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Summary. - A classical result (see R. NEVANLINNA, Acta Math., 58 (1932), p. 345) states that 
for  a second-order linear differential equation, w" + P(z) w' + Q(z) w = O, where P(z) and Q(z) 
are polynomials, there exist f initely many  rays, arg z = ~j, for  j = 1, ..., m, such that for  
any solution w =f(z) ~ 0 and any ~ > O, all but f initely many  zeros o f f  lie in the union of the 
sectors I arg z - ~jl < ~ for  j = 1 . . . . .  m. In  this paper, we give a complete answer to the ques- 
tion of determining when the same result holds for  equations of arbitrary order having poly- 
nomial coefficients. We prove that for  any such equation, one of the following two properties 
mus t  hold: (a) for  any ray, arg z = ~, and any ~ > O, there is a solution f -~ 0 of the equation 
having infinitely many  zeros in the sector larg z -  ?l < s, or (b) there exist f initely many  
rays, arg z = ~i , for  j = 1, ..., m, such that for  any ~ > O, all but f initely many  zeros of any 
solution f ~ 0 must  lie in the union of the sectors I arg z - ~jl < ~ for  j = 1, ..., m. In  addition, 
our method of proof provides an effective procedure for  determining which of the two possi- 
bilities holds for  a given equation, and in the case when (b) holds, our method will produce 
the rays, arg z = z j .  We emphasize that our result applies to all equations having polynomi- 
al coefficients, without exception. In  addition, we mention that i f  the coefficients are only as- 
sumed to be rational functions, our results will still give precise information on the possible 
location of the bulk of the zeros of any solution. 

1 .  - I n t r o d u c t i o n .  

For  second-order  l inear differential equations, w"+ P(z)  w ' + Q ( z )  w = 0, where  

P(z)  and Q(z) are polynomials, there  is a classical resul t  due mainly to E. HILLE 
(see [13; p. 345] or [20; p. 282]) which s ta tes  tha t  there  are finitely m a n y  rays ,  a rg  z = 

= ~j, for j = 1, ..., m (which can be explicitely calculated f rom the equation), with the 
p rope r ty  tha t  for any s > 0, all but  finitely m a n y  zeros of any s o l u t i o n f ~  0 mus t  lie in 
the union of the sectors  l a rg  z , ~ j  I < ~ for j =  1, ..., m .  This resul t  was  proved  by  
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using a method of asymptotic integration (see [11; Chapter 7.4], [13; p. 345] or [8; pp. 
6-10]) to construct a fundamental set {fl,  f2 } of solutions in sectorial regions, with 
the property that fl  andfi  have only finitely many zeros in these regions, and their ra- 
t i o f l / f 2  tends to ~ as z--* ~ in these regions. Then clearly any nontrivial linear combi- 
nation of fl  and f2 can have only finitely many zeros in these regions. 

In attempting to investigate the corresponding situation for higher-order 
equations, 

(1.1) w (~) + Rn - 1 (z) w (~- t) + . . .  + Ro (z) w = O, 

where n > 2, and the coefficients Rj ( z )  are polynomials, it was shown in [1] and [6], 
that the situation in the case n > 2 can be far different than in the case n = 2. For 
example, it was shown that when n > 2, the equation, 

(1.2) w (~) + z 2 w " +  z w '  + w = O, 

has the property (which we will call the global  osc i l la t ion  proper ty )  that for any ray, 
arg z = ~, and any ~ > 0, there is a solution f ~  0 having infinitely many zeros in the 
sector larg z - ~1 < ~. This fact was proved using [3; Theorem I, p. 144], which shows 
that in sectorial regions, the equation (1.2) possesses solutions f l  and f2 which are 
asymptotically equivalent as z-~ ~ to z i and z -i respectively (where i = (-1)1/2). 
Using Rouch~'s theorem, it is then a simple matter to construct linear combinations 
off1 andj~ which have infinitely many zeros in a sector l a r g z -  ~1 < ~, where ~ and 
are given. Of course, the same situation will occur whenever an equation (1.1) pos- 
sesses a pair of solutions in sectorial regions, whose ratio is asymptotically equivalent 
as z-~ ~ to a function of the form z bi where b is a nonzero real number. (Our results 
here will show that this is the only way the global oscillation property can 
occur.) 

The example (1.2) shows that an investigation of the zeros when n > 2 naturally 
divides into at least three questions, namely: (i) What are the different possibilities 
for the location of the bulk of the zeros of solutions of (1.1)?; (ii) Is there an effective 
method for deciding which possibility holds for a given equation (1.1)?; (iii) In the 
case where the situation is analogous to the second-order case, is there an effective 
method for producing the rays, arg z = ~j, for j = 1, ..., m? In this paper, we give a 
rather complete answer to all three equations. The following theorem (which is stated 
for the more general case where the coefficients of (1.1) are rational functions), gives 
an answer to (i): 

T H E O R E M  1 .  - Given the equation (1.1), where n/> 1 and Ro (z), . . . ,  R n -  1 (z) are any 
rational functions. Then, one of the following holds; 

(A) For any 0 in ( -  =, =) and any ~ > 0, there exist positive constants ~ and K, 
with ~ < min {~, 0 + =, = - 0}, and a solution f ~  0 of (1.1) such t h a t f i s  analytic and has 
infinitely many zeros Zl,Z2,  . . . ,  with lim Iz,~l = + ~, on the region defined by 

m - ~  

IArg z-01 < ~  and I z l > K .  
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(B) There exist a positive integer ~ and real numbers ~1, ..., ~, lying in ( -  =, =] 
such that for any s > 0  and any solution f ~ 0  of (1.1) which is meromorphic on the 
plane, all but finitely many zeros o f f  lie in the union for k = 1, ..., ~, of the sectors, 
l arg z -~k l  <~- 

We remark that for solutions of (1.1) which are not meromorphic on the plane, our 
results in Theorem 4 (see w 12) will still apply to give precise results on the possible 
location of the bulk of the zeros in that part of the slit plane near infinity. In regard to 
the questions (ii) and (iii) mentioned above, these questions are answered in the affir- 
mative by Theorem 4. An example illustrating these methods is worked out in 
w 17. 

The foundation of our method is an improvement of the result in [3; Theorem 
I] which was mentioned earlier. This result from [3] applies to all equations 
(1.1) where {R0(z), . . . ,Rn-l(Z)} is contained in a certain type of field which 
was introduced by W. STRODT in [18]. Roughly speaking, the Rj(z) are assumed 
to be analytic functions in a sectorial region which possess asymptotic expansions 
as z - . ~  in the region in terms of functions of the form cz ~ were ~ is real 
and c is a nonzero complex number. (A rigorous definition of this type of field 
is found in w 2 (c) below.) Associated with such an equation (1.1) are two quantities 
which were developed in [3]. First, there is a nonnegative integer p (called the 
critical degree), and second, there is an equation, F(a) - -0  (called the critical 
equation), where F(~) is a polynomial in ~ of degree p, having constant coefficients. 
It was shown in [3; Theorem I] that if p > 0, then corresponding to any complex 
root a of the critical equation, say ~ is of multiplicity m, there is a solution 
fj(z) of (1.1) in sectorial regions which is asymptotically equivalent as z - - ~  
to the function z~(Log z) j for each j =  0, 1, . . . , m - 1 .  (Thus this result provides 
p distinct solutions of (1.1).) Unfortunately, the method used in the proof of[3; 
Theorem I] obscured the explicit domains on which the solutions ]} possess their 
prescribed asymptotic behavior. However, by a careful reexamination of the part 
of the proof which uses results of STRODT [17], we can prove a version of[3; 
Theorem I] in which the domains of the fj can be given explicitely. This extension 
of[3; Theorem I] can be found in w 4 below. In[4], a third quantity associated 
with an equation (1.1) was introduced. This quantity is an algebraic polynomial 
G(v) (called the factorization polynomial) whose degree in v is n -  p, and whose 
coefficients belong to the same field as the coefficients of (1.1). It was shown 
in [4] that if G(v) satisfies the condition that no two of its roots are asymptotically 
equivalent as z-~ ~, then the operator on the left side of (1.1) can be exactly 
factored into a composition of first-order operators. Then by successive integrations, 
one could produce (on explicit sectorial regions) linearly independent solutions 
hi ,  ..., hn_p, where each hk is of the form exp fVk for some function Vk which 
is asymptotically equivalent as z---~ ~ to a root of G(v). These n - p  solutions, 
together with the p solutions previously produced, form a fundamental set for 
(1.1). By examining the asymptotic behavior of the ratios of these solutions 
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to see where a linear combination could possibly have zeros, a proof was given 
in [1] of the special case of Theorem 1 where it is assumed that no two roots 
of G(v) are asymptotically equivalent as z---)~. 

However, when G(v) has asymptotically equivalent roots, this approach in [1] of 
exact factorization could not be made to work. In order to obtain a result which ap- 
plies to all equations (1.1) without exception, another approach is needed. Such an ap- 
proach is furnished by a method developed by C. POWDER in his dissertation [14]. The 
benefit of Powder's method (see w 7) is that it shows that even in the case where G(v) 
has asymptotically equivalent roots, one can expl~citely find functions W(z), which 
are asymptotically equivalent to roots of G(v), and which have the property that 
under the change of dependent variable w = ( exp fW)u  (followed by division by ex- 
pfW),  the equation (1.1) is transformed into an equation in u which has a strictly po- 
sitive critical degree. Thus, the extension of [3; Theorem I] can be applied to give sol- 
utions (together with explicit domains) of the u-equation. This method can be shown 
to yield the n - p additional solutions hi, ..., h~_~, needed for a fundamental set. This 
result is stated in Theorem 3 below (see w 9). By examining the asymptotic behavior 
of the ratios of these solutions, we arrive at our result on zeros given in Theorem 4 
below. 

We conclude with the following remark: If the classical Wiman-Valiron theory 
(see [19; pp. 106-109] or [9; p. 341]) is applied to an equation (1.1) when the Rj (z) are 
polynomials, then it is well-known that a finite set of positive rational numbers is pro- 
duced which represent the possible orders of 
Using Theorem 3 below, we can show that 
Wiman-Valiron theory is actually the order of 
fact is proved in w 18 below.) 

growth of a transcendental solutions. 
the largest number produced by the 
growth of some solution of (1.1). (This 

2. - Concepts from the Strodt theory [16]. 

