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Interfacial Phenomenon for One-Dimensional Equation 
of Forward-Backward Parabolic Type (*). 

VLADIMIR N. GREBENEV 

Summary. - An interfacial phenomenon for a class of the solutions of a nonlinear forward- 
backward parabolic equation in R x (0, T) is investigated. In genera~ short time-period of 
interfaces is considered. This inner analysis allows to construct on some time interval a sol- 
ution of the Cauchy problem for certain initial data. 

1.  - I n t r o d u c t i o n .  

We study of the emergence of interfaces associated with a continuous weak sol- 
ut ion of the equation 

(1.1) ut = u u ~  + u~ ( - 1/2(u2)~), (x, t) e QT = R x (0, T ) ,  

without any sign restrictions for the function u. First we shall focus our attention on a 
generation mechanism of the interfaces between regions where u < 0 and u > 0 in 
certain ranges (rectangles). We consider several cases in connection with different 
distributions of u(x,  t) on the sections of a rectangle boundary. On some sections the 
equation (1.1) is parabolic, and for the other sections it is backward parabolic. It will 
be shown that in certain cases, a set that splits the regions of parabolicity and back- 
ward parabolicity is a curve in R 2 . In another cases, these special regions may be sep- 
arated by the bounded are which will be further referred as an interfacial layer 
region. 

We show that a continuous weak solution of the Cauchy problem, in general, on a 
short time interval is decomposed into two generalized solutions of the Cauchy prob- 
lem, for which equation (1.1) is parabolic on the first solution and backwqrd parabolic 
on the second one. This result provides in particular the method for constructing a 

(*) Entrata in Redazione il 20 aprfle 1994 e, in versione finale il 25 novembre 1995. 
Indirizzo dell'A.: Institute of Computational Technologies, Siberian Branch of Russian Aca- 

demy of Sciences, Lavrentjeva Ave. 6, Novosibirsk 630090, Russia. 
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continuous weak solution to the Cauchy problem for (1.1). We end the paper by two 
simple examples of seeking our solution with various behaviour for the inter- 
faces. 

Let us dwell briefly on the background of this paper. There are two problems 
which traditionally are considered for equations with changing directions of parabol- 
icity. The first one is based on setting the ,,initial~ data on t = 0 and t = T. It depends 
on parabolicity or backward parabolicity of the equation on the ,,initial~ data. In the 
simple case when the regions of parabolicity and backward parabolicity are known a 
priori, this problem has been studied by several authors (see, for instance [1]). The 
other one is the Cauchy problem. It will be convenient to designate them as Prob- 
lem 1 (P1) and Problem 2 (P2). In the present problems we comment the follow- 
ing: 

a) Questions on existence, uniqueness and non-uniqueness: 

b) The emergence of interracial layers and curves. 

�9 As for Problem 1, it should be mentioned here (see [2], the abstract of[2] is in So- 
viet Advances in Math., 1987, N. 2, p. 156) that under special assumptions about the 
,(initial)~ functions, we recall that they are given on lines t = 0 and t = T in agreement 
with the phase states, a continuous weak solution of P1 can be viewed as the sum of 
generalized solutions of two evolution problems for corresponding porous medium 
equation. Note that their interracial curves are straight lines connecting the points 
(0, 0) and (0, T). As is well-known in this case [3], the ,dnitiab~ functions must possess 
the suitable behavior near interface. Also, it was shown that a uniqueness of solutions 
occurs. 

Problem 2 has not been sufficiently studied at present time, a possibility of chang- 
ing the parabolicity direction implies the ill-posedness of the classical problems for a 
forward-backward parabolic equation (1.1). In particular, it has been shown [4, 5] that 
the nonstationary Neumann problem for a forward-backward heat equation has a con- 
tinuum of generalized solutions. Moreover, a set of generalized solutions is precom- 
pact but not closed in the space C and is closed but not precompact in W~ (see [6]). The 
solvability of the boundary-value problems in the class of the measure-valued sol- 
utions in the sense of TARTAR - DIPIERNA [7] was proved in [8]. Among the latest pa- 
pers on this topic we could mention [9], where the non-classical boundary-value prob- 
lem for a nonlinear forward-backward parabolic equation with the hysteresis effect 
was studied. The author shows that solutions of this problem are obtained as a limit of 
generalized solutions of the Neumann boundary-value problem for a regularizing 
equation when a small parameter in a regularizator tends to zero. classical solutions 
were studied by LAIR [10, 11], who proved the uniqueness for a forward-backward dif- 
fusion equation with smooth constitutive function. Some results concerning self-simi- 
lar solutions to a nonlinear diffusion equation with a variable-sign diffusion coeffi- 
cients can be found in [12]. 

