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Partial Regularities of Minimizers 
of Certain Quadratic Functionals with Unbounded Obstacles (*). 

HONG MIN-CHUN 

Summary. k In this paper, we study the partial regularity properties of vector valued func- 
tions u minimizing certain quadratic functionals with an unbounded obstacle which is de- 
fined by 

= {V E H 1 , 2 ( ~ , R N )  I v N ~ f ( x ,  v l ( x ) ,  ...,vN-I(X)) a.e. on ~, v - U o  EH] '2 ( t~ ,RN)}  �9 

1.  - I n t r o d u c t i o n .  

The purpose of this paper is to provide partial regulari ty results for the problem of 
vector-valued functions minimizing functionals with an unbounded obstacle. 

We study the quadratic functional 

(1.1) ~ ( u ; ~ )  = fAi~(x,u)D~u~Dugdx, 
t] 

where t~ is an open set in R n, and ~ Aij (x, u), i, j = 1, ..., N; ~,/~ -- 1, . . . ,  n, are continu- 
ous functions in t~ • R N satisfying the following: 

(1.2) IA~(x,u)] <-L, for some L > 0 ,  

N 

(1.3) ~ • Af(x,u)~>~,,,~ I~I 2, for all ~ e R  `•  
~,fl= l i,j= l 

We recall that  a function u: t9 -~ R y is a local minimum of ~ i n  t9 if for every ~ with a 
compact support in t~, we have 

(1.4) 5~(u; spt ~) ~< ~(u + ~; spt ~). 

(*) Entrata in Redazione 1'1 dicembre 1988. 
Indirizzo dell'A.: Department of Mathematics, 

China. 
Zhejiang University, Hangzhou, P.R. 
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In last few years, the regularity theory of minimizers has been developed a 
great deal. For example, see [5] and [6]. Here we mention some beautiful works of 
M. GIAQUINTA and E. GIUSTI [9], [10]: 

A) Each minimum u ~ Htlo'c2(~,R N) for the functional (1.1) is H6lder-continuous 
in the interior ~9 up to a set vanishing H~-~-measure. 

B) If an additional splitting condition is assumed on the coefficients, i.e., 

(1.5) A~  (x, u) = gij (x, u) G ~8 (x) , 

then the dimension of set 2 of interior singularities does not even exceed n -  3. 

In this paper, we extend Giaquinta-Giusti's results quoted above to the same min- 
imizing problem with an unbounded obstacle. 

We define the problem of functions minimizing the functional (1.1) with an obsta- 
cle as follows: 

We say that a function u: ~ ~ R N is a minimum of the functional (1.1) with an ob- 
stacle ,~ if there exists a subset ,a of HI'2(f~,RN), and u e~  such that 

(1.6) 5(u; t~) - .  min ~(v; Q) .  
VEtt 

The subset ,~ is supposed to be given by 

= (u e HI'2(s162 u - uo c H]'2(t~,RN), u(x) c M on t~}, 

where M is a given set in R N, and u0 e Hi '  2 (fg, R N) defining the prescribed boundary 
values. In order to have ~ nonvoid, we assume that u0 e ~, which means that u0 (x) e M 
a.e. on t~. For the sake of simplicity we suppose that u0 is smooth. 

In the scalar case, i.e. N = 1, the problem (1.6) turns out to be equivalent to the 
problem of seeking solutions to general variational inequalities. The existence and 
regularity theory of solutions to the variational inequalities have been developed a 
great deal by many authors. For results and proofs we see the books [14], [15] and 
their references. 

In this paper, we only consider the regularity theory of the obstacle problem (1.6) 
in the vector case, i.e. N>~2. 

In a straight-forward extension of the obstacle problem from scalar-case to 
vector-case, having considered the following obstacle: 

(1.7) l~ = {y e R Y l  yi(x) >~i(x),  

i =  1, . . . ,N,  a.e. on ~, ~b~(x) are given functions}, 

HILDEBRANDT, WIDMAN in [11] and GIAQUINTA in [7] presented the regularity theory 
of functions minimizing the functional (1.3) with an obstacle (1.7) under a diagonal 
condition on the coefficients: 

(1.8) A~ ~ (x, u) ~ ~z = ~ijAij (x, u ) .  
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It appears that there are difficulties to extend their results to a more general 
case without the assumption (1.8). 

In a different way, the minimizing problem with an obstacle of the type defined by 

(1.9) ,~= (uEHI'2(t~,RN)[uN~f(x, ul(x),...,uN-Z(X)) 

a.e. on tg, f ( x , u  1, ...,U N-l) is a given function}, 

has sbeen studied by many authors. TOMI [16] first proved the existence of a mini- 
mum of the problem (1.6) with the obstacle (1.7) by using a lower-semicontinuity ar- 
gument. For n = 2, he proved that each minimum is regular. For n i> 3, FUCHS [3] 
considered the Dirichlet type minimizing problem with an obstacle as follows: 

(1.10) ~0 (u;t~) = f iDul2dx ---> rain g0('; t~), 
tL 

t~ 

with c-~ = {u e H 1'2 (t~, RN)] u N ~ f ( u l ,  ..., u N- 1)}. 

He showed that each showed that each minimum of the problem (1.10) is partial 
Cl,~-continuous. For a more general obstacle 

,~ = {U(X) eHI'2(Q, RN)IuN>~f(x ,  uI ,  . . . , u  y - l )  a.e. on t~}, 

WIEGNER [17] proved that the minimum of the Dirichlet-type problem (1.10) belongs 
to CI'~(t~,RN). 

The aim of this paper is to present some results about partial regularity for the 
minimums of the problem (1.6) with an obstacle of the form (1.9). More precisely, we 
extent the Fuchs' ([3]) and Wiegner's ([4]) results to the quadratic functional (1.3) un- 
der the following assumption: 

(1.11) A ~  (x, y) = g~j (x, y)G ~ (x). 

We want to point out that the techniques used in this paper are similar to those 
used by GIAQUINTA ([8]) in the scalar case in 1981, but they are different from Fuchs' 
in [3] and Wiegner's in [16]. In some recent papers ([1], [2]), FUCHS and ZUZAAR ap- 
plied their methods to deal with the regularity of minimizing problem with a bounded 
obstacle under the condition (1.11). But their methods can not be carried over to ore" 
case. It is also pointed out in [3] by Fuchs that his results can only carried over to the 
case of A~  (x, y) = a ~,~ (x) ~ij, if the obstacle is unbounded. 

