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A Two-Parameter Spectral Theorem (*). 

ERNESTO BUZANO 

Summary. - We study the characteristic set 

C = {(~,f) e • x R: ker(I  - ~A -fiB) r 0} 

of a couple (A, B) of selfadjoint compact operators on a real Hilbert space H. We prove that C 
is the union of a sequence of characteristic curves ~ in the (~, [3) plane. Each curve is the 
analytic image of a n open interval and it is either closed or it goes to infinity at both ends of 
the interval. Moreover, it may intersect either itself or other characteristic curves in an at 
most countable set of points, which may accumulate only at infinity. Finally, to each char- 
acteristic curve one can associate an analytic function E~, which gives the eigenprojection 
onto the eigenspace attached to each point of the characteristic curve, except at the intersec- 
tion points, where the eigenspace is the direct sum of the projection relevant to each branch 
passing through the point. The dimension of the eigenprojection is constant along each curve 
and it is called the multiplicity of the characteristic curve. 

1. - I n t r o d u c t i o n .  

In this paper  we want  to s tudy the following problem: describe the characteris- 

tic set 

(1) C = {(~,/~) e R x •: ker  (I - xA - ~B) ~e 0}, 

where  A and B are selfadjoint compact operators  on a real Hilbert  space H.  

This question arises in many problems of Mathematical Physics, for example in 
mul t iparameter  bifurcation theory.  At  the end of the paper  we il lustrate our resul t  
with some example. 

Ours is by no means the only extension to many parameters  of the usual spect rum 
theory.  We re fe r  to [1] for a survey of the vast  l i terature  on this subject. 

(*) Entrata in Redazione  il 20 gennaio 1989. 
Indirizzo dell'A.: Dipartimento di Matematica, Universita di Torino, Via Carlo Alberto 10, 

10123 Torino. 
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2. - T h e  s p e c t r a l  t h e o r e m .  

Before to state our result  we give a definition. Consider a possibly finite subset 
of the natural numbers N and two sequences (~)~ ~ ~ and (~n)n e J of functions defined 
on an open interval Jn r R. Then for each n e ~ and 0 e Jn we define 

g ~  (0) = {(k, l) e Z x~: k e ~l, 0 + 2k~ e Jr,  ~l (0 + 2k~) = ~ (0), fit (0 + 2k~) = Bn (0)} 

where 

= I { k z  Z : 0  < 2k= < / / ~  } if ~ and Bin are both periodic of minimum period F/s, 
~n [z otherwise.  

g ~  (0) is the set of all branches of curves (~k, Bk ) which intersect the curve ( ~ ,  Bn ) at 
the point (a~(0), fin(0)). In particular ~ n ( 0 ) =  {(0, n)} means that  there is only one 
branch, that  is that  the curve (an,B~) intersects neither itself nor the other 
curves. 

Now we state our result. 

THEOREM. - Consider two compact selfadjoint linear operators A, B on a real 
Hilbert space H r 0, such that  

Itnll + IlBII ~= O. 

Then 

(i) There exists an at most countable sequence ( ( ~ ,  Bin))~ ~ ~ of couples of real 
analytic functions 

O:n , Bn : Jn--> R 
r 

with 2 o N ,  and Jn----],~n,~bn[, such that: 

(a) the characteristic set of (A, B) is given by: 

e = U ((=~ (o), 3~ (o)): o ~ J~ ) ; 
nE~ 

(b) ~(o)  + ~ ( o )  I> (lldll + IIBII) -~ for all 0 ~ J~; 

(c) either we have 

lim (a~ (0) + B~ (0)) = lira ( ~  (0) + B~ (0)) = + 
0 - - ~  + 0---~ ~b- 

or the above limits do not exist, ~ = - ~,  ~ = + ~ and ~ ,  Bn are peri- 
odic with period given by a multiple of 2=; 

(d) the set of ~,multiple points,  

J" = {0 r  ~ ( 0 ) r  {(o, n)}} 

is at most countable and with no cluster points in J~. 
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(ii) For each n e ~ there exists a real analytic operator-valued function 

such that: 

(e) 

E~: J~--+ 2(H) 

E~ (0) = E~ (0) ; 

The set 

( f )  k e r ( I -  ~(O)A-~n(O)B) = ~ Et(O + 2k=)H; 
(k, l) e grQ(o) 

(g) dim(En(O)H) does not depend on 0; 

(h) E~ (0 + 2k=) and E~, (0 + 2k' =) are orthogonal for each (k, n) r 
r  such that O+2k=eJ~ and O+2k'7~�9 " 

is called n-th characteristic curve of (A, B) with multiplicity m,~ = dim (En(O)H). 