Also, it is interesting to interpretate the equation (1.1) in a sense of a limit case of 
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the Cahn-Hilliard's type equation 

v t + ~ v ~  = [v2]xx. 

The Cahn-Hflliard equation was introduced by C ~ N  and HILLL~a~D [13] to describe 
the motion of an antiphase boundary separating two phases of a polyerystalline ma- 
terial. Some of the result concerning the Cahn-Hflliard equation are reviewed 
in [14]. 

Many physics models are deseribed by forward-backward parabolic equations. 
Equations with a changing direction of parabolieity arise in investigation of fluids 
with super anomalous viseosity, in the description of shock waves in fluids with gas 
bubbles, multiphase thennomechanies with interfaeial structure, the ocean thermo- 
dine, ete. N. N. Y~ENKO seems to be the first to have introduced the equation with 
viseosity eoefficient of variable sign into mathematical use [15] with the aim to model 
complex (turbulent) flows. The equation (1.1) ean be considered as a model equation 
for several of physieal, meehanieal and other processes. 

Thus, the main purpose of this paper is the study of geometrical properties of the 
solutions of forward-baekward parabolie equation (1.1) i.e. we wish to fill a gap in the 
point b) and additionally to suggest some recipe for the construeting a continuous 
weak solution to the Cauehy problem for (1.1) within of approaeh which will be used 
here. 

2. - S o m e  aux i l iary  l e m m a s  and n o t a t i o n .  

In this paragraph the terminology from the Stefan problem is introduced and 
some properties of a continuous weak solution of the equation (1.1) are estab- 
lished. 

Further we will consider a continuous weak solution u of the equation (1.1) in 
QT = R X (0, T )  for some T > 0. 

We understand a continuous weak solution of(1.1) as a funct ion u on QT with the 
following: 

U �9 C(QT) N L | 

u~ ~ Llor ( QT ) , 

~ t 2~  

fu( , - fu( , f f{u  -uu  x}dxdt 
Xl x 1 t 1 Xl 

= 0 ,  

for  arbitrary ti < te and x~ < x2 such that the rectangle [xl, x2] x [tl, t2] is in QT and 
any ~p �9 C l' 1 (QT) having compact support for  all t �9 [ti, t2]. 

It wilt be convenient to use the following notations: 

= {(x, t) e QT: u(x,  t) = 0} 
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stands for the interfacial layer region, 

~ +  = {(x, t) e QT: u(x, t) > 0} 

designates the positive phase, 

~ _  = {(x, t) ~ Qr: u(x, t) < 0} 

is the negative phase. 
The interfacial layer region tha t  evolves as a curve we will be re fer red  to as 

interface. 
The classical regular i ty  results (see, e.g. [16]), using a (forward) parabolicity of 

(1.1) on ~g~_ in the direction of a decreasing time, readily shows that  a continuous 
weak solution u is a classical one in QT\~. 

Now we present  some auxiliary lemmas which rely on the implicit function theo- 
rein and a maximum principle argument. These lemmas are extracted from the pa- 
pers [17-19]. Lemma 1 is important  for the s tudy the behavior of the set {(x, t) e ~ +  : 
u(x, t ) =  s} where ~ is a noncritical value of u, i.e. (u~,u t )~0  on the set 

u - l ( ~ )  n QT 

LEMMA 1. - Le t  A c QT be an open set such that  A = int(aA n {t = 0, Ol ~< a < T, 
Ol >I 0}) is a nonempty  open set in R. Also suppose that  u is positive on A U .4. Le t  
(x~, t~) e A, u(x~, t~) = ~ where s is a noncritical value of u on the set u -1 (e) N A. Sup- 
pose s < minu(x, t) on aA n {01 ~< t ~< t~}. Then there  exists a smooth level curve x = 
= fie (t), Ol < t ~< t~, lying in A, along which u = s and u~ never  vanishes, except perhaps 

at t = t~. 

The proof  of Lemma 1 consists in [17] (see Lemma 5.3, [17]). 

REMARK 1 .  - Except  for at most  a countable number  of values ~, lim fl~(t) 
exist, t -~ oi 

REMARK 2. - The propert ies of equipotential curves for a case of the smooth func- 
tions defined on manifolds with boundary are well studied. I t  is known as Cronrod's 
theorem. Some new facts about the behaviour of a level lines for generalized solutions 
of the potous medium equation were obtained by B. KNERR (see [17]). 

The following lemmas are based on the maximum principle. 