A brief outline of this paper is as follows. In w 2, we prove a reverse HSlder in- 
equality for the unbounded obstacle problem. In w 3, suppose that the minimum u of 
the problem (1.6) with the obstacle (1.9) is bounded, we prove the partial regularity 
of the minimum u. In w 4, by using direct methods, we drop the assumption of bound- 
edness of minimizers to prove the partial regularity. In w 5, we present some exten- 
sions and mention a few problem which we have not touched at all. 
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2. - R e v e r s e  H S l d e r  i n e q u a l i t i e s .  

In this section, we improve the methods used in [10], [5], and prove the high inte- 
grability of the gradient of a minimum of the obstacle problem (1.6). 

Let us introduce a few notations. 

QR(Xo):= {x � 9  <.R, ~ = 1, . . .n},  

BR(xo) := {x � 9  i x -  x01 < R) ,  
f 

ur := ~- u(x) dx, 
Br (Xo) 

~1:= (yl, . . .  , y N - 1 )  , U:~--- (U 1, . . . ,  / N-1  ) , f(x, ~)~ := ~- f(x, ~) dx, 
BR (Xo) 

N - 1 N - 1  
u~yJ: = ~, ~, y~u ~, 

5=1 j = l  

we have 

LEMMA 2.1. - Let Q be an n-cube and f �9 L ~ (Q) for some v > q, and suppose 

QR (Xo) \Q~ (o) Q~ (xo) Q~ (xo) 

for each x0 e Q and each R < 1/2 dist (Xo, Q) A Ro, where Ro, b, 0 b, o are constants 
with b > 1, 0 ~< 0 < 1. Then we have g e L~oc (Q) for p e [q, q + ~], and for Q2R c Q, R < 
< Ro, the following estimate holds 

Q QzR / \Q~ ] 

where c and r are constants depending on b, Q, q, v, n. 

The proof of Lemma 2.1 can be found in [5], [9]. 
So we have for the obstacle problem. 

THEOREM 2.2. - Suppose that (1.2) and (1.3) hold, and let u be a minimum of the 
obstacle problem (1.6) with the obstacle of type (1.9) in which f(x, y): ~ • R N- 1-o R. 
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And assume that  

f 
ei ther  (i):ueOfloc(t~,RN) , f ~ I ( - ~ x R N - 1 )  

(2.1) or (ii): (x yl, ...,yY-1 <L, i---- 1 , 2 , . . . , N -  1, ay ' 

]~x~(x,y) <.L, a=l ,2 , . . . , n  forsomeconstant L>O,  

Then if u e Hl'2(t~,RY), there  exists an exponent  p > 2  such t h a t u  e Htlo'cP(t~,RN). 
Moreover,  for B R (x 0) c Q we  have 

\lip c (7 + IVul2)dx] 1/~ 
(2.2) (B(1/2,R!xo) IDulPdx) <~ [BR(xo)(1 

provided R < R0, where  c = c(n, v, p, L). 

P R O O F .  - Without lose of generali ty,  we assume that  Xo = 0. 
Le t  

I ~  = _ V ( ~  - ~ ) ,  

(2.3) [~N = _ ~(u y _ u ~ )  + f ( x ,  ~ + ~) -- (1 -- 7) f(x, ~t) -- ~[f(x, U)]R, 

where  ~ = (91, ..., ~N- 1), ~ = (Ul, . . . ,  U N- 1 ), ~ e Co ~ (B~), 0 ~< ~ ~< 1 on B~, V = 1 on Bt, 
s > t, ID~71 <. c(1/(s - t)). 

I t  is easy to check that  

nN z c ~ N ~ f ( x , u + ~ ) .  

Thus by the definition of a minimum, we have 

(2.4) 

Set 

we get  

f [Dul2dx <~ c f  ID(u + ?)12dx. 
B~ B~ 

= (1 - V)(~ - UR ), 

~ - ~  = - ~ + ~ .  
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Define ~N such that u N -  u N ~- - ~ N r  ~N holds. Hence 

(2.5) f lD~l ~dx = f IDOl ~d~ + f lD~ ~ t ~d~ = 
B~ B s B~ 

= f D(u~ - r  ~ d~ + f lD(U - ~)1 ~ d~ <.c f lDul ~ dx +c f lD~ I ~ d~ +~ f lD~l ~ dx <-- 

B~ B~ B s B s B~ 

<~c f lD(u § ~dx r e  f lD~t ~dx r~ f lD~l ~x<~c f lD~l ~dx r e  f lD~l ~dx. 
B~ B, B~ B~ B~ 

Noticing the definition of N and ~N, we obtain 

(2.6) f tD~Nt2dx = f ID(u N + ~N)12dx = 
B~ B~ 

= f ID[u N -  v(u N - u~ T) +f(x,  ~ + ~) - (1 - 7)f(x,  ~) - ~ (x ,  ~)R]I 2 dx = 
B. 

= f ID{(1  - O[u N - u N - f ( x ,  ~) + f (x ,  U)R ] + f (x ,  ~ + ~)} 12 dx <~ 
Bs 

~< 2 f ]D[(1 - O(u N - u ~ -  f (x ,  ~) + f (x ,  ~t) R )]12 dx + 2 r J iD[f(x, ~)]12 + dx 
Bs Be 

< c ]D[u N - f ( x ,  ~)]l 2 dx + c/(s - t) 2 f lU N - f ( x ,  ~) - 
Bs \ Bt Bs 

--(uN-- f (x ,  ~e)R )fe dx + c f ID[f(x, ~e + ~)]12 dx . 
Bs 

Under  the assumption ei ther  (2.1) (i) or (ii), we have 

(2.7) f ID[f(x,~)]l 2dx<~c f ID~[2dx+L2[B~I 
B~\Bs B~\Bt 

and 

(2.8) f ID[f(x, ~ + ~)]t2dx <~ c f ID(~ + ~)12dx + L 2 IB~ t. 
Bs B~ 
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By (2.6), (2.7), (2.8), we get 