3. - P r o o f  o f  the  spectral theorem.  

Let 

(2) 

then 

T(O) = cos (0) A + sin (0) B ,  

T: • -~ 2(H) 

is a real analytic function and T(O) is compact selfadjoint for each 0 �9 R. 
Let 

~(T(O)) = {), �9 R: ker ( ; J -  T(O)) :/: 0}, 

be the spectrum of T(O). 
Consider the complexification of H, A and B. Then T extends to a complex aria- 

lyric function 

T: C ~ ~(H) 

such that 

(3) 

Given ~ �9 R, let 

(4) 

T* (~) = T(~) for all ~ �9 C. 

{)~, ~ : m �9 g~, }, with g~ c N ,  

be the set of the positive eigenvalues of T(~). Let %,~ �9 R+ be such that 

z(T(v)) n [)~,~ - %,~, s + ~,,~] = {),~,m }. 
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Thanks to (3), by standard results on perturbat ion theory ([4], Theorem VII .6.9 and 
[5], Theorem II-6.1 and Section II,3.1) there  exist 8~,~ e R+ and q,,~ real analytic 
functions 

A~,m,p: ]~-O~,m, ~ + ~ , m [ - , R + ,  with l<.p<.q~,~, (5) 

such that 

(6) 

(7) 

(8) 

A~,,~,p(~,) = )~,~, 

A,,,,~,~(O)r for p-Cp'  and 0 r  

~(T(O)) (~] ;(~, m --  S r . m ,  ~'r,,m q- Zrj, m [ :  { d r .  m, 1 (0) ,  . . . ,  A~, m,q~,~ ( 0 ) } .  

Moreover, the projection E~, ~,; (0) onto ker  (A~, ~,p (0 ) I -  T(O)) is analytic for [0 -  V[ < 
< &,,~, if q~,~ = 1, whereas it is analytic for 0 < ]0 - V[ < &,,~ and has a removable singu- 
larity at 0 = ~, if % ~ > 1. The extension of E~,, m, 1, ..., E~,, ~, q,,,~ to 0 = ~ satisfy the fol- 
lowing equality: 

(9) k e r ( ~ , , ~ I -  T(O)) = 0 E~,m,p(O)H for [0-~[  < ~ , ~ .  
l <~p<~q~,,~ 

Let  

A~,,.~,; (0): J . , ,m, ;~  R+ 

be the maximum positive real analytic continuation of (5). Of course J~,, m,; is an open 
interval. 

We need the following 

LEMMA. - Given 9, '~ �9 R and a continuous function 

A: ]9, ~[--) R 

such that A(O) is an eigenvalue of T(O) for each 0 e ]9, ~[, then 

lira A(O) and lim A(O) 
0--~ + 0---> ~- 

exist and belong to ;(T(~)) and z(T(~)). 

PROOF. - We begin by proving that  if (On), ~ i is a sequence such that: 

O n --)" 9 + , A(O n ) ~ ), 

then ;~ �9 z(T(~)). Indeed, if ), ~ z(T(~)), because z(T(~)) is closed, there  exists a neigh- 
borhood U of z(T(~)) such that ;~ ~ U. On the other hand by continuity there  exists 
8 >  0 such that ~;(T(O))c U for each 0 �9 [9, ~ + 8[ in contradiction with A(G)--> ;~ 
~ U .  
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Let  (0n')~ ~ N and (0~)~N" be two sequences in ],,z, ,~[ such that  

lim ' - ~+ O n - -  lira A(O~) = lim inf A(O) = )~', 
~---~ + cr 0 _ ~ z +  

lim O; = 9 + l ira A(O;) = lim sup A(O) = ~" 

143 

such that  A(O~) = 2. Therefore 

= lim 0~ 
n - - ~  + cr 

This means that  

and )~ = lim a ( o ~ )  c r  
~t--~ + m 

[~', ;:'] c ~(T(~)). 