LEMMA 2. - Le t  B be a subdomain of Q~ bounded by 4 curves: an interval 7o lying 
on t = 02, an interval 71 lying on t = o8 (02 < o3), a continuously differentiable closed 
curve 72 connecting the r ight  end-points of 70, 71 and lying (except for its end-points) 
in the rectangle So2. o~ (S,2. o~ = {(x, t) e QT: 02 < t < 08), and a continuously differ- 
entiable closed curve 7s connecting the left end-points of Yo, 71 and lines ?2, 78 are 
never  parallel to the x-axis. I f  u(x , t )>O on ? 0 U 7 2 U ? 8  then u(x , t )>O 
in /~ .  
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LEMMA 3. - Le t  P e QT be a rectangule given by a < x < fl, ~1 < t < v2 such tha t  
u(x, t) >I 0 in P and u(x, 1:1) > 0 for a < x < fl then u(x, t) > 0 in P. 

The proof of Lemma 3 is based on the m a x i m u m  principle argument of the porous 
medium equation and given in [18]. 

LEMMA 4. - Le t  conditions of Lemma 2 be satisfied. And only for 72, 73_we have a 
continuity. Suppose that  u(x, t) >i 0 on 71 U 72 U T~ then u(x, t) >I 0 in B. 

The above lemma implies that  no a backward parabolic region appears in /~  if 
u(x, t) >I 0 on 72 U 72 U 7~- Lemma 4 is proved by employing the strong m a x i m u m  
principle as in Lemma 2 from [19]. 

LEMMA 4'. - I f  in Lemma 4 the assumption that  u(x, t) >i 0 on 71 [J 72 U_73 is re- 
placed by the assumption u(x, t) <<. 0 on 70 U 72 U 73, then u(x, t) <. 0 in B. 

3. - T h e  e m e r g e n c e  o f  i n t e r f a c i a l  curves .  

We star t  with an investigation of interracial phenomenon for a continuous weak 
solution u of equation (1.1) from the prescirbed cases under  the assumption that  this 
solution exists. 

Consider a rectangle P (: QT (P = (Xl, Xl + 26 ) x (tt ,  t2) for some (~ > 0) and intro- 
duce the following cases with the special distribution of the phases of u on boundary 
of P: 

Case (a). u(xl ,  t) > 0, u (y l ,  t) < 0 for t ~ [tl,  t2], Yl = Xl + 26; u(x, tt) > 0 if 
x e [Xl, X 1 "~- 6) ,  U(X, tl) < O if x e (xl + (~, Yl]. 

Case (al). Between phases where u(x, tl) > 0, and u(x, tl) < 0 there  exists an 
interfacial layer region t3(tl) such that ~2 = [xl + 6, Yl - 6 /2 ] ;  

Case (b). u(xl ,  t) > O, u(y~, t) > 0 for  t e [tl, t2]; u(x, tl) > 0 i f  x e Ix1, xl + 
+ (V2), u(x, tl) < 0 i f  x ~ (xl + 6/2, Yl - 6/2) and u(x,  tl) > 0 i f  x e (Yl - 6 / 2 ,  Yl]. 

Case (c). U(Xl, t) > 0, U(y l  , t) < O f o r  t e It1, t2]; u(x, tl) > 0 i f  x ~ [xl , xl + ~ ), 
u(x, t2) < 0 i f  x e (xl + &, Yl] and u(xl + (~, tl) = U(Xl + 6, t2) = O. 

Case (cl). In  this subcase there exists an interfacial layer region ~9(t~) on the 
line t = t~ such that  ~9(t2) = [x~ + 6, Yl - ~/2]. 

Le t  us s tudy the emergence of an interfacial layer region for each case. The emer- 
gence of the interfaces ~ ) ,  ~(2 ) for Case (a) will be our initial aim. F rom conditions on 
U(Xl, t), u (y l ,  t) follows that  there  exist functions h + (t), h -  (t), such that  u(x, t) > 0 
if xl ~< x < h + (t), and u(x, t) < 0 if h - (t) < x <. Yl. The continuity of u implies that  
h + (t) is a lower semicontinuous function and h - (t) is an upper  semicontinuous func- 
tion. F i rs t  we prove that  they are continuous functions. 

Le t  ~ = {(x, t) e P:  - 1 < x < h + (t)}. Since u continuous in Q~, ~ is an open 
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subset  of R 2 . Taking into account the idea which was used in [17,18,20] we apply the 
level-set approach for an approximation of h +, h - by the level curves ~(2 ) , r ) of u. 
Thus, we consider u on the open set  ~ .  Sard's theorem and Lemmas 1, 2 guarantee 
the existence of smooth level curves ~(+J) lying in ~ and connecting points (x~ i , t) e ~) 
to some point (y~j, t:) of interval (x:, x: + 5)  along which u(~) ( t ) ,  t) = sj, j = 
= 1, 2, 3, ..., . . . .  Here  {ej} are noncritical values of u with the following proper- 

ties: 

]am 8j = O,  e j +  1 < e j ,  
j . . - ~  ~ 

e: < min u(x:, t), t e [t:, t~]. 

