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Partial Regularities of Minimizers
of Certain Quadratic Functionals with Unbounded Obstacles (*).
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Summary. — In this paper, we study the partial regularity properties of vector valued func-
tions w minimizing certain quadratic functionals with an unbounded obstacle which is de-
fined by

w={veH"2@Q,RM)| vV = f(z,v' @),...,v¥ "1(x)) a.e. on 2, v—ug e Hy?(@Q,RY)}.

1. - Introduction.

The purpose of this paper is to provide partial regularity results for the problem of
vector-valued functions minimizing functionals with an unbounded obstacle.
We study the quadratic functional

1.1) Fu;0) = [ AZ (@, u) D, uiDui da,
Q

where Q is an open set in B”, and A;-j-g(x,u), ,7=1,...,N;a,=1, ..., n, are continu-
ous functions in Q x RY satisfying the following:

1.2) |AZ# (@, uw)| <L, for some L>0,

:Mz

AF (@, wElg = g7, for all Ze R™*Y.
1

(1.3) »
8=

a!

14,5

We recall that a function %: Q@ — R is a local minimum of & in Q if for every ¢ with a
compact support in Q, we have '

(1.4) F(u; spt o) < Flu+ ¢;spt o).

(*) Entrata in Redazione 1'1 dicembre 1988.

Indirizzo dell’A.: Department of Mathematics, Zhejiang University, Hangzhou, P.R.
China.
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In last few years, the regularity theory of minimizers has been developed a
great deal. For example, see[5] and [6]. Here we mention some beautiful works of
M. GiaQUINTA and E. Grusti [9], [10]:

A) Each minimum u € HL2(Q, R") for the functional (1.1) is Hélder-continuous
in the interior Q up to a set vanishing H" *measure.

B) If an additional splitting condition is assumed on the coefficients, i.e.,
(1.5) A (@, u) = g;; (@, u) G* (),

then the dimension of set ¥ of interior singularities does not even exceed n — 3.

In this paper, we extend Giaquinta-Giusti’s results quoted above to the same min-
imizing problem with an unbounded obstacle.

We define the problem of functions minimizing the functional (1.1) with an obsta-
cle as follows:

We say that a function u: Q — R” is a minimum of the functional (1.1) with an ob-
stacle « if there exists a subset u of H"2(Q,R¥), and u e such that

(1.6) Flu; Q) — rglég FHv; Q).

The subset u is supposed to be given by
w={ueH"2(Q,R")|u—uye H}*@Q,RY),u(x)e M on Q},

where M is a given set in RY, and u, € HV%(Q, RY) defining the prescribed boundary
values. In order to have u nonvoid, we assume that 4, € z, which means that u,(x) e M
a.e. on Q. For the sake of simplicity we suppose that u, is smooth.

In the scalar case, i.e. N =1, the problem (1.6) turns out to be equivalent to the
problem of seeking solutions to general variational inequalities. The existence and
regularity theory of solutions to the variational inequalities have been developed a
great deal by many authors. For results and proofs we see the books [14], [15] and
their references.

In this paper, we only consider the regularity theory of the obstacle problem (1.6)
in the vector case, i.e. N=2.

In a straight-forward extension of the obstacle problem from scalar-case to
vector-case, having considered the following obstacle:

Q.7 uw={yeR" |y ()= @),
i=1,...,N, a.e. on Q, {'(x) are given functions},

HILDEBRANDT, WIDMAN in [11] and GIAQUINTA in [7] presented the regularity theory
of functions minimizing the functional (1.3) with an obstacle (1.7) under a diagonal
condition on the coefficients:

(1.8) AF (2, u) = 8, A7 (, u).
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It appears that there are difficulties to extend their results to a more general
case without the assumption (1.8).
In a different way, the minimizing problem with an obstacle of the type defined by

1.9 u={ueH"2@Q,R)|u"=flz,u' @), ..., u" " (x))
ae. on Q, fle,u',...,uN 1) is a given function},

has sheen studied by many authors. TomI [16] first proved the existence of a mini-
mum of the problem (1.6) with the obstacle (1.7) by using a lower-semicontinuity ar-
gument. For n=2, he proved that each minimum is regular. For n=3, FUCHS [3]
considered the Dirichlet type minimizing problem with an obstacle as follows:

(1.10) % ;) = [ |Dup dz— min 7(; Q),
Q

with u = {u e H*2(Q,RV)|uN =f(u?, ..., u" 1)}
He showed that each showed that each minimum of the problem (1.10) is partial
Ch*-continuous. For a more general obstacle

u={ux) e H*2(@Q,RV)| u¥ = flx,u',...,uV ") a.e. on Q},

WIEGNER [17] proved that the minimum of the Dirichlet-type problem (1.10) belongs
to Cb*(Q,RM). ‘

The aim of this paper is to present some results about partial regularity for the
minimums of the problem (1.6) with an obstacle of the form (1.9). More precisely, we
extent the Fuchs’ ([3]) and Wiegner’s ([4]) results to the quadratic functional (1.3) un-
der the following assumption:

(1.11) AZ (x,y) = 9, ) G¥ ().