(2.9) f l D ~ l ~ d x ~ c  f tDut~d~+c.IfD~12d~+ 
B~ B~ \ Bt Bs 

~ r luN- - f (x ,  u) - [~+ - f (x ,  ~)R ]l s dx § clBs I -t (s t) 2 j B. 
Since D~ = (1 - r~) D~ - (~ - UR ) D~, we have 

(2.10) IDOl 2 < clD~t ~ (1 - ~)2 + clu-  u~ I ~ IDv[ 2 

and noticing the definition of v, we obtain 

(2.11) f lDul~dx~c ,  f I D u t 2 d x + - -  
B8 B~ \ Bt 

(s ~ t)2 ! l~ - ~R t 2 dx + 

c,,.~ ; iu" - i (~ ,  ~ ) -  ~ + i(~, ~). I ~ ~ + c, i . ,  I. 
+ (s 

Adding to both sides, cl times the quanti ty on the left, then divided by cl + 1, we 
obtain 

(212) fiDul2dx~of,Dul~dx§ 
Bt B~ B~ 

+ C(S -- t)-~ f luN -- f(x, ~) -- uN + f(x, ~)R I2 dx + clBs l; O-- Cl 
1 + c l  B~ 
- - < 1 .  

By the Sobolev-Poincar~ inequality, we get 

where 2* = 2n/(2 + n) < 2 and using Lemma 2.1, we can obtain the required results, 
i.e. for BR r t~, there exists a constant ~ > 0, such that  for p ~ [2, 2 + ~) we have 

(B(1/2)~ 'DuiPdx)llP~e(B ! 'Dui2dx)ll2§247 1)dx] 1/2. 

REMARK. - The assumption (2.1) is similar to the Fuchs'  in [3]. 
By the Sobolev's theorem we get 

COROLLARY 2.3 .  - Under the assumptions of Theorem 2.2, if n = 2, then u is locally 
H61der continuous in t). 
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3. - I n t e r i o r  r e g u l a r i t i e s .  

In this section, we assume that  the coefficients A ~  satisfy 

(3.1) IA~.~(x,u)]<<-L; ~,~ = 1, . . . ,n ;  i , j , k = l , . . . , N  

for a constant L > 0, where Aij(~k) denote the coefficients Aij s partial derivatives with 
respect to u k and 

(3.2) IA(x, y) - A(x  ', Y')I <- o~(Ix - x' 12 + lY - Y' 12 ), 

where ~(t) is a nonnegative bounded function increasing in t, concave continuous in 
o~(0) = O. 

Of course, we assume that  (1.11) holds. Moreover, we suppose tha t  the following 
conditions hold: 

There exist constants ~1, ~2, ~ ,  ;~ > 0 such that  

(3.3) i,j = 1 
n 

> Z n. 
~,~=1 

Then for the obstacle problem, we have 

THEOREM 3.1. - Le t  (1.2), (1.3), (1.11), (3.1), (3.2), (3.3) hold. And let u be a mini- 
mum of the obstacle (1.6) with the obstacle 

,~ = {V eHI '2( t ) ,RN)I  v N ~ f ( x , ~ )  a.e. on t~}, 

and suppose that  f is twice continuous differentiable, then if u e Hi '  2 • L = (t}, RN), 
there exists an open set ~0 c t9 such that  u e C~ ,R N) for all ~ < 1. Moreover 
H " - q ( t } \ ~ o )  = 0 for some q > 2 .  Here H "-q denotes the (n-q) -d imens ional  Hass- 
dorff measure. 

PROOF. - By the definition the obstacle problem (1.6), we set 

V = U "]- t ~ ,  V N = U N +f(x ,  ~ + tr 

Since 

we have 

v N ~ f ( x ,  ~t) 

(3.4) f A ~ ] ( x , u ) D z u ; D , ~ d x  + f ANj(X,u)D~uJD~[(Dy f ) ( x , ~ ) . r  
t~ D 

f b~(x, u, Du) r + f bN (x, u, Du)[(Dy f ) (x ,  ~).  r dx ; 
t9 D 
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N 

for all CeH]'~nL| where bk= Z 
Let us define a set i,j= 1 ~,~= 1 

i j Aij(~k)D~u Dzu. 

�9 ~M (U) := {r  E H~' 2 (BR, R)I (0, O N ) E H~' 2 c~ L ~ (BR, R N) 

such that U N -~- tr >-f(x, s for all 0 ~< t ~< 1}. 

For cNe 2M(U), we obtain 

(3.5) f A~. (x, u) Dz u j D~ cN dx >i f bN (x, u, Du) cN dx ; 
BR BR 

Vr N e ~M (u). 

By the methods of freezing the coefficients, we get from (3.4) 

(3.6) f 
BR 

f = [A U (Xo, UR ) -- A~ (x, u)] DZ u j D~ r - f A~. (x, u) DZ uJD~ [(Dy f)(x, s r dx + 
BR B R 

r f + j  b~(x,u, Du)r + bN(X,u, Du)[(Dy f)(x,s YCeH~'2nL ~ (BR, RN-1) 
BR B R 

and we have from (3.5) 

(3.7) f A~(Xo,UR)DzuJD~r 
BR 

[ANj(XO UR 
BR B R 

for all cNe ~M (U). 

For the sake of simplicity, we introduce some matrix notations. 
Let 

g = (gij(Xo,U))N• g = (gij(Xo,UR))(N-1)• 

~t =- (gN1 (Xo, nR) , ..., gN• I (Xo, UR)) T, 

= (r ..., r 1)r, 
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then we get 

g= ~ T gNN 
D ~  = (D~u ~ , . . .D~uN-!)  T 

Then we have 

(3.8) ~ = CN(y)-1 f~, 

Substituting (3.8) in (3.6) gives 

~ = r h. 

