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Banach-Saks Operators on Spaces of Continuous Functions (*). 

CARMELO NI~I~EZ (**) 

Summary. - Let K be a compact Hausdorff space and let E be a Banach space. We denote by 
C(K, E) the Banach space of all E-valued continuous functions defined on K, endowed with 
the supremum norm. We study in this paper Banach-Saks operators defined on C(K, E) 
spaces. We characterize these operators for a large class of compacts K (the scattered ones), 
or for a large class of Banach spaces E (the superreflexive ones). We also show by some ex- 
amples that our theorems can not be extended directly. 

1.  - I n t r o d u c t i o n .  

In 1953, GROTHENDIECK [11] began the study of linear operators defined on C(K) 
spaces. Later, in 1962, PELCZYNSKI [13] initiated the characterization of classes of lin- 
ear operators defined on C(K, E)  spaces, E being a Banach space. 

Since then, weakly compact, DUNFORD-PETTIS (or completely continuous) and un- 
conditionally converging operators have been intensely studied. Less work has been 
done on the study of Banach-Saks operators defined on C(K) spaces (see, for instance 
[5], [8] and [10]) and even less if you fix your interest in these operators defined on 
C(K, E )  spaces. 

Throughout this paper E and F are Banach spaces, K is a compact Hausdorff 
space and 2; is the ~-field of the Borel subsets of K. We recall that any operator 
T: C(K, E ) ~  F may be represented as an integral with respect to a finitely additive 
set function m: S-- ,  L(E,  F") having finite semivariations on K(ImI(K) < + ~ )  such 
that IITII = ImJ(K) (see for example [9], pag. 182) m is called the representing measure 
of T. 

A compact space K is called scattered if every subset A of K has a point relatively 
isolated in A. The class of scattered compact spaces includes all countable compact 
spaces, all compact ordinals (with the order topology) and all the one-point compacti- 
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fications of sets with the discrete topology. We send the reader to [14] for any detail 
referred to scattered compacts. 

We recall the definition of the Banach space L p (~, X), the space of all (equivalence 
classes of) X-valued Bochner integrable functions, with norm 

ff 1 ~<p < ~. L ~ (~, X) is the space of all (equivalence classes of) X-valued Boehner in- 
tegrable functions, with norm 

IffJl~ = essential supremum (ll/(o )rl= g}. 

Information about these spaces is very well explained in [9]. We also use in Theo- 
rem 4 some results about Orliez spaces of vector valued functions. I recommend [12] 
for details concerning these spaces, but, perhaps, the best thing the reader can do is 
to take for granted some results of that kind. 

We say that a Banach space is superreflexive if it is isomorphic to a uniformly con- 
vex Banach space. The class of superreflexive Banach spaces include all the finite-di- 
mensional Banach spaces, and it is contained in the class of the Banach spaces with 
the Banach-Saks property. This last class is included in the class of the reflexive Ba- 
nach spaces. 

Finally we recall that a Banaeh space E has the Banach-Saks property ff IE, the 
identity map, is a Banach-Saks operator. And T: X-~  Y is an operator of this kind ff T 
satisfies one of the two equivalent conditions: 

a) for every bounded sequence (xn) of X you can choose a subsequence (x;) of 
(x,~) such that the sequence (T(x~ + ... + x ' ) / n )  converges. 

b) For every bounded sequence (Xn) of X you can choose a subsequence (x~) of 
(xn) such that for every subsequence (x,~) of (x~) the sequence (T(xf + ... + x~)/n)  
converges. 

It is also known that T" is a Banach-Saks operator if T is, and that every Banach- 
Saks operator is weakly compact. 

We send the reader to [15] and [2] for questions about superreflexivity and the Ba- 
nach-Saks property, respectively [15], is also a good reference for a theorem about 
Schauder basis on reflexive spaces which we use in the proof of Proposition 7. 

2. - B a n a c h - S a k s  o p e r a t o r s  o n  C(K, E) ,  K s c a t t e r e d .  