We want to point out that the techniques used in this paper are similar to those
used by GIAQUINTA ([8]) in the scalar case in 1981, but they are different from Fuchs’
in [3] and Wiegner’s in [16]. In some recent papers ([1], [2]), FUCHS and ZUZAAR ap-
plied their methods to deal with the regularity of minimizing problem with a bounded
obstacle under the condition (1.11). But their methods can not be carried over to our
case. It is also pointed out in [3] by Fuchs that his results can only carried over to the
case of A;‘f (x,y) = a*(x)¢;;, if the obstacle is unbounded.

A brief outline of this paper is as follows. In § 2, we prove a reverse Hélder in-
equality for the unbounded obstacle problem. In § 3, suppose that the minimum u of
the problem (1.6) with the obstacle (1.9) is bounded, we prove the partial regularity
of the minimum w. In § 4, by using direct methods, we drop the assumption of bound-
edness of minimizers to prove the partial regularity. In § 5, we present some exten-
sions and mention a few problem which we have not touched at all.
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2. - Reverse Holder inequalities.

In this section, we improve the methods used in [10], [5], and prove the high inte-
grability of the gradient of 2 minimum of the obstacle problem (1.6).
Let us introduce a few notations.

Qrg)={rxeR":|jx*—xf|<R,a=1,..n},

Br@g):={xeR":|x—xy| <R}, = )[ u(x) de

Br(xo)

?7:= (yli"'ny_l)y a:z—(ul"";uN—l)’ f(:l},?l)}g:: Jl: f(.’/\’),ﬁ)dm,
Bg (%)

we have

LEMMA 2.1. — Let @ be an n-cube and fe L*(Q) for some v> g, and suppose
. q
J‘: glde<b J( gdx| + J[ fidx+6 } gidx,
Qr (#0) Qor (@) Qeor (%) Qor ()

for each xp € @ and each R <1/2 dist (x,, @) ARy, where Ry, b,0 b, 6 are constants
with 5>1, 0<6< 1. Then we have g € L{;.(Q) for pe[g, ¢+ <], and for @z c @, B <
< R,, the following estimate holds

1/p 1/q 1/p
}gpdx <c J[quac) +( )[f”dx) ,
Qr Qor Qar
where ¢ and ¢ are constants depending on b, @, ¢, v, %.

The proof of Lemma 2.1 can be found in [5], [9].
So we have for the obstacle problem.

THEOREM 2.2. — Suppose that (1.2) and (1.3) hold, and let % be a minimum of the
obstacle problem (1.6) with the obstacle of type (1.9) in which f(zx, ): @ X R 'R
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And assume that

either (i): u e LS, (Q,RY), fe C*'@XRYN™1)
of
3y’

or (ii): @,y ...,y" H| <L, i=12,...,N—1,

(2.1)

3
’é—g{;(x,y)! <=L, «=12,...,n for some constant L >0,

Then if u € H%(Q, RY), there exists an exponent p>2 such that u € Hy? (0, RY).
Moreover, for By (x;) c Q we have

2.2) ( | |Dufpda
B

a/ar )

1/p 1/2
Sc[ J[ 1+ |Du|2)dx}
B

R (o)

provided R < R,, where ¢=c(n, v, p, L).

PrOOF. — Without lose of generality, we assume that x, = 0.
Let

¢=—nl—ug),
2.3) N v _ _ .
¢ =" —ug) +f@,u+g) -1 - fl,w) -l fle, W],

where g = (¢!, ..., d" 1), =), ...,u"" 1), neC{(B,),0<n<lonB,,n=10nB;,
s>t, |Dy| <c(1/(s—1)).
It is easy to check that
uN+ oV = fla, u+3).

Thus by the definition of a minimum, we have

2.4) [IDuPde<c[|D@+o)de.

B, B

Set

¢ = (1 - )i~ tig),

we get
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Define ¢V such that u™ —uf = — ¢V + @~ holds. Hence

@5  [|DoPde=[|D3l*dw + | |Dg¥ Pdi =
B, B, B,
= [ID@® ~ )P du+ [ D@ - DPde<c | |Dulde+c [ DS Pde+ ¢ [ |DBdw <
B, B, B, B, B,

<cf|D(u+;o)|2dx+cfiD@ledx+cf\Ds~P|2dxst|D¢N]2dx+cf|D§[2dx.
B,

B, B, B, B,

Noticing the definition of ¢V and @V, we obtain

@6)  [|Do" Pde = [ID@ +5¥)P do =
B, B,

= | D" — g™ — uf) ) + £, @ + ) ~ A — ) fl&, %) — of @, We ]* dew =
B,

= j lD{(l - n)[uN - ug _f(xy ?TL) +f(x; ﬁ)R] +f(96, /Z{’ + 5)}|2dx =
B,

s

< ZI DL = )™ — ul — flo, ) + fla, Wg )P do + 2[ IDIf(x, %+ 2)]Pde <
B,

B,

<c [ IDWY ~fw, P de+ /s — 7w - fla, ) -
B,\B B,

~uff = fa, W P da + ¢ | IDLf @, 3+ D) e

B
Under the assumption either (2.1) () or (ii), we have
2.7 f D[ fe, m)]|*dx < ¢ f \Dif?dx + L*|B,|
B,\B, B,\B,
and
2.8) [IDif, 1+ 3NPde<c [ D@ +3)Rde+L? B,
Bs Bs
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By (2.6), (2.7), (2.8), we get

