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Nonuniqueness of Solutions 
of a Degenerate Parabolic Equation (*) 

MICHIEL BERTSCH - ROBERTA DAL PASSO - MAURA UGHI 

Summary. - We give some results about nonuniqueness of the solutions of the Cauchy problem 
for a class of nonlinear degenerate parabolic equations arising in several applications in bi- 
ology and physics. This phenomenon is a truly nonlinear one and occurs because of the de- 
generacy of the equation at the points where u = O. For a given set of values of the parameter 
involved, we prove that there exists a one parameter family of weak solutions; moreover, re- 
stricting the parameter set, nonuniqueness appears even in the class of classical sol- 
utions. 

1 .  - I n t r o d u c t i o n .  

In this paper we are interested in nonnegative solutions of the problem 

(1.1) 
(I) J U t =  U,~U -- ylVUi 2 

U(X, O) = UO (X) 

in Q = R ~ ' x R  +, 

in R N, 

where r 1> 0 is a constant and where u0 is a nonnegative continuous function on p N. 
Equation (1.1) arises in several applications in biology and physics. References 

can be found in [1, 5, 17]. 
In general Problem I does not possess classical solutions because of the degenera- 

cy of equation (1.1) at points where u = 0. Therefore we define solutions in a weaker  
sense. 

(*) Entrata in Redazione il 18 giugno 1988. 
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D E F I N I T I O N  1 . 1 .  - U E L ~ (Q) n L~oc ([0, ~): HI~ (R N)) is called a solution of Prob- 
lem I i f  u>~ 0 a.e. in Q and 

Q 

for  every ~ e C 1,1 (-~) with compact support in -Q. 

First  let u0 be bounded in R N. Then we can use the classical viscosity method to 
construct a solution of Problem I, i.e. we add the artificial viscosity te rm ~Au to the 
right-hand side of equation (1.1) and take the limit ~ \ 0. In [2] it was shown that  this 
limiting procedure gives us a uniquely determined solution u(x, t) of Problem I, 
which from now on we call the viscosity solution of Problem I. 

In the case r = 0 it was discovered independently by DAL PASSO and LUCK- 
HAUS [5] and by UGHI [17] that  Problem I may possess other solutions than the viscos- 
i ty solution. 

To explain their  results we have to describe some of the properties of the viscosity 
solution u. In particular, because of the degeneracy of (1.1) at u = 0, it is important  to 
describe the sets where u = 0 respectively u > 0. Since u is not necessarily continuous 
in Q [2], we need to define what we mean by u > 0. 

We define the positivity set P c Q by 

(1.2) P = {(x, t) e Q: essinf {u(~., ~): (~, ~) e U} > 0 

for some neighbourhood U of (x, t) which is open in Q},  

where u is the viscosity solution, and set 

(1.3) P(r) = P n {t = z} for z I> 0. 

Then P and P(t) are open in Q respectively R N, and it has been shown in [1] 

that  

(1.4) P(t) = P(O) for all t I> 0 

and 

(1.5) P(tl) c P(t2) if 0 ~< tl < t2. 

Now we are ready to describe the nonuniqueness result  by DAL PASSO and LUCK- 
HAUS. By (1.4), the ~,support, P(t) of the viscosity solution u is neither expanding nor 
shrinking as time evolves. DAL PASSO and LUCKHAUS have constructed, if ~ = 0, an 
infinite number of solutions with shrinking support. I t  turns out that  their  construc- 
tion can be carried over to the case r > 0. Actually, in Section 5 we shall sketch the 
proof of a more general result  which, roughly speaking, says that  for any prescribed 
,~smoothly shrinking support~ Problem I possesses a solution. 

Ughi's proof of nonuniqueness was entirely different. To understand her con- 
struction we need even more information about the positivity set P. Observe that  P is 
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not always entirely determined by (1.4) and (1.5). If u0 has for example an isolated 
zero at x = 0, it is not clear ff and for which t > 0, 0 e P(t). Therefore we define the 
waiting-time t* at x = 0 by 

(1.6) t* = sup {t i> 0:0 ~ P(t)}. 

For a given u0 there exists a unique ~wiscosity, solution u, in the sense which we 
mentioned before and which we shall make precise in Proposition 2.1 (i). Then t* is 
the waiting time for u and therefore it is uniquely determined by u0, t* = 

= t*(uo). 
In turns out [1] that depending on r, N and the local behaviour of u0 near x = 0, t* 

may be zero, nonzero and finite, respectively infinite. 
If r = 0 and N = 1, UGm [17] has constructed an initial function u0 such that t* = 0, 

i.e. the viscosity solution becomes immediately positive at x = 0 for t >  0. On the 
other hand she constructed a second solution which does satisfy the positivity proper- 
ties (1.4) and (1.5), but which vanishes at x=O for all t~>0. 

Ughi's construction can be extended to the case ~, i> 0 and N = 1. Actually, if 
0 ~< r < 1/2, it can be modified to construct a one-parameter family of continuous sol- 
utions, where the parameter is the time at which the solution becomes positive at 
x = 0 .  

It is a natural question to ask whether these continua of  solutions also exist for 
different values of r and N. In Section 3 we shall prove that for any ~,/> 0 and N ~> 1 
there exist initial functions such that Problem I has a one-parameter family of sol- 
utions, each of which satisfying the positivity properties (1.4) and (1.5). Our main re- 
sult however concerns the particular case that 

1 
7 >  ~ N .  

Let u0 have an isolated zero at x = 0 and let t* be defined by (1.6). If 1,> (1/2)N 
and t* < ~, then Problem I has a one-parameter family of continuous solutions which 
are all positive at x = 0 for t > 0, except of one solution which vanishes at x = 0 for al 
t~>O. 

In particular, if in addition Uo> 0 in P'~N~{0}, we arrive at a rather striking 
nonuniqueness result: if y > (1/2)N there exist initial functions Uo such that Problem 
I has infinitely many classical solutions in C(Q)• C 2' I(Q). 

If N = 1 and ~ < 1, the results of Section 3 can be obtained in an alternative way, 
based on a transformation of coordinates. Because of its constructive character, we 
describe this method in Section 4. In addition it tells us how the solutions of the one- 
parameter families behave in the critical case ~, = 1/2. 

In Section 6 we collect some examples of nonuniqueness in the case that u0 is 
unbounded. 

Finally we say a few words about the concept of viscosity solution. The definition 
which we use in this paper is quite natural, but from a mathematical point of view 
rather unsatisfactory in the sense that it is based on the very special property of 
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equation (1.1) that it is easy to prove that the limiting procedure with the artificial 
viscosity yields a uniquely determined limit function u. 