We begin this section remembering basic facts about C(K, E) spaces. We have 
said that any operator 

T: C(K, E) --> F ,  
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can be represented by 

T(f)  = f f dm, 
K 

being m: Z ~ L(E, F") a finitely additive set function. This means that, for any finite 
set B -  {tl , . . . ,  tn }, we have 

T(f)  = f f d m +  2 m({ti})f(ti). 
i<~n 

K - B  

We also have that, for any Borel set A and x e E, the function x. xA e C(K, E") 
and 

T"(x. ZA ) = f X dm = m(A)(x). 
A 

That's to say, the equality T ( f ) = f f d m  is also valid for some f e 
e C(K,E") \C(K,E) .  

If T: C(K, E)--~ F is a weakly compact operator, then m has three very good 
properties: 

i) In fact, m(2:) r L(E, F), so we can define m: Z-~ L(E, F). 

ii) For every A e 2, m(A): E ~ F is a weakly compact operator. 

iii) m has semivariation continuous at r That's to say, for any sequence of 

Bore l se t s (A~)$r162  
have that 

lim Iml(A~) = O. 
n 

Let's recall that, for any Borel set A, we define the semivariation of m in A by 

ImI(A)= Sup{II i~m(Ai)(x~)ll: {A1,. . . ,A~} partition of A in Z; xl, . . . , x~eB(E)} .  

Very easily, we have our first result. 

THEOREM 1. - Let T: C(K, E) ~ F be a Banach-Saks operator. Then the represent- 
ing measure m satisfies: 

i) m(Z)eL(E, F) and m has semivariation continuous at r 

ii) m(A): E - ~ F  is a Banach-Saks operator, for every Borel set A. 

PROOF. - First of all, we observe that T is a weakly compact operator, for T is a 
Banach-Saks one. So, ii) is immediately obtained. Also, we have said that T" is a Ba- 



46 CARMELO N~NEZ: Banach-saks operators on spaces, etc. 

nach-Saks operator due to the fact that T is. Then, if you notice that 

m(A) = T" oJA where, for every Borel set A,  

j A : E ~ C ( K , E ) " ,  jA(X)=X';~ A , 

it is clear that JA is a linear and continuous operator, and so re(A) is a Banach-Saks 
operator. 

Our target is: when do i) and ii) assure us that T is a Banach-Saks operator? Of 
course, if F has the Banach-Saks property, every operator T which arrives to F is of 
the Banach-Saks type, so i) and ii) assure us that T is a Banach-Saks operator. We are 
going to see in this section that if K is a scattered compact i) and ii) imply that T is a 
Banach-Saks operator. In the next section we will examine conditions on E. 

We need first the following result. 

LEMMA 2. - Let T: C(K, E) --) F be a continuous linear operator. Then, T is a Ba- 
nach-Saks operator if and only if for every metrizable quotient ~: of K, the induced 
operator T: C(~:, E) ~ F is Banach-Saks. 

PROOF. - We recall that ~: is a quotient of K if there exists p: K-~  ~: continuous 
and onto, such that h: has the finest topology which makes p continuous. Given p, we 
define p'" C([t, E) ---> C(K, E) by 

p'(f) = fop .  

In this way, we also define T: C(/~, E ) ~  F by T = Top' .  
It is obvious that if T is a Banach-Saks operator, then so is Top' = T. Let's see 

now that if T is a Banach-Saks operator for every h:, so is T. 
Let (r be a bounded sequence of C(K, E). Similarly as in [1], pag. 236, we build a 

metrizable quotient space K of K, and a sequence (r r C(K, E) such that, i f p : K - ~  
is the canonical mapping: 

Cn (p(t)) = r (t), for every t e K and n c N.  

So, (r is a bounded sequence of C(K, E). Due to the fact that T is a Banach-Saks 
operator, we can choose a subsequence (.~(k)) of (r such that the sequence 

(T(r + ... + k N )  

- = T o p (r T(r o p) = T(r ). So the sequence c o n v e r g e s .  B u t  T(r ) ' - --  

(T(r + .-- + Cn(k)) /k:  k e N )  

converges. That's to say, T is a Banach-Saks operator. 