@9) [ID?Pde<c [ |DuPdr+c||DBRde+
B, B,\B; B,

+ < Jr 'U’N —f(x, u)_ [ug _f(x, ?’Z)R]|2dx+C|BS| .
(s— 1)

Since D& = (1 — 1) DU — (4 — Ug ) Dy, we have
(2.10) |D®|? < e|Dii (1 — n)? + c|ii — g |2 | Dy [?

and noticing the definition of v, we obtain

@1)  [|DuPde<e, [ |DuPdw+
B

a f | — g Pde +
. B,\B :

(s — 17,

44
(s — 1y,

[ 10 = far, @) — ud) + fla, i)y [Pl + B,

Adding to both sides, ¢; times the quantity on the left, then divided by ¢, + 1, we
obtain

@12) [ {Duldw <0 DuPde+os — 172 [ i~ itg 2du +
B B, B,

C1
1+¢

tols =072 [ |u = flo, @) ~ ull + fle, e Pl +elB, |, 0=
B,

<1.

By the Sobolev-Poincaré inequality, we get

/2

1/2
J[ |DufPde) <6 +c

Ba/ar

f |Dul? da

Br Br

1/2¢
J[ |Du|* dx) +e,

where 2* = 2rn /(2 + n) < 2 and using Lemma 2.1, we can obtain the required results,
i.e. for Bp cc Q, there exists a constant >0, such that for p e[2, 2 +¢) we have

( )[ lDul’;dx

(1/2R

1/p 1/2
<c J[\Dulzdx +c<c
Br

1/2
-‘,[(]Du|2 +1) dx} .
Bp

REMARK. — The assumption (2.1) is similar to the Fuchs’ in[3].
By the Sobolev’s theorem we get

COROLLARY 2.3. — Under the assumptions of Theorem 2.2, if n = 2, then u is locally
Holder continuous in Q.
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3. — Interior regularities.

In this section, we assume that the coefficients A{'f satisfy

3.1) A% (e,w)|<L; ao8=1..,% 4,j,k=1,..,N

Lk
for a constant L >0, where Affw,‘) denote the coefficients Ag“f’
respect to #* and

3.2) A, 9~ A, y) s ol —&'F+ly—y'P),

s partial derivatives with

where w(f) is a nonnegative bounded function increasing in t, concave continuous in
(0)=0. -

Of course, we assume that (1.11) holds. Moreover, we suppose that the following
conditions hold:

There exist constants A, Az, A{, Az>0 such that

N . .
A |EP = Azlgij(way)gl‘sz 2 |87 Ve RN,
L=

3.3) ;
BlLE= Y G,y L= L% VieR™.
o,f=1 !

Then for the obstacle problem, we have

THEOREM 3.1. - Let (1.2), (1.3), (1.11), (3.1), (3.2), (3.3) hold. And let % be a mini-
mum of the obstacle (1.6) with the obstacle

w={ve H"?@Q,RY)|vN = f(x,?) a.e. on Q},

and suppose that f is twice continuous differentiable, then if u e H**nL"(Q,R"),
there exists an open set Q,c Q such that u e C**(Q,,R"Y) for all «<1. Moreover
H" 1(Q\ Q,) = 0 for some ¢>2. Here H"? denotes the (n — ¢)-dimensional Hass-
dorff measure.

Proor. - By the definition the obstacle problem (1.6), we set
P=a+t, vV =u+flx,u+ig).

Since
oV = f(, i)

we have

(3.4) fAf‘f (¢, u) Dy w D, qﬁdw + fAf{% (x, u) DﬁujDa (D, Nz, ) ¢ldx =
Q Q

[ bie, u, Dy F e + [ by @, u, DD, e, -3 dar;
2 Q
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N n . .
for all $ € HP2 N L™ (Q,RY "), where b= > > A%, D, u'Dyu’.
Let us define a set wi=lef=1
Ly (W)= {¢" € Hy* (Bg, R)| (0,¢") € HP* n L™ (B ,R™)
such that w” +t¢" = f(x, %) for all 0<t<1}.

For 4" € 2, (u), we obtain

@5 [ Afe 0D D, ¢ de> [ (@, u, Duy ¥ de; VY e 2y ).

Bg Bg

By the methods of freezing the coefficients, we get from (3.4)

(3.6) [ A% (oo, up) Dywi D, F =
Bp

= [ 1A% @0, ue) ~ A% @, 1 D0 D, 3~ [ A0, D,w D,ID, P, )3l +

Bg Bg

+ | brte,w, Duy e+ [ by, 0, DD, e, )-3Mde; VE € HE* L= (By, RN 1)
Bp

Bg

and we have from (8.5)

@D | Af(w, w) DD, dy >
Br

= f[AXg(aco,uR)—Af‘é(x, u)]DﬂujDagéNdx%—be(x, w, Du) ¢V da

Bp Bg

for all ¢ e £y (w).