(a) [16; w 94]: The neighborhood system F(a, b). Let - =  ~< a < b < =. For each 
nonnegative real-valued function g on (0, (b - a)/2), let V(g) be the union (over all ~ e 
e (0, (b - a)/2))) of all sectors, a + ~ < Arg (z - h(~)) < b - 8, where h(~) = g(3) e i(a + b)/2. 
The set of all V(g) (for all choices of g) is denoted F(a, b), and is a filter base which 
converges to ~. Each V(g) is a simply-connected region (see [16; w 93]), and we re- 
quire the following simple fact which is proved in [6; w 2]: 

LEMMA 2.1. - Let V be an element ofF(a,  b), and let ~ > 0 be arbitrary. Then there 
is a constant R0 (~) > 0 such that V contains the set, a + ~ ~< Arg z ~< b - ~, Izl/> 
I> R0 (~). 

(b) [16; w 13]: The relation of asymptotic equivalence. Iff(z) is an analytic func- 
tion on some element of F(a, b), thenf(z) is called admissible in F(a, b). If c is a com- 
plex number, then the s ta tement f -~  c in F(a, b) means (as is customary) that for any 
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> 0, there exists an element V of F(a, b) such that  I f ( z ) -  c] < ~ for all z c V. The 
s ta tement  f<< 1 in F(a, b), means that  in addition t o f ~  0, all the functions O~f---~ 0 in 
F(a, b), where Oj denotes the operator Ojf= z(Log z).. .  (Logj_ lZ)if(z),  and where (for 
k i> 0), 0] is the k-th i terate of Oj. The s tatements  f l  <<f2 andf~ - f 2  in F(a, b) mean re- 
spectivelyfl/f2 << 1 and f l  - f 2  <<f2. (As usual, z ~ and Log z will denote the principal 
branches of these functions on IArg z] < =.) We will write f l  ~f2  to mean fl  ~ of 2 for 
some nonzero constant c. (We remark that  this s trong relation of asymptotic equiva- 
lence is designed to ensure that  if f<< 1 in F(a, b), then 02 f<< 1 in F(a, b) for allj~> 1. 
(See [16; w 28]).) I f f ~  cz -1 + d in F(a, b), where c :~ 0 and d i> 0, then the indicial func- 
tion o f f  is the function, 

(2.1) IF(f, r = Cos (de + arg c) for a < r < b. 

I f  g is any admissible function in F(a, b), we will denote by fg, a primitive of g in 
an element of F(a, b). We will require the following two results, the first of which is 
proved in [2: w 10]: 

LEMMA 2.2. - Le t  f ~  cz -~ +~ in F(a, b), where c q: 0 and d > 01 If  (a~, b~) is any 
subinterval of (a, b) on which IF (f, r < 0 (respectively, IF (f, r > 0), then for all 
real ~, exp i f < <  z ~ (respectively, exp f f>> z ~) in F(al, bl). 

LEMMA 2.3. - Let  ~ = a + bi be a complex number. Then for any ~ > 0, we have 
z ~-~ << z ~ and z ~ << z ~+~ in F ( -  ~, ~). 

PROOF. - I t  suffices to prove the second estimate, and it suffices to prove it for 
a = 0. But this follows immediately from [7; Lemma 8, p. 271] since f =  z ~-~ satisfies 
z f ' -  (bi - ~ ) f  = 0, and so f<< 1 in F(a, b). 

(c) [18; p. 244]: Logarithmic fields. A function of the form cz ~, for complex c ~ 0 
and real ~, is called a logarithmic monomial of rank zero. The set of all logarithmic 
monomials of rank zero will be denoted ~0. A logarithmic differential field of rank 
zero over F(a, b) is a set F of functions, each defined and admissible in F(a, b), 
with the following properties: (i) F is a differential field (where, as usual, we identify 
two elements of/~ if they agree on an element of F(a, b)); (ii)/~ contains ~0 ; (iii) for 
every element f in F except zero, there exists M in ~P0 such that  f -  M over F(a, b). 
(The simplest example of such a field is the set of rational combinations of the ele- 
merits of~0 .  ) I f  f - c z  ~ over F(a, b), we will denote a by ~0(f). I f  f -=0,  we will set 
80 ( f )  = - oo. ) 

Now let G(z,v)= ~ fj(z)v j be a polynomial in v of degree n~> 1 whose coeffi- 
j=0 

cients belong to a logarithmic differentialfield of rank zero in F(a, b). A logarithmic 
monomial M = cz ~ of rank zero is called a critical monomial of G if there exists an ad- 
missible function h - M in F(a, b) for which G(z, h(z)) is not - G(z, M(z)) in F(a, b). 
The multiplicity of M is the smallest positive integer j such that  M is not a critical 
monomial of ~JG/av ( There is an algorithm (see [5; w 26]) which produces the se- 
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quence (counting multiplicity) of critical monomials of G(z, v). (By [5; 8 29], the se- 
quence has n - d members, where d is the smallest k i> 0 for which fk ~ 0.) The algo- 
rithm is based on a Newton polygon method (e.g., [12; p. 105]). (One simply finds the 
values of ~ which have the following properties: When v = cz ~ is inserted into the indi- 
vidual terms in G, at least two such terms have the same 80, and this value of 8o is at 
least as large as the other terms produce. The constant c is then determined by re- 
quiring that the terms with the largest 8o cancel.) The critical monomials of G give the 
first terms of the asymptotic expansions of the roots of G. This is shown by the follow- 
ing fact: 

LEMMA 2.4. - Let G(z, v) - f3 v j be a polynomial in v of degree n I> 1, whose co- 
j=O 

efficients f0, ..., fn are elements of a logarithmic differential field of rank zero over 
F(a, b). Then 

(a) There exists an extension logarithmic differential field of rank zero over 
F(a, b), in which G(z, v) factors completely. 

(b) If M is a simple critical monomial of G(z, v), then there exists a unique ad- 
missible function h(z) in F(a, b) having the following two properties: (i) h - M  in 
F(a, b), and (ii) G(z, h(z)) =- O. In addition, the function h(z) belongs to a logarithmic 
differential field of rank zero over F(a, b). 

PROOF. - Part  (a) follows from [18; Theorem II, p. 244] and [14; 8 2.6]. Part  (b) fol- 
lows easily from [18; 8w 24, 26] and from Part  (a). 

When f0 ~ 0 in G(z, v), the polynomial G(z, v) possesses one or more special critical 
monomials, M = cz ~, called principal monomials  (see [16; 8 67]) which arise as fol- 
lows: When v -- cz ~ is inserted into the individual terms of G(z, v), the power 80 (f0) is 
at least as large as the 80 produced by the other terms. The principal monomials are 
the critical monomials which are of minimal rate of growth in F ( - = ,  =) (see [16; 
8 67]). We will require the following facts which are proved in [5; 88 3, 31 (c)]: 

LEMMA 2.5. - Let M be a simple critical monomial of a polynomial G(z, v) whose co- 
efficients belong to a logarithmic differential field of rank zero over F(a, b), and as- 
sume G(z, M(z)) ~ O. Let G1 (z, w) = G(z, M(z) + w). Then G1 (z, w) possesses a unique 
principal monomial M1. In addition, M~ is simple, and M1 << M in F ( -  r., r.). 

3 .  - P r e l i m i n a r i e s .  

Given an equation (1.1) where the Rj (z) are functions which belong to a logarith- 
mic differential field of rank zero over F(a, b), we first rewrite the equation in terms 
of the operator 0 which is defined by 0w = zw'. (It is easy to prove by induction thatfor 
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each m = 1, 2, ..., 

(3.1) 

where 0 j is the j-th iterate of the operator 0, and where the bj~ are integers with bmm -~ 

= 1. In fact, as polynomials in x, 

(3.2) 
n 

Z bjn x j  = X(X - 1)... (x - (n - 1)). ) 
j=i  

When written in terms of O, let (1.1) have the form 

(3.3) 8 j (z)  Cw = o. 
j = 0  

(Of course, the Bj (z) belong to the same field as the R i (z).) By dividing equation (3.3) 
through by z d where d is the maximum of ~o(Bj) f o r j  = 0, ..., n, we may assume that 
for each j, we have either Bj << 1 or B i ~ i in F(a, b), and there exists an integer p I> 0 
such that Bj << 1 for j > p ,  while Bp is - to a nonzero constant (denoted Bp (~)). The 
integer p is called the critical degree of the equation (1.1). The equation, 

(3.4) F*(a) = ~ Bj(~)aJ= O, 
j=O 

is called the critical equation of (1.1). Clearly, F*(~) is a polynomial in a, of degree p, 
having constant coefficients. Let the distinct roots of F*(a) be s0, ..., at, with ak hav- 
ing multiplicity ink. (Thus, ~ mk= p.) Let MI, ..., Mp be the p distinct functions of 
the form z ~ (Log z) j for 0 ~ k ~< r, and integers j satisfying 0 ~<j ~< m~ - 1. We call the 
set {M1, .. . ,Mp}, the logarithmic set for (1.1). 

When (1.1) is written in the form (3.3), we form the algebraic polynomial in v, 

(3.5) H(z,v) = E zJBj(z)v j, 
j~O 

which we will call the full factorization polynomial for (1.1). Clearly, the coefficients 
of H(z, v) belong to the same logarithmic differential field as do the coefficients of 
(1.1). If p is the critical degree of (1.1), it is shown in [14; Lemma 6.1], that H(z, v) 
possesses precisely n - p  critical monomials N1, ..., N~ _p, (counting multiplicity) sat- 
isfying $o (Nj)  :> - 1. We will call the set { N 1 ,  . . . ,  N~_p }, the exponential set for (1.1). 
If T;. is the set of zeros on (a, b) of the function IF(Ni, ~) (see (2.1)), then the union of 
the sets T i for j = 1,. . . ,  n - p, will be called the transition set for (1.1) on (a, b). 
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4. - W e  now s ta te  our  second  m a i n  result .  

THEOREM 2. - Let n i> 1, and let Ro, R~, ..., Rn_ 1 belong to a logarithmic differen- 
tial field of rank zero over F(a, b). Let A(w) be the n-th order linear differential 
operator, 

(4.1) A(w) = w ~) + R~_ 1 (z) w (~- 1) +. . .  + Ro (z) w.  