The sequence { ~ ) }  is a monotonously increasing. Now consider a piecewi~e smooth 
loop L~ bounded above by  t = v, below by t = t l  and laterally by  ~(+J), ~(+J + ~). I t  is easy 
to show that  

(3.1) ~ u dx + 1/2a/Sx(u) 2 dt = O. 
L~ 

Immediately from (3.1) follows 

j[ u(x, v)dx - ! u(x, ti)dx + ej f dx + u~dt - s,+~ I dx + u~ dr. 

o r  

(3.2) ~ ) ( v )  - ~ ) ( t : )  + fu~($(J+)(t), t)dt + 
tl 

+eT:  

~(~+')(:) 

I u(x ,v)  d x -  
~(~+')(h) ] 

I u(x, t l )dx - 
~(~) (t~) 

~(J + ~) (r) - ~(+J) (t:)  -ej+~ x e[ 1 u~(r t)dt + ~+ 
{h 

= 0 .  

Now we pass to the limit assuming s---> ~ in (3.2) and obtain 

h(+~) tl 
v _ -  

(3.3) ~(J+)(~)-r I u ( x , v ) d x = e [  1 I u ( x , t : ) d x .  

We will prove that the derivatives ~(+J)' are uniformly bounded relatively to j .  F rom 
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(3.3) it follows that 

h+(3) t' ~(+J)'(v) + u~(~')(v), v)dt + e f  1 f u(x,  ~ ) ~  

where the last function is bounded. Indeed, take a set 

= 0  

= {(x, t) e ~ :  tl < ~: ~< t ~< v + Av < te, ~(+J)(t) ~< x ~< ~ + " ) ( t ) } .  

Then 

~(~ + ')(3 + ~3) ~(~ + ~) (3) 

f f 
(~) (3 + ~) ~(~)(3) 

v + A 3  v + A 3  

f u u ~ ( ~ + ' ) ( t ) ,  t ) d t -  f uu~(~(J+)(t), t ) d t ,  
3 "g - 

passing to the limit when s--~ ~ ,  and using the relation 

(3.4) lira u u , ( ~ + 8 ) ( t ) ,  t) = O. 
8- - - )oo  

We get 

h + (v + Av) h + (v) 

where Kp is some positive number which in general depends on P. From here the 
above result follows. 

Thus the Ascoli-Artsel theorem guarantees convergence of the family { ~(+J)} in the 
uniform norm to a certain continuous function ~(~) which coincides with h +. It is easy 
to verify that h + (t) is in fact a continuous function up to t = t2. The proof of the conti- 
nuity of h -  is similar to the proof of this property for h +. 

The function a/ax(u)  2 is continuous on ~ .  The continuity of a/ax(u)  2 up to h + is a 
consequence of the fact thai; a/ax(u( . ,  t)) 2 are equlcontinuous in the interval ( -  1, h +) 
relatively to x which follows from (3.4) and O/Ox(u(h + (t), t)) 2 = O. 

Denote by ~ the set 

2~ = {(x, t) e P: ~ )  ~< x ~< ~ ) } .  

Note that in a general case ~ is a triangle with curvilinear boundaries. Here ~ )  is 
(,continuous realizatiom, of h -  by level lines of u. We show that ~ is an interracial 
layer region of u. Immediately from Lemma 4 it follows u ~< 0 on ~.  To prove that ~ is 
an interracial layer region we define u -  on {(x, t ) e  P: ~(~)(t) < x < Yi, $1 < t < t2} 
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by a formula 

u - (x, t) = u(x ,  t) if ~(~)(t) <. x <. y~, 

Consider the transformation ~ -  of the function u -  

- (x, t) = - u -  (x, t~ + tl - t) .  

Then ~ -  (x, t) is a solution of the problem: 

(3.5) 

tl <<. t <<. te. 