For the sake of simplicity, we introduce some matrix notations.
Let

9= (Qij(%:u))zvxzv; g= (gij(wo,“R))(N—nx(N—n’
h= (gNl(xOyuR), --~,9N><N—1($0yulz))T,

$=(¢',...," 1),
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then we get

gk
g=i.
hT INN

and D, ¢ =(D,¢',...,D,¢" 1.
For any ¢" € £y (1), we can choose ¢ such that

ge=¢"h.
Then we have
(3.8) s=¢"(®h, D, =D (@ h.
Substituting (3.8) in (3.6) gives

39 [ 6% @y, up) D0 FDB do+ [ G o, ug) Dyu 7D, 3de =
Bg

Bp

= [ 6% @y, up XD, WD, ") dr + [ 6% (o, ug) DuN 7 ()7 D, 3V dr =

Bg Br

= [1AZ @y, ug) - A% (2, W) D,w D, 3 de — [ A% @&, D, 1D, f)w,»)-§1Dyu! du +

Bg Bg

+ | by, u, DuyFida + [ by G, u, DD, @, )-F da

Bg Bp
Vel e &y(m), £=¢"(D7'h.

Substracting (3.7) by (8.9) would yield

310 [ G¥ (o, ux) Dy gy o, up) — 7 () F1D, 8" do =
By

> [ A% @, u) D,u! D, 1D, )@, @5 he" 1dw =

Br

- f [AZ (o, up) — A% (o, ) Dy’ D, ¢V § B o+

Bp

+ f[A;,’j-(xO ,Ug) —Az“\)’}(oc, WDy D, " d +
Bg
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+ [ by (@, u, Du) ¥ dis — [ by, u, Duy¥g B da
Bp 5,

— | by e, w, D (D, N, DGl der= I+ L+ Iy + Ty + Iy + .

By
Let
giv=gan— R () h.
Since
I o [? h }z{ﬁ 7%}
{—TzTg-l 1} BT gl 10 9]
we have

g¥y=det(g 'det g>+, with some constant +>0.
Then we assume that v is a solution of the following Dirichlet problem:

2 D,[A% (zg, up) Dy’ ] = 0; 1<is<N-1,

(3.11) s y
%Du[gﬁNG%@(xO:uR)DBU 1=0

with v—u € HP2(Bg,RV).
By the standard theory of systems of linear partial differential equation (see [5]),
we have

2 P " 2 L " 2
3.12) f\Dv| dx<c<R)Bf Dv| dxsc(R)Bj Dul? die
B R R

'3

for all o<R, B cq.
By (3.11), (3.6), and setting w=wu—v, we get

(3. 13) ngf (300 ’ uR)Dﬁ wisz 5{dx = J‘[A’gf (xO 3 'U/R) - A;(a“f (x, u)] D,BU/JD“ 5zdx +
By

Br

+ [ b, u, DuyFd + | by (@, u, DD, (e, ) 31 i —
By B

~ | A% @, w)D,u' D, D, fe,w)-Fdw =L+ Iy + Iy + Iy,
Bp

VéeHP2AL®(Bg, RN 1),
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From (3.11) and (3.10), we have
B14) [ G¥ o, up)gin Dy D,V de = L+ L+ L+ L+ I+ I, VeV e £, ).
By
Choosing ¢V = —[u¥ — vV Vf@,u!,...,u¥ 1] in (8.14) gives
uN + itV = f(x,ul, .., uN ) for all te0,1]

and
3.15) [1Dw” Pde <1, + ..+ || +¢ [ 1DWY =¥V fe, )P der

Br By
where ¢ =¢Vg 'k, ¢ = —[u¥ — vV V fx, w)].

Then the problem comes in estimating the following term:
[ DY — oV v £, W) de
By

By (8.11), we notice that
3.16) | gl G (o, u) Dy — v Ve, WD, ¢ der =

Bg
= — [ G G* o, ug) D0V V@, WD, ¥ dw V5" € HY? By, R).
Bg

Therefore, choosing ¢V = vY — vV Vf(x, %), and noticing v¥ =NV f(w, @) if vV=
= f(x, u) would yield
3.17) [ 1D vV v fla, 1P de < ¢ | 1D, [f(e, ) de.

Br Bp
Using (3.13) and setting & = — (u’—v"), 1<T<N -1, give
(3.19) [ 1DwPde < ||+ |+ ..+ Lol + ¢ [ 1D, [, w]de.

Bz Br

Next we divide the proof of Theorem 3.1 into two different cases.