We point out however that we cannot avoids this problem by using for example 
the definition of viscosity solutions given by P. L. LIONS [11], which is an immediate 
generalization of the definition given by CRANDALL and LIONS [3] (see also [4]) for 
first-order Hamilton-Jacobi equations. The reason is the fact that all the classical sol- 
utions which we construct in this paper are obviously viscosity solutions in the sense 
of Lions and hence we cannot expect uniqueness in the class of viscosity solutions in 
the sense of Lions. Actually only the solutions with shrinking support constructed by 
DAL PASS0 and LUCKHAUS [5] which we described in the beginning, are no viscosity 
solutions in the sense of Lions. 

2 .  - P r e l i m i n a r i e s .  

Throughout this section we assume that Uo is bounded in R N, and we introduce the 
following hypothesis. 

H1) Uo e C(R N) n L ~ (R y ) ,  Uo >! 0 in R y . 

The following basic result says that the viscosity solution is well-defined, and can 
be approximated from above by classical solutions. 

PROPOSITION 2.1 [2]. - Let r >10 and let Uo satisfy H1). 

(i) The viscosity procedure defined in Section 1 yields a unique pointwise-lim- 
it function u(x, t) and u is a solution of Problem I. We call u the viscosity solution of 

Problem I. 

(ii) Let (uo~}~=1,2 .... be a monotone decreasing sequence of initial functions 
which are continuous, uniformly bounded in R N and strictly positive such that 

uo~"~ uo pointwise in R N as n o  ~ .  

Then the corresponding classical and strictly positive solutions Un e C(-Q) (~ C 2' ~ (Q) 

satisfy 

un ~ u pointwise in -Q as n --~ 2 ,  

where u is the viscosity solution of Problem I. 

In the following proposition we collect some regularity results for the viscosity 

solution. 
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PROPOSITION 2.2 [2]. - Let Uo satisfy H1 ) and let u be the viscosity solution of Prob- 
lem I. Then 

(i) ut >I - (1 / t )u  and Au >- - 1 / t  in ~'(Q); 

(ii) i f  ~, > (1/2) N, then Au <. N/(2y  - N) t, 

IVul ~ ~< 2u/(2~, - N )  t and ut <- Nu/(2,,, - N) t in 6~'(Q) ; 

(iii) u is continuous at points (x, O) for  all x e KN ; 

(iv) u e C(P) n C 2' 1 (p n Q) and u > O in P, where P is defined by (1.2); 

(v) i f  either N = 1 or y > (1/2)N, u e C(Q). 

3. - T h e  m a i n  r e s u l t .  

In this section we prove our main result about the nonuniqueness of solutions of 
Problem I. 

THEOREM 3.1. - Let Uo satisfy H1), let y ~ O  and N~>I,  and let ~,,>N/2 i f  
N>~2. 

(i) There exists a continuous solution u*(x, t) of Problem I which satisfies for 
all x e R N and O <. tl <. t2 

u* (x, tl ) = O r u* (x, t2) = O. 

(ii) Let u0(0) = 0 and t* < ~, where t* is defined by (1.6). Let u(x, t) be the viscosity 
solution of Problem I. Then there exists a one-parameter fami ly  (which is continu- 
ous in the topology of Cloc(Q)) of continuous solutions u~(x, t), 0 <. a <. 1, of Problem I 
such that 

u~ * and ul----U in Q, 

and, for  all 0~<~</~<1,  

u ~<.u ~ and u s ~ u  s in Q. 

In  addition, for  any 0 ~ ~ ~ 1, u ~ satisfies the positivity properties (1.4) and (1.5), u ~ 
can be approximated by strictly positive and classical solutions of Problem I, and u ~ 
satisfies the regularity properties given in Proposition 2.2(i)-(ii). Finally, i f  
r >  (1/2)N, then 

(3.1) u ~ ( 0 , t ) > 0  for  all t > O  and ~ e ( 0 , 1 ] .  

The last property has a striking consequence. I f  u0 > 0 in R N \  {0} and u s (0, t) > 0 
for t > 0, then u is bounded away from zero in compact subsets of Q, and hence, by 
standard theory of uniformly parabolic equations [12], u~e  C 2,i (Q), i.e. we have ob- 
tained the following result. 
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COROLLARY 3.2 (Nonuniqueness of classical solutions). - I f  y > (1/;2)N, there 
exist initial functions Uo satisfying H1), for which Problem I has infinitely many 
classical solutions which belong to C 2'1 (Q) n C(-Q). 

REMARK 3.3. - In [1] the reader  can find conditions on Uo which guarantee  that  
t* < ~.  In particular, for any ~, I> 0 and N i> 1 there  exist initial functions Uo such that  
Uo (0) = 0 and t* < ~.  I f  ~, > N/2 and u0 has an isolated zero at x = 0, a necessary  and 
sufficient condition for t* < ~ is the local integrabit i ty of Uo ~ near  x = 0. Moreover,  
both from the results  of [1] and Theorem 3.1 (ii) it follows tha t  if V > N/2 and t* < oo, 
then t* = 0. 

PROOF OF THEOREM 3.1 .  - (i) Le t  

(3.2) t) = {x e ~(Y: U0 (X) ---- 0} 

and define a nested sequence of open neighbourhoods t ~  of ~ by 

(3.3) t ) ~ = { x e R N : d i s t ( x , t ) ) < l / n } ,  n =  1,2, . . . .  

Then there  exists a sequence of continuous initial data  Uo~(X) such that  for any 
n = 1, 2, ... 

u0n ~< u0~ + 1 ~< u0 in R N , 

u0~--* u0 as n ~ :r uniformly on compact subsets of R N, and 

Uo~>0 in R N \ ~ ,  Uo~=O in Q~. 

Le t  u~ be the viscosity solution of Problem I with initial function u0~. By Proposi- 
tion 2.2 (v) us e C(Q), and, by  (1.4) and (1.5), 

u ~ > 0  in { R N \ ~ }  x R + 

and 

u~-=O in ~ x R  + . 

By the Comparison Principle for viscosity solutions, u t> u,~+l I> Un in Q; and hence 
we can define 

(3.4) u*  (x, t) = nlim us(x, t) <- u(x, t). 

I t  follows from the construction that  

u*  > 0 in  {RN~/2} • R + 

and 

(3.5) u*  -- 0 in ~ x R + . 