We can demonstrate now the main result of this section. 
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THEOREM 3 .  - Let T: C(K, E) ~ F be a continuous linear operator, and K a scat- 
tered compact. Then, T is a Banach-Saks operator if and only if the representing mea- 
sure m satisfies. 

i) re(S)r L(E, F) and m has semivariation continuous at r 

ii) re(A): E - o  F is a Banach-Saks operator, for every Borel set A of K. 

PROOF. - We have seen half of this theorem in Theorem 1. So, we only have to 
prove that i) and ii) imply that T is a Banach-Saks operator. By Lemma 2, it is enough 
to prove that ~" is a Banach-Saks operator, for every metrizable quotient R of K. 

Let rh be the representing measure of ~'. It is quite clear that rh(A) -- m(p-1 (A)), 
being A any Borel set of K. So gn satisfies: 

i) If 2 is the ~-algebra of the Borel sets of K, then rh(~) c L(E, F) and rh has 
semivariation continuous at r 

ii) rh(A): E ~ F is a Banach-Saks operator, for every Borel set A of K. 

Now, by 8.6 of[14], if K is a scattered compact and K a metrizable quotient of K, 
then R is a countable compact. If R is finite, we have 

T(f) = rh({t~ })(f(t~ )) + . . .  + rh({t~ })(f(t~)), 

being R = {tl, ..., t~ }, and as m({ti}) is a Banach-Saks operator, so is ~'. 

So let's suppose R infinite. Let h7 = {ti: i e N}. We now take any bounded (for 
example, by 1) sequence (fn) of C(K, E). As r~({t 1 }) is a Banach-Saks operator, and 
(f~ (tl): n e N) is a bounded (in fact, by 1) sequence of E, we can choose xl e F and a 
subsequence (f~) of (fn) such that, for every subsequence (f~(k)) of (f~) we 
have 

(m({tl })(f~(1)(tl) +. . .  +fn(k)(tl ))/k: k E N) ---+ xl 

in the F-norm. 
We call the sequence (f~) = (f(1)). In this way we can build sequences (f~(*) : n 

N) satisfying: 

a) (f(~)) is a subsequence of (f(,-1)). 

b) For every subsequence rr(*) .v e N) of (f(~):n e N) we have ~ , a n ( k )  �9 f~ 

})(fn(1) ( -+- (ts))/k:keN)--+xs. �9 " ~ a n ( k )  

t # ( s )  Noticing that, if l~<i~<s, ~an(1)J is a subsequence of (f~(i):n e N) it is obvious 
that 

(*) (s) ~ N )  --+ (rn({t~})(f~(1)(ti) + ... + f~(k)(t~))/k: Ic x~. 
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Let's define the diagonal sequence 

(gn :n e N) = (fn(n) : n e N) .  

We want to prove that (T(gl + . . .  + gn)/n)--) ~ Xi. First  of all, let's see that the 

series ~ xi converges. Let 8> O, and define Bk = {ti: i/> k}. As (Bk) $ r there exists 

p e N such that 

Imi(B~)<~ i f n > p .  

Let k' > k > p. For any n e N, we have 

so we can deduce that 

and we have seen that the series Y. xi converges. 
Now, we can prove that 1~  

( ~ ' ( g l  + . . .  +gu)/n)-~ E xi 
l~<i 

and, by this, T is a Banach-Saks operator. With this intention let z > 0. As (Bk) $ r 
there exists p e N such that 

(**) Irht(B~) < ~/4 if n > p .  

We fix p. Then, for every n >p ,  p fixed, we obtain 

I '~ '(gl § "'" +gn)/n--l<~i~ Xi]l~]l J~n( F~ ~n({ti})(gj(ti))+ Bp+l gjd~t) ln- ~l<~i xi I 
The equality before is trivial because of 

~<. 