Case (i):
(*) D, f(x,ug) =0, D, flxy,ug)=0.
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For the estimation of (3.18), we know that the difficulty comes from estimating 7,
and

¢ [ 1D, f, w)Rda.
By

Because f(x, u) belongs to the space C%, and u e L*(Q,RY), we get the following
facts:

There exists a bounded nonnegative function w, () increasing in ¢, concave contin-
uous with wy(0) =0 such that

IDyf(xya)“Dyf(WOJaR)l <w2(|x—x0|2+ tu—uR |2)
and
D, f(z, a)_Dxf(xO;aR)i $w2(“’6—w0 ]2‘{“ |u—uR lz)-

Thus we have

=

3.19 L= L f AF @, u) Dy’ D,ID, ), )G " 1dax

R

A

| A% @,u)D,w/ D, D, f,i)g g do

B,

+

+| | A% @, u) D,/ D2 ), @) D, 5§ g do
B

-+

+

+| [ A% @,w D D, ), 0§ hD, " da
By

<c [ |DupP|¢¥|dw+c [ |Duf|¢¥ | da+

B By

+ f AF @, w) Dy (D, ), ) — (Dy £y, g 1§D, & d

Bp,

<c f(l + [Dul)(w¥ |+ [V | + o — oV V f(x, @) dac +
Bg

+ cfwg(loc— 6o |2+ [u — ug )| Dul? dx + ef |Dw|? dx +
B ) By

+e [ IDIY — oV V fla, P de.
Bg
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The condition () gives

3200 [ ID,[f G, dz< [ @, @, ) de + | 1D, £, W) IDupde <

By, Bp Br

Sf|Dxf(x,ﬂ)——Dwf(xo,ﬂg)|2dm+ Jr |Dyf(x,ﬂ)—Dyf(wo,ﬁR)['Z{DuizdocS
Bg

Bg
< cf(l + 1Du) wg (|2~ 20 >+ |4 — ug ) dac .
BR -
We can estimate I, similarly to I;

G20 |Lol <c [+ (DuP | do+e [ 1w de +

By B
+cf(1+ |Dul?) i (o — 2 2+ |u — ug [2) da .
Bp
Estimating I,, I3, I; would yield

(3.22) | +1I|+ 11| < [ (o~ P+ lu— ug ) Dufrda +
Bg

+< [ IDuPda+ ¢ [ DN =V f@, w)2de.
B Bp
Estimating I, I5, I, I3 and I; would give
(3.23) ||+ L]+ I + Is] + L] < [ (Dult+ Digldw <
Bg
<c Jr(lDu\2 + D(w| + [N =NV fe, w)|) d .
Bg
Hence by (3.18), ..., (3.23), we have
(3.24) f|Dw|2dmscfw2(|x—m0|2+ lu — ug [2) +
By By
+ w§(J — 2o 2+ |u = ug [*) + wy (jo — 20 2+ |1 ~ ug |2)A + |Dul?) do +

+ ¢ [+ DuP Yo + 0" ~ o™ V f e, )
Br
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We can use the boundednesses of %, » and w; to get

3.25) [IDwPdz<c [@+|Duf) de
B Bp
and
(3.26) [ 1D oY Ve, WPz < ¢ [+ [Duf) dar.
Bg Br

By the Sobolev inequality, we have

3.27) [l de < cR? [+ |Dup) dx
Br Br
and
(3.28) [ 1% = 0NV f, WP de < cR? [(1+ |Duf?) de
Bg : Bg

On the other hand, using the LP-estimates, and the boundednesses of # and v, we
obtain

(3.29) [ (] + [N — "V fw, D) Duf dw <

Bg

Bar R

- -2/
<c J'(l-i— IDuF)dw[ f(|wt2+ ]vN—UNVf(x,ﬁ){z)dxr 2 2ps
B

<c [(1+|DuP)de

Bap

p—2/2p
R)[(1+]Du|2)dw} ;. p>2.
Bg

Then from (3.24), (3.29), and the concavites of w, wy, and using the LP-estimates
again, we get

1-2/p

] .

R*f(1+ Dul)dw

Bg

i" /
(3.30) | |DwPdr<c [+ |DuP)de [w(RZJFRZ*nj |Dulf? dee

By B Bx

1-2/p
+ wy +c f(l—i— |Dul?) dx

B Bar

R2+R*" [ |DupPde

TD* 2)/2p

and notice that

f |Duffdr<c (%)n j( |Duf?dx + ¢ j IDw|? dae

BP BR BR
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for o <(1/2)R, then we can finished the proof of Theorem 3.1 in the Case (i) by the
standard methods (see chapter VI of [5]).

Case (ii): either D, f(xy,%g) # 0 or D, f(xy, %g) # 0.
We transform v into v*;

v¥i=9p' =12 .. .N~-1,
”*N=UN—Dxf(Wo,ﬁR)'x‘“Dyf(xo,ﬁR)"T)-

Thus the obstacle problem (1.6) turns out to be equivalent to the following obstacle
problem:

F*(u*; Bp)— min F(v*;Bg),
7)*6[.&*
where F(v*;Bg) is a new functional defined by

(B.3D)  F*(*;Bg) = [ A (&, 0)D,v' Dyvide:=
Bp

= [ A3 @,0")D,v* Dyv¥ida+ 2 | A% (e, v)D, F)@s, i) (Dyv* +
BE BR

+D,f (o, ) Dyo* e + | Ay e, XD, ) , T YDy ), ) div =

Bg

= JA;-‘“B(x,v)Dmv*iDﬁv*jdx+fb(x,v*)-Dv*dac+ fc(x,v*)dm
Br

Bp By
and
¥ = (v e HY2 By, RM)| 0™V = f* (1, 5%), v* — u* e HY2 (B, R™)} .
Here
[* @, 0%) = flw,0*) — (Dy [Nwo, up) - — Dy [) o, Ug ) 0%,
AX? (m,v%) = G* (x,v*) gi} (x, v*)
with

(gf (@,v*)) = ZT(Wo,ﬁR)(gij(%, v*)) Z(xg, Ug ),

Z(xo,ﬁ/R)={IT 2:|, 01=(Dylf(wo,uR),.4.,DyN—1f(x0,%R))T.