I t  remains to show that  u* is a continuous solution of Problem I. Since ei ther  
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N = 1 or ~, > (1/2) N, the functions un are locally equicontinuous in Q [2, Proposition 
2.4] (this is an almost immediate consequence of the estimates given in Proposition 
2.2 (i)-(ii)). By [2, Lemma 6.1] this equicontinuity holds also near t = 0, i.e. the u~ are 
locally equicontinuous in Q, and thus u* ~ C(Q). 

Let u0~,~ be a sequence of positive functions, monotone decreasing with respect to 
~, such that u0~,~ "~ u0~ as ~ "~ 0. Let u~ be the corresponding solutions of Problem I. 
Then, by Proposition 2.1 (ii) u~--* u~ as r 0 uniformly on compact subsets of Q. 
Using a standard diagonal procedure we can construct a sequence Un~ which we de- 
note by u* ,  such that 

(3.6) u * ~  u* uniformly on compact subsets of Q as r 0. 

Observe that u* is not monotone in ~, but we may assume that 

(3.7) u~ - u* (., 0) ~< u0~ in R N , 

where u0~ "~ u0 as ~ "~ 0 and hence, by Proposition 2.1 (ii), the corresponding solutions 
u~ (x, t) satisfy 

(3.8) u~ ~ u as r 0 in Q. 

where u is the viscosity solution of Problem I. 
Applying [2, Remark 6.7] to the sequences u* ~< u~, it follows that u* is a solution 

of Problem I. 

(ii) We choose T >  t*. Since u ~ C(Q), this implies that 

(3.9) A -- u(0, T) > 0. 

Let %* and u0~ be defined as in (3.7), and consider the family of initial func- 
tions 

(3.10) u~=~Uo~+(1-t)Uo~, 0~<~ <1 ,  

with corresponding solutions u[(x, t). By (3.5), (3.6) and (3.8), 

u~ as ~"~0 

and 

u~(O,T)--->u(O,T)=A as ~ '~0 .  

We fix a e (0, A). Since u] are positive smooth solutions which depend continuous- 
ly on 8, there exists for any s > 0 small enough a ~ e (0, 1) such that 

u~ (0, T) = a.  

We define 

u~ (x, t; a) = u} (x, t) in Q. 
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Then, as in the proof of (i), it follows that 

u~ (x, t; a) ~ u(x,  t; a) as z-~ 0, 

where u(x,  t; a) is a continuous solution of Problem I. From the construction it fol- 
lows that 

u(0, T; a) = a. 

We claim that the family {u ~ }o~<~ <1 defined by 

u ~ (x, t) = u(x,  t; ~A) for (x, t) e Q, 

satisfies all the properties of Theorem 3.1 (ii). 
The continuous dependence on ~ in C1oc(RN• [0, ~)) follows again from the 

equicontinuity properties. The remaining properties follow at once from the construc- 
tion, except of property (3.1). 

To prove (3.1), let ~.>(1/2)N and 0 < ~ < 1 .  Then, by Proposition 2.2(ii), 
u~(x, t; xA) satisfies the estimate 

ut <~ N u  /(2~, - N)  t in Q, 

for all ~ > 0. Integration over (t, T) at x = 0 yields 

O<~4=u~(O,T;~A)< . (T / t )N / (2Y-N)u~(O, t ; xA)  for O < t < . T  

and hence, taking the limit ~ "~ 0, 

u~(0, t) > 0 for O < t < . T .  

Finally, by (1.5), this implies that u~(O, t )>  0 for all t > 0 .  
This completes the proof of Theorem 3.1. 

REMARK 3.4. - Let ~, > 1 and let u be a smooth and strictly positive function on Q 
satisfying equation (1.1) in Q. If we define 

v = u  -~ in Q and m = 1 - 1 e  (0,1), 
Y 

then v satisfies the so-called Porous Medium equation 

Observe that 

and, by Remark 3.3, 

N 
r > ~ -  

vt = div (v ~ -  1 Vv) in Q. 

_ _  N - 2  ~ , > N < = ~ - - < m < l  if N>~2 
2 N 

and t* < ~ ~ Uo Y is locally integrable near x = 0. 
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HERRERO and PIERRE [8] have shown that, if ( N - 2 ) / N  < m < 1, the Cauchy 
problem 

(PM) { v t=d iv (v  m-iVy) in Q, 

v(x, O) = Vo (x) x �9 R N, 

has a unique solution satisfying vt E Ll~oc (Q) if 

0 ~< v0 e L~oc (RN). 

Hence one may wonder if this uniqueness result for Problem PM is a contradiction 
with our nonuniqueness result for Problem I (substituting v0 = Uo'~). 

To understand this better we argue the other way around and indicate how Prob- 
lem PM could be used to prove Theorem 3.1 (ii) (except the results about u*). Instead 
of Vo = Uo r , we substitute into Problem PM 

Vo (x) = Uo ~(x) + ~ (x ) ,  ,~ >i 0, 

i.e., v0 is a finite measure. PIERRE [14] has shown that Problem PM has a solution v~, 
satisfying 

v e C ~ ( Q ) ;  v > 0  in Q. 

It can be shown that u s = v711~ is a solution of Problem I with initial function Uo. 
Since v~ is totally ordered, i.e. pointwise strictly increasing in 8, we have found an or- 
dered continuum {uz }z~>0 of solutions of Problem I. 

The condition that ~, > (1/2) N if N t> 2 is not necessary for the existence of contin- 
ua of solutions. 

THEOREM 3.5. - Let ~, >I 0 and N >i 1. Then there exist initial functions Uo satisfy- 
ing H1, such that Problem I possesses a one-parameter fami ly  of  solutions which sat- 
isfy the positivity properties (1.4) and (1.5). 

If N =  1, the result follows at once from Theorem 3.1 and Remark 3.3. 
If N >  1, we can reduce Theorem 3.5 to the one-dimensional case by choosing an 

initial function Uo which only depends on one variable. Below however we shall show 
that we can also choose u0 for example radially symmetric. 

We introduce some notation. Let ro > 0. We shall assume that u0 satisfies the 
hypothesis 

H(ro). Uo is radially symmetric, u0(0)>0,  and Uo(X)=O i f  Ixl =ro. 
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If  uo satisfies H(ro ), the viscosity solution u is radially symmetric:  u = u(r, t), r = I xl. 

We set Q = R + •  R + and define the positivity sets 

(3.11) 

and 

= {(r, t) e Q: essinf {u(p, ~) > O, (~, ~) e U} > 0 

for some neighbourhood U of (r, t) which is open in Q} 

(3.12) ~5(z) = P • {t = ~}. 

Finally we define the waiting-time t*(ro) at Ixl = r o  by 

(3.13) t*(ro) = sup {t 1> 0: ro ~t P(t)}. 