Let p be the critical degree of A(w) = 0, and let {M~, ..., Mp } be the logarithmic set 
for this equation. Let rl < r2 <, ..., rt be the transition set for A(w) = O, and set r0 = a 
and rt+l = b. (If the transition set is empty, set t =  0.) Then, in each of F(ro,rl) ,  
F(r~, r2), ..., F(rt, rt+ 1 ) separately, the following conclusion holds: For each j, with 
l<~j<~p, there exists an admissible solution ~j(z) of A(w)=0, satisfying ~ j -M~.  

REMARK In view of Theorem 2, we will make the following definition: 

DEFINITION 4.1. - Under the hypothesis and notation of Theorem 2, if {r ..., Cp } 
is a set of admissible functions in some F(c, d), such that ,~j is a solution of A(w) = 0 
and satisfies Cj ~ Mj in F(c, d) fo r j  = 1, ..., p, then we will call {r ..., Cp } a complete 
logarithmic set of solutions of A(w) = 0 in F(c, d). (Thus Theorem 2 asserts the exis- 
tence of complete logarithmic sets of solutions in each of F(ro, rl), . . . ,F(rt ,  rt+l) 
separately.) 

5. - P r e l i m i n a r i e s  for T h e o r e m  2. 
n 

DEFINITION [17; w 13]. - Let A(w) = Z Aj(z)w (j) b e  a n  n-th order linear differen- 
j=O 

tial operator whose coefficients are admissible functions in F(a, b). Then A(w) is 
called unimajoral in F(a, b) if A(1) - 1, and A(E) << 1 whenever E << 1. 

n 

LEMMA 5.1 [17; w167 27, 44, 99]. - Let A(w) = ~ Aj(z)w (j) be a unimajoral operator 
j=O 

in F(a, b) whose coefficients Aj (z) belong to a logarithmic differential field of rank 
zero over F(a, b), and assume An ~ 0. Then: 

(A) There is a sequence (W1,..., Wn) of logarithmic monomials of rank zero, 
with 80 (Wj) t> - 1 for all j ,  and a sequence (E0, ..., En) of functions satisfying Ej << 1 
in F(a, b) for each j, such that 

(5.1) J :  ~u Wl4- ~ EiWj. . .  WI + Eo, 
j = l  

where Wj denotes the first-order operator Wj (w) = w - (w'/Wj),  and where ~'j. . .  W1 
denotes the composition of these operators. 

(B) A sequence (W1, ..., Wn) satisfying Part  (A) can be found by finding the se- 
quence (L1, ..., L~) of critical monomials (counting multiplicity) of the full factoriza- 
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tion polynomial for A(w)=0, and taking (W1, . . . ,Wn) to be any permutation of 
(L1, . . . ,  Ln) satisfying the condition that for each j, either Wj << Wg + 1 or Wj ~- Wj + 1 in 
F(a, b). 

(C) Let (W1, ..., Wn) be as in Part (A), and assume that (c, d) is a subinterval of 
(a, b) on which none of the functions IF(Wj, ~) have a zero for j = 1, ..., n. Then, for 
any admissible function g in F(c, d) satisfying g << 1 in F(c, d), the equation A(w) = g 
possesses a solution w0 (z) satisfying Wo << 1 in F(c, d). 

LEMMA 5.2. - Let Bo,..., B~ be functions belonging to a logarithmic differential 
field of rank zero over F(a, b), and assume that B~ ~ 0 and that 

(5.2) max {r (Bj): j = 0, ..., n} = 0. 

Let A(w) denote the operator ~ BjOJw (where 0 is as in (3.1)), and let F*(~) = 0 be 
j=0 

the critical equation of A(w) = O. Let D be the set of roots of F*(~) = 0. Then, for any 
real number ~ not lying in D, the operator, 

(5.3) F~(u) = z-~A(c~z~u), where ca = (F* (~))-1, 

is unimajoral in F(a, b). 

PROOF. - Under the change of dependent variable w = c~ z ~ u, it is easy to verify by 
induction that OJw becomes ca z ~ (0 + a)J(u), where (0 + ~)J is the j-th iterate of the oper- 
ator 0 + ~. Thus, 

n 

(5.4) r~(u) = ~ X Bj(o + ~)~(u). 
j=0 

Since (0 + ~)J(1) --- zr it follows from (3.4) tha t /~  (1) ~ 1. In view of (5.2), it also follows 
that F~ (E) << 1 whenever E << 1 proving the lemma. 

6. - Proof of Theorem 2. 

We assume the hypothesis and notation of Theorem 2. As in w 3, we write the 
equation A(w)= 0 in the form (3.3), and we may assume as in w 3 that A(w)= 

n 

= ~ BjoJw where (5.2) holds. Since the Bj belong to a logarithmic differential field, :~ 
j=0 

of rank zero over F(a, b), we can write B /=  aj + hi, where aj- is a complex number, and 
hj is an element of ~C such that 3o(hj)<O. Thus, we may write A = r  
where, 

(6.1) ~(w) = ~ ajOiw and g(w) = ~ hi OJw. 
j=o j=o 

Now let M be any element of the logarithmic set for A(w) = 0. We will produce in each 
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of F(ro, rl ), ..., F(rt ,  rt+ 1 ) separately, an admissible solution ~ of A(w) = 0, satisfying 
~ M. This will prove the theorem. 

If  A(M) - O, we can take ~ = M, so we can assume that  A(M) ~ O. We now assert  
that  

(6.2) ~(M) - O. 

To prove (6.2), we consider the linear differential equation L ( v ) =  O, where 

L = ~ ajdJ/d~ j Clearly L has constant coefficients, and the characteristic equation 
j=O 

of L is ~ aj~ j=  O, which is jus t  the critical equation, F*(a) = 0 of A. Now M = 
j=O 

= z ~ (Log z) q, where ~ is a root of multiplicity m of F*(a), and where the integer q satis- 
fies 0 ~< q ~< m - 1. Thus clearly, f (~)  = ~qe ~- is an entire solution of L ( f )  = O. How- 
ever, M(z) = f ( L o g  z), and it is easy to verify that  it follows that  for each j = 1, 2, . . . ,  
we have OJM(z)=f(J)(Log z). Since L ( f ( ~ ) ) -  O, we clearly obtain (6.2). 

Since M = z ~ (Log z) q, a simple computation shows that  for each j ,  the function 
OJM is of the form z ~ Qj (Log z), where Qj (u) is a polynomial in u, of degree at most  q, 
having constant coefficients. In view of (6.2), we thus obtain, 

n 

(6.3) A(M) = ~'(M) = z ~ E hjQj(Log z).  
j=O 

Let  ~1 > 0 be such that  for all j ,  we have S0 (hi) < - sl. Collecting powers of Log z in 
(6.3), we may write, 

q 

(6.4) A(M) = z ~ • f j .(z)(Logz) j, 
j=O 

where the fj are linear combinations (with constant coefficients) of the hi. Thus 
$0(fj) < - , 1  for all j .  By assumption, A(M)*0 ,  and hence some f 3 ~  0. Set 

(6.5) = - max {~0 (fj): j = 0, 1, . . . ,q} .  

Thus z > ~1, and since the fj  belong to ~ ,  we can write j~ = bj z-~ + Ej ,  where bj is a 
constant, and where Ej is an element of ~r such that  ~o(Ej) < - ~. Thus by (6.4), we 

have 

(6.6) A(M) = z ~-~ bj(Log z)J + z~E , 
\ j=o 

where E is an admissible function in F(a, b) which satisfies E << z-~. Hence from 

(6.6), we obtain in F(a, b), 

(6.7) A(M) = z ~- ~/2 H ,  where H << z-~/3. 
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We now consider the nonhomogeneous equation, 

(6.8) A(v) = - z ~- ~/2H, 

and we choose a real number z which is not a root of the critical equation F,(~) = 0 for 
A(w) = O. By Lemma 5.2, ff d: = (F* (z)) -1, then the operator, 

(6.9) F, (w) = z - : A ( d :  z ~ w ) ,  

is unimajoral in F(a, b). IfF~(w) = ~ ujoJw, then by Lemma 5.1, there is a sequence 
j=o 

(WI, . . . ,  Wn) of logarithmic monomials of rank zero, with 80 (Wj) 1> - 1, such that F: (w) 
satisfies (5.1) for some Ej << 1 in F(a, b). Such a sequence can be taken to be the se- 
quence of critical monomials of the full factorization polynomial T(u) for F:(w), or- 
dered by Wj << Wj+I or Wj ~ Wj+I. But F: (w) has the form (5.4) (with ~ replaced by z), 
and the full factorization polynomial T(u) can easily be read off from (5.4) to 
be, 

n 

(6.10) T(u) = d: • Bj (z)(zu + z)J. 
j=O 

Thus, if G(v) denotes the full factorization polynomial (3.5) for the original equation, 
A(w) = 0, then, 

(6.11) T(u) = d:G(u + zz-1 ). 

Now consider any Wj satisfying 80 (Wj) > -1 .  Thus there exists h ~ Wj for which T(h) 
is not ~ T(Wj). It follows from (6.11) that Wj is a critical monomial of G(v), and hence 
if {N1, . . . ,  Nn-p } denotes the exponential set for A(w)= 0, then we have shown, 

(6.12) Wje  {N1, ...,N~_p } if ~o(Wj)> - 1. 

Let the set of Wj with ~o(Wj) = - 1 be denoted (ClZ-1,. . . ,  czz -1 }. We now choose a 
real number ~ which is not a root of F*(/~) = 0, and which satisfies both of the follow- 
ing conditions: 

(6.13) Re (a) - (13~/18) < ~ < Re (~) - (10~/18), 

(6.14) ~ ~ {Re (c1) + ~, ..., Re (cs) + ~}. 

We again invoke Lemma 5.2, and form the operator F~(w) given by (6.9) with ~ in 
place of z. As before, /'~(w) is unimajoral in F(a,b), and a sequence 
(W~I, W22, ..., W~)  satisfying (5.1) for /~  (w) can be found by taking the sequence of 
critical monomials (in an ascending order) of the full factorization polynomial T, (u) 
for/~, (w). But as before, T1 (u) has the form (6.10) with : replaced by ),, and it follows 
that 

(6.15) T 1 (u) = (d~/ d~) T(u + ()~ - ~) z '-1 ), 
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and 

(6.16) T~(u) = d~G(u + ~z-~). 