61
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It is easy to check that
(D, d*)wy, ug) =0, (Dyf*Nwo,g)=0

and that the coefficients Ai";"‘ﬂ also satisfy the condition (3.3), and f* is twice continu-
ous differentiable. ’
Comparing F* with F, we have two additional terms

f b, v*)-Dv*da + fc(oc,v*)dx,

Bg By

of the form.
Then from the definition of the minimum in By, we get a few additional terms be-
sides (3.4) and (3.5)

Jb(x,u*)Da¢dx+Jbuk(ac,u*)gSkDu*da:Jr fcui(x,u*)¢idw.

By Bg Bp

By standard arguments (see [5]), we can treat above terms easily. The other terms
in (3.4) and (3.5) have been treated in the Case (i). Finally we have shown The-
orem 3.1. q.e.d.

From the proof of Theorem 3.1 we get

COROLLARY 3.2. — Suppose that the coefficients Af‘f are constants, and assume that
(1.11) holds, and let the obstacle function f=0 in (1.9), and let condition (3.3) hold,
then if u e H32 (2, R") is an minimum of the problem (1.6) with an obstacle (1.9), the
conclusion of Theorem 3.1 is still true. Moreover the singular set ¥ is empty.

4. — The direct approach to regularity.

In Section 3, we have shown that each minimum u e H*2NL*(Q,RY) of the
obstacle problem (1.6) is partial regular, but usually we can only show the existence
of a minimum u belonging to the space H“2(Q,RY) (see[16]). In this section
we want to drop the assumption of boundedness of the minimizer, i.e. € L™ (Q, R™).
Instead we assume that the first derivatives of the function fin (1.9) are uniformly
continuous and uniformly bounded, i.e. there exists a constant L >0 such that

of
ox*

of
ayi

(4.1) (x,y)lsL, a=1,..1m; x, | <L, 1i=1,...,N—-1;
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for all (x,%) e 2 xRY! and

of
dx*

of
3y*

4.2) (@,y) and (@, y)

are uniformly continuous and uniformly bounded.
Then we can show the partial regularity of the minimizer of the obstacle problem
(1.6) too.

THEOREM 4.1. — Assume that the coefficients Aff are uniformly continuous and
uniformly bounded, and the splitting condition (1.11) and condition (3.3) hold. Let u €
e HL2(Q,RY) be a local minimum of the problem (1.6) with an obstacle

w={ve H"2(Q,R")|u" = f(x,7) a.e. on Q}

and suppose that f satisfies the assumptions (4.1) and (4.2). Then there exists an open
set Qg c Q such that u e C%*(Qy,RN) for every «<1. Moreover we have

ONQy =z, e O limiI}fRz‘" f |Du?dx > ¢,
R—-( By (za)

where ¢, is a positive constant independent of . Finally H*~7(Q\.Q,) = 0 for some
q>2.

PRrROOF. —~ For the obstacle problem (1.6), we make a transformation:
v¥=9t  i=1 .., N-1; o¥=9"-Ff(x7).
Then we have
Dv¥=Dn', i=12 .. ,N—-1,
D, vV =D, v* +D,[f(x,7*)]1 = D,v*" + D, f(x,%) + D, f(2,%)-D, ¥,

we define the new functional

(43)  F**;Bp)i= Fw;Be) = [ G¥(w,v)g,(,v) D,v' Dyvide =
By

= Jr G*# (@, v* ) g7 (&, v*) D, v* Dv¥ dz +
B

+2fG“ﬂ(x,v*)gwf(x,v*)ng*f[D,v*N+Dyf(96,17*)13u7*+Daf(%,5*)]d90+
By

+ fG“ﬂ(ac,?)*)gNN(x,v*)[Dav*N—{-Dyf(m,5*)Dav* +Daf(9c,17*)][Dﬁv*N+
By
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+ D, f@,5*) Dyo* + D, f(&,5)]dw = | G, v¥) g5 (@, v*) D,v* Dyv*idr +

Bg

+2 [ 6@, 0% ){ g @, v*) D, (@, 5*) Dyv + gy (2, v*)+ D, flar, 7D, 0 +
Bp

+Dyf(w,5*)'Dﬁ5*]} dx + j G?(x,v*) gyn (&, v*) D, f(x, 5*)Dﬁf(x,5*)dx =
Bp

- fG«ﬂ(gc,v*)g{‘]‘-(x,v*)Dav*iDﬁv*jdx+fb(x,’v*)'Dﬂ*d%‘*‘fc(x,v*)dm,
Bg Bp Br
where (g7 (¢, Y)wn = Z7 @, P94, y) Z(, ),

I 0

Z(x,y)=[0 1
2

} ,  Op= Dy fl, ), ..., Dy floe, 7).