Then Theorem 3.5, restr icted to radially symmetric  initial functions Uo, is an im- 
mediate consequence of the following result. 

LEMMA 3.6. - Let ~,~0 and N>~2, and let Uo satisfy HI) and H(ro) for some 
r0>O.  

(i) There exists a continuous radially symmetric solution u*(x, t) satisfying 
the properties of Theorem 3.1 (i). 

(ii) Let t*(ro) < ~, where t*(ro) is defined by (3.13). Then there exists a one- 
parameter family  (which is continuous in Cloe (Q)) of continuous radially symmetric 
solutions u ~, 0 ~ ~ <~ 1, of Problem I such that 

and for all 0 <. ~ < ~ <- 1 

u ~  and u 1=-u in Q, 

u ~<~u s and u ~-~u ,~ in Q. 

In  addition u ~ satisfies the positivity properties (1.4) and  (1.5), u ~ can be approxi- 
mated by strictly positive and classical solutions of Problem I, and u ~ satisfies the 
regularity properties given in Proposition 2.2 (i)-(ii). Finally, i f  ~, > (1//2) N, then for 
each ~ c (0, 1], u~(x, t )> O i f  Ixt =ro and t>  O. 

(iii) There exist initial functions satisfying H1) and H(ro) such that t* (ro) < 
~ .  

PROOF. - The proof of (i) and (ii) is almost identical to the proof of Theorem 3.1. 
The only nontrivial proper ty  to prove is the equicontinuity on compact subsets of Q of 
a sequence of uniformly bounded, classical and radially symmetric  solutions u~, satis- 
fying u~ (0, 0) I> ~ > 0 for some s > 0. 

To prove this equicontinuity, we distinguish three  regions in Q. 
Near  t= 0 the equicontinuity (locally with respect  to x) follows, as before, 

from [2, Lemma 6.1]. 
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Near x = 0 we use that us (0, 0) is bounded away from zero. Hence, for a bounded 
time interval the solutions us are, near x = 0, bounded away from zero. Thus equation 
(1.1) is uniformly parabolic near x = 0 (locally with respect to t) and the equicontinu- 
ity follows. 

Finally, away from x = 0 and t = 0, it follows easily from the lower bound of Au~, 
given by Proposition 2.2 (i), and the radial symmetry, that IVu~ I is locally uniformly 
bounded. Hence, by a result by GILDING [7], Un is locally uniformly H61der continuous 
in t (with HSlder exponent 1/2), and the equicontinuity follows. 

We do not prove (iii) here. We only remark that a straightforward modification of 
the proofs in [1] yields that a bounded radially symmetric initial function Uo satisfies 
all the required conditions if Uo (0) > 0 and if it behaves like 

ellxl-rol 

near the sphere Ixl = r0 for some positive constants r and >, provided that >~, < 1. We 
leave the details to the reader. 

REMARK 3.7. - If we replace the sphere Ixl = ro in Lemma 3.6 by a smooth, closed 
and bounded (N - 1)-surface/" homeomorphic to a sphere, we loose the radial symme- 
try which we needed to prove the equicontinuity property. Therefore we are not able 
to prove the existence of the continuum u s. However, the existence of a solution 
u*(x, t) which satisfies 

(3.14) u * = 0  on F •  +, 

can still be proved, using the idea's of Ughi's original nonuniqueness proof[17]. 
Let /"  satisfy the inner and outer sphere condition, let u0 = 0 on I', and let t) denote 

the open interior of F. We define u01, u02 e C(R N) by 

U0----U01-'}-U02 ; U01--~0 in R N \ t ) ;  Uo2--0 in g~. 

Let ul and u2 be the viscosity solutions of Problem I with Uo replaced by Uol respect- 
ively u02. Then, by (1.4), 

U l ~ O  in { R N \ o } x R + ;  u 2 - O  in ~ x R  +. 

Using the estimates in the existence proof in [2], it follows easily that u*, defined by 

u# ~- ?~lq- u 2 in Q, 

is a solution of Problem I with initial datum u0. Clearly u* satisfies (3.14). In particu- 
lar, if the viscosity solution u does not satisfy (3.14), there exists at least two sol- 
utions of Problem I. 
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4. - N = 1: a c o o r d i n a t e  t r a n s f o r m a t i o n .  

In this section we give an alternative proof of some of the results  in Section 3 if 

N = I  and 0~<~ ,<1 .  

The proof has a constructive nature. In addition it will show us that  the continuum 
u ~ still satisfies proper ty  (3.1) if ], = 1/2, but  it does not if 0 ~< y < 1/2. 

The proof is based on a coordinate transformation (x, t) ~ (y, ~). I t  turns  out to be 
easier to discuss first the inverse transformation (y, z ) - .  (x, t). 

We consider the nonlinear diffusion problem 

I v~ = ~(v)yy y �9 R ,  t > 0, 

(4.1) (II) Iv(y, O) = vo(y) y �9 R ,  

where  v0 is a bounded, continuous and nonnegative function, and ~ �9 C([0, ~ ) ) n  
•C ~ (R + ) satisfies 

~(0) = 0; ~' > 0 in R + . 

I t  is well-known [13] that  Problem II has a unique (weak) solution, i.e. a nonnega- 
tive function v �9 C(R • [0, ~]) such that 

(i) ~(v)y e L 2 (R • [0, T]) for all T > 0; 

(ii) for all ~b e CI ' I (R • [0, r162 with compact support  

f vo(y)~. ( y ,O)dy+ f { v ~ - ~ ( v ) y ~ y } d y d . ~ = O .  
R R x R  + 

For  the moment  we assume that  v(y, ~) is a classical solution of Problem II. 
Let  

(4.2) L = f Vo (y) dy < ~ .  
- - o o  

We define the transformation (y, ~)--* (x, t) by  

y 

(4.3) x = J v(s, t) ds + C and 

for some C e R. Then (cf. [15]) 

xy = v and x~ = ~(v)y = v~(v)~, 

from which we derive that  

t = ~ ,  

v~ = v t + v~ X~ = Vt + W2(V)x Vx, 
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and, on the other hand, 

v~ = v(v)yy = ( v ~ ( v ) ~ ) .  v = v ~ ~ ( v ) ~  + v~(v)~ v x .  