D~r = D~r 

(3.9) f G~'~(Xo,UR)(Dz~)Tg(D~r + f G~Z(Xo,UR)DzuNhT'D~r dx= 
B R BR 

= f G~(Xo,UR)(Dzu)Th(D~r N)dx + f G~8(Xo,UR)DzuNhT(~I)-lhD~r Ndx= 
B R BI~ 

B R BR 

Vr N C ~(~M (U), 

Substracting (3.7) by (3.9) would yield 

(3.10) f G~(Xo,UR)DzuN[gNN(XO, UR) -- hT(g)-lh]D~r Ndx >I 
BR 

f A~. (x, u) DZ u j D~ [(Dy f ) (x ,  ~)" ~-1 ftcN ] dx - 
BR 

f [A~j (Xo, UR ) u)] DZ u j D~ (r y-1 ~)~dx + - - A U (x, 
BR 

~Z A~- (x, u)] Dz u j D~ ~N dx + + f JAN; (Xo, uR) - 
BR 

+ f bT(x,u, Du)r f bN(X,u, Du)[(Dy f)(x,~).r 
BR BR 

= cN(y) - lh .  

and D~r = (D~r ... ,D~r T. 
For any cNe 2M (U), we can choose r such that 
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Let 

Since 

we have 

+ f bN(X,~t,D~)r evdx-  f bT(x,u, Du)(r 7 d x -  
BR BR 

-- f b N (x, u, Du)[r N (Dy f)(x,  ~)(~7) -1 h] dx := 11 + I2 + I3 + 14 + I~ + 16 . 
B~ 

gFVN = gNN -- ~ T ( g)-l ~. 

_~T~7-1 ~T gNN g~VN ' 

�9 ( 3 . 1 2 )  

g ~ N = d e t ( ~ l - l d e t g > z ,  with some constant z > 0 .  

Then we assume that v is a solution of the following Dirichlet problem: 

D~[A~(xo,uR)DzvJ]=o; I < ~ < N - 1 ,  
(3.11) ~'z'J 

D~[g~NG~ (xo, UR ) D~ v N ] ---- 0 
a, fl 

with v - u  e H~'2(BR,RN). 
By the standard theory of systems of linear partial differential equation (see [5]), 

we have 

f c( ;s 
Bp BR 

for all ~ <. R, BR cag. 
By (3.11), (3.6), and setting w = u -  v, we get 

(3.13) f a j(Xo,u )V w Vo  dx= 
BR B R 

+ f b~(x,u, Du)r + f bN(X,u, Du)[ (Dyf ) (x ,g ) . r  
BR BR 

-- f ANj(X, u)DzuiD= [(Dyf(x, ~). r dx := 17 + 18 + 19 + 11o , 
BR 

V~ ~ H~' 2 • L ~ (BR, R N- 1 ). 
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From (3.11) and (3.10), we have 

(3.14) f G ~ ( x o , u R ) g ~ N D z w ~ V D ~ r  
BR 

Choosing r = - [u N - v N Vf(x ,  u l , . . . ,  u N- 1 )] in (3.14) gives 

uN+tcN>~f(x ,u~,  . . . ,U ~-~) for all t e [0, 1] 

and 

Vr N e 2M (u). 

(3.15) f [Dw N [ 2 dx <~ ]I~ !+ . . .  + ]I6 i+ c f iD[v N -  v N Vf (x ,  ~)]]2dx 
BR BR 

where r = r cN = _ [U N _  v N V f ( x ,  ~)]. 
Then the problem comes in estimating the following term: 

By (3.11), we notice that 

f ID[v N - v N Vf (x ,  ~)]12 dx.  
BR 

(3.16) f gyNG'* ~ (%, UR)Dz[vN--vNVf (x ,u ) ]D~r  N d x =  
BR 

= _ fg~NG~Z(Xo,UR)Dz[vNVf(x,~)]D~r VCNeH~'2(BR,R). 
BR 

Therefore, choosing c N  : V N __ V N Vf(x, ~), and noticing v N = v N V f (x ,  ~) if V N 

>~ f (x ,  ~) would yield 

(3.17) f [D[v N - v N Vf (x ,  ~)]t2dx <- c f ]D~ [f(x, ~)]]2dx. 
B R BR 

Using (3.13) and setting r = - (u ~-  v~), 1 < ~<  N - 1, give 

(3.18) f [Dw[2dx < ]I1 ]+ II2 I+ ... + ]Ilo ]+ c f tD~ [f(x, u)][2dx. 
B R BR 

Next we divide the proof of Theorem 3.1 into two different cases. 

Case (i): 

(.) D~ f(x0, UR) = 0, D r f(xo,  UR) = O. 
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For the estimation of (3.18), we know that the difficulty comes from estimating I1 
and 

C f ID~[f(x, ~)]lSdx. 
~R 

Because f (x ,  u) belongs to the space C s, and u e L ~ ( ~ , R ~ ) ,  we get the following 
facts: 

There exists a bounded nonnegative function o~s (t) increasing in t, concave contin- 
uous with ~o2 (0)= 0 such that 

IDyf(x, ~t) - ny f ( xo ,  ~tR)l <~ o~2(IX -- Xo 12 + IU -- UR I s) 

and 

I D~ f (x ,  ~) - D~ f(xo,  UR )i <~ ~o2 (IX -- Xo I ~ + l U -- UR I s ). 

Thus we have 

(3.19) , I i ,= l !A~ . ( x , u )D~uJD~[ (Dy f ) ( x ,~ )~ - lhcN]dx  

Is~ I <~ ANj(X,u)DzuJD~Dyf(x,~)~I-I~tcNdx + 

+ B! A ~  (x, u) D~ u j (D~ f ) (x ,  ~t) D~ ~" ~ - 1 [ten dx 

+ f A ~ ( x , u ) n ~ u J ( n y f ) ( x , ~ ) y - ~ D ~ r  + 
BR 

+ 

<~c f IDu121r +c f IDul tcN Idx+ 
BR B~ 

+ l f A ~  (x' u) Dz uJ [(DY f ) (x '  u) - (DY f)(x~ ' uR )] ~7-1hD~ r dX 

~< c f(1 + tDulS)(IwlVt + IvNI + Iv N - v N V f (x ,  u)l) dx + 
BR 

c J co~ (Ix - Xo 12 + iu - uR [2)lDut2 dx +~ f tDwl 2 dx + +c 
BR B R 

+ ~ f ID[v N - v N Vf (x ,  ~)]12dx. 
BR 
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The condition (,) gives 

(3.20) f ID~[f(x,~)]12dx<~ ( ](D~f)(x,~)12dx + f IDyf(x,~)12lDul2dx<~ 
B~ B R BR 

<. f ]D~ f (x ,  ~z) - D~ f(xo, ~ZR )12 dx + f tDy f (x ,  ~) - Dy f(xo,  ~ZR )12 ]Dul 2 dx <. 
BR B R 