Noticing that (4.1) holds, we can show that g% (x,%) (i, =1, ..., N) also satisfy (3.3).
Moreover we have

b, v*)| <L, le(x,v*)|<L for some L>0.
And there exist two nonnegative bounded functions w;(f) and w,(f) increasing in £,
concave continuous in w3 (0)=0 and «w,(0)=0 such that for z, ' €ew and y,
y/ ERN
|b(, ) — b@’, y)| S wg (jx — ' P+ |y — '),
@, ) — o', y) Swg(e -2 +ly —y'[P).

The obstacle problem (1.6) turns out to be equivalent to the following obstacle
problem:

4.4 F*(w*;Bg)— min 5*(w*;Bg), v*—u*eHy*(Bg,RY),
v¥=0

where F* is defined by (4.3).
For the sake of simplicity, we still denote u*, g (¥, u*), and F* by u, g;;(x, u)
and &.

By the results of existence about the obstacle problem (see [16]), we assume that
U is a minimum of the following obstacle problem:

(4.5) %(U;BR)“)@%%(”;BR); v—u e Hj?Bg,RY),
where

Fo i Br) = | Gy, up) gy @o, ug) D,v' Dyvida.
B .
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By arguments similar to Section 3, we get

46) |G @y, up) gy @y, up) D, U Dyl ds =0,
By

V¢ e H2(By,R), j=1,.. N—1.

and

4D [P @y, up) gay@o, up) D, U Dy de =0,

Bp
VeV e HVE(Bg,R): UN + 1Y =0, Vi €[0,1].
Let v be a minimum of the following Dirichlet problem:

4.8) Fo(v;Bp)—  min  F(w;Bg).
we HY2(By)
w—ueHy?(Bg)

We have from the standard theory of systems of linear elliptic equations
(see [5])

f’Dv'Zdas <c <%)nf Dul? das

i Bp

for all o< (1/2)R.
From the processes of proofs in Section 3 and Corollary 3.2, or see{13], we can
obtain

[IDw-Pde=0 = v=U ae. on By
Bp
Therefore

J]DUIzdx<c<%> [1DuPde, vVe<a/2)R.
R Bg

i3

Setting w=u — U would yield

2 e " 2 2
@9  [|DuPdx sBj DU das +Bj D - U)| dxsc(R) [ 1Dufdar + [ |Dwl?de.

B Bpg Bp

e 4 -
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Using the assumption (3.3), and inequalities (4.6), (4.7), we have

410) [ |DwPde< [ gijwo, up) G* (o, up) D,wi Dywide <
B Br

= fgij(mo,uR)G“ﬂ(%yuR)Da“iDpujdx‘ fgij(xo;uR)G“’B(xo,uR)Da UiDﬁ U/ de <

Bg Bp

< [ gij@,u)G* (&, D, ui Dyuides + [ oG, ) Dudac +
Br By

+ | etw,uydw— [ g, U) G @, U)D, U D, U e~ [ bla, U)- DU d -

Bp Bg Bg

- fc(x, U)dx+c J[m(R2+ i —ug )+ wR2+ U~ U ))N|Dul2+ DU 1da +
Bp

Bg

+¢ [[1Dul + IDUINws (B2 + |u — ug [2) + oy (R + U = U ) de +
B ‘

¢ Lo (= 2|2 + u—ug ) + g (2 = aig |2+ [T = U [2)] o +
Bp

+fb(oc0,uR)-D(U-u)dac.

Bp

Noticing that s, = Ulsp,, and » is a minimum of the obstacle problem (4.5), we
have

1) [ |DwPde<c [(DuP + DUBWR? + |u— 1 2) + w2 + U — Uy )} dc +

Bg Bg

+ [(Dul + [DUDLws (R2+u— u) + oy (RE+ |U — U [2) dr +

By

¢ [lwg R+ [u— g ) + g (RE+ U — Uy [P dac.

Bp
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By the Sobolev-Poincaré inequality and L*-estimate, we get

412) | DulPo®?+u—ugp ) dx <
Bg

1-2/p

< f(1+ IDutZ)dxw(Rz-}-ch'"f |Du? dx , p>2.

B Br

Seeing [5], [9], we have

)(IDUV’dx = f ]Dvl”deCJ |DufPdx, for all p>2.
By Bq By

We estimate the other terms of (4.11) to obtain that

1-2/p

(4.13) ka [Du‘zdxsc(%)n+w +

R+ cR*™ [ |Dufda
Bg

1-2/p
| a+1Duf)da
2R

B B

+w3(R2+ch-nf \Duf2dz
Bp

1-2/p
+w4(R2+cR2~"] |Dul? dz
R

for all p<(1/2)R.
By the standard steps (see[5]), we have finished the proof of Theorem
41. q.e.d.

From the results of [56], and the proof of Theorem 4.1, we have.

COROLLARY 4.2. — Assume that the coefficients A;‘f are continuous (not necessarily
uniformly continuous), the first derivatives of f are continuous, and the other as-
sumptions of Theorem 4.1 hold, then the conclusion of Theorem 4.1 also holds.