But ~(T(~)) is discrete, therefore it cannot contain a non-degenerate interval, so 

lira inf A(0) = lira sup A(O). 
0---~ 7 + 0---> ?+ 

In the same way one t reats  the other end-point ,~. " 

Thanks to the previous lemma we have that  

(10) A~,~,p (0) ~ =(T(O)) for all 0 ~ J~,m,p. 

I t  follows in particular that  also E~,~,p extends to an analytic map on J~, .... p. 
Le t  

J = {0 ~ R: ~(T(O)) (~ R+ :~ 0},  

8 ~ = { ( ~ , , m , p ) ~ J x N x N : m ~ g ~ , ,  l<~p<-q~,m } 

and define the following equivalence relation 

@ , m , p ) - ( r / , m ' , p ' )  <:~ there exists k ~  Z such that  

J~,~,p = J~,,~,,p, + 2k~ and A~,m,p (0 + 2k~) = A~,,m, p, (0) for 0 ~ J~',m',p' �9 

Le t  

8 = r 

In particular )~', ~" e ~(T(~)). Moreover if ~ e ]2~', ~"[, then there exists no e N such 
that  

~]A(0"), A(0~)[ for each n > no. 

Because A is continuous there exists 

�9 r re p! 0~ c ] m m  (0~, 0~}, max {0~, 0~}[, 
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By the axiom of choice there exists a function 

/': 8--) 2 ~, 

such that  F(s) ~ # is a representative of the equivalence class s. Of course 

J =  U JF(~). 
8 ~ 8  

Because Ar(.~) e z(T(O)) for all 0 e J~(~), z(T(O)) is at most countable and by (6), (7) and (8) 
there is only a finite number of Ar(~,) passing through Ar(~), we have that  

8o = {s e S: 0 e J~(~)} 

is at most countable for each 0 e J.  On the other hand J n Q is dense in J ,  so 

S =  U Sr . 
reJnQ 

Therefore 8 is at most countable because J n Q is countable. 
Le t  

8n <--~n , 

be a bijection between 8 and a suitable subset 5 of N. For  each n e 2 set 

Jn = Jr(s~), An = Ar(s,), En = EA(s~). (11) 

Of course 

n C n' ~ An ~: An,. 

Now we prove that  for each 0 E J we have 

(12) ~(T(O)) n R+ = (An(0 + 2k~): there exists (k, n) ~ Z x~ such that  0 + 2k~ c J~} .  

Consider 0 + 2k~ e Jn, then by (10) we have 

An(O + 2k=) e z(T(O + 2k=)) = z(T(O)). 

On the contrary, let s m, with m e ~0, be a positive eigenvalue of T(O) and let n e J be 
such that  ~(sn) - (0, m, 1). Then there exists k e Z such that  

Jn -- Jo, m, 1 "~ 2k= and An (0 + 2k=) = A0, m, ~ (0) = ~0, m. 

From (12) and [4], Lemma VII.3.4 we have that  

(13) A~(0) ~< HT(0)]] ~< IIAII + fiBi]. 

Set 

Jn --]~'n, ~n [, 
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then we prove that  

(14) 

[e i ther  lira+ A n (0) ~- lim A(A~ (0)) = 0, 

l o r  ~n = - -  ~ ,  ~n : -~- oc a n d  A~ i s  e i t h e r  c o n s t a n t  

[ or periodic with period given by  a multiple 2=. 

Consider the behavior  of An at the point ~n. I f  ~n > - ~,  by our lemma we must  
have lim A~ (0) = 0, otherwise An could be continued outside j n .  

0 ~ . ~  + 
Assume now that  ~ = - ~ and for each 0 e Jn consider the sequence 

(15) (An (0 - 2k=))k ~ N- 

Because the elements of (15) are eigenvalues of T(O), we have that  the sequence (15) is 
e i ther  finite or it converges to 0. Moreover,  if one of this possibilities is verified for 
one O, it is verified for all 0 e Jn. In fact, if the sequence (15) were  finite for 0 = 01 and 
infinite for 0 = 02, by considering An (tOi + (1 - t) 02 - 2k=) with t e [0, 1] we would have 
an infinite number  of eigenvalues flowing toge ther  in the same point in contradiction 
with (6), (7) and (8). 