T(gj) = E ~n({t~})(gj(tl))+ f gjd~n i<.p Bp+1 
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and now, the inequality follows: 

First of all, we have by (**) that 

B, flgjd(nl<Hgs"~l(nl(Bp+l)<~/4. 

In second place, by (*) and (**) we deduce 

][ p+l~i~< I = l [I xil I : lira [linlI11 [ ~p+l<~i<~k ~t({ti})(j~<~ngj(ti)/n)l]<~ 

likm [linm ]ml({tp+,,...,tk})[I,~n g'/n]l=l ~ !~I ( ' ,+1)< s/4. 

so, the inequality (1) follows: 

(n({ti})(gj(ti))/n-xi I 
Remembe~ng that ( ~ ~({t~ })(gj(t~))/n: ~ ~ N / - ~  x~ for i-- 1, ..., p there exists N \j~n ] 
such that, if n > N we have 

[]j~<~n (n({ti})(gj(ti))/n--xi [ < ~/2p, 

and so, the inequality (2) follows (for n >  sup(N, P)): 

i<.p 
We have shown that T is a Banach-Saks 

finished. 

for i =  1,.. . ,p 

operator, and the theorem is 

3. - B a n a c h - S a k s  o p e r a t o r s  on  C(K, E),  E superre f l ex ive .  

We have said in Section 1 that a Banach-Saks operator is always weakly compact. 
Sometime the reverse is true, as in this theorem which has the flavour of 
DIESTEL-SEIFERT [8]. 

THEOREM 4. - Let T: C(K, E) --. F be a weakly compact operator, and E a super- 
reflexive Banach space. Then, T is a Banaeh-Saks operator. 
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PROOF. - Let's remember that  C(K, E)' can be represented by 

rcabv(Z,E')  = (v: Z--->E'/v is a Borel regular measure of bounded variation} 

and because of this, for any y'e F', we can define my, as the regular Borel measure of 
bounded variation which satisfies the following equalities: 

(T'(y'), f }  = (y ' ,T( f )}  : (y', f f gm) = f f dmy, 

for any f ~  C(K, E). See [6] for details. 
Due to the fact that T is weakly compact, so is T', and by definition the set 

T'(B(F')) = {my, : y ' e  B(F')} 

is a relatively weakly compact set of rcabv (Z, E'). By [6], there exists ~ e rcabv (~) 
satisfying 

T'(B(F')) c L 1 (~, E') 

and, by this inclusion, for any y' eB(F'), there is a gy. e L I (~ ,E  ') such that  

my, (A) = f gy, dt~, for any A e Z .  

A 

Let's call H = { g y , : y ' e  B(F')}. As H is a relatively weakly compact set of 
LI(~,  F'),  it is uniformly integrable (see [9]). This means that  

t{a: IIf(a)il > n} 

and this is equivalent to the fact that  IHI is uniformly integrable, being 

iHI = {f: g ~  R / t h e r e  is a y ' e  B(F') such that f(oJ) = Ilgy' (oJ)ll, for every o~ e K} .  

A classical result (see [7] p. 24) says that  IHI c L 1 (~) is a uniformly integrable set 
if and only if there exists a function G: [0, ~ ) ~  [0, ~) satisfying: 

a) G is a convex, increasing function. 

b) G(0)=0 and G(t)/t-~ ~ as t ~  oo. 

c) M'= sup{fG(tfl)d~: f e ]HI} < oo. 

The canonical injection from the vectorial 0rlicz space L G (tL, E ')  to L 1 (t~, E ')  is al- 
ways continuous, and the condition c) means that  the operator 

Td:F'-->LG(t~,E'), defined by T~(y')=gy, 



CARMELO NOI~EZ: Banach-saks operators on spaces, etc. 51 

is continuous. So, remembering that T' (F ' )cLI ( :z ,E ' ) ,  T' admits the following 
factorization: 

F ' --f-'> L I ( t~, E ' ) 

L c ( ~ , E  ') 

being j the canonical injection. 
If we take adjoint operators in this diagram, and if we consider T" restricted to 