~< c f (1 + ]Du[ 2 ) ~2 (1 x - Xo 12 + ]u - UR 12 ) dx.  
BR 

We can estimate I~o similarly to I~ 

(3.21) Iilol ~<c f(1 + IDul2)lwldx + ~ f IDwl2dx + 
B~ B R 

Estimating 12, I8,17 would yield 

(3.22) 

+ c f(1 + ]Dul 2) ~ ( I x  - Xo 12 + ]u - UR 12)dx. 
BR 

]Izl + [I31 + IITk < f ~2([x-xoL2 + lU-UR[e)lDui2dx + 
BR 

f ,D.l d  f ID(VN--vNVf( ,u))I2dX 
BR BR 

Estimating 14,15,16,18 and I9 would give 

(3.23) lI41 + 115 [+ 116 [ + [I8 [ + lI9 t <<- c f (IDu? + 1)1r dx 
BR 

f 
< c j (]Dul 2 + 1)(]wt + Iv N -  v N v f ( x ,  ~z)l) dx.  

BR 

Hence by (3.18), ..., (3.23), we have 

BR BR 

+ 2 (Ix - Xo 12 + l u -  uR t 2) + <~2 (Ix - Xo 12 + lu - uR 12)(1 + IDul ~) dx + 

+ c f(1 + IDut2)(Iwl + Iv N - v y V f (x ,  ~)t) dx .  
BR 
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We can use the boundednesses of u, ~ and ~2 to get 

(3.25) f IDwt2dx<.c f(1 + ]Du]2)dx 
BR BR 

and 

(3.26) f ID[v N -  v N Vf(x, ~)][2 dx ~< c f(1 + [DulZ)dx. 
BR BR 

By the Sobolev inequality, we have 

(3.27) f Iw]2dx<.cR 2 f(1 + IDui2)dx 
BR BR 

and 

(3.28) f Iv y - v y Vf(x, ~)[ 2 dx <~ cR 2 f (1 + IDul 2) dx. 
BR BR 

On the other hand, using the LP-estimates, and the boundednesses of u and v, we 
obtain 

(3.29) f (IWI + IvN -- vN V f(x, ~)31D<2 dx <- 
BR 

~c ~ il+lDule)dx (IWl2+[vN--vNVf(x,~)t2)dx <~ 
B~ LBR 

s 1 <-c (l+iDule)dx R (l+IDule)dx ; p > 2 .  

B21:~ L BR 

Then from (3.24), (3.29), and the concavites of oJ, ~2, and using the LP-estimates 
again, we get 

(3.30) f lDwl2dx<.cf(l+lDul )dx R2+ IDul2dx + 
BR B R B~ 

+ 092 R e + R e-~ f IDui edx) 1-2/p+ e 
BR B~ 

and notice that 

(1 + IDul2)dxIR2 ~(1 
7qa- 2)/2p 

+ IDu] 2) dxJ 

f l"ul  X C( )nf 
B,o B R B R 
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for ~ ~< (1/2)R,  then we can finished the proof of Theorem 3.1 in the Case (i) by the 
standard methods (see chapter VI of [5]). 

Case (ii): either D~ f(xo , UR ) r 0 or Dy f(xo , uR ) 4= O. 
We transform v into v*: 

V*i=V ~, i = 1 , 2 , . . . N - 1 ,  

v*N = V N _ D~ f(xo, UR )" X -- Du f(xo, UR )" V. 

Thus the obstacle problem (1.6) turns out to be equivalent to the following obstacle 
problem: 

~7" (u* ; BR ) --> rain 5~(v* ; BR ) 
V*E~$ 

where ~(v*;B  R ) is a new functional defined by 

(3.31) 

and 

Here 

with 

5 ~* (v* ;BR) = f A~(x ,  v)D~viDzvJdx := 
BR 

: :  f A*.~(x ,v*)D~v*iDzv*Jdx + 2 f A ~ ( x ,  v)(D~f)(xo,~tR)[Dnv *N + 
BR BR 

+ Dyf(xo, UR )'Dz~* ]dx + f A~N(X, v)(D~f)(Xo, ~tR )(Dzf)(xo, UR ) dx := 
BR 

:-~ f ,~[3 / i " d~j tx, v)D~v* Dzv*3dx + f b ( x , v * ) . D v * d x  + f c ( x , v* )dx  
BR BR BR 

~* ---- {V* �9 H 1'2 (BR, RN)I v *y ~ f *  (x, ~*), v* - u* �9 H~ '2 (BR, RN)} .  

f *  (x, ~* ) = f (x ,  ~* ) - (Dx f)(xo , UR )" X -- (Dy f)(xo , ~tR )" ~* , 

A ~  (x, v * ) = G~ (x, v* ) g~ (x, v * ) 

(gi~ (x, v* )) = Z r (Xo , UR )(gij (X, V* )) Z(Xo , ~tR ), 

Z(Xo,~R) = leo T 01] ' Oi=(Dylf(Xo,UR),. . . ,Dy~_lf(Xo,UR))T 
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It is easy to check that 

(Dx d * )(x0, UR ) = 0, (Dy f *  )(Xo, UR ) = 0 

and that the coefficients A~ ~ also satisfy the condition (3.3), and f *  is twice continu- 
ous differentiable. 

Comparing ~* with ~, we have two additional terms 

f b(x, ).Dv* + ~ c(x, ) dx, 
I" 

V* dx V* 

BR BR 

of the form. 
Then from the definition of the minimum in BR, w e  get a few additional terms be- 

sides (3.4) and (3.5) 

BR BR BR 

By standard arguments (see [5]), we can treat above terms easily. The other terms 
in (3.4) and (3.5) have been treated in the Case (i). Finally we have shown The- 
orem 3.1. q.e.d. 

From the proof of Theorem 3.1 we get 

COROLLARY 3.2. - Suppose that the coefficients A~ are constants, and assume that 
(1.11) holds, and let the obstacle function f =  0 in (1.9), and let condition (3.3) hold, 
then i f u  e Hllo'c2(tg, R N) is an minimum of the problem (1.6) with an obstacle (1.9), the 
conclusion of Theorem 3.1 is still true. Moreover the singular set 2 is empty. 