As in the case for ~, it follows that  (6.12) holds also for ;~, so tha t  

(6.17) w~ e {N~, . . . ,  Y~_ ~ } if ~'0 (W~r > - 1. 

Now consider any Wjj with ~o(Wjj) = - 1, say Wg 5 = rz -1. Thus the re  exists h ~ Wjj 
such that  Tl(h) is not ~ TI(Wjj). Set c - - r + ~ - ~ ,  so from (6.15) we obtain 

(6.18) T(h+ ()~ - v)z -1) is not  ~ T(cz-1).  

We assert  tha t  c r 0. We assume the contrary,  and set g = h + (~ - ~) z-~. Then g << 
<< z -1, and (6.18) asserts  tha t  T(g) is not ~ T(0). Thus from (6.11), it follows that  G(g + 
+ ~z -1 ) is not ~ G(zz-~), which we will show is impossible. To see this, we note  tha t  

G(v) is given by the r ight  side of (3.5), and hence it  follows tha t  G(~Z -1 ) ~ F * (z) since 
F*(z)=~0 by our choice of ~. Since g <<z -~, it  again follows from (3.5) tha t  G ( g +  
+ ~z -~) ~ F * (~) which proves our assertion. Th i s  contradiction proves that  c =/= 0. 

Since c =/= 0 in (6.18), we see that  cz -1 is a critical monomial of T(u), and thus c 
must  be one of the numbers  Cl, ..., cs, say ck. Hence, r = ck + z -  ~, so from (6.14) we 
see that  Re (r) r 0. Hence if ~0 (Wjj) = - 1, clearly IF(Wjj,  ~) is a nonzero constant 
function. Thus from (6.17) (and the definition of transit ion set), it follows tha t  with 
to, rl ,  . . . ,rt+l as defined in the s ta tement ,  none of the functions IF(Wjj ,~)  (for 

j = 1, ..., n) have a zero on a n y  of the intervals  (to, rl), (ri, r2) , . . . ,  (rt, rt+ ~ ) .  Hence 
from Par t  (C) of Lemma 5.1, for e a c h j  = 0, 1, ..., t, and any admissible function gj << 1 

in F(rj, rj+ 1), the equation 

(6.19) P~ (w) = gj, 

possesses a solution wj << 1 in F(r~, rj + 1 ). 
We re tu rn  now to equation (6.8). Sett ing v = d~z~w, this equation takes the form 

(6.19) where  gj = - z~-~-42H.  In view of (6.7), we have gj << z ~-~-(5d6) in F(a, b). 
F r o m  our choice of ~ in (6.13), clearly ~ + (5~/6) - Re(a)  > ~/9, and from L e m m a  2.3, 
we know z ~ << z Re(~)+(~/9) in F ( -  ~, =). I t  easily follows tha t  gj << 1 in F(a, b). Thus,for  
each j = O ,  1, . . . , t ,  the equation (6.19) possesses a solution wi<<1 in F(ry,rj+l).  
Hence vj = d~z~wj is a solution of (6.8) in F(rj,  rj+ 1 ). But from our choice of ~ in (6.13) 
and Lemma 2.3, we have vj << z ~ in F(rj, rj+ i ), and hence vj << M in F(r 2, r2§ 1 ). Thus 
from (6.7) and (6.8), we have A(M + vj) =- O, and so M + vj is an admissible solution 
of A(w)=O in F(rj,rj+~) satisfying M + v j ~ M .  This concludes the proof of The- 

orem 2. 
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7. - C o n c e p t s  and  n o t a t i o n  f r o m  [14]. 

Let, 

n 

(7.1) ~(w) = E Bj(z) OJw, 
j=O 

be an n-th order linear differential operator whose coefficients B0, ..., B~ belong to a 
logarithmic differential field :~ of rank zero over F(a, b) and assume B~ ~ 0. (As in 
w 3, Ow = zw'.) Let W belong to an extension logarithmic differential field ~1 of rank 
zero over F(a, b), and assume W >> z -1 in F(a, b). Set h = exp~W, and let A(v) be the 
operator defined by A(v) = ~(hv)/h. Then A(v) has coefficients belonging to :~1, and 
we denote,  

(7.2) A(v) = E Bj[W] o v. 
j = 0  

Let H(u) and K(u) denote respectively, the full factorization polynomials for ~(w) and 
A(v), so that, 

(7.3) H(u) = ~ zJBju j and K(u) = ~ zJBj[W]u ~. 
j = 0  j = o  

In [14; w 10], the following concept is introduced: W is said to have transform type 
(m, q) with respect to H (briefly, t r t  (W, H) = (m, q)) i r a  has critical degree m, and if 
q is the minimum multiplicity of all critical monomials M of K(u) which satisfy z-1 << 
<< M << W in F(a, b). (If there are no such M, then we set q = 0.) The following results 
are proved in [14; w 10]: 

cal 
t r t  (W, H) = (m, q). Then: 

(a) K(u) has precisely d - m  
counting multiplicity. 

(b) We have m + q ~< d. 

(c) If q=0 ,  t h e n m = d .  

(d) If (m, q) = (0, d), and we set, 

LEMMA 7.1. - With the above notation, assume W - N in F(a, b) where N is a criti- 
monomial of H(u) of multiplicity d, satisfying N>>z -1, and assume that 

critical monomials L satisfying z-1 ( (  L << W, 

then G(u) possesses a unique principal monomial V. In addition, V has the following 
properties: (i) V is a simple critical monomial of G; (ii) V<< W; (iii) There is a unique 
function g satisfying g ~ V in F(a, b) and G(g) - 0; (iv) If U = W + g, then U -  W in 
F(a, b), and t r t ( U , H ) =  (ml,ql) where ql < d. 

(7.4) G(u)= • /{ k \}Bk (z)z k- (d-1)(W +u)  k-(~- 1) 
k=d-l \d-- 1/ 
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REMARK. - Conclusions (a)-(c) are proved in [14; Lemma 10.3]. The conclusion (d) 
follows from [14; Lemmas 10.5, 8.5] and from Lemma 2.4 above. 

In view of Parts (b) and (d) of Lemma 7.1, we introduce the following 
notation: 

D E F I N I T I O N  7 . 2 .  - With the above notation, let N be a critical monomial of H(u) of 
multiplicity d, satisfying N >> z-l, and let tr t  (N, H) = (m, q). By Part  (b), we have 
q < d. If q < d, set N* = N. If q = d, then by Part  (b), we have m = 0. We set N* = U, 
where U is the function in Part (d) which is constructed by taking W equal to N. 
Hence, in all cases, we have, 

(7.5) N* - N and trt  (N*, H)  = (ml, ql) where ql < d. 

REMARK. - The *-operation to form N* depends upon the polynomial H(u), and we 
will indicate this, where necessary, by saying that it is relative to H(u). 

The significance of N* is indicated by the following result: 

LEMMA 7.3. - Let t~(w) and H(u) be as in (7.1) and (7.3). Let N be a critical mono- 
n 

mial of H(u) of multiplicity d, satisfying N >> z-1. Let A1 (v) = ~, Bj [N* ] OJv, and let 
j=O 

K1 (u) be the full factorization polynomial for A1. Then, any critical monomial L of 
KI (u), which satisfies z-l<< L << N*, has multiplicity strictly less than d. 

PROOF. - By (7.5), if (ml, ql) = trt  (N*, H), then ql < d. By Lemma 7.1, Part  (a), 
the polynomial K1 (u) has precisely d - ml critical monomials L, satisfying z-1 << L << 
<< N*, counting multiplicity. If one of these monomials has multiplicity r I> d, then 
clearly mx = 0 and r = d. Thus K1 (u) would have one distinct critical monomial L sat- 
isfying z-X << L << N*, and L would be of multiplicity d. Then, by definition of qx, we 
would have ql = d, contradicting (7.5). This proves Lemma 7.3. 

D E F I N I T I O N  7 . 4 .  - Let ~(w) and H(u) be as in (7.1) and (7.3), and let N >> z -1 be a 
critical monomial of H(u) of multiplicity d. A finite sequence (V0,111, ..., Vr), where r 
is a nonnegative integer, and where the Vj are elements of an extension logarithmic 
differential field of M, of rank zero over F(a, b), will be called an N-sequence for ~ if 
and only if the following conditions are satisfied: (i) V0 = N* ; (ii) If r~> 1, then there 
is a critical monomial M 1  of 

(7.6) K 1 (u) = ~ zJBj [V0 ] u j , 
j=O 

satisfying z-l<< M1 << Vo, such that V1 = M~ (where the *-operation is relative to 
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K1), and in general, for 1 ~< k ~< r, there is a critical monomial Mk of 

( 7 . 7 )  Kk(U) : ~ zJBj[Vo + VI--~ .,.-~ gk_l]U j 
j=0 

satisfying, 

(7.8) z -1 ~ Mk << Vk- 1 and Vk = M~', 

where the *-operation in (7.8) is relative to Kk. The set of all N-sequences for t9 will be 
denoted ~(N,  ~9). If  V ~ = (V0, .. . ,  Vr) is an N-sequence for ~,  let A0 = ~, K0 -- H, and 
for l < k ~ < r + l ,  set 

n 
(7.9) Ak(V)= E Bj[Vo~ VI-~ . . .  "~- gk-1]O kv �9 j=O 
Let  Kk (u) be given by (7.7) for 1 ~< k ~< r + 1. We call the sequences (A0, A1, ..., Ar + 1 ) 
and (K0, K1,  . . . ,  Kr+ 1 ) respectively, the operator sequence for V ~, and the polynomi- 
al sequence for V ~. The equation, A~+l(V) = 0, will be called the terminal equation for 
V ~, and its critical degree will be called the terminal index for V #, and will be denot- 
ed t(V # ). We will say that  V * is active if t(V ~ ) > 0, and we denote the set of all active 
N-sequences for ~ by (~1 (N, ~). 

REMARKS. - (1) We remark that  Ak § 1 (v) in (7.9) can be formed directly from Ak (v) 
by the obvious formula, 

(7.10) Ak+l(V)=Ak((expfgk)v) I(expfPk). 