Hence v satisfies, as a function of x and t, the equation, 

(4.4) vt = v2 ~(v)~ , C < x < C + L , t > O , 

where L and C are defined by (4.2) and (4.3). 
Now we choose the function ~ such that  the equations (4.4) and (1.1) can be identi- 

fled. Observe that  (4.4) and (1.1) can be rewrit ten,  at least formally, as 

- ( v  - 1 ) ~  = v ( v ) ~ x ,  

respectively, if 0 < y < 1, 

- (u -~) t=  r (ul-r)~x. 
1 - ~ ,  

Hence, defining 

(4.5) {0 1/~ (y, ~) i f C < x < C + L ,  

u(x, t) = otherwise,  

IvJ/r (y) i f C < x < C + L ,  
U0 (x) [0 otherwise,  

it follows that  u is formally a solution of Problem I if we set 

Y s (1-r)/r " s>10. (4.6) ~(s) = 1 - r ' 

I f  r = 0 we find in the same way that  the correspondence between u and v is given by 

~ ( s ) = e x p [ - 1 / s ]  for s > 0 ,  

and 

(4.7) u(x , t )  = {oXP[-1 /v (y ,  z)] if C < x < C + 

We now arrive at the key observation which will enable us to prove nonunique- 
ness. Le t  X e C(R) satisfy for some a < 0 < b 

(4.8) I X > 0 in (a, 0) w (0, b), 
[z = 0 otherwise.  
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We define for any constant h I> 0 the function v0 h by 

I0 
(y) if y ~< 0,  

Vo h (y) = if O < y < h, 

I X ( y -  h) f f y>~h .  

We substitute Vo = v0 h into Problem II with ~ given by (4.6) (respectively (4.7) if 
~, = 0), we denote its solution by v ~ (y, t), and apply the transformation (4.3) in which 
we choose 

0 

C = L ~ = -  f x(y) dy. 

Finally we define uh(x, t) and u~(x) by (4.5) (respectively (4.7)). 
The main point is now that 

Uo(X)- u~(x) does not depend on h I> O. 

Indeed, this follows at once from the construction of Vo h (y) and the nature of the trans- 
formation (4.3). Observe that u0 satisfies the condition 

H2) Uo > 0 in (L1, O) u (O, L2) for some L1 < O < L2, Uo = O otherwise, and 

UoreLl(L1,L2)  i f O < y < l ,  

respectively 

I logu0 ieL l (L~ ,L2)  i f  ~,>O. 

Here we have set L2 = f X(Y) dy = L + L1. 
o 

The nonuniqueness of solutions of Problem I for this initial function Uo follows 

from the following result. 

THEOREM 4.1. - Let, for given X c C(P~) which satisfies (4.8) for some a < 0 < b, 
uh (x, t) be constructed as above. 

(i) For any h >I O, u h is a solution of Problem I. 

(ii) I f  1/2 ~< ], < 1, then u h > 0 in (L1, L2) • R + and u hi -~ u ~ in R • [0, T] for 

all T > 0  i f  hl =/: h~ . 

(iii) I f O <. y <  1/2, then u h > 0 in (L1,0) w (0,L2) • R +, and there exists a T ~ >! 

0 such that 

uh(O,t)=O if  O<. t<Ta and ua(0, t) > 0 i f  t >  Th. 
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In addition Th is strictly increasing with respect to h, and 

u hl - u h~ in R • [0, T] if  T <- T* =- min {Th~ , Th~ }, 

u h ~ u  ~ in ~• i f T > T *  and h l r  

PROOF. - Firs t  let y = 1/2. Then, by (4.6), ;~(s) = s, and (4.1) is nothing else than 
the heat equation. 

Hence v h e C2' ~ (R • R + ) and satisfies 

(4.9) v ~ > 0 in P~ • P~+, 

and the formal argument  above to show that u h is a solution of Problem I is actually 
rigorous. Clearly u h > 0 in (L~, Le ) • R +. I t  follows easily from the construction of u h 
that  for all t > 0 

u hI (., t) ~ u ~ (., t) in ]( if hi :~ he. 

We leave the proof of the reader.  

If  1 / 2 <  ~,< 1, the proof is similar. By (4.6), ~'(0) = ~,  and it follows from [16] that  
v h satisfies (4.9) and hence, by standard theory for uniformly parabolic equations, 
v he  C2 ' ~ (R •  

Finally let 0 ~< ~, < 1/2. Then z'(0) = 0, (4.9) fails if h > 0, and we have to be more 
careful. By  standard results about degenerate  parabolic problems [10] there  exist a 
number  T~ I> 0 and functions $1, $4 e C([0, ~)) and ~.e, ~8 e C([0, Th]) such that  

Th is strictly increasing with respect  t o  h, 

~2(Th)=~3(Th), ~(0)=a, ~2(0)=0, 

~ (0) = h and E.4 (0) = h + b, 

vh(y, ~) e (~1 (~'), ~4 (~')) if  ~- > Th ,  

= 0 otherwise,  

o ~  

f v h (y, ~) dy = L1 ~- L2 for z/> 0, 

(~) 

f vh (y ,T)dy=L1,  f vh(y , z )dy=L2 if z~<Th. 
- ~ ~ s  (~) 
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These properties translate immediately in the properties mentioned in (iii) for 
uh(x, t). The fact that u hi -= u ~ in R • [0, T] follows from the equalities 

vh~(y, ~) = vh(y,  ~) 
Y 

if ~ < T*, f V ~ (8, "~) d8 ~ L 1 (i = 1, 2), 
- c r  

v hI (y - hi, ~) = v ~ (y - h2, T) 

y - h i  

<~ T*, J v h~ (s, ~) ds > L 1 (i = 1, 2), if 
- c o  

Finally (i) follows easily from the fact that v h is smooth whenever it is positive and 
continuous, which implies that u h satisfies (1.1) classically at points where u h >  0; 
moreover, since (u~)~ is locally bounded in Q and vh--* 0 as ]Yl--* ~,  uh satisfies Defini- 
tion 1.1. This completes the proof of Theorem 4.1. 

REMARK 4.2. - Starting point of Theorem 4.1, was the function X(Y), arriving at 
some function Uo (x) which satisfies//2). On the other hand, using the inverse trans- 
formation (x, t) --* (y, z), it is not difficult to construct for any given initial function uo 
satisfying the hypotheses H1 )-//2 ), a function X to which Theorem 4.1 applies. In par- 
ticular the continuum of solutions of Problem I exists for any Uo satisfying H1)-//2). 
We leave the details to the reader. 

REMARK 4.3. - The essential parts of condition/-/2 ) are the facts that u0 (0) = 0 and 
Uo Y (respectively logu0) are integrable in a neighbourhood of x = 0. In [1] it has been 
shown that of N = 1, this integrability condition is equivalent to the condition t* < 

which was required in Theorem 3.1 (ii). 