~t--= (u -~ )~  on { ( x , t ) e P : ~ ) ( t ) < x < y ~ , t ~ < t < t e } ,  

- (~(~)(t), ~) = 0,  u -  (y~  ~) = - u - (Yl, t2 + t~ - t ) ,  tl < t < t~, 

(3.7) ~ -  (x, tl ) = - u -  (x, t2), 

where ~(3) (t) = ~(~) (t2 + tl - $). The proof of this s tatement  is trivial. We understand 
a solution of (3.5)-(3.7) in the generalized sense as in [21] (the integral identity is un- 
derstood as the fulfillment of it for every interior rectangle). We introduce the follow- 
ing notation. Let  ~ be an interval lying on t = v, t 1 < v < t2 between the points ~(~)(v), 
~ )  (v) ( ~ ) ( v )  = ~(~)(t2 + tl - t)) and ~ -  > 0 on y. Then by Lemma 3 for nonnegative 
solutions of (3.5)-(3.7) we have ~ -  > 0 in ~ • [v, t2], that  contradicts the equality 

- ( ~ ) ( t ) ,  t) = 0. Therefore the proof of the result on a coincidence of ~ and ~ is 
complete. Note that  here we, generally speaking, can not cause ~ to have a nonempty 
~ter ior .  In Case (a0,  kn contrast to the previous situation we may ensure that  indeed 

~ 0 and the set ~9(t~) expands with time. Thus we proved the following theo- 

rem. 

THEOREM 1. - Consider the rectangle P c QT (P = (xl,  Xl + 25) • (tl,  t2) for some 
5 > 0) and let u be a cont inuous  weak  solution of (1.1). Assume that  hypotheses of 
Case (a) are satisfied. Then there are continuous functions ~(~)(t), ~(2 ) (t) defined on 
It1, t2J such that  xl < ~(~)(t) ~< ~ ) ( t )  < xl + 25 (see Fig. 1) and 

!~_ = {(x, t) e/~: ~(_~)(t) < x < xl + 25}.  
o 

Under hypothesis of Case (al), an interfacial  layer region ~ emerges; i.e. ~ r 0 and 

(see Fig. 2) 

= ((x ,  t) e P: xl  < ~ 1 ) ( t )  <~ x <<- ~ l ) ( t )  < xl  + 25}. 

REMARK 3. - In fact the properties of interface ~(~)($(2)) are the same that  occur 
when we consider an interface for the porous medium equation. 

Now consider Case (b). I t  is of interest to consider the situation about disappear- 
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Case (a) / 

~ u<O 

Figure 1 

ance of the phase ~ _  in P. By Lemma 4, we can easily settle this matter.  We shall 
prove that  the backward parabolic region i.e. the set ~)~_ ~ 0. 

Assume the contrary, i..e. that  ~l~_ n P n {t = a} = 0 for some tl < a ~< t2. From 
Lemma 4 we have that  u "3 0 in Po = P n {t ~< a}. The existence of such a rectangle 
contradicts the conditions of Case (b). 

Let  us investigate the distribution of the phases g)~+ n P, ~J~_ n P on t = a. I t  is 
clear to see that  on t = a, the set where u(x, ~) > 0 consists of only two disjoint inter- 
vals: ~1, initiating on X=Xl  and ~2, ending at x = x l + 2 6 ;  and the set 
~l~_ n P n {t = a} is connected for all a �9 [tl,  t2]. The proof of this s tatement can be 
obtained by the same manner as Lemma 2 of[19] and Theorem 1. 

THEOREM 2. - Let  u be a continuous weak solution of (1.1). Assume that  hypothe- 
ses of Case (b) are satisfied. Then the set ~t~_ n P n {t = a} is not empty and consists 
of the connected component ~o, tl ~< a ~< t2, ~1~+ n P n {t = a} = ~1 U ~2, where ~o, 
~1, ~e are some intervals from R 1 and what split them is interfacial layer region. 
Moreover, ~ +  n P = {(x, t) �9 P: Xl ~< x < ~ ) ( t ) }  U {(x, t) �9 P: ~ )  < x <~ xl + 26 }, 

Case (a l)  

interfaces 
u>O 

Figure 2 
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~0~_ ~ P = {(x, t) e P:  2~)(t)  < x < ~(_~)(t)} where  2~ ), 2(_ ~), ~ ) ,  ~ )  are the interra- 
cial carves such that  2~ ) ~< 2~ ) < ~ )  ~< ~ ) .  

Now, we s tudy the interracial phenomenon in Case (c). Using the level-set ap- 
proach as above, we will see that  ~ +  = {(x, t)~P: Xl<~X < Xl+ 5}, ~)~-= 
= {(x, t) e P:  xl + 5 < x ~< xl + 25 }. I t  follows from a fact that  ~ is a line connecting 
the points (x~ + 5, t~) and (x~ + 5, t~). We give briefly outline of proof of this state- 
ment. The details may be easily recovered. 

