3.14) holds even if the contants C are replaced by constants c. In partic- 
ular, the term cN[f]o,1 (llwll + Illll)lllll can be dropped provided that 

(3.18) (f}o,l_-< Co, 

for a suitable co (note that Ilwll ~ Ilwqlt). Finally, by using Lemma 3.2, and also (3.17), 
(2.3), one gets 

(3.19) IlUq]12+HIl[2+l[(logv)qll2+[[(logv)qll<=c(R~(r)+r2+Rl(r)), V t _ = T * + I ,  
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for a suitable c. By taking into account the above remarks, one gets from (3.16) 

(3.20) 21 dtd (~(t) + 4k~ -111zll 2 ) + cilwq II 2 + c5 Illll 2 = < 

<=c6(R~(r)+r2+Rl(r))lllll  ~ , V t = > T * + I ,  

under the additional hypothesis (3.18). Fix now a value ~o e]0, ~0 ] so that  c6 [R~ (to) + 
+ ~02 + R1 (r0)] ==- c J 2 .  The value r0 depends only on t~ and p(.). For convenience we con- 
tinue to use the notation ~0 instead of ~o. Since R1 (r) is an increasing function, for 
each r e]0,~0[ one has 

1 d (~(t) + 4k~ -111zll 2 ) + c(~(t) + 4k/z -111vll ~ ) ~ 0,  (3.21) 2 dt 

for each t>=T * + 1, for a suitable constant c. We have also used (3.15) and (3.10)1. 
Consequently, 

~2 (t) + 4~k-1 IHI2 __< [~2 (T * + 1) + 4t~k-1 it~( T . + 1)112 ] exp [-c( t  - T * - 1)]. 

Using again (3.15) and (3.10)1 it readily follows that 

(3.22) Ilk(t) - u(t)l[ + I[(log ( log v(t))qll <- 

<= cexp( -c ( t  - T*  - 1 ) ) ( I F ( T *  + 1) - u(T* + 1)112 + 

+ II(log ~(T* + 1))q- (log v(T* + 1))qll2 }. 

The term {...} on the right hand side of (3.22) can be estimated in terms of the initial 
data (see also [1], eq. (5.8)). For convenience we follow here a more crude way. This 
term is bounded by c~(T* + 1), hence by c R y ( r ) < - c ~ .  In particular 

(3.23) n~(t) - -  u( t ) l l  2 -~- I I ( log v(t))q -- ( l o g  v(t))q II 2 ~-~ C 1 exp (-c2 (t - T * + 1)). 

The above arguments prove the following theorem: 

THEOREM 3.2. - There are positive constants ~'o , Co, Cl, c2, which depend only on 
and p(.), such that the fol lowing result holds. Let  (u ~ v~ (-~o, ~o) ~ L2 • [_I1 satisfy 
(3.4), and let f satisfy (1.7), (3.18), f o r  some r c]0, r0 [. Let (u, v) and (~, F) be the sol- 
u t ion of  the equation (1.1) with init ial  data (u ~ v ~ and (~o, ~o) respectively. Then, 
f o r  t >= T * + 1 (see (2.17)) both solutions satisfy (3.17) and (3.2). Further,  (3.22) and 
(3.23) are satisfied. 

Theorem 1.1 is an immediate consequence of Theorem 3.3. Note that  (2.12) holds if 
42 [u o, v 0 ] < 2 (r) (see Theorem 2.1 (i)) and recall (2.3). 

Now we prove Theorem 1.2. We argue as Serrin in reference [7]. It  is sufficient to 
show the existence of periodic solution (u(t), v(t)), since, if an ~dnitial data~ (~o, F0) 
belongs to the ball (1.8), then the corresponding solution (~(t),~(t)) satisfies (3.23), 
hence converges asymptotically to (u(t), v(t)). 
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Let (u~  ~ e L2• H1 be an initial data satisfying (1.8) and set 

(u~ (t), v~ (t)) = (u(nT + t), v (nT + t)), Yt  >= O, 

for each n e N. Since f i s  T-periodic, each pair (u~, %)  is a solution of (1.1) with the in- 
itial data (u~(0), %(0))= (u(nT),  v(nT)). Hence (3.23) shows that (assume m >  n) 

I lu(nT)-  u(mT)ll2 + II(log v (nT) )q -  (log v(mT)qll 2 = 

= Hu(nT) - u~_ n (nT)ll 2 + II(log v(nT))q - (log v,~_ ~ (nT))q II 2 <= 

=< cl exp ( -c2 ( n T -  T *  - 1)), 

for n_= (1 + T*)/T (it is also clear that the trajectories of (us(t), Vn(t)) he inside the 
ball (1.10)). The above inequality proves that (u(nT),  (log v(nT))q) is a Cauchy se- 

quence in L 2 • L 2, as n - .  + ~. Let (u#, v~ ) be the limit in L 2 • H1 of the sequence 
(u(nT),  v(nT)),  and denote by (u*(t), v*(t)) the solution of (1.1) with the initial data 
(u~, v~ ). From the continuous dependence of the solution on the initial data (see [1], 
corollary 5.4) it follows that (u* (T), v* (T)) = lira (u((n + 1) T), v((n + 1) T)) = 

= (u~, v* ) in L 2 • H 1. Hence (u*(t), v*(t)) is T-periodic. The last point of the proof can 
also be done using (3.22). In fact, for n T  > 1 + T * the trajectories (us (t), v~(t)), t >= O, 
and the point (u0*, v~' ) lie inside the ball (1.10). Hence the estimate (3.22) can be ap- 
plied to the solutions (un, vn) and (u*, v*) with T* + 1 replaced by 0. In fact, the as- 
sumption t > T * + 1 (in order to get (3.22)) was needed only the guarantee that (3.19) 
holds. In the present case this smallness assumption holds for each t => 0, since for 
large values of n all the picture lies inside the ball (1.10). Consequently 

Ilu* (T) - u((n + 1) T)II 2 + II(log v* (T))q - (log v((n + 1) T))q II 2 = 

=< c exp (-cT)Hlu ~ - u(nT)ll 2 + II(log v~' )q - (log v(nT) )q II 2 ], 

which tends to zero as n -~  + ~. 
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