C(K, E), (that's so to say, T" will be, in this case, JF o T, being Jr: F ~ F" the natural 
injection) the diagram above remains in this way: 

C(K,E) J~oT~. F" 

: ~  /(T~)' 

L e (t~, E ') 

where j~ = j '  IC(K,E). Let G' be the conjugate Young function of G. Then it is a trivial 
fact that Me, (~, E) is a closed subspace of LG(t~, E')',  where 

MG, (t~, E) = {f: K-+ E, f a ,u-measurable function such that 

i) f G'(llfI[ ) d4, < 0o and 

ii) 3 ( f ~ ) c L ~ ( m E )  satisfying fG'([If,~-fll)d~---, 0 as n--,  ~}. 

With this definition it is clear that L+(>,E ' ) cMe , (> ,E) ,  and so C(K,E) c 
c Me, (:z, E), and this canonical injection is continuous. By this, the previous diagram 
can be simplified and left as 

C(K, E) s, o>T F" 

Me,(~,E)  

taking Jl as jg, with its image included in Me, (t~, E), and 

T~' = (Tg)' IMo (~,~). 

If we prove that j~ is a Banach-Saks operator, then so will T~' oj~ = Jr o T, and 
hence T, and the proof will be finished. 

Consequently, let's see that j~ is as we want. The only fact that we need to know 
of MG,(~,E) is: 

(,) ( g ~ ) ~ g  in MG,(t~,E) if and only if fG'(Hgm-gfI)d~+O as n-+  ~ .  

Let (f~) be a bounded (by 1, for example) sequence of C(K, E). Then (fn) is bound- 
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ed in L 2 (~, E), and L 2 (~, E) is superreflexive (due to the fact that E is, see [10]), so 
L e (t h, E) has the Banach-Saks property. Because of this, (f~) has a subsequence ( f " )  
such that the sequence: 

(**) (g~) = (( f l  +... +f(~)/n) ---->f in the L ~ (~, E)-norm. 

Now, as [[g~ (t)[[ ~< 1 for all t e K, (**) implies that [If(t)l[ ~< 1 almost everywhere (in the 
sense of ~), by the vector mean value theorem. 

Finally, as (][gn -f l[ :  n e N) is a bounded sequence of L ~ (~), the following condi- 
tions are equivalent: 

a) ]]]g~-fll2dt~ 0 as n o  ~, 

b) f G' (Hg~ - fll) d,u - ,  0 as n --~ ~. 

By (*) b) is equivalent to (g~) = ((f~ + . . .  + f ~ )  ~ f  in Ma, (t~, E) and the proof is 
finished. 

NOTE 5. - If we revisit the proof of this theorem, we notice that only in one point 
we have used the fact that E is a superreflexive Banach space: to assure that L 2 (,a, E) 
has the Banach-Saks property. So, the theorem remains true if we change the hy- 
pothesis on E by ~,let E be a Banach space such that L 2 ([0, 1], E) has the Banach- 
Sacks property,s, which implies L 2 (~, E) has the Banach-Saks property for any mea- 
sure ~. 

The following result is a improvement of Theorem 1 on the same lines as Theo- 
rem 3. 

THEOREM 6. - Let E be a superreflexive Banach space (or, by the previuos note, a 
Banach space E such that L2 ([0,1], E) has the Banach-Saks property). Let 
T: C(K, E)--->F be a linear operator whose representing measure m satisfies: 

i) m(2:) c L(E, F) and m has semivariation continuous at r 

ii) m(A): E - o F  is a Banach-Saks operator, for every Borel set A of K. 

Then, T is a Banach-Saks operator. 

PROOF. - Due to ii), re(A) is a weakly compact operator, and this condition, united 
to i), implies that T is a weakly compact operator (see [6]). By Theorem 4, T is a Ba- 
nach-Saks operator, and the proof is finished. 

4. - S o m e  e x a m p l e s  and ques t ions .  