REMARK 4.4. - The transformation can also be used to construct solutions 
with shrinking support, which we shall discuss in Section 5. For example, let 

1 
] ' = 3 "  

Then, as we have seen in the proof of Theorem 4.2, v(y, ~) satisfies the heat 
equation. However, instead of solving the Cauchy problem for v(y, ~) for some 
initial function vo(y), we consider the free boundary problem 

(III) 

V.~ ~-" Vyy 

v(~ -+ (~), z) = 0 for 0 < ~ ~< T, 

vy(~-+ (~), z )=  ~ f •  for 0 < z < T ,  

v(y, 0) = v0 (y) > 0 for a < y < b, 

~+ (0) = b, ~-  (0) = a ,  ~-  < ~.+ 

f o r ~ - ( r ) < y < ~ + ( z ) ,  0 < r ~ < T ,  

on [0, T], 
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where a <  b, T > 0 ,  f-+ e C([0, T]), f-+ > 0 on [0, T], v0 e C([a, b]), vo(a) = vo(b) = 0 
and v0 > 0 on (a, b). 

It  follows from results in [9], that  Problem III  has a unique classical solution 
(v,~ § ~-)  (with ~-+e C([0, T])), provided that  

T b 

(4.10) f{f§ (z)+f-(z)} d z <  fvo(y)dy. 
0 a 

Since any solution of Problem III  satisfies, a priori, 

v(y, ~) > 0 if ~.- (z) < y < ~+ (~), 0 < z ~< T 

and 

~2(T) b T 

~1 (T) a 0 

it follows at once that  condition (4.10) is also necessary. 
Next  we define the transformation (y, ~ ) ~  (x, t) by 

y - 

- - ~  0 

and we define u e C(R x [0, T]) by 

{;2(Y,'O i fS - ( t )<x<S+( t ) ,  
u(x, t) = otherwise,  

where S- - s  C 1([0, T]) are defined by 

s -  (t) - f f -  (s) ds, 
o 

and 

O<.t<.T, 

b t ~+ (t) 

a 0 ~- (t) 0 

Observe that  

(S§ ' =  - f §  and (S - ) '  = f - > 0  on [0, T] ,  

and that  hence supp u(., t) is strictly shrinking. 
Finally, the fact that  u is a solution of Problem I with initial function u(x, 0) fol- 
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lows easily from the facts that u satisfies classically the equation 

i u 2 if S - (t) < x < S + (t), 0 < t <. T Ut ~ UUxx-- ~ x 

and that u~(S+-(t), t )=  2vy($ -+ (r), z) is uniformly bounded on [0, T]. 
Choosing different functions f +- (t), we can obtain in this way solutions of Problem 

I with different strictly shrinking support. 

5. - S o l u t i o n s  w i th  s h r i n k i n g  support .  

In this section we briefly sketch how solutions of Problem I can be constructed 
which do not satisfy the positivity property (1.4). If y = 0, some of these solutions 
were found by DAL PASSO and LYCKHAUS [5], who used a different method. 

For the sake of simplicity we assume in this section that u0 satisfies the following 
condition. 

Hs) 

by 

u0(x) > 0 i f  lxl < l, and Uo(X) = O i f  ]xt ~ l. 

Let T > 0 and CT = B1 (0) • (0, T).  Let 8T be the set of all t~T C CT such that: 

(i) t)T is a proper open subset of CT. 

(ii) ~T • {t = 0} = B1 (0). 

(iii) ~T n {t = t 1 } C ~T n { t  --- t 2 } if 0 ~< t2 < tl ~< T. 

(iv) There exists a surjective coordinate transformation ~: ~T---~-CT given 

Yi = ~i  ( X l  , . . .  , X N  , t )  

v = t ,  

such that ~i 6 C2(Q) and the (N x N)-matrix 

ax ] 

is non-singular on ~T. 

i =  1 , . . . ,N ,  

THEOREM 5.1. - Let T > 0 and uo satisfy H1 ) and Hs).  

(i) I f  ~T e ST, Problem I has a solution u on [0, T] such that 

U{____>O i n , T ,  

0 in (R  N X (0, T) )  ~ 2  T. 

(ii) Let ~T r CT and Xo e B1 (0). If, f o r  any  ~ > 0 smal l  enough, 

t~Tr~ {0 ~< t ~ T -  ~} e 8T-~, 
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and 

(5.1) ~T n {t = T} = {Xo }, 

then Problem I has a solution u such that 

u{_>_0 in f2f, 

0 in Q\ t~T .  

REMARK 5.2. - A p p a r e n t l y  in (ii) property (5.1) allows us to extend the solution u 
for t > T by zero. In general however we cannot expect u to be continuous at (x0, T). 
In particular the continuity at (x0, T) depends heavily on the local behaviour of at~T 
near (x0, T). 

Theorem 5.1 implies that  we can prescribe the support of a solution of Problem I, 
as long as the support is non-expanding in time and sufficiently smooth. 

In particular there exist for any given T > 0 infinitely many solutions u of Prob- 
lem I with T as ,,extinction t ime,  i.e. u( . , t )=O for t > T  and u ( . , t ) ~ 0  for 
t<T. 

Below we shall only sketch the proof of Theorem 5.1. 
First let t~ r e ST. Consider the problem 

(IV) 

ut  = u ~ u  - r]Vul 2 

u ( x ,  O) = Uo (x)  

u(x, t) = 0 

in ~T,  

for x e t~ T n {t = 0}, 

for (x, t) e 8t~r, 0 < t < T. 

We claim that  

(5.2) Problem IV  has a solution ~EC(~T)~C2 ' I (~T )  , and u i8 positive in 0~. 

To prove (5.2) we use the transformation y = ~(x, t), z = t to t ransform Problem 
IV to the region CT. Then u, as a function of y and z, has to be a solution of the 
Problem 

u 

I at = u div (A Vu) - u Vu. c - ~, in CT, 
i 

= 0 on 8B1 (0) x [0, T ] ,  

u0 o n C r n { t = 0 } ,  

(v) 

where the matrix A(y, ~) and the vector c(y,-c) with components ci(y, ~) are de- 
fined by 

{ t I ] A(y, T) 
\ 
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and 

(()) c~(y,~)= ~ 0~i 0~ -1 02~k 
j, k,z = 1 ~ ~-x k~ exj ax t '  

where we denote the inverse and transposed matrix of a matrix B by B-1 respectively 
B T. Observe that, for any (y, "0, A(y,  z) is of the form BTB and hence, symmetric and 
nonnegative. Indeed, since a~/ax is nonsingular, A(y, ~) is positive, and thus the op- 
erator div (AAu) is uniformly elliptic in C~-. 

Equation (5.3) is, although more complicated, essentially of the same type as 
equation (1.1). 