(2) I t  is easy to see that  if N is a critical monomial of H(u) of multiplicity d, then 
for any N-sequence (V0, .. . ,  Vr) we have r ~< d - 1. This follows since Vj = M~, and if 
sj denotes the multiplicity of the critical monomial M 2 of Ks(u), then by Lemma 7.3, 
we have d > sl > s~ > ... > 8 r. Since sr I> 1, we obtain d/> r + 1. 

8. - A c r u c i a l  l e m m a .  

LEMMA 8.1. - Le t  t~(w) = ~ By O~w where the By belong to a logarithmic dffferen- j=O 
tial field of rank zero over F(a, b), and assume Bn ~ 0. Let  N >> z-1 be a critical mono- 
mial of multiplicity d of the full factorization polynomial for ~. Then, 

(8.1) {t(V ~): V ~ e (~(N, tg)} : d ,  

and 

(8.2) ~ {t(V #): V ~ e (D 1 (N, t~)} = d.  
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PROOF. - Since t(V #) = 0 if V ~  (~1 (N, ~), it clearly suffices to prove (8.1). The 
proof will be by induction on d. However, we will give a direct proof of (8.1) for both 
d = 1 and d = 2 in order to better  illustrate the concept of N-sequence for the 
reader. 

Case I: d = 1. By (7.5), tr t  (N*, Ko ) = (ml ,  0) where Ko (u) is the full factorization 
polynomial for t~. By Lemma 7.1 (c), we have ml = 1. Hence, if we set V0 = N*, then 
(Vo) is an N-sequence with terminal index 1. However, since tr t  (N*, K0 ) = (1, 0), the 
polynomial K1 (u) in (7.6) has no critical monomial M1 satisfying z -1 << M1 << N*. Thus 
(V0) is the only N-sequence for t), and so (8.1) holds. 

Case H: d = 2 .  By (7.5) and Lemma 7.1(b), if trt(N*,Ko)= (~0,~o), then we 
have, 

(8.3) ~o + )~o ~< 2 and )~o ~< 1. 

We distinguish the two cases, ),o -- 0 and )~o = 1. Assume f~'st that ~o = 0. Then by 
Lemma 7.1 (c), we have zo = 2. Thus the N-sequence (N*) has terminal index 2, and as 
in Case I, this is the only N-sequence. Thus (8.1) holds in this case. 

Now assume s = 1. Thus by (8.3), either :o = 0 or ~o = 1. We distinguish these 
two cases. 

Subcase A: :o = 0 and ;(o = 1. Since ~o = 0, the N-sequence (N*) has terminal in- 
dex zero. By Lemma 7.1 (a), the polynomial K1 (u) in (7.6) (where Vo = N*)  has two 
critical monomials R1 and R2 satisfying z-1 << Rj << Vo, and both have multiplicity 1 
since ~o = 1. Thus by (7.5) and Lemma 7.1(c), we have t r t (Rf ,Ki)=(1,0)  for 
j = 1, 2. It easily follows that (Vo, R~ ) and (Vo, R2* ) are both N-sequences for t~ hav- 
ing terminal indices equal to 1, and as in Case I, there are no other N-sequences. Thus 
(8.1) holds. 

Subcase B: zo = 1 and ~o = 1. Thus (Vo) is an N-sequence with terminal index 1. 
By Lemma 7.1 (a), the polynomial K1 (u) possesses one critical monomial M 1 satisfy- 
ing z-l<<Ml<<Vo, and M1 is simple. By (7.5) and Lemma 7.1(c), we have 
trt  (M*, K1 ) = (1, 0), which shows that (Vo, M~' ) is an N-sequence having terminal in- 
dex 1, and there are no other N-sequences. Hence (8.1) holds. 

Case III: d i> 3. We proceed by induction, assuming that (8.1) holds whenever a 
critical monomial of a full factorization polynomial has multiplicity dl < d. Now let 
N>> z -1 be a critical monomial of Ko(u) having multiplicity d. By (7.5), we have 
tr t  (N*, Ko) = (m, q) where q < d. If m = d, then q = 0 by Lemma 7.1, so there is only 
one N-sequence, namely (N*), and its terminal index is d. Thus (8.1) holds if m = d. 
Thus we may assume m <  d. Letting Vo = N*, we have from Lemma 7.1 (a) that the 
polynomial Kl(U) in (7.6) possesses distinct critical monomials L1,. . .  ,L~. such that 
z-1 << Lj << Vo for each j, and if mj denotes the multiplicity of Lj, then 

(8.4) ml + me + ... + m). = d - m.  
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In addition, by Lemma 7.3 we have mj < d for eachj  = 1, ..., 2. Thus if A1 is given by 
(7.9) for k = 1, we have by the induction hypothesis that 

(8.5) E {t(W ~): W ~ e ~(Lj,  A~)} = mj,  

for each j= l , . . . , ~ .  Howeer, it is obvious that if W ~ =  (Wo,...,Wr) belongs to 
(J~(Lj~ A 1), then V ~ = (N*, Wo, ..., W~) belongs to 69(N', ~), and t(W #) = t(V #). Con- 
versely, it is clear that if V * = (V0, ..., V~) belongs to 0~(N, ~), and if r~> 1, then V~ 
must be Lj* for some j, and hence (V~, ..., V~) belongs to (~(Lj, A1) and has the same 
~erminal index as V *. Hence, it follows that if the sum on the left side of (8.1) is writ- 
ten as~ 

(8.6) t((v0)) + E (E {t(v#): v # e o~(N,~); Vl = L?} ) ,  
j = l  

then by (8.5), this sum is, 

(8.7) t ( ( �89  E mj.  
j = l  

But since trt  (N*, K0) = (m, q), clearly the terminal index of the N-sequence (V0) is 
m. Thus by (8.5) and (8.7), the left side of (8.1) equals d. This proves the lemma by 
induction. 

9. - T h e o r e m  3. 

Given the equation (1.1) where n i> 1 and where the functions Ro(z), ..., R~_I (z) 
belong to a logarithmic differential field of rank zero over F(a, b). When written in 
terms of the operator 0 (where ~w = zw') let (1.1) have the form ~(w)= 0, where 

n 

t?(w) = ~ By (z) OJw. Let p be the critical degree of (1.1), and let N1, ..., N~ be the dis- 
3.=o 

tinct elements (if any) of the exponential set (see w 3) for (1.1). Let  E1 denote the 
transition set for (1.1) on (a, b). For each k = 1, ..., s, and each active Nk-sequence, 
V #, for D, let E(V ~) denote the transition set for the terminal equation for V # (see 
w 7) on (a, b). Let E = {rl, ..., rq }, where r I ~ r 2 < . . .  < rq, denote the union of El and 
all the sets E(V #) as V # ranges over the sets (~  (Nk, ;9) for k = 1, ..., s. Let (c, d) de- 
note any of the intervals (a, rl ), (rl, r2), ..., (rq_ 1, rq ), (rq, b). Then each of the follow- 
ing conclusions holds: 

(A) The equation (1.1) possesses a complete logarithmic set of solutions 
{~1, ---, ~p } in F(c, d). 
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(B) If k e (1, ..., s}, and V # = (V0, ..., Vr) is an element of (~1 (Nk, O), then the 
equation (1.1) possesses t(V #) admissible solutions, hi, . . . ,  h t ( v~ ) ,  in F(c, d) of the 
form 

(9.1) hj(z) = ~j(z) (exp f (Vo + ... + Vr)) , 

where (~1, ..., Ct(v~)} is a complete logarithmic set of solutions of the terminal equa- 
tion for V # in F(c, d). 

(C) The total number of solutions represented in Parts (A) and (B) is precisely 
n, and these n solutions form a fundamental set of solutions for (1.1) in some element 
of F(c, d). 

10. - Preliminaries for Theorem 3. 

As in [16, w 14(a)], we will say that an admissible function f i n  F(a, b) is trivial in 
F(a, b) if the relation f<< z z holds for each real number ~. We will require the follow- 

ing simple facts: 

LEMMA 10.1. - Let n be a positive integer. Let {fl, ..., fn } be a set of admissible 
functions in some F(a, b), with the following property: For any two distinct elements 
k a n d j  in {1, ..., n}, either fk <<fj orf j  <<fk in F(a, b). Then, there is an element m in 
{1, ..., n} such that j~ <<fro for each j in {1, ..., n}, distinct from m. 

PROOF. - The proof is by induction on n, being trivial for n = 1. Assuming the 
statement for n, assume ( f l ,  ..., f~+ 1 } satisfies the hypothesis of the lemma. Then 
there exists m in {1, ..., n} such that fj <<f~ for l<~j<-n, j--/:m. If fro <<f~+l, then 
f~+ 1 is the desired element. Iff~+ 1 <<f~, thenf~ is the desired element, and the proof 

is complete. 

LEMMA 10.2. - Let n be a positive integer, and let {fl ,  ..., fi~ } be a set of admissi- 
ble functions in some F(a, b), with the following property: For any two distinct ele- 
ments k a n d  j in {1, ..., n}, either fk/fj- orfj/fk is trivial in F(a, b). Then, there is an 
element m in {1, ..., n}, such that fj/f,~ is trivial in F(a, b) for each element j in 

{1, ..., n}, distinct from m. 

PROOF. - The proof is similar to Lemma 10.1. 

DEFINITION 10.3. - Assume the hypothesis and notation of Theorem 3. For each 
q = 1, ..., s, and any V # = (V0, ..., V~) belonging to 0~l(Nq,t~), where r>~ 1, let Kk(u) 
be given by (7.7) for 1 ~< k ~< r. For each k = 1, ..., r, let 5~k (V # ) denote the set of criti- 
cal monomials M of Kk (u) satisfying z -1 << M << Vk- 1. We define ~ (V # ) to the union 
of the sets of zeros on (a, b) of all the functions, IF(M, ~) for M e ~k ( V# ), and IF(M - 
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- MI, 9) for distinct elements M and MI in Yk (V # ). Finally, we let A denote the union 
of the sets of zeros on (a, b) of all the functions IF(Nj - Nk, 9) where 1 ~< k < j ~< s. 
With the set E as defined in the statement of Theorem 3, we now define the oscilla- 
tion set on (a, b) of equation (1.1) to be the union of the sets E, A, and all the sets 
G(V ~) as V # =  (Vo, . . . ,V,) ranges over (~i(Nq,~) for all q=  1, ..., s, and k ranges 
over {1, ..., r}. (The oscillation set is clearly finite.) 