4. - The  direct  approach  to  regular i ty .  

In Section 3, we have shown that each minimum u eH1,2nL~( t~ ,R  N) of the 
obstacle problem (1.6) is partial regular, but usually we can only show the existence 
of a minimum u belonging to the space H1,2(t~,R N) (see[16]). In this section 
we want to drop the assumption of boundedness of the minimizer, i.e. u e L ~ (t~, R N). 
Instead we assume that the first derivatives of the function f in (1.9) are uniformly 
continuous and uniformly bounded, i.e. there exists a constant L > 0 such that 

(4.1) -~x~(X,y) <~L, ~ = l , . . . n ;  O f  (x, y) ~< L 
~y~ i = l , . . . , N - 1 ;  
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for all (x, y) e D • R N- 1 and 

(4.2) a f  (x, y) and ~f (x, y) 
ax ~ ~y~ 

are uniformly continuous and uniformly bounded. 
Then we can show the partial regularity of the minimizer of the obstacle problem 

(1.6) too. 

THEOREM 4.1. - Assume that the coefficients A~ are uniformly continuous and 
uniformly bounded, and the splitting condition (1.11) and condition (3.3) hold. Let u e 
e H]lo'c2(t~,R N) be a local minimum of the problem (1.6) with an obstacle 

= {v eHl'~(t~,RY)l uN>lf(x, 5) a.e. on ~)} 

and suppose that f satisfies the assumptions (4.1) and (4.2). Then there exists an open 
set ~90 r t~ such that u e C~ N) for every ~ < 1. Moreover we have 

~ \ t~~ = {x~ ~ t~: liminfR2-~ f 'Du'~ dx > ~~ B,(~) 

where ~0 is a positive constant independent of u. Finally H ~ - q ( t ~ \ ~ o ) =  0 for some 
q>2 .  

PROOF. - For the obstacle problem (1.6), we make a transformation: 

v*i=v i, i= 1, . . . , N -  l ;  v*N----vN--f(x,v). 

Then we have 

D~v*i=D~v i, i = 1 , 2 , . . . , N - 1 ,  

Dav y = D~v *N + D~ [f(x, 5" )] = D~,v *N + D~f(x, 5) + Dy f (X ,  v ) . D ~ 5 ,  

we define the new functional 

(4.3) ~*(v*;BR):=:~(v;BR) = f G~(x,v)gij(x,v)D:viDzvJdx = 
BR 

f .  

= I G'~(x' v* )g~(x, v* )D~v*?Dv*Sdx + 
BR 

l G~ (x, v* )gN;(X, v* )D~v*~[D~v *x + Dy f(x, 5* )D~5* + D~f(x, 5* )] dx + + 2 
BR 

I G4 (X, v*)gNN(X, V* )[D~v *N + Dyf(x, 5*)D~v* + D~f(x, 5* )][D~v *N + + 
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+ Dyf(x, ~* )D~* + Dzf(x, ~* )] dx = f G ~ (x, v* )g~ (x, v*)D~v*iD~v*Jdx + 
BR 

+ 2 f G~(x, v* ){ gNj(X, V* )D~f(x, ~* )Dzv *j + gNN(X, V* ) 'D~f(x,  ~* )[D~v *N + 
BR 

+ Dyf(x,  ~* )'Dz~* ]} dx + f G ~ (x, v* )gNN(X, V* )D~f(x, ~* )Dzf(x,  ~* ) dx := 
BR 

: =  f f b(x,v*).Dv*d  § f 
BR BR BR 

where (gi~ (x, Y))NN = z T  ( x, ?])(gij (X, y)) Z(x, ~), 

[ I  011 ' 02=(Dy~f(x,~]),...,Dy,_~f(x,~])). Z(x, y) = Oz 

Noticing that  (4.1) holds, we can show that gi~ (x, y) (i, j = 1, ..., N) also satisfy (3.3). 
Moreover we have 

{b(x ,v*) l<L,  {c(x,v*)i<~L for some L > 0 .  

And there exist two nonnegative bounded functions ~s (t) and oJ4 (t) increasing in t, 
concave continuous in oJ3(0)= 0 and ~o4(0)= 0 such that  for x, x ' e  w and y, 
y' e R N 

Ib(x, y) - b(x', Y')i <- o~s (Ix - x'l 2 + lY - y,{2) , 

{c(x, y) - c(x', Y')i <- ~ x - x'{ 2 + {Y - y,{2). 

The obstacle problem (1.6) turns out to be 
problem: 

(4.4) ~*(u*;BR)---> min ~:*(v*;BR) , v * - u *  eH1,2(BR,RN),  
v*N >~O 

where 5"  is defined by (4.3). 
For  the sake of simplicity, we still denote u*, g~ (x, u*) ,  and ~J* by u, gij(x, u) 

and 5 ~. 
By the results of existence about the obstacle problem (see [16]), we assume that  

U is a minimum of the following obstacle problem: 

(4.5) 5~o(U;BR)~ minffo(V;BR) v - u e H ~ ' 2 ( B R  R N) 
vN~O ' ~ , 

where 

equivalent to the following obstacle 

~o (v; B R ) := f G ~ (xo, u R ) gij (Xo, UR ) D~ v ~Dz v Jdx. 
BR 
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(4.6) 

and 

(4.7) 
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By arguments similar to Section 3, we get 

f G ~ (Xo, uR ) gif (Xo, UR ) D~ U iDz Cfdx = 0, 
BR 

VCf �9 1 2 Ho' (BR, R),  

(4.8) 

We have 
(see [5]) 

f G ~ (Xo, UR ) g~, (Xo, UR ) Do U iDz cN dx >- O, 
BR 

f =  1 , . . . , N -  1. 

vcN eH]'2(BR,R): uN +tcN>~o, Vte  [0,1]. 

Let v be a minimum of the following Dirichlet problem: 

5o (v; BR ) --> min 5o (w; BR ). 
w e H1,2(BR) 

w - u  eH]'2(BR) 

from the standard theory of systems of linear elliptic equations 

for all ,o ~ (1/2)R. 