Consider the rectangle P. By contradiction, assume that  ~ ~ {(x, t) e P:  x < x~ + 
+ 5 } ~ 0. Fix some 5, from the interval (x~, x~ + 25 ] lying on the line {t = t~} such that, 
the value t~ = v(5) = inf{t e [t~, te]: u(x,  t) = 0, (x, t) ~ P}  is defined. Let  us denote 
by  

= (x e P N {t = tl } and {x~ < x ~< x~ + 5}: ~t~ e [t~, t~], t~ = v(x)}. 

We may assume that  ~ is maximal ~-set.  In view of Lemma 21 it is easy to verify that  
the function v = v(x) is decreasing on ~.  Let  5, ~ e ~.  Let  

~ = {(x, t~) e P:  t~ = v(x), x~ < x < x} ,  

~ = {(x, t~) e P:  t~ = T(?]), X 1 < X < y ,  y > x} .  

Rescaling as above in Case (a) we can construct the level curves 2(~ ) (t), connecting 
points (x~, i~) e ~ to (y~ ,  i~) e ~ along which u(2~)(t), t) = si ,  i = 1, 2, 3, ..., ... for 
an approximation of v(x) on ~ N [~, ~]. Here  {s~} are noncritical values of u with the 
following properties: 

lira si=O, ~ + 1  < ei, el <minu(xl,t), te[t~,t~]. 
i---> ~ 

By Lemmas 3, 4, u(x, t) > 0 on {(x, t) ~ P ;  Xl ~< x < 2(~)(t), v(~) ~< t ~< v(5)}. Now let 
i---> ~ ,  We will fred 

~(~)(t) = lira 2~)(t) for te[t~,t~], 
i---~ ~ 

such that  2~)(t~) = x, ~ ) ( t ~ )  = y. then, by the same argument  as in Case (a) we claim: 
first, the front curve 2(: ) is a continuous curve; second, the function 

fu(x, t)  for x l ~ < x < 2 ( :  )(t) ,  

u+(~)(x't)=lO! for 2 ( ~ ) ( t ) < x <  ~ ,  te[t~,t~], 

is a nonnegative generalized solution (as in [21] of the Cauchy problem in R • (t~, t~) 
for an equation (1.1). We recall that  the function a/ax(u +(r is continuous through 
the curve 2(: ) . This last curve is (as we can see by standard interracial result  for non- 
negative solutions of the porous medium equation) nondecreasing on [t~, t~]. In view 
of this, subset  ~ - type  in {(x, t) e P:  Xl ~< x < xl + 5 } does not exist. 

In particular, it follows that  2(~ ) is nondecreasing function. In order to complete 
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Case (cL) 

interfaces 

u>O 

> 

t.t =0 <0 

Figure 3 

the Case (c) it remains to show that 

(3.8) n {(x, t) e P: x > X 1 § ~} = O. 

The proof of (3.8) is the same as above. 
The previous consideration obviously may be extended to Case (Cl). By the same 

manner, we will obtain that. the set ~ n {(x, t) e P: x < Xl + d } is empty. From here 
it follows that u(x, t2) > 0 if Xl ~< x < Xl + & This means that we can proceed as in 
Case (ai) if the direction of the time t is reversed. In other words, if we consider parti- 
cles which move along level curves ~ )  of u then ( ~ )  (t2), t2) is the final position of the 
particles which occupied an initial positions (~) ( t ) ,  t) e P, s = 1, 2, 3, ..., whereas 
the particles corresponding to this description for the level curves ~ ) ( t )  have the fi- 
nal position at the time t = tl. Thus we have proved (we leave the details to the read- 
er) for Case (Cl) that (see Fig. 3) 

~ +  N P  = {(x, t) e P :  x~-< x < ~(:~)(t), t~ -< t-< t2}, 

~ _  n P = {(x, t) e P :  ~ ) ( t )  < x -< Yl, tl ~< t -< t2}, 

A P  = {(x, t) e P :  ~ ) ( t ) - <  x-< ~(_*~)(t), tl-< t ~< t2}.  

Here ~(2 ) , ~(cl) represent the interface curves which divide P into ~l}~+, ~ _ ,  ~ and in- 
terfacial layer region ~ for this case has a positive measure (the phase fron ~(~1) be- 
comes straight segment connecting (xl + 5, tl) to (xl + 6, t2). 

4. - So lut ions  o f  the one-d imens ional  problems.  