In particular, a straightforward application of the techniques in [2, section 6] can 
be used to obtain the existence of a solution ~ of Problem V, satisfying ~ > 0 in CT. 
Hence ~ �9 C2'I(CT). Also the continuity down to t =  0 follows as in [2]. Finally, the 
continuity near the lateral boundary aB • [0, T] is nearly trivial. Considering ~(y, z) 
as a function of x and t, we arrive at (5.2). 

Using that ]V~] �9 L2(t~T), it follows that the function u, defined by 

{o - 
u(x, t) = -(x, t) if (X, t) e ~T, 

otherwise, 

is a solution of Problem I, and Theorem 5.1 (i) follows. 
Next let ~T be as in Theorem 5.1 (ii). Then by Theorem 5.1 (i), there exists a func- 

tion u �9 C(R N • [0, T)) satisfying: 

(i) u is a solution of Problem I on [0, T - ~] for any ~ > 0, i.e. u is a solution on 
[0, T); 

(ii) u > 0 in t~T, and u = 0 in (RN X (0, T)} \ ~ T .  

In addition IVu I �9 L 2 (R y • (0, T)). Combining this with the fact that fgT shrinks 
continuously to the point (x0, T)as  t f f  T, it can be proved that u, extended by u = 0 
for t > T, is a solution of Problem I and we arrive at Theorem 5.1 (ii). 

6. - U n b o u n d e d  s o l u t i o n s .  

The main purpose of this section is to give some examples of nonuniqueness if u0 is 
not bounded in R N. 

First we give a preliminary result about the existence of solutions. Here we mean 
by a solution of Problem I a solution in the sense of Definition 1.1, but merely requir- 
ing that u �9 L~or (Q) instead of u �9 L ~ (Q). 

THEOREM 6.1. - Let • >t O, N >t 1, Uo �9 C(R N) and Uo >I 0 in R N. I f  

(6.1) txl-2Uo(X)---> 0 uniformly as Ixl---> ~ ,  
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then Problem I has a solution, which satisfies the properties in Proposition 
2.2. 

REMARK 6.2. - In Theorem 6.1 we consider the global existence of solutions. I f  
< N/2, explicit examples of solutions were constructed in [1] with initial function 

Uo(X) =AIxI2+B, which do blow up in finite time. Therefore a condition like (6.1) 
seems reasonable if v < N / 2 .  On the other hand, if ~,>N/2, it can be shown that  we 
do not need any growth condition on u0, i.e. condition (6.1) can be omitted. The proof, 
which we do not give here, relies on the construction of a priori upper bounds, which 
prevent  the solution to blow-up. 

PROOF OF THEOREM 6.1. - Let  T > 0 be arbitrary. I t  is enough to prove existence 
on R N x [O, T]. 

Assume for the moment that  we know that  there exists a positive, classical super- 
solution U(x, t) of Problem I on R y x [0, T]. Then the construction of a decreasing se- 
quence of positive, classical solutions u~ of (1.1) such that  un (x, 0) ",~ uo (x) as u ~ ~,  is 
straightforward. Finally it follows from Remark 6.6 in [2] that  u(x, t) = l i m  un (x, t) is 
a solution of Problem I, satisfying all required properties. 

I t  remains to construct U(x, t). Fix A > 0 such that  1-2ANT > 0, and define for 
x ~ R  N and O<.t<.T 

U(x, t) = (1-2ANt) -1 (Alxl 2 + B),  

where, in view of (6.1), B > 0 can be chosen so large that  U(x, O) >i Uo (x) for all x e R N. 
Then U satisfies equation (1.1) for ~, = 0, and hence U is, for all ~,/> O, a supersolution 
of Problem I. 

In the remainder of this section we give three examples of nonuniqueness. The 
first one is given in the following theorem. 

THEOREM 6.3. - Let N = I and 1/2 < V < 1. Then there exists a positive continuous 
function Uo such that 

uo ~ e L 1 (R) 

and such that exists a continuum of positive, classical solutions of Problem I. 

PROOF. - By separation of variables we find for any T* > 0 a solution of Problem I 
on R y • [0, T* ) of the form 

(6.2) UT* (x, t) = (T* - t) -1 (f(x)) 1/(1- "~), 

where f(x) is the even solution of the problem 

If "= (1 - 7 ) f  - 1 / ( l - r )  in R ,  

(6.3) If(0) = 1, f'(O) = 0. 
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By (6.3), f is convex and nondecreasing for x > 0 and satisfies for x > 0 

f , ( x ) = ( l _ , ) ~ 2 y _ ~ ( l _ f _ ( 2 , _ l ) / ( l _ y ) ) < ( l _ , )  ~ 2 
2 y -  1 

Since f ( x ) - ,  ~ as x ~  ~ and 1 / 2 < ~ , < 1 ,  it follows that  

lirn f ' ( x ) = ( 1 - r )  2 ~ , - 1 "  

Thus f(x) behaves like !xl as I xl ~ ~.  In particular, defining u0 (x) = uT. (x, 0), 

(6.4) Uo Y e L 1 (RN). 

Hence we have found a u0 and a solution UT* of Problem I which blows up at 
t= T*. 

On the other hand, since ~, > N/2  = 1/2, it follows from Theorem 6.1 and Remark 
6.2 that  Problem I also has a solution u, which exists globally in time (at this point we 
do not need the general result  for 1" > N/2 as stated in Remark 6.2; instead following 
the proof of Theorem 6.1, we use ur , (x ,  t) as a supersolution of Problem I on R N • 
• [0, T*/2] ,  arriving at a solution u on R N • [0, T */2]; finally, since u satisfies the up- 
perbound for ut given by Proposition 2.2 (ii) as long as it exists, u cannot blow up in fi- 
nite time). 

Finally we define the continuum {U ~ }~ ~ (0,1) of solutions ,,between u and uT., by 

JUT, f o r t < a T * ,  
U ~ 

[ ~  for t I> s T * ,  

where ~ is the solution of Problem I on R N x [aT*,  ~) constructed in Theorem 6.1. 

This completes the proof of Theorem 6.3. 

Theorem 6.3 has an interesting consequence for the porous medium equation 

(6.5) vt = (v'~-lvx)~ in R x R  + , 

with initial function v(x, O) = Vo (x) e L 1 (R). 
Following Remark 3.4, 1/2 < ], < 1 implies that  

- l < m < 0 .  

Translating Theorem 6.1 in terms of the porous medium equation, we arrive at the 

following nonuniqueness result. 