B~, 

From the processes of proofs in Section 3 and Corollary 3.2, or see [13], we can 
obtain 

f lD(v-u)12ax= ~ v= a.e. on 6R" T T ~ I  T 0 U 
BR 

Therefore 

B e B 

V~ ~< (1 /2)R.  

Setting w = u -  U would yield 

(4.9) flDuJ d  flDUj d + lDul d + f lD l d . 
B~ B~ B~ BR BR 
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Using the assumption (3.3), and inequalities (4.6), (4.7), we have 

(4.10) f IDwl~dx~ f g~(Xo,~R)G~(%,~)D~w~D~wJd~ 
BR BR 

f g~(~o,U~)V~(Xo,U~)D~u~D~u:d~- f g~5(~o,~)a~(Xo,u~)D~V~D~U~dx~ 
BR BR 

BR BR 

+ f c(x,u)dx- f g~(x, u)a~(x, U)D.U~D~UJd~- f b(x, U)'DUdx- 
BR BR BR 

- f c(x, U)dx  + c f[o~(R 2 + [ u - ~ .  ]2)+ co(R 2 + ] U -  UR Iz)][IDu[ 2 + IDUt2]dx + 
BR BR 

+ c f [IDut + IDUI][oJ8 (R 2 + lu - UR 12 ) + ~3 ( R2 + [U - UR 12) dx + 
BR 

+ c f [to4 (IX -- Xo I2 + lU -- UR12) -b o94 (tX -- Xo ]2 "~ - I U -  UR I2)] dx + 
BR 

+ f b(xo, UR).D(U- u) dx.  
BR 

Noticing that UlaB, = UIOB,, and u is a minimum of the obstacle problem (4.5), we 
have 

(4.11) f lDwl2dx<~c f ( IDul2+ lDUi2) [o~(R2+]U-UR[2)+o~(R2+lU-URI2) ]dx  + 
BR BR 

+ c f(tDul + IDU[){~3 (R2+ u -  u ~ ) +  ~o 3 (R2 + ] U -  UR [2)dx + 
BR 

+ c f[~4(R2 + l u -  uR t s) + oJ4(R2+ IU- U R 12)]dx. 
BR 
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By the Sobolev-Poincar~ inequality and LP-estimate, we get 

(4.12) f IDul2co(R2+ lU--URI2)dx< 
BR 

Seeing [5], [9], we have 

f lDUl'dx = f iDvt" dx f lDul'< x, 
B1r BR Ba 

We estimate the other terms of (4.11) to obtain that 

for all p > 2. 

(4.13) f iDui2dx~ (--~)nq-og(R2-I-cR2-nfiDui2dx) 1-2tp c + 

B R B~ 

- 2/p 
, p > 2 .  

R Jr cR 2 .n  f IDul2dx) 1-2/p + 0) 3 ...[- oj 4 
BR 

for all p ~< (1/2)R. 
By the standard steps (see[5]), 

4.1. q.e.d. 

\1-2/p r 
R 2 + cR 2-~ f IDui2dx) J (1 + ]Dui2)dx 

BR ] B2~ 

we have finished the proof of Theorem 

From the results of[5], and the proof of Theorem 4.1, we have. 

COROLLARY 4 .2 .  - Assume that the coefficients A~ are continuous (not necessarily 
uniformly continuous), the first derivatives of f are continuous, and the other as- 
sumptions of Theorem 4.1 hold, then the conclusion of Theorem 4.1 also holds. 

COROLLARY 4.3. - Assume that the coefficients Ai~ are HSlder continuous, the 
first derivatives o f f  are HSlder continuous and bounded, and the assumptions of The- 
orem 4.1 hold, then the first derivatives of the minimum u of the obstacle problem 
(1.6) are locally H(ilder continuous in t~0 r t~. 

5. - A f e w  r e m a r k s .  

In this section, we want to show that for a special class of quadratic multiple inte- 
grals and bounded minimum points of the obstacle problem we can improve the esti- 
mate of the Hausdorff dimension of the singular set. The methods used here is due to 
GIAQUINTA and GIUSTI [10]. 

More precisely we shall restrict ourselves to the special form of the coefficients 
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A~ (x, y) = G ~ (x) gij (x, y) 

and suppose t h a t f i s  a function depending only on u. Moreover, we assume that  there 
exists a constant L > 0 such that  

(5.1) IDf] <.L, ID2 f l  <~L. 

Thus we have 

LEMMA 5.1. Let  A (~) (x, y) = .t~) (~ G~(~) - ~3 ,o- Y) be a sequence of continuous functions 
in B • R y (B is the unit ball in R ~) converging uniformly to A(x, y) and satisfying the 
following assumption: 

(5.2) 

(5.3) 

(5.4) 

where ~(t) 
~= 1,2, . . . ,  

]A('~)(x,y)l < M ,  for some constant M > 0 ,  

~ ( ~ )  ~ . ~ i  ' n(")~.~=Aij (~,-gj~>~l~.f 2, V~.eR nN, 

IA(~)(x,y)-A(")(x' ,y ')]<.co(lx-x'12+ly-y' t  2) for ( x , y ) , ( x ' , y ' ) e t ~ x R  ~" 

is a bounded continuous concave function with ~(0)= 0. For  each 
let u (~) be a solution of the following obstacle problem: 

~(~) (u(~); B) -+ min 5 ~(~) (v; B) ,  
VE~ 

v - u  o e H~'2(B,R N) 

where 

and 

~(v) (u(V) ; B) = f A (~) (x, u(~))Du (~) Du (~) dx 
B 

,~ = {u e HI'2(~,RN) I uN >~ f (u  1, ..., uY-1)} . 

And assume that  (5.1), (5.2) and (5.3) hold, and suppose that  u (~) converge to u weakly 
in L2(B;RN). Then u is a minimum of the following obstacle problem: 

B) -- f A(x, u)DuDudx-~  min 
V6tt 

B V-UoeHlo,2(B) 

~(v). 

Moreover, if x~ is a singular point for u (v), and x~--~ x0 then x0 is a singular point 
for u. 
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PROOF. - Similar to the proof of Lemma 1 in [10], it follows from Theorem 2.2 that  
for R < 1 we have 

f IDu (~) I q dx  <. c (R) ,  q > 2 ,  (5.5) 
BR 

where c(R) is a constant independent of v. 
I t  implies that  for every R < 1 we have 

(5.6) iu(V) __, u strongly in L 2 (B R ) ,  

| Du(~) ~ D u  weakly in L q ( B R ) .  

