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Sobolev Spaces Associated to a Polyhedron 
and Fourier Integral Operations in R~(*). 

PAOLO BOGGIATTO 

Abstract .  - The theory of the Sobolev spaces H~ (R') (m e R, ~ polyhedron in R 2n) of[BG] is re- 
visited here in the frame qf new classes of pseudodifferential operators related to the same 
polyhedron ~. These operators generalize to corresponding classes of Fourier integral opera- 
tots, for which we present the main lines of a symbolic calculus and results of continuity on 
the H~(R')  spaces. 

O. - I n t r o d u c t i o n .  

Let P = ~ ayD ~ be a general partial differential operator with constant coeffi- 
cients; consider its symbol p(~) = ~ a~ ~Y and the related characteristic polyhedron ,~, 
that is the convex hull of the set { y: ar ~ 0 } U { 0 }. The polynomial p(~), as well as the 
operator P, is said to be multi-quasi-elliptic if the polyhedron ~ is complete and 

w~(~) <~ CIp(~)I where w~(~)= ~ / ~  ~r ;  cf. the next Section 1 for more detailed 
definitions. 

Operators with constant coefficients of multi-quasi-elliptic type have been studied 
by FRIBERG [F], CATTABRIGA [CT1], [CT2], PISI [P] and, in the frame of Gevrey class- 
es, by ZANGHIRATI [Z] and CORL~ [C]. 

With respect to these works in BOGGIATTO [BG] ,,half), of the dual variables in the 
symbol p(~) are ,,turned, into x variables. More precisely, considering only even di- 
mensions d = 2n, ~ = (x, ~) eR~ x R~, r = (a, fl), to the multi-quasi-elliptic polyno- 
mial 

P(~)= E a(a, fl)xa~ ~ (a,~)~ 

(*) Entrata in Redazione il 24 maggio 1994. 
Indirizzo dell'A.: Dipartimento di Matematica, Universit~ di Torino, Via Carlo Alberto 10, 

10123 Torino. 
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we associate 

P =  ~ a(~,8) x ~D~. 
(a ,~)~  

The operators defined in this way include for instance the SchrSdinger operator 
L1~ § V(x) when the potential V(x) is assumed to be a negative multi-quasi-elliptic 
polynomial in the x variables, a representative example in R 2 being: 

y ( < ,  x 2 )  = - + + 

In [BG] parametrices for operators in R ~ of the preceding form are constructed in 
the frame of the classes HF'~' m(R 2~) of SHUBIN [S]. Moreover, weighted Sobolev 
spaces, denoted by H~(R~), are associated to the polyhedron 8'; in particular 
u e H~(R n) = H~(R ~) means that 

IlUlIHa,(Rn) ~__ s IlXaD~UIIL2(R,~) < c o .  
(a, fl) e 5' 

As shown in [BG], an operator with polynomial coefficients P, with multi-quasi-el- 
liptic symbol p(~), ~ = (x, ~), is Fredholm as a map 

P: H~(R ~) ----> H ~ -  ~(R~), 

in particular 

P : H~ (R ~ ) -+ L ~ (R ~). 

The first aim of the present paper is to revisit the theory of the Sobolev spaces 
T~ R ~ Hz ( ) making use of new classes of hypoelliptic pseudodifferential operators on R ~ 

whose symbol p(~), ~ = (x, ~), satisfies estimates of the type: 

iaTp(~)l  ~ Crw~n-e]Yl (~), ~ E R  2n 

for some m e R , ~ > 0 .  
m ~(R ) the corresponding hy- We denote these classes by Aq, ~(R 2~) and by HA~, 2,~ 

poelliptic classes where we require w~(~)~< CIp(~) I . 
In Sections 1 and 2 we study the related pseudodifferential operators in 

HL~ z(R ~) and, in terms of them, we re-define the spaces H~  (R~), following a general 
idea of BEALS [B] (see also BONY-CHEMIN [BC]). 

In this first part of the paper we do not go into great detail as it is just a rear- 
rangement of the results of[BG] into a modified symbols setting. 

This new setting leads, in the second part of the paper, to a natural generalization 
of the HL~, z(R ~) pseudodifferential operators to Fourier integral operators of the 

form 

= (2xc)-~ ~ e ~(~' ~) a(x, ~) u(~) d~, Au(x) 
R~ 

with amplitude a ( ~ ) e A q ~ ( R  2~) and a real valued phase function satisfying 
~(R ) for lYl = 2. ~ 

In Sections 3 and 4 we give a formula for the composition of a Fourier integral op- 
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erator with a pseudodifferential operator and results of continuity in S(R  n) and 
S'(R') .  These results are analogous to those of other classes of Fourier integral opera- 
tors: see for instance HELFFER[H], HELFFER-ROBERT[HRB] for the case when 
w z ( ~ ) -  I~l, PARENTI-SEGALA [PS