In this last section, we would like to revisit our results, to see whether or not they 
can be improved. We begin with Theorem 3. The next proposition claims that Theo- 
rein 3 characterizes the scattered compacts. 
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P R O P O S I T I O N  7 .  - Let K be a non scat tered compact. Then, there  are Banach spaces 
E,  F and a non Banach-Saks operator T: C(K, E ) o  F such that  its represent ing mea- 
sure m satisfies the conditions i) and ii) of Theorem 3. 

PROOF. - First  of all, we study the case K = [0, 1]. In [2], chapter  V, the authors 
show a Banach space E with the Banach-Saks property,  and a sequence (f~), 
fn: [0, 1] --, E,  which satisfies: 

a) [[f~(t)H = 1, for every  t e K .  

b) fn ( ( j / 2  ~ , ( j  + 1)/2n)) = e2~+j, being (ei) a Schauder basis of E.  This implies 
( f~ ( t ) )~O for any r e [0 ,  1]. 

c) For  any subsequence ( fn)  of (fi~), we have 

lim I](f ~ + ... + f " ) / nll2 = 1 
n 

being [1"112 the norm of L2([0, 1], E). 

We can modify slightly eachfn to make it continuous. If  ~ is the Lebesgue measure  
of [0, 1], we can take open sets G~ such that  

i) G ~  { j / 2 ~ : j = O , . . . , 2 ~ } :  

ii) G~ ~ Gn+l for every  h e N ,  and ~(G~) < 1/n.  

By i), it is obvious that  

f n :  [0, lJ\Gn---->Xn, fn( t )  =f~(t) 

(where X~ = span {e2~+j: j = 0, ..., 2 n -  1}) is a continuous function. 
Then, by Tietze extension theorem, there is a continuous function g~: [0, 1] ~ Xn 

such that  

iii) g~( t )= fn ( t )= fn ( t )  for all t e [0, 1 ] \ G n ,  and 

a') [[g~[[~ ~< sup (l[fn(t)[[: t e [0, 1 ] \ G n }  ~< 1. 

Then, as Xn c E,  if we consider gn: [0, 1] ~ E ,  we have: 

b') (gn(t))2-~O, for all t e [ 0 ,  1]. 

This is trivial because E is a reflexive Banach space, so given any Schauder basis 
(for instance, (ei)), b') is equivalent (for all t e [0, 1]) to: 

IIg~ (t)N <~ M(t) and (ei', gn (t)) --> 0 as n ~ ~ ,  Vi. 

And these two conditions are obviously satisfied. 
Finally, (g~) satisfies: 

c') For  any subsequence ( g ' )  of (g~), we have 

lim ll(g~ + ... +g')/nll2 -- 1. 
n 
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The proof of c') is left as an exercise. The reader must  only use a), c), ii), iii) 
and a'). 

Now, if the reader assumes a'), b') and c') as a starting point, it is clear that  the 
natural injection 

j: C([0, 1], E) -~ L 2 ([0, 1], E) 

has the following properties: 

~) As E is a reflexive Banach space, so is L ~ ([0, 1], E). Because of this, j is a 
weakly compact operator, and so the representing measure m o f j  satisfies the condi- 
tion i) of Theorem 3. 

/~) Because of E has the Banach-Saks property, re(A) satisfies the condition ii) 
of Theorem 3. 

~) j is not a Banach-Saks operator. Given the bounded sequence (g~) of 
C([0, 1], E), you cannot choose a subseqt/ence (g~) whose arithmetic means converge 
in L 2 ([0, 1], E). b') says that the sequence of the arithmetic means, if it converges, it 
must be to 0, and c') says that, if that  sequence converges, it must  be to a function of 
norm 1. 

Finally, let K be any non scattered compact. A very important result (see 8.5.4. of 
[14]) says tha t  there is a function 

r K--* [0, 1] 

continuous and onto. So, for any continuous function f :  [0, 1] ~ E, we can define the 
function r (f): K--. E by r (f) =fo  r Then, taking E and j exactly as in the para- 
graph before, we have the following diagram: 

C(K, E) . . . . . .  ----> L 2 ([0, 1], E) 

C([0, 1], E) 

Then, a very important result in [3] claims that  the weakly compact operator j can 
be extended to a weakly compact operator j: C(K, E ) o  L~([0, 1],E) such that dia- 
gram is commutative. 