Passing possibly to a subsequence we may suppose that  u(~)--, u a.e. in B. 
We can show that  (see [10]) 

(5.7) 8:(u;  B R ) < lim inf 8 :('~) (u(V); BR ).  
v---~ r 

Let  ~(x) be a C 1 function in B, with 0 ~< ~ ~< 1, v = 0 in B e (p < R) and V = 1 outside B R . 

Then for any w e ~, WIaB = Ula~, we set v ('~)' = w i + (u ('~)' -- u i ) ,  i = 1, . . . ,  N - 1, and 
v ('~)~" = w y + u (~)~ - u y + (~(~)) - f ( ~ ) .  Since w y >~f(~v), we obtain that  v (~)" >~f(~(~)) and 
therefore 

(5.8) ~(~) (u(~); BR ) < 5 ~(~) (v(~); BR ). 

Taking (5.1), (5.6) and (5.8) into account, we can get 

~ ( u ;  BR) ~ l iminf 5 ~(~) (v(~) ;BR) ~< #(w; BR) + cll~llq/q_ 2, R .  

The other steps of the proof is similar to the steps of Lemma 1 in [10]. Thus we have 
shown the conclusion of Lemma 5.1. 

REMARK. - If  the assumption ID2f t  <. L is not true, we may make the same trans- 
formation as in Section 4. Then the conclusion of Lemma 5.1 is also true. 

We suppose that  

(5.9) 

and moreover we assume that  

(5.10) 

We have 

e ~  (o) = ~v 

1 

0 

LEMMA 5.2. - Let  u be a minimum of the obstacle problem (1.6) for the functional 
(1.1) with an obstacle (1.9), and assume that  f i s  a function independent of x, and let 
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(1.2), (1.3) and (1.5) hold. Then for every ,~, R with 0 < ~ < R  we have 

(5.11) f lu(Rx)  - u(,ox)l 2 dH~_ l (x )  <~ c l o g  R [ ~ ( R )  - ~(:)] 

BR 

where 

�9 (t) = t2-nexp c ds A ( x , u ) D u D u d x .  

\ o /B~ 

The proof of Lemma 5.2 is similar to the proof of Lemma 2 in [10], we only notice 
that  

xt = , ut = (xt) �9 ~.  

we have 

THEOREM 5.3. - Let  u be a bounded minimizer of the obstacle problem (1.6) with 
the obstacle (1.9) and let (1.2), (1.3) and (1.5) hold, and suppose that  the conclusion of 
Lemma 5.2 hold. Then the dimension of the singular set S of u can not exceed n -  3. I f  
n = 3, u may have at most isolated singular points. 

Finally we want  to mention some open problems: 

PROBLEM 1. - If  we do not assume that  the assumption (1.11) holds, we do not 
know whether  the conclusion of Theorem 3.1 or Theorem 4.1 is t rue or not. 

PROBLEM 2. - I f  we consider the obstacle of the form 

,u = {u �9 HI'2(t~,RN)I u~(x) >t ~i(x), i = 1, . . . , N  a.e. on t2}, 

we don't know whether  the conclusion of Theorem 3.1 or Theorem 4.1 is t rue or not. 
(This problem was mentioned by GIAQUINTA in [5]). 

REFERENCES 

[1] F. DUZAAR - M. FUCHS, Variational problems with non-convex obstacles and integrals con- 
straint, Math. Z., 191 (1986), pp. 585-591. 

[2] F. DUZAAR - M. FUCHS, Optimal regularity theorem for variational problems with obsta- 
cles, Manuscripta Math., 56 (1986), pp. 209-234. 

[3] M. FucHs, Variational inequalities for vector-values functions with non-convex obstacles, 
Analysis, 5 (1985), pp. 223-238. 



138 HONG MIN-CHUN: Partial regularities of minimizers, etc. 

[4] M. FUCHS, Some remarks on the boundary regularity for minima of variational problems 
with obstacles, Manuscripta Math., 54 (1985), pp. 107-119. 

[5] M. GIAQUINTA, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic 
Systems, Annals of Math. Studies, no. 105, Princeton Univ. Press (1983). 

[6] M. GIAQUINTA, The problem of the regularity of minimizers, Proceedings of the Interna- 
tional Congress of Mathematicians, Berkeley, California U.S.A. (1986), pp. 1072-1083. 

[7] M. GIAQUINTA, Regularity results for weak solutions to variational equations and inequali- 
ties for nonlinear elliptic systems, No. 54 SFB 123, Heidelberg (1980). 

[8] M. GIAQUINTA, Remarks on the regularity of weak solutions to some variational inequali- 
ties, Math. Z., 177 (1981), pp. 15-31. 

[9] M. GIAQUINTA - E. GIUSTI, On the regularity of the minima of variational integrals, Acta 
Math., 148 (1982), pp. 31-46. 

[10] M. GIAQUINTA - E. GIUSTI, The singular set of the minima of certain quadratic functional, 
Ann. Sc. Norm. Pisa, 11 (1984), pp. 45-55. 

[11] S. HILDEBRANDT - K.-O. WIDMAN, Variational inequalities for vector valued function, J. 
f~r Reine u. Angew. Math., 309 (1979), pp. 181-220. 

[12] M. C. HONG, Existence and partial regularity in the calculus of variations, Ann. Mat. Pura 
Appl., 149 (1987), pp. 311-328. 

[13] M. C. HONG, Regularity results for the minimizers of certain quadratic functionals with ob- 
stacles, to appear. 

[14] D. KINDERLEHRER - G. STAMPACCHIA, An Introduction to Variational Inequalities and 
their Applications, Academic Press, New York (1980). 

[15] J. F. RODRIGUES, Obstacle Problems in Mathematical Physics, North-Holland Math. 
Studies, 134, Notas de Mathematica, 114 (1987). 

[16] F. TOMI, Variations problem vom Dirichlet-type mit einner Ungleichung als Nebende- 
dingwng, Math. Z., 128 (1972), pp. 43-74. 

[17] M. WIEGNER, On minima of variational problems with some non-convex constrains, 
Manuscripta Math., 57 (1987), pp. 149-168. 