In the spirit of the preceding chapter let us look for solutions of Problem 1 and 
Problem 2. 
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Problem i 

r ~_ z (x, t) EQT, i Ut  ~- UU~x ' U x  

u ( x , O ) = u ~ ( x ) ,  - o o  < x ~ < 0 ,  u ( x , T ) = u s ( x ) ,  0 ~ < x <  ~ ,  

where as in [1, Ch. 3] we demand that  ul (x), us(x) satisfy the following assump- 
tions: 

(C1) 

l u l ( x )>~O if - ~ < x ~ < 0 ,  
I u2(x)<<.O i f 0 . . < x <  ~ ,  

u l (0 )  = us(0)  = 0.  

Problem 2 

z (x, t) e Qr,  U t = U U x x  + U x 

u(x, O) = Uo (x),  - ~ < x < ~ 

where Uo (x) is a given function, satisfying the assumptions: 

(C2) 

uo(x) ~ 0 

Uo(X) < 0 

u0(0) = 0.  

if - ~ < x ~ < 0 ,  

i f 0 ~ < x < ~ ,  

We make the hypothesis: 

(H) uo, ul~ u2 are assumed continuous bounded functions. 

We define what  we mean by solutions of these problems. 
A continuous weak solution of (1.1) is a continuous weak solution of Problem 1 

(Problem 2), i f  u(x, t) is continuous in QT and takes the value Ul (x), us (x) at the time 
t = 0 and t = T (accordingly for Problem 2, u(x, O) = uo (x)). 

Problem 1 has been studied in [2] where  we showed that  a continuous weak sol- 
ution of Problem I can be decomposed into two generalized solutions of the corre- 
sponding evolution problems. As for an interfacial phenomenon then in particular, if 
ul(x)  > 0 for - ~ < x < 0, us(x)  < 0 for 0 < x < ~o and u l (0 )  = us(0)  = 0, their  in- 
terfacial curves become the straight  segment  connectin (0, 0) to (0, T). F o r  this rea- 
son the functions u l ,  us must  possess the suitable behavior near  zero i.e. 

(4.1) 

0 

A -  (ul ,[x,  0)) = lim sup I x l - 3  I U l ( ~ ) d x  < oo , 
X--~ - 0  

X 

X 

A § (lu  i , (0,  xl) = sup Ixl- I lus(x) ldx < 
x--~  + 0  
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In the question about solvability (in the class of the continuous weak solutions) of 
Problem 1, the above consideration leads us to assumptions about local effects (4.1). 
The precise estimates for 7' may be represented. For the details we refer the reader 
to [2]. 

By using results of chap. 3 to Problem 2 it is not difficult to prove that the interfa- 
cial phenomenon also continues to occur. Let us consider the following distribution of 
the values uo(x) (analogously to Cases (a), (al)): 

Uo(X)>O if - c ~ < x < O ,  uo(O)=O, 

(C~) uo(x)<O i f O < x < o o ,  

Uo(X)>O if - r  < x < O ,  uo(O)=O, 

(C~) Uo(X)<O i f v < x < ~ ,  

u0(0) - 0 if 0 < x ~ < v .  

Obviously, the structure of the phases ~ff~+, ~ff~_, ~ is the same kind for a short time as 
described above in the Cases (a), (al). Indeed, we can find a rectangle E located in a 
narrow strip QT* near the line t = 0 with similar conditions on u as in the Cases (a), 
(al). Note that the spontaneous appearance of the interfaces in QT* \E is eliminated in 
view of Lemma 3 and the discussion accompanying the function v(x) in Chap. 3. 
Therefore there exists interfaces ~ +, ~ _ such that they are nondecreasing continuous 
functions on [0, T*] dividing QT* into ~ff~• ~ .  Denote by 

u(x,t)  for (x , t )  e Q ~ A { x < ~  § 

u §  0 for ( x , t ) ~ Q ~ N { x 1 > ~  § 

where u(x, t) is a continuous weak solution of P2 and 

u(x,t) for (x , t )  e Q ~ N { x > ~ - ( t ) } ,  

u - ( x , t ) =  0 for (x , t )  e Q ~ A { x ~ < ~ - ( t ) } .  

It has already been noted in Chap. 3 that the function 8/Sx(u 2) is continuous across 
the interfacial curves. From the above remark it follows that u § is a generalized sol- 
ution of the Cauchy problem on which the equation is parabolic (accordingly, u -  is a 
generalized solution of the Cauchy problem on which equation (1.1) is backward 
parabolic). So we have 

THEOREM 3. - Let u be a continuous weak solution of P2 under assumptions (C~) 
C" ( 2 ) .  Then near t = 0 for u it holds the following form 

U = U  + + U - ~  

with the functions specified above. 
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Now it would be interesting to discuss the question about an existence of a con- 
t inuous weak solution of P2. To find this solution, our s t ra tegy will be concentrated 
on the solutions having the form of u = u + + u - .  We illustrate this design by two 
example. 