Exactly in the same way as the previous paragraph, if ~ is the representing mea- 
sure of~, ~ satisfies the conditions i) and ii) of the Theorem 3. And j cannot be a Ba- 
nach-Saks operator because then, i f j  were so, so would be j o r = j, and this is not the 
case. Thus, the proof is finished. 

NOTE 8. - In Theorem 4 and note 5, the sufficient condition on E (L 2 ([0, 1], E) has 
the Banach-Saks property) is far from necessary. If you take E = C(K'), K' an infinite 
compact, then C(K') is not even a reflexive space. But, if we take for granted that  
C(K, C(K')) is isometric to C(K • K') = C(K • K', R), then any weakly compact oper- 
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ator T: C(K, C(K')) ~ F will be a Banach-Saks operator, because R is superreflexive. 

If E is reflexive, then the sufficient condition is also necessary. If we consider the 
natural injection 

j: C([0, 1], E) ~ L 2 ([0, 1], E) 

it is evident that j is weakly compact, because L 2 ([0, 1], E) is reflexive. Now, this, 
and the fact that L 2 ([0, 1], E) has not the Banach-Saks property, implies that there is 
a bounded sequence (f~) r L 2 ([0, 1], E) which satisfies: 

a) (f~)-~ in L2([0, 1],E). 

b) For every (f~) subsequence of (fn), we have 

lim II(f ~ + ... + f " ) / nll2 = 8 > 0 

(see [2], chapter 2.3, Theorem 8). 
Now, by an important result of Dunford (see [9], chapter IV.2) a) implies that 

(*) frlf lld   0 as ).(A)--, 0 uniformly in n ~ N .  
A 

To prove that j is not a Banach-Saks operator, we have to modify (f~) to produce a 
bounded sequence (g~) in C([0, 1], E) such that none of its subsequences converges (in 
the sense of its arithmetic means) in L z ([0, 1], E). Skipping the details, we take 

f ~  =f~'xA~, with A~ verifying ~(A~)< ~, ~ depending on (*) and 8. 

Later, we can approximate the bounded measurable function f~ by a continuous func- 
tion g~. That sequence (g~) will be the one we need. 

With these results, we can state: 

P R O B L E M  1. - Find other necessary (or sufficient) conditions on E to make Theo- 
rein 4 true. 

NOTE 9. - In Theorem 6, I do not even know any Banach space which does not sat- 
isfy the sufficient condition but satisfies the theorem. In fact, C(K'), with K' an infi- 
nite compact, is not a good example, because in [4] the authors show that, as C(K') 
contains a copy of Co, there are a Banach space F and an operator 

T: C(K, C(K')) --~ F 

such that the representing measure m satisfies the condition i) of Theorem 6, re(A) is 
weakly compact for any A ~ 2, and T is not weakly compact. 

Because of Theorem 4, re(A): C(K') = C(K', R ) ~  F is a Banach-Saks operator, 
and so m satisfies conditions, i), ii) of Theorem 6. Finally, if T is not weakly compact, 
is cannot be a Banach-Saks operator. 



56 CARMELO N(T~EZ: Banach-saks operators on spaces, etc. 

We can state now our following 

PROBLEM 2. - Find other conditions on E to make Theorem 6 true.  

To finish this work, let me call your attention to what  we said after Theorem 1. If  
F has the Banach-Saks property, any operator T: C(K, E)---~F whose representing 
measure m satisfies i), ii) of Theorem 1 (in fact, any operator T) is of the Banach-Saks 
kind. The question is: 

PROBLEM 3 .  - IS there a Banach space F,  which does not possess the Banach-Saks 
property, and such that  any Banach-Saks operator T: C(K, E)-~ F is characterized by 
conditions i), ii) of Theorem 17 
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