In the case in which all the sequences (15) converge to 0 we have 

5 m  A~(O) = O. 

In fact, given any ~ e J~ and z e R+, because [~ - 2=, ~] c Jn is compact the sequence 
(15) converges to 0 uniformly on [ ~ - 2 = ,  ~]. Thus there  exists N ( e ) e N  such 
that  

0 < A~ (0 - 2k=) < ~ for each k I> N(~) and 0 e [o~ - 2=, ~].  

But this implies tha t  for 

we have 

0 < ~ - 2N(~) =, 

( I ~ O<A(O)=A 0 + 2  = - 2  ~ = < e ( * ) ,  

because 

(*) Ix] is the integer part of x. 
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and 

o j - 2 = < 0 + 2 ~ - 0 ~ = ~ < ~  
[1 2 ~ l ]  

Consider now the case in which all the sequences (15) are finite. Let  v(O) be the 
number  of distinct values taken by (15). Consider (~ e Jn. By (6), (7) and (8) v is upper  
semi-continuous, thus it has a maximum K in [ ~ -  2=, ~]. I t  follows that  for each 
0 e [ ~ -  2=, ~] at least two of 

(16) A~ (0 - 2K=), An (0 - 2(K - 1) ~.), ..., An (0 - 2n), An (0), 

must  coincide. This implies that  two of the values of (16) must  coincide at an infinite 
number  of 0 e [o~ - 2=, o~] and so by analyticity J~ =] - ~ ,  + ~[  and As must  be constant 
or periodic of period 2K=. 

A similar result  holds at the other end-point ~n and this implies (14). 
Now define 

a n (0) -~ COS ( 0 ) / A  n C0), ~n (0) = sin (0) ~An (0), 

for n e ~ and 0 e Jn- Then Ca) follows from (2) and (12), while (b) follows from (13). 
Moreover  ~n and fin are periodic if and only if An is either constant or periodic, so (c) 
follows from (14). 

Finally (d) follows immediately from the analyticity of the functions An. This 
proves par t  (i) of the theorem. 

Now we prove part  (ii). 
Of course En,  defined in (11), satisfies (e) because it is a projection. 
Consider now v e J~. Then An(V) belongs to (4), i.e. there  exists m e : ~  such 

that  

An (~) = )~,, m" 

We know that there exist % ~ ,  8~,m e R+ and q~,,m analytic functions A~,,~,p satisfying 
(6), (7) and (8). Therefore we have that  ( f )  is a consequence of (9), provided 
that  

(17) {Av, m, 1 (0), . . . ,  Av, m, q,,,, (0)} = {A 1 (0 + 2k=): (k, l) e :~n (v)}, 

for 0 e ] V - 4 , ~ ,  V+8~,~[, and 

(18) At (0 + 2k=) =~ Av C0 + 2k'  =), 

for (k, l), (k', l') e :~n(v), (k, l) r (k', l') and 0 < 10 - vl < ~%,~- 
Firs t  we prove (17). Given 1 < p  ~< q~,~, there  exists l e~ such that  P(sl) 

(7, re, p). Therefore there  exists k e Z such that 

Jt = J~,m,p + 2kr~ and Az(O + 2k=) = A~,~,p(O) for O e J~,,~,p. 
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Without loss of generality we may assume that  k c ~t. Of course 

A~ (r~ + 2k~) = A~,~, p (~) = )~, ~ = A~ (~), 

thus (k, l) �9 g ~  (v) by the definition of glib, a~ and fl~. 
Consider now (k, l) �9 2 ~  (r~). Then 

+ 2k= �9 J~ and At (7 + 2k=) = An (~). 

This means that  

At (V + 2k=) = ~,  m. 

Then by (12) and continuity we have that  there exist 8, ~ e R+ such that  

Al(O + 2k=) e z(T(0)) c~]~,m - e, ~,,~ + ~[ 

for 10 - 7! < 8. Then (8) implies that  At (0 + 2k,~) must coincide on ]r, - ~,, ~,  V + ~, ~ [ 
with one of A~,~,I, ...,A~,~,qo,. This proves (17). 