11. - P r o o f  o f  T h e o r e m  3 .  

Part (A) follows from Theorem 2, noting that the transition set for (1.1) is included 
in the set E. For Part  (B), if V # = (V0, ..., Vr) belongs to 0~ (Nk, t~), then the terminal 
equation for V ~ is Ar+i (v)= O, where Ar+l is given by (7.9) for k = r + 1. Since the 
critical degree of this equation is t(V ~), and since the transition set for this equation 
is included in the set E, it follows from Theorem 2 that a complete logarithmic set of 
solutions {~1, ..., ~t(v*) } for the terminal equation exists in F(c, d). In view of (7.9), 
the operator A~+ 1 (v) is obtained from t~(w) by the change of variable w = (exp f(V0 + 
+ ... + V,)) v (followed by division by the exponential integral), and so clearly (1.1) pos- 
sesses the t(V #) solutions given by (9.1) proving Part  (B). 

Since the sum of the multiplicities of the critical monomials N1, ..., Ns of the full 
factorization polynomial for (1.1) is n - p  (see w 3), it now follows from Lemma 8.1 
that we have produced n solutions of (1.1) in Parts (A) and (B). 

It remains to prove that these n solutions form a fundamental set in any element T 
of F(c, d) on which they all exist and are analytic. To this end, we assume the con- 
trary. A dependence relation on T can be written in the form, 

d 

(11.1) U0(z) + E 
m = 1  

where VI~,, . . . , ,  V~ represent the distinct elements in the union of the sets (~1 (Nq, t~) 
for q = 1, ..., s, and where Uo(z), ..., Ud(z) are linear combinations of complete loga- 
rithmic sets of solutions, and finally, where ~(V #) denotes V0 + ... + Vr if V # =  
= (V0, ..., Vr). Since the oscillation set (see w 10) for (1.1) on (a, b) is finite, we can find 
a subinterval (c1, dl) of (c, d) containing no points of the oscillation set. We assert that 
the set of functions, 

(11.2) {1, exp f ;~(vF),...,exp f ~,(W)}, 
satisfies the hypothesis of Lemma 10.2 on F(cl, di ). First, the ratio of exp f~(v~) to 
the function 1 is either trivial (as defined in w 10) in F(cl, dl) or its reciprocal is trivial 
in F(cl, dl ). This follows from Lemma 2.2, since IF(~(V~ ), 9) is either strictly positive 
or strictly negative on (c~, dx ) due to the fact that (c~, di ) contains no points of the 
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transition set for (1.1). We now examine the ratio, 

(11.3) 

for m--/:q. Let V~ = (V0, ..., V~) and V~ = (Wo, ..., Wz), where we may assume r~>~ 
without loss of generality. We distinguish two cases. Assume first that Vj ~ Wj for 
some j~<~ (and we may assume j is minimal having this property). Then, clear- 
ly, 

(11.4) A(g~ ) - A(V: ) ~ Vj - Wg in F(Cl , d I ). 

I f j  = 0, then Vj - Wj is - to the difference of two distinct elements of the exponential 
set for (1.1). Thus the indicial function for the left side of (11.4) is nonwhere zero on 
(cl, d~ ) since the set A introduced in Definition 10.3 is included in the oscillation set. 
The same conclusion holds if j >  0, since the set ~j(V~) defined in w 10 is included in 
the oscillation set (and clearly, in the notation of w 10, Vj - W 5 is - to the difference of 
two distinct elements of the set ~-(V~)). Hence in this case, it follows from Lemma 
2.2 that the ratios (11.3) is either trivial or its reciprocal is trivial in F(cl ,  dl).  In the 
second case, Vj = Wj for all j~<~, and hence we must have ~ < r .  Thus, 

(11.5) - 

and since Vz+l is - to an element of ~+I (V~) ,  it follows as above that the indicial 
function for the left side of (11.5) is nowhere zero on (c1, dl ). Thus, again by Lemma 
2.2, the ratio (11.3) is either trivial, or its reciprocal is trivial, in F(Cl, dl ). Thus the 
set (11.2) satisfies the hypothesis of Lemma 10.2, and so there is an element L in the 
set in (11.2) with the property that when any other element is divided by L, the quo- 
tient is trivial in F(Cl, dl). We now divide the relation (11.1) by L, and the resulting 
relation shows that the particular Uj(z) corresponding to L is trivial in F(cl ,  d~). 
Since this ~ (z) is a linear combination of a complete logarithmic set of solutions, it 
follows from [3; Lemma 10] that all the constants in the linear combination Uj (z) are 
zero. Thus the term in (11.1) corresponding to U 5 (z) has been eliminated. We now ap- 
ply Lemma 10.2 to the set (11.2) with L removed, and divide the relation (11.1) by the 
element produced. Again [3; Lemma 10], forces all the constants in the corresponding 
U~ to be zero. Repetition of this argument eventually shows that all constants in the 
dependence relation (11.1) are all zero contradicting our assumption. Thus we have a 
fundamental set. This proves Theorem 3. 

1 2 .  - Theorem 4. 

Given the equation (1.1), where n 1> 1, and where the functions R0 (z), ..., R~_ l(z) 
belong to a logarithmic differential field of rank zero over F(a, b). Let N1, ..., Ns  be 
the distinct elements (if any) of the exponential set for (1.1), and let (1.1) have the 
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form ~(w)= 0, where t~(w) = ~ By OJw, when (1.1) is written in terms of 0w = zw'. 
Then: j = 0 

(A) Assume that (1.1) satisfies at least one of the following two conditions: (i) 
The critical equation for (1.1) possesses two distinct roots having the same real part; 
(ii) For some k, 1 ~< k ~< s, there is an element V # in 6~1 (Nk, t)) such that the terminal 
equation for V ~ has the property that its critical equation possesses two distinct roots 
having the same real part. Then (1.1) has the following property: For any r in (a, b) 
and any ~ > 0, there exist positive constants ~ and K, and a so lu t ionf~  0 of (1.1) such 
that, 

(12.1) 8 < m i n { ~ - a , b - ~ , z } ,  

and such t h a t f i s  analytic and has infinitely many zeros zl, z2, ..., with lim Izm ] = + 
m - - - >  ~ 

+ ~, on the region defined by, 

(12.2) I A r g z - ~ ] < ~  and / z l > K .  

(B) Assume that (1.1) satisfies neither of the conditions (i) and (ii) in Part  (A). 
Let the oscillation set for (1.1) on (a, b) consist of the points rl < r~ < ... < rq, and set 
r0 = a and rq§ = b. L e t f ~ 0  be any admissible solution of (1.1) in F(a, b). Then, for 
each j, 0 ~<j ~< q, there is an element ofF(rj, rj+ ~ ) on whichfhas  no zeros. (If the oscil- 
lation set is empty, the result holds when q is taken to be zero.) 

13. - P r e l i m i n a r i e s  for  T h e o r e m  4. 

We will require the following result from [1] (see also [6; w 8]): 

LEMMA 13.1. - Given any equation (1.1), where n I> 2, and where R0, ..., Rn-  1 be- 
long to a logarithmic differential field of rank zero over F(a, b). Assume that the criti- 
cal equation for (1.1) possesses two distinct roots having the same real part. Then for 
any ~ in (a, b) and any ~ > 0, there exist positive constants ~ and K, and a solution 
f ~ 0  of (1.1) such that, 

(13.1) ~< m i n { ~ - a ,  b -  ~, z}, 

and such that f i s  analytic and has infinitely many zeros Zl, z2, ..., with l i r a  Izm I = + 
+ ~, on the region defined by, 

(13.2) !Arg z -  ~1 < ~ and ]z I > K.  

REMARK. - The proof given in [1] was for the case when the Rj (z) are rational func- 
tions, but the exact same proof holds for the general case. 
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14. - P roof  of Theorem 4. 

Part  (A). If (1.1) satisfies condition (i), then the conclusion follows immediately 
from Lemma 13.1. If (1.1) satisfies condition (ii), say for V # = (V0, ..., VT), then the 
conclusion of Lemma 13.1 holds for the terminal equation, At+ ~ (v) = 0, for V ~. Since 
any solution v of this equation gives rise to the solution of (1.1) defined by, 

(14.1) w=(exp(f(Vo+ ..+ 
and since any zero of v is a zero of w, clearly the conclusion of Part  (A) holds in this 
case too. 

Part (B). We assume that (1.1) satisfies neither of the conditions (i) and (ii), and 
we consider the fundamental set for (1.1) produced in Theorem 3. We assert that this 
fundamental set satisfies the hypothesis of Lemma 10.1 on each F(rj ,r j+l) .  Using 
Lemma 2.3, and the proof in Theorem 3 concerning the set (11.2), it easily follows that 
the ratio of two solutions of the form (9.1) which correspond to different V ~ is either 
trivial or its reciprocal is trivial in F(rj,  rj+ 1 ) .  Similarly, the ratio of a solution of the 
form (9.1) to a solution ~j in the complete logarithmic set of solutions for (1.1) is also 
either trivial or its reciprocal is trivial in F(rj, rj § 1 ) by the same argument. Since 
(1.1) does not satisfy condition (i), clearly the ratio R of any two distinct elements in 
the logarithmic set for (1.1) satisfies either R << 1 or R >> 1 in F ( -  ~, ~) by Lemma 2.3. 
Thus the same property holds in F(r~, rj+~) for the distinct elements in a complete 
logarithmic set of solutions for (1.1). The same argument (in the light of the assump- 
tion that (1.1) does not possess property (ii)) shows that the ratio R of two distinct 
solutions of the form (9.1) which correspond to the same V #, also must satisfy either 
R << 1 or R >> 1 in F(rj, rj + 1). Thus the fundamental set satisfies the hypothesis of 
Lemma 10.1 in F(rj, rj § ~ ). Now if f ~  0 is an admissible solution in F(a, b) of (1.1), 

m 

then in some element ofF(rj ,  rj+ 1 ) we h a v e f  = ~ cigi, where ( g l , . . . ,  gm} is a subset 
i = l  

of the fundamental set in F(rj, rj + 1 ) and where the ci are nonzero constants. Applying 
Lemma 10.1 to the set { gl, ..., g~ }, we see that there is an index k in {1, ..., m} such 
that f =  ckgk (1 + E) where E << 1 in F(rj, rj+ 1 ). Since gk is admissible in F(rj,  rj+ 1 ), 
and clearly has no zeros on some element of F(rj,  rj + 1 ) (as easily seen from the form of 
the fundamental set produced in Theorem 3), clearly the same property holds for f, 
and this concludes the proof of Theorem 4. 