COROLLARY 6.4. - Let N = I and - 1 < m < O. Then there exists a positive function 
Vo e C(R) ~ L 1 (R)  such that the porous medium equation (6.5) has infinitely many 
different, positive and classical solutions with initial function Vo. 

REMARK 6.5. - If  N = 1 and - 1 < m < 0, the porous medium equation is studied 
in [6]. In particular it has been shown there that,  for v0 e L ~ (R), there exists precisely 
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one solution v(x, t) for which 

f v(x, t) dx = f Vo (x) dx for t I> 0. 
R R 

Actually, v = u -v, where u is defined in the proof of Theorem 6.3. 

Also in the second example we take N = 1 and 1/2 < 7 < 1. 

THEOREM 6.6. - Let N =  1, 1 / 2 < 7 < 0 ,  and 

Uo(X) = ]xl 1/(1-r) for x �9 R .  

Then Problem I has a continuum of solutions. 

PROOF. - Observe that Uo(X) = iXl 1/(1-r) is a steady state solution of Problem I. 
However, since 1/(1 - ~,) > 2, Auo is unbounded and hence this solution does not satis- 
fy Proposition 2.2(ii). 

On the other hand, by Theorem 6.1 and Remark 6.2 (which again could be avoided 
by constructing an explicit upperbound for this special case) there also exists a sol- 
ution U(x, t) which does satisfy Proposition 2.2 (ii). Finally, arguing as in the proof of 
Theorem 6.3, we can define the continuum {u:}r by 

(6.6) l u0(x) if x �9 p N, t <  z, 

u ~ ( x ' t ) = [ U ( x , t - z )  if xeP~ N, t>~z. 

THEOREM 6.7. - Let N>~3, ~ > N / 2  and 

Uo(X) = Ixl (N-2)/(r-1) for x �9 p N. 

Then Problem I has a continuum of solutions. 

PROOF. - The function Ixl (N-2)/(Y- 1) is a steady-state solution of Problem I. Again 
let U(x, t) denote the solution constructed in Theorem 6.1. We claim that 

(6.7) U(x, t) ~ Ixl (N-2)/(r- 1). 

Indeed, it follows from the results of[l ,  cf. Figure 2], that, since 

N-_____~2 < N < 2  ' 
~ - I  Y 

U(0, t )>0 for t>0,  and (6.7) follows. 

Finally, we define the continuum of solutions {u~}~> 0 by (6.6). Observe that if 
> 0, u~ (0, t) = 0 if t < z and u~ (0, t) > 0 if t > ~. Hence u~ cannot satisfy the estimate 

~t <~ N u  /(2~ - N)  t of Proposition 2.2 (ii). 
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REMARK 6.8. - S. KAMIN pointed out to us tha t  the solution U(x, t) is a similari ty 
solution. 

Indeed it is of the form 

t(N- ~)/(2~- N) f( tx I t-(Y- l~/(2y-N) ). 

REMARK 6.9. - I f N  = 2 and r = N/2  = 1, then u0 (x) = Ixl ~ is a s teady  s ta te  solution 

of Problem I for any ~ > 0. Again, if 0 < ~ < 2, the existence of a cont inuum of sol- 
utions can be shown. 
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R E F E R E N C E S  

[1] M. BERTSCH - M. UGHI,  Positivity properties of viscosity solutions of a degenerate parabolic 
equation, J. Nonlinear Anal. TMA, 14 (1990), pp. 571-592. 

[2] M. BERTSCH - R. DAL PASSO - M. UGHI, Discontinuous ,,viscosity)) solutions of a degenerate 
parabolic equation, Trans. Amer. Math. Soc., 320 (1990), pp. 779-798. 

[3] M. a .  CRANDALL - P .  L .  LIONS, Viscosity solutions of Hamilton-Jacobi equations, Trans. 
Amer. Math. Soc., 277 (1983), pp. 1-42. 

[4] M. G. CRANDALL - L. C. EVANS - P. L. LIONS, Some properties of viscosity solutions of 
Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 282 (1984), pp. 487-502. 

[5] R. DAL PASSO - S. LUCKHAUS, A degenerate diffusion problem not in divergence form, J. 
Diff. Eq., 69 (1987), pp. 1-14. 

[6] J .  R .  ESTEBAN - A.  RODRIGUEZ - J .  L .  VAZQUEZ, A nonlinear heat equation with singular 
diffusivity, preprint Universidad Autonoma de Madrid (1987). 

[7] B. H. GILDING, HSlder continuity of solutions of parabolic equations, J. London Math. 
Soc., 13 (1976), pp. 103-106. 

[8] M. A.  HERRERO - M. PIERRE,  The Cauchy problem for ut =Au "~ when 0 < m <  1, Trans. 
Amer. Math. Soc., 291 (1985), pp. 145-158. 

[9] J. HULSI-IOF, Elliptic-Parabolic Problems: the Interface, Thesis, University of Leiden, Lei- 
den, The Netherlands. 

[10] S. F. KNERR,  The porous media equation in one dimension, Trans. Amer. Math. Soc., 234 
(1977), pp. 381-415. 

[11] P. L. LIONS, Optimal control of diffusion process and Hamilton-Jacobi-Bellman equations, 
part 2: Viscosity solutions and uniqueness, Comm. Part. Diff. Eq., 8 (1983), pp. 
1229-1276. 

[12] 0. A. LADYZHENSKAYA - V.  A.  SOLONNIKOV - N.  N.  URAL'CEVA,  Linear and quasilinear 
equations of parabolic type, Transl. Math. Monographs, 23, Amer. Math. Soc., Providence, 
R.I. (1968). 

[13] O. A. OLEINIK - A. S. KALASHNIKOV - CHZHOU YuI-LIN, The Cauchy problem and bound- 
ary problems for equations of the type of unsteady filtration, Izv. Akad. Nauk. SSSR, Ser. 
Mat., 22 (1958), pp. 667-704. 



M. BERTSCH - R. DAL PASSO - M. UGHI: Nonuniqueness of solutions etc. 81 

[14] M. PIERRE, Nonlinear fast diffusion with measures as data, in Nonlinear Parabolic Equa- 
tions: Qualitative Properties of Solutions, eds. L. BOCCARDO and A. TESEI, Pitman (1987), 
pp. 179-188. 

[15] C. ROGERS - W. F. SHADWICK, Bgcklund Transformations and Their Applications, Aca- 
demic Press (1982). 

[16] E. S. SABININA, A class of nonlinear parabolic equations, Soviet. Math., 3 (1962), pp. 
495-498. 

[17] M. UGHI, A degenerate parabolic equation modelling the spread of an epidemic, Ann. Mat. 
Pura Appl., 143 (1986), pp. 385-400. 