Assume now that  (18) is not satisfied, then by (17) and (11) it follows tha t  l = l'. 
This implies that  At is ei ther constant or periodic. I f  At is constant, then k = k' = 0 
because at and fit have period 2~ and k, k' e ~ ,  so that  0 ~< k < 1 and 0 ~< k' < 1. I f  At 
is periodic of minimum period 2pl =, then k - k' must  be a multiple of Pl and this is 
in contradiction with k , k ' e ~ z  (that is O<~k<p~,  O<_k' <Pz),  unless k = k ' .  This 
proves (18). 

I t  is clear that  dim (E~ (O)H) is a continuous function with integer values, thus it is 
constant. 

Finally orthogonality follows from the fact tha t  A and B are selfadjoint. 
The proof of the theorem is therefore complete. 

4 .  - E x a m p l e s .  

Firs t  we give a finite dimensional example. Let  A and B be two symmetric  2 • 2 
real matrices 

a2 aa ' b2 baJ' 

such that  

(19) ibl r 0. 

The characteristic curves of I -  ~ -  bB are given by the characteristic equation 

1 - ~ a  I - -  f i b  1 - - a a  2 - -  fib 2 
-aa2 -,3b2 1 - ~a8 - fib8 = O, 
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that  is 

(al a s -  a~) ~2 + (a I b 8 + a s b l -  2ae be ) ~f + (bl bs -  b~ ) fie_ (al + as ) ~ - (bl + b8 ) f + 1 = 0, 

which is the equation of a conic. 
Indeed 

a l  a3 - a 2 = a l  b~ + as bl - 2ae be = bl b~ - b~ = 0, 

implies 

al bs - a~ bl = 0 

in contradiction with (19). 

In order that  our example be consistent with our theorem, we have to check tha t  
the origin of the (~, f)-plane lies inside the conic, otherwise (c) is not satisfied. This 
means that  for each 0 e R the line of equations 

= cos (0) t ,  f = sin (0) t ,  

intersects the conic at least once, that  is that  the following equation has at least one 
solution 

(20) [(al  as - a~ ) cos 20 + (a3 b8 + al bl - 2a2 be) cos 0 sin 0 + 

+ ( b l  bs - b~ ) sin 20] t 2 - [(al + a~ ) cos 0 + (bl + bs) sin 0] t + 1 = 0. 

Now the discriminant of this equation is 

[(al  + as ) COS 0 + (b 1 + bs ) sin 0] 2 - 4[(al a8 - a~) cos e 0 + 

+ (al b3 + a3 bl - 2a2 b2) cos 0 sin 0 + (b, b3 - b~) sin 20] = 

= [(al - as ) cos 0 + (bl - bs) sin 0] 2 + 4[a2 cos 0 + be sin 0] 2 >I 0. 

This implies that  (20) has at least one real solution. In fact the discriminant cannot 
vanish together  with the coefficient of t 2, because this would imply that  also the coef- 
ficient of t would vanish yielding 

(al - a8 ) cos 0 + (bl - b~ ) sin 0 = 0,  

(al + a3) cos 0 + (bl + b3) sin 0 0, 

which is inconsistent with (19). 
Of course one can consider similar examples in R n. In this case the conic becomes a 

real plane algebraic curve of order n. Real algebraic curves are made of ovals, tha t  is 
of closed connected curves which are homeomorphic to the circle in the projective 
plane. According to our theorem these ovals should contain the origin inside. 

Now we give two examples from the theory of elastic stability. 
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The first one is the following boundary- value problem 

~ - [X; 'n  "4 - ~'X~n "4 - )~Xl p = 0 ,  ~[X 1 (+ 1) = X2,(+ 1) = 0, 

(21) [X~'" -- zX~" + ~X6' O, [X~ (+1) X2 (+1) = 0, 

which arises in the study of the buckling of a rod subjected to terminal couple z and 
thrust ;~ (see [2]). 

In [2], Theorem 1 the following result is proved. There exists a sequence (~n)~ ~ N 
of real analytic functions 

)~n: R---> K 

such that (21) has non-trivial solutions if and only if 

= ~ (~). 