15. - P roof  of Theorem 1. 

We are given an equation (1.1) whose coefficients are rational functions. Since the 
rational functions are contained in a logarithmic differential field of rank zero over 
F ( -  =, =) (namely, the set of all rational combinations of the logarithmic monomials of 
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rank zero), Theorem 4 is applicable to (1.1) with (a, b) = (-=,  ~). If  (1.1) satisfies ei- 
ther of the two conditions (i) and (ii) listed in Part  (A) of Theorem 4, then by Part  (A) 
of Theorem 4, the conclusion (A) in Theorem I holds. If (1.1) does not satisfy either (i) 
or (ii) of Theorem 4, let r 1 < r 2 < ...rq be the distinct points of the oscillation set for 
(1.1) on ( -  r:, =), and set r0 = - = and rq+ 1 = =. By Part  (B) of Theorem 4, for any ad- 
missible solution f ~  0 of (1.1) in F ( - = ,  =), and any j, 0 ~<j ~< q, there is an element Tj 
of F(rj, r i +1) on which f has no zeros. By Lemma 2.1, if ~ > 0 is given, there is a con- 
stant Kj(~)> 0 such that f has no zeros on the set 

(15.1) rj+~<<.Argz<<_ry+l-~, Izl~Kj(~), 

for each j = 0, 1, ..., q. I f f  is actually meromorphic on the plane, then f can have only 
finitely many zeros in the bounded sets Izl <-Kj (~), and so the conclusion (B) in Theo- 
rem 1 holds when we take {Zl, ..., ~ } to be {rl, ..., rq § ~ }. This concludes the proof of 
Theorem 1. 

1 6 .  - R e m a r k s .  

(1) The main question left unanswered by Theorems 1 and 4 is the following: In 
Part  (B) of Theorem 1, which of the numbers ~1, ..., ~ (if any) which we produced in 
Theorem 4 are actually extraneous in the sense that in some ~-sector, I arg z - ~jl < ~, 
no solution f ~  0 of (1.1) has infinitely many zeros? In the case of second-order equa- 
tions having polynomial coefficients, the Hille method (see [20; p. 382]) produces a list 
of rays none of which is extraneous in the above sense. The reason for this is that in 
the second-order case, the asymptotic solutions which are constructed actually exist 
with their prescribed asymptotic behavior in sectors which surround the special rays. 
However, in the case of equations of higher order, our theory has no such ~,continua- 
tion, results as yet, and so the solutions we construct are known to exist with their 
prescribed asymptotic behavior only on one side of some of the special rays. Thus the 
question of extraneous rays remains open. 

(2) As the proof of Theorem 1 shows, in order to produce the numbers ~1, ..-, ~ ,  
it is required to find the oscillation set for (1.1). This involves the repeated use of the 
algorithm described in w 2 for finding the critical monomials of certain algebraic poly- 
nomials, namely the full factorization polynomial for (1.1), and all the polynomials 
Kk(u) given by (7.7) for 1 ~< k ~< r +  1. These polynomials are derived using (7.7) from 
the corresponding operators Ak(v) given by (7.9), and these latter operators are de- 
fined recursively by (7.10). In order to find the critical monomials of Kk (u), it is obvi- 
ously necessary to know the asymptotic behavior of the coefficients of Kk (u) (or 
equivalently, the coefficients of Ak (v)). From the recursive relation (7.10), it is clear 
that we will require precise information on the asymptotic expansion of the functions 
Vk. From (7.8), we know that Vk = M~', where Mz is a critical monomial of Kk (u). If 
M~ = Mk, then Vk is just  a logarithmic monomial. However, if M~ ~ Mk, then by 
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Definition 7.2, the function ME - Mk is a root of an algebraic polynomial (see (7.4)), 
and at first glance, the determination of its asymptotic expansion would seem to be 
complicated. However, since M F -  Mk is asymptotically equivalent to a simple criti- 
cal monomial of the algebraic polynomial (see Lemma 7.1(d)), the following result  
shows that  the asymptotic expansion for M~ - Mk (and hence the asymptotic expan- 
sion for Vk) can be easily determined to as many terms as desired: 

LEMMA 16.1. - Let  G(v) be a polynomial in v whose coefficients belong to a loga- 
rithmic differential field of rank zero over F(a, b). Let  V be a simple critical monomial 
of G(v), and let g be an admissible function in F(a, b) such that  G(g) -- 0 and g - V. Le t  
G~ (v) = G(v + V), and define $1 to be the unique principal monomial of G~ (see Lemma 
2.5) if G(V) ~ O, while if G(V) =- O, set S1 = 0. Let  G2 (v) = G1 (v + S1 ), and set $2 -= 0 if 
either G(V) - 0 or G1 ($1) - 0. Otherwise, let $2 be the principal monomial of G2 (v). 
Now, set G3 (v) = G2 (v + $2), and define $3 - 0 if either G(V) - O, G1 ($1) =- O, or 
G2 ($2) --- 0. Otherwise let $3 denote the principal monomial of G~ (v). Continue this 
process by induction to form Gk(v) and Sk for k = 4, 5, ..., and define Ek by the 
equation, 

(16.1) g = V + S I + . . . + S k + E k  for k ~ > l .  

Then the following hold for each k i> 1: If  Sk -= 0, then Ek ---- 0. I f  Sk ~ 0, then, 

(16.2) Ek << Sk << Sk- ~ << ... << S~ << V in F(a, b). 

PROOF. - Assume Sk -- 0 for some k >t 1. If  G(V) - 0, then by the uniqueness part  
of Lemma 2.4 (b), we have g =- V. In addition, by definition, all S 5 - 0 for j i> 1, so 
Ek----0 in (16.1). If  G(V)~O, then k > l ,  and one of the functions 
G1 ($1), . . . ,  Gk- 1 (Sk - 1) must  be identically zero. Let  j />  1 be the minimal index 
q~< k -  1 such that  Gq(Sq)= O. Then clearly gl = V +  $1 + ... + Sj is a solution of 
G(v) = O, and Sj§ =- O, ..., Sk - O, while Sj ~ O. By Lemma 2.5, it follows that ,  

(16.3) S j<<Sj_  1 << ... <<S 1 << V ,  

so that  g~ - V. By the uniqueness part  of Lemma 2.4 (b), we have g - gl ,  from which 

it follows that  E k -  0. 
Now assume Sk ~ 0. Then none of the functions $1, ..., Sk-~ can be identically 

zero, and from Lemma 2.5 we can conclude that,  

(16.4) Sk ~ S k -  1 ~ "" $1 ~ V ,  

and that  Sk is a simple critical monomial of Gk(v). By Lemma 2.4(b), there is a sol- 
ution gk - Sk in F(a, b) of the equation Gk (v) = 0. Hence, h = V + S1 + .-. + Sk - 1 d- gk is 
a solution of G(v) = 0, and by (16.4), clearly h - V. By the uniqueness part  of Lemma 
2.4 (b), we have g--- h. But then in (16.1), we have Ek = gk - Sk, and so Ek << Sk since 
gk ~ Sk. The conclusion (16.2) now follows from (16.4). 
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17.  - E x a m p l e .  

We consider the equation, 

(17.1) w "  + R2 (z) w" + R1 (z) w '  + Ro (z) w = 0, 

where  R2, R1 and Ro are the polynomials defined by z 2 + 3, 2z 2 + z + 3, and z 2 + z + 
+ c + 1, respectively,  whe re  c is a complex parameter .  Using (3.1), we rewri te  the 
equation in the form (3.3), and we find B 8 - - z  -3, B 0 -  R0, and 

(17.2) B2 = R2 z-2 _ 3z-3, and B1 = R1 z-1 __ R2 z-2 + 2z-3. 

The critical degree of (17.1) is then easily seen to be zero, and we form the full factor- 

ization polynomial, 

3 

( 1 7 . 3 )  H(V)-- ~ zJBj(z)v j, 
j = 0  

given by (2.5). We note that  Bo ~ z 2, zB1 ~ 2z 2, z2B2 ~ z~, and zSB8 - 1 in F ( -  7:, 7:). 
We easily finds that  the critical monomials of H(v) are N2 = - z 2 (from degree 3 and 
degree 2), and N~ = - 1 (from degree 2, 1, and 0), and clearly N~ is of multiplicity two 
while N2 is simple. Thus { - z  2, - 1 }  is the exponential set  for (17.1). The indicial func- 
tion (2.1) for - z  2 is - cos (3~ )  which has zeros on (-7:,7:) at +7:/6, +7:/2, and 
+_ 57:/6. The indicial function for N2 is - cos ~, which has zeros on ( -  7:, 7:) at + 7:/2. 
Thus the transition set for (17.1) on (-7:, 7:) is the set, 

(17.4) E1 = ( -57: /6 ,  -7: /2 ,  -7: /6,  7:/6, 7:/2, 57:/6}. 

We must  now construct the active Nk-sequences for (17. !). We consider first N 1 - -  

= - 1, and we compute the operator (7.2) (where W = N1 ) This is done by  making the 
change of variable w = e-~v, and we find that  B~ [N1 ] = z-~, B1 [N1 ] = 2z-s, and 

(17.5) B2 [N1] = 1 -  3z -3 , and B0 [N1] = c. 