COROLLARY 4.3. — Assume that the coefficients Aff are Holder continuous, the
first derivatives of f are Hélder continuous and bounded, and the assumptions of The-
orem 4.1 hold, then the first derivatives of the minimum w of the obstacle problem
(1.6) are locally Holder continuous in Qy c Q.

5. — A few remarks.

In this section, we want to show that for a special class of quadratic multiple inte-
grals and bounded minimum points of the obstacle problem we can improve the esti-
mate of the Hausdorff dimension of the singular set. The methods used here is due to
GIAQUINTA and Grusti[10].

More precisely we shall restrict ourselves to the special form of the coefficients



HoNG MIN-CHUN: Partial regularities of minimizers, etc. 135

given by
A;’f (@, y) = G* () gi;(x,y)

and suppose that fis a function depending only on u. Moreover, we assume that there
exists a constant L >0 such that

(.1) IDf|<L, |D*f|<L.

Thus we have

LEMMA 5.1. — Let A¥ (x,y) = g (¢, y) G*¥ be a sequence of continuous functions
in B x RN (B is the unit ball in R") converging uniformly to A(x, ¥) and satisfying the
following assumption:

(5.2) |AY (x,y)| <M, for some constant M >0,
(5.3) AVE = ATV @, y)ElEl = |5,  VieR™,
(5.4 JAY@,y) -AY @,y <oz -2 P+ |y—y') for (x,y), (@', y) e QXRY

where w(f) is a bounded continuous concave function with «(0)=0. For each
v=1,2,..., let u® be a solution of the following obstacle problem:

F9uY; B)— min FYw;B),

v—uge Hp*B,RY)
where
F9w?;B) = [ A9 (@, u) Du® Du® da
B

and

w={ueH"2@Q,R")

wN = fl, L uN ).

And assume that (5.1), (5.2) and (5.3) hold, and suppose that % converge to u weakly
in L*(B; R"). Then  is a minimum of the following obstacle problem:

Fu; B) = fA(w, wy Du Dy do — rvnin FW).
€u
B v~y € H?(B)

Moreover, if , is a singular point for «", and x,— x, then z, is a singular point
for wu.
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PROOF. — Similar to the proof of Lemma 1 in [10], it follows from Theorem 2.2 that
for R <1 we have

®.5) [ Du®de<c(R), g¢>2,
Bg

where c¢(R) is a constant independent of v.
It implies that for every R <1 we have

(5.6)

u -y strongly in L%(Bg),
Du” — Du  weakly in LY(Bg).

Passing possibly to a subsequence we may suppose that #® — u a.e. in B.
We can show that (see[10])

.7) F(u; By) <liminf 7 (u®; Bg).

Let n(x) be a C' function in B, with 05 <1, n=0in B,(s <R) and =1 outside Bp.
Then for any weu, wlsp = ulsp, we set v =wi+ @ —u?),i=1,...,N-1, and
o = wV 4 @ — 4N + @) — f(i). Since w" = f(), we obtain that v = f@%) and
therefore

(5.8 FOuY;Bp) <FY@Y;Bg).
Taking (5.1), (5.6) and (5.8) into account, we can get
F(u; B) < liminf FYWY;Bg) < Fw; Bg) + nlly/q -2, R -

The other steps of the proof is similar to the steps of Lemma 1 in [10]. Thus we have
shown the conclusion of Lemma 5.1.

REMARK. - If the assumption |D? f| < L is not true, we may make the same trans-
formation as in Section 4. Then the conclusion of Lemma 5.1 is also true.
We suppose that

(5.9) G (0) = 4,5

and moreover we assume that
1

2
(5.10) f‘“(: ) dt < 1o

0

We have

LEMMA 5.2. - Let % be a minimum of the obstacle problem (1.6) for the functional
(1.1) with an obstacle (1.9), and assume that f is a function independent of x, and let
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(1.2), (1.3) and (1.5) hold. Then for every o, B with 0 <p <R we have

(.11) j lu(Rz) — u(ox)2 dH,, -, (x) < ¢ log %[@(R) — 9(s)]

Bg
where

1

2
o(t) = t* " "exp cj z )ds fA(x,u)DuDudx.

0 B,

o(

The proof of Lemma 5.2 is similar to the proof of Lemma 2 in[10], we only notice
that

wt:t(]%)’ w= () €.

we have

THEOREM 5.3. — Let u be a bounded minimizer of the obstacle problem (1.6) with
the obstacle (1.9) and let (1.2), (1.3) and (1.5) hold, and suppose that the conclusion of
Lemma 5.2 hold. Then the dimension of the singular set ¥ of  can not exceed n — 3. If
n =3, u may have at most isolated singular points.

Finally we want to mention some open problems:

PROBLEM 1. — If we do not assume that the assumption (1.11) holds, we do not
know whether the conclusion of Theorem 3.1 or Theorem 4.1 is true or not.

ProBLEM 2. — If we consider the obstacle of the form
u={ueH"2@Q,RV)|u'(x)= (), i=1,..,N a.e. on Q},

we don’t know whether the conclusion of Theorem 3.1 or Theorem 4.1 is true or not.
(This problem was mentioned by GIAQUINTA in [5]).
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