Moreover for each n e N we have 

~ (-~) = ~ (~), 

l(T2n- T2) <),n(~') ~ l ( ( n +  1)2=e--~) for ~ < ~ ,  

z~ (~:~) = O, 

1 2 ~ )  ( n 2 n 2 - ~ ) ~ < ~ ( ~ ) <  ~ ( z ~ -  for ~ > ~ ,  

where z~ e R+ is such that 

tan(r~) = zn and n ~ < ~ <  ( n +  1 ) ~ .  

For each n e N there exists a C ~ function 

�9 ~: R ~  Hg(-1 ,  1) x gg(-1, 1), 

such that 

~n (T) = (~n,  1 (7"), ~n, 2 (T)) and #~ (v) = ( -  ~,  2 (~), ~ ,  1 (~)), 

are an orthonormal basis for the eigenfunctions of (21) with ~ = ;~n (z). 
This result is in agreement with ours. In [2], Theorem I we have proved that ~n is 

only e | instead than analytic, but on the other hand we have obtained more, in the 
sense that we have shown that not only the eigenprojections but also the eigenfunc- 
tions depend smoothly on ~. 

Our last example is from buckling theory of cylindrical shells. Consider a cylindri- 
cal shell with radius R, length L and thickness h, subjected to a compressive force )~ 
and to a uniform lateral pressure p (positive inward). Take cylindrical coordinates ~, 
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0, ~ such that the unstressed shell is described by 

~ = R ,  0~<0~<2~, 0 ~ < ~ L  

and let 

x = ~ ,  y=OR.  

Then, in the framework of Donnell theory ([6], Section 1.2), the buckling equations 
are given by ([6], equations (2.2.23) and (2.2.26)) 

(22a) 

Eh A2 F + --~w~x = 0 

1 
D A 2 w -  - ~ F ~  + 2~R W~ + pRwyy = 0 ,  

where E and D are positive constants: the Young modulus and the flexural rigidity. F 
is the Airy stress function and w is the normal displacement (positive inward). 

0f  course F and w must be periodic with respect to y: 

(22b) F(x, y + 2=R) = F(x, y) , w(x, y + 2=R) = w(x, y), 

for all 0 ~< x ~< L and y e ~(. Moreover we assume simple support boundary conditions 
at x = 0, L: 

(22c) 
F(O, y) = F(L, y) = O, 

w(O, y) = w(L, y) = O, 

F ~  (0, y) = F~x (L, y) = 0, 

wx~(O,y) = w~(L ,y )  = O, 

for each y e R. 
Using Fourier analysis it is easy to solve this boundary value problem. We have 

that 

sin (rex) cos (ny), sin (mx) sin (ny), with m, n e Z, m t> 1, n >/0 

form a complete orthogonal set in the following Hilbert space. Let 

=]O,L[x]O, 2=R[ 

and let 

H = (u: ]0 ,L[•  R--) R: ul~ e H2 (~2), 

with scalar product 

u(x, y + 2=R) = u(x, y), Y(x, y) e]0,L[• R, 

u(O, y) = u(L, y) = 0, Vy e F~} 

( u, v} = f (u~ v~ + 2u~y vxy + uyy vyy ) dx dy . 
t~ 
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Let 

F(x, y) = Z [~m, ~ sin (rex) cos (ny) + ~ ,  ~ sin (rex) sin (ny)], 
m>~ l,n>~O 

w(x, y) = ~ [am, ~ sin (rex) cos (ny) + bin, n sin (rex) sin (ny)], 
m>~l,n>~O 

and substitute into (22a). We obtain the following equations for ~m,~, am,~, and 

~m,~, bm,~ 

~m -~ n ) am,~ - -~  m~ am, n -- u 

-~m2 ~m,n + [D(m2 § 7~2)2- 2 - - ~ m 2 - p R n 2 1 a m ,  n = O , 

(m + n 2 )2tim, ~ - ERh m 2 bin, ~ = 0 

These two systems have the same determinant, which yields the characteristic 
equation: 

(23) (m2+n2)2[D(m2+n2)  2 ~ m 2 - p R n 2 1  E h m 4  = o .  

Thus the boundary value problem (22) has non-trivial solutions if and only if ;~ and p 
lie on the straight lines of equation (23). Of course these straight lines, which are the 
characteristic curves of our problem, may either coincide or intersect according to the 
values of the constants D, E, R, h. 
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