The critical degree of (7.2) is 2, and the critical equation is 2 + c = 0. The full factor- 
ization polynomial for (7.2) has only one critical monomial whose ~0 exceeds - 1 ,  
namely - z  2. Since this critical monomial is >> N~, we see that  in the notation of w 7, 
we have t r t  (N1, H )  = (2, 0). Thus N~ = N1, and we see that  V1 ~ = (N1) is an active 
N~-sequence with terminal index 2. The transition set for the terminal equation for 
V~ is the set  of zeros of I F ( - z  2, ~) on ( -  7:, 7:) which is included in E1 given by  (17.4). 
Thus the set  E ( V ~ )  defined in Theorem 3 is contained in the set  E l .  There are no 
other active Nl-sequences.  We remark that  if c is a positive real number,  then (17.1) 
satisfies the hypotheses (ii) in Par t  (A) of Theorem 4, and so (17.1) will have the glob- 
al oscillation proper ty  listed in Par t  (A) of Theorem 1. We now assume that in (17.1), 
the parameter  c is not a positive real number.  

We now consider N2 = - z  2, and we form the operator  (7.2) with W = N2, by  mak- 
ing the change of variable w = e x p ( - z S / 3 ) v  in (17.1). We find that  in this case the 
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critical degree of (7.2) is zero, and its full factorization polynomial has the critical 
monomials, z 2 (with multiplicity two) and - 1 (with multiplicity 1). Thus tr t  (N2, H)  is 
(0, 1), and so from Definition 7.2, we cannot take N~ = N2. We are required to take 
N* = N2 + g, where g is the exact root of the polynomial G(u) in (7.4) (where W is N2 ), 
satisfying g - S, where S is the principal monomial of G(u). Since d = 1 in (7.4), clear- 
ly the polynomial G(u) is simply H(N2 + u), where H(v) is given by (17.3). A simple 
computation shows that S = - 1, and so g = - 1 + E where 80 (E) < 0. Thus N~ = N2 - 
- 1 + E. We now compute the operator (7.2) where W = N~.  However, we find that 
our asymptotic expansion for N2* is not precise enough for us to determine the asymp- 
totic behavior of the coefficient B0 [N~ ] in (7.2). To find a more precise asymptotic ex- 
pansion for N2*, we use Lemma 16.1. We compute the polynomial G(S + u), and not- 
ing that G(S) ~ O, we find that the principal monomial $1 of G(S + u) is 3z-1. Thus ac- 
cording to Lemma 16.1, we have g = S + $1 + El ,  where E1 << $1 in F ( -  7:, r:). Thus, 

(17.6) N~ = N2 + S + $1 + El .  

We now compute the operator (7.2) with W = N~,  and we find that using the repre- 
sentation (17.6), we can compute the asymptotic behavior of all the coefficients 
Bj[N~]. We find that the operator (7.2) has critical degree equal to 1 (with critical 
root a = -  6), and its full factorization polynomial has the critical monomial z 2 of 
multiplicity two, and no other critical monomials with 80 > - 1 .  Thus trt  (N~, H ) =  
= (1, 0), and we can conclude that V~ = (N~) is an active N2-sequence with terminal in- 
dex 1, and there are no other active N2-sequences. The transition set for the terminal 
equation for V~ is again included in the set E1 in (17.4). Thus the set E defined in The- 
orem 3 is just  the set E1 in (17.4). Since the active N2-sequence and the active Nrse -  
quence both have only one entry, the sets 8k (V ~) in Definition 10.3 are all empty. 
Since the set A defined in Definition 10.3 is already included in the set E~ (since N2 - 
- N 1  ~ N2), we see that E1 in (17.4) is the oscillation set of (17.1) on (-r: ,  =). Hence 
when c is not a positive real number, it follows from the proof of Theorem 1, that the 
conclusion (B) in Theorem 1 holds when the set {zl, ..., ~ } is taken to be the set E1 in 
(17.4) with the point r: adjoined. 

1 8 .  - R e m a r k .  

When the classical Wiman-Valiron theory [19; pp. 106-109] is applied to an equa- 
tion (1.1) where the functions R0 (z), ..., R~_ 1 (z) are polynomials, not all identically 
zero, there is produced a finite nonempty set T of positive rational numbers with the 
property that the order of growth of any transcendental solution of (1.1) must belong 
to T. This is done as follows: We form the algebraic polynomial, 

n - 1  

(18.1) G(v) = z-nv~ + ~ Rj(Z)z-Jv j. 
/=o 

Then, T is the set of all positive rational numbers ~ such that for some nonzero corn- 
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plex constant c, the function cz ~ is the first term of one of the expansions at z = ~ of 
the algebraic function defined by G(v) = 0. Of course, then cz ~ will be a critical mono- 
mial of G(v). With this notation, we will prove: 

THEOREM 5. - Let ~ be the largest element of T. Then the equation (1.1) possesses 
a solution whose order of growth is 8- 

To this end, let H(u)  denote the full factorization polynomial for (1.1), and let 
Hi (v )=  H ( v / z ) .  Assuming the above notation, we will first prove the following: 

LEMMA 18.1. - The function cz ~ is a critical monomial of H1 (v). In addition, 
~ > 1 .  

PROOF.  - To find H(u), we rewrite (1.1) in terms of the operator 0 by using (3.1) 
and (3.2) to obtain the form (3.3). We then form H(u)  using (3.5). When this is carried 
out, we find that, 

(18.2) Hi(v) --- z -n ln ( v )  + E z - J R j ( z ) I j ( v )  + Ro(z ) ,  
j = l  

where the operator Ij (v) is given by, 

(18.3) Ij(v) = v(v - 1)... (v - ( j -  1)) for j I> 1. 

Clearly we may write v j -  Ij (v) = Jj (v), where Jj (v) is a polynomial in v, with constant 
coefficients, of degree at most j - 1 for j = 1, ..., n. Setting R~ -- 1, it is now easy to 
see from (18.1) and (18.2) that we can write, 

n--1  

(18.4) G ( v ) - H x ( v ) =  E W k ( z ) v  k, 
k = l  

where for each k = 1, ..., n -  1, we have 

7~ 

(18.5) Wk(z)= • cj, k z - J R j ( z ) ,  
j = k + l  

for some constants cj, k. 

Now by the Newton polygon determination (see [12; p. 105]) of the elements of T, 
the largest element ~ in T must be given by cancellation involving the term in G(v) of 
largest degree. Hence there exists an index q < n such that 

fln - n = ~q - q + ~o (Rq ) , ( 1 8 . 6 )  

and for all j ~< n, 

(18.7) f j  - j + ~o (Rj ) <<.fin - n . 

Since Rq is a polynomial, we have ~0(Rq) I> 0 from which it follows from (18.6) that 
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~ >  1. In view of (18.7), we see that  for each k = 1, ..., n -  1, and each j~> k + 1, we 
have 

(18,8) ~o(z-JRj) <~fin - f l ( k  + 1) - n ,  

from which it follows from (18.5) that,  

(18.9) ~0 (W~) +ilk ~<fln - f l  - n ,  

for each k = 1, ..., n -  1. This relation shows that  when v = cz ~ is inserted into the 
right hand side of (18.4), each te rm gives a value of ~o which is strictly less than 
fin - n. Of course, (18.7) shows that  when v = cz ,~ is inserted into G(v), each te rm in 
G(v) gives a value of ~0 which is at most fin - n, and the te rm of degree n gives exactly 
fin - n. Thus from (18.4), each term in H1 (v) will give a value of ~0 which is at most 
fin - n, and the te rm of degree n in H1 (v) gives precisely fin - n. I t  now follows imme- 
diately from (18.4) and the algorithm in [5; w 26] that  since cz ~ is a critical monomial of 
G(v), it is also critical monomial of Hi(v) proving Lemma 18.1. 

Since H1 (v) = H(v/z ) ,  it now follows from [5; w 30(b)] that  N = cz ~- 1 is a critical 
monomial of H(u). Since fl - 1 I> 0, clearly N belongs to the exponential set for (1.1). 
By Lemma 8.1, the equation (1.1) possesses as active N-sequence, V ~, and in view of 
Theorem 3, there exist real numbers r I < r 2 <,  . . . ,  < rq in ( -  =, =) such that  in each of 
F(-7:,  rl ), F(r l ,  r2) , . . . ,  F(rq, r:) separately, the equation (1.1) possesses at least one 
admissible solution h(z) which is of the form, 

(18.10) h(z)=~(z) (exp f(Vo +... + Vr)), 

where V ~ = (V0, ..., Vr) and where ,~(z) is - to a function of the form z ~ (Log z) j for 
some complex number ~ and some integer j.  Since ~ i> 1, it is clear (zsee (2.1)) that  we 
can find a closed interval [al,  bl ] with al < bl, which lies entirely in one of the inter- 
vals ( -= ,  rl ), (rl, r2), ..., (rq, =), on which IF(N,  ~) >i ~ for some s > 0. Since V0 + ... + 
+ Vr ~ N, it follows from [7; Lemma ~, p. 272], that  the solution h on F(a~, bl ) has the 
form, 

(18.11) h(z) = K~(z) exp (M(z) + E(z))  , 

where K is nonzero constant, M(z) = (c /~)z  ~ and E <<M in F(al ,  bl). If  W is an ele- 
ment  of F(a~, bl) on which ~, M, and E are analytic, then by Lemma 2.1, the set W 
contains all points zt = te i~, where ~ = (al + bl ) /2,  and t > 0 is sufficiently large. F rom 
Lemma 2.3, it follows that  if d =  R e ( a ) -  1, then for all sufficiently large t, we 
have 

(18.12) I~(zt)] >1 t d. 

Since M(z) = (c/E) z ~, we clearly have, 

(18.13) Re (M(zt)) = (Icl/8) t'~Cos (~" + arg c), 
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and so by our choice of [a1,~1], we have 

(18.14) lexp (M(zt))i f> exp ((lcl e /~)  t z) 

for all sufficiently large t. Finally, since E << M in F(a~, bl ), it follows that for all suffi- 
ciently large t, we have, 

(18.15) tE(zt)l • (~/2)iM(zt)l = (tcl e /2~) t  ~. 

Using the fact that R e ( E ) I > -  IEI, it now follows from (18.11), (18.12), (18.14), and 
(18.15) that for all sufficiently large t we have, 

(18.!6) Ih(zt)t >1 !K i tdexp ((Icl e/2~) t~). 

Since Iztl = t, and since h(z) can be extended to be an entire function (since the Rg in 
(1.1) are polynomials), the relation (18.16) shows that the order of growth of h is at 
least ~. Since the order of growth of h must belong to the set T, and since ~ is the 
largest element of T, it follows that the order of growth of h is precisely/~ which 
proves Theorem 5. 
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