I) Interface dynamics  wi th  s tat ionary interfaces. 

The existence of a generalized solution u § with initial data 

f u o ( x ) ,  f o r x < O ,  
u * (x, O) - uo + (x) = { 

( O, for X I> 0 

under the hypothesis (H) is well-known. In case of the assumptions from (C~) on u0 (x) 
for x <~ 0, this solution has interface beginning at x = 0 which is stationary for a posi- 
tive time t(u~- ), so-called waiting time, if and only if, (see [3]) A - (Uo+, [x, 0)) < co. In 
particular, 0 < {A-(Uo + ,[x, 0))} -1 ~< ~t(u~-) <<. t t { A - ( u ~  ,[x, 0))} -1 with some con- 
stant # > 1 independent of uo + . As for the existence of function u - we take the initial 
data uo- from {7~(wo): a <~ we <- O, we(x)  < 0 f o r x  > 0, lal < ~ , w e ( x )  - 0 f o r x  <~ 0, 
we ~ C(R)} It =o; here 7~(wo) is a semiorbit of a generalized solution w = w(t,  we) of 
the Cauchy problem for (1.1) (in the direction of decreasing time) emanating from we 
at the time t = 0. For  each v < 0 the ~ ( w o )  is defined by ~'~(we) = {w(t ,  we): t ~< v}. 
In view of the same reason as above, we consider the transformation ~ of w. Under  
the condition A + (5(x,  0), (0, x]) < ~ there exists a positive waiting time t (~(x ,  0)) 
such that 0 < {A + (5(x,  t), (0, x ] )}- I  ~< t t t (u~)  ~< t~{A + (~(x, t), (0, x ] )} - l .  So if 0 ~< 

~< min(t(~(x,  0)), t (u~))  then 

[ u  + ( x , t )  for x~<0, 

u(x,  t) = l u -  (x, t) for x1>O, 
k 

O<.t<~O, 

(where u -  e { ~ ( w e ) } )  is a continuous weak solution of P2 with stationary interface 
(the integral identity for ucan be readily verified). To obtain more detailed informa- 
[ion abvout u we consider (as above) the function 

- u - ( x ,  0 - [ )  for (x , t )  e Q o ,  x > 0 ,  

~ ( x , t ) =  0 for (x , t )  e Q e ,  x~<0 .  

According to the well-known results for the porous medium equation (see, for in- 
stance, [22]), {~,(Uo): 0 ~< ~7o ~< fl, fl < ~ ,  uo e C(R)} is a precompact  subset  of  C(R). 
This shows that uo (x) for x i> 0 cannot be an arbi trary continuous function on R + 
Moreover, for ~7(x, t) near the line { x =  0} (see Lemma 2.1,[23]) it holds 
A § (~(x, t) ,(0,  x]) ~< K~o(1 - t/tA*) -1 , 0 ~< t ~< 0, where tA* is quantity depending on 
A § (~7(x, t), (0, x]) such that  tA* >>- 0 with some finite constant K~ o depending only on 
u0 or, roughly speaking, ~(x, t) behaves like ax2(1 - t / tA.) -1 + O(X 2) as x---> +0.  The 
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bucrfaces 

u>O 

~Y 

Figure 4 

u<O 

X 

same representation is to be true for u § near {x = 0}. In view of that, it follows that 
the behavior of Uo(X) near {x = O} must be specified. 

II) Interface dynamics with an interfacial layer region. 

Assume that the initial state Uo satisfies (C~). Then the appearance of the positive 
phase is a result of the existence of a generalized solution u + with initial data satisfy- 
ing the hypothesis (H). Using the methods, of I), we find that the negative phase oc- 
cupies the set {(x, t)~Qo~: v I> x < ~},  where 01 is a waiting time (see Fig. 4). 
Therefore we can conclude that there exist phases ~D~+, ~[~_, generated by u § and 
u - ,  with an interfacial layer region ~ separating them such that these sets lie with- 
in some strip situated along the line {t = 0}. Note that the location of phase fronts 
will depend on the initial state uo(x). 

In summary, we formu:[ate the following result. 

THEOREM 4. - Let u0 be the function given on ( -  ~ ,  0] which satisfies hypothesis 
(H) and the relevant assumptions from (C~). Then there exists an extension of u0 on 
(0, ~),  satisfying hypothesis (H) and the rest assumptions from (C~), such that Uo 
generates a continuous weak solution of the Cauchy problem for (1.1) on some inter- 
val time. 

REMARK 3. - As is evident from the foregoing the function UOIR§ must be from 
some precompact subset of the space C of continuous functions on R + with the com- 
pact-convergence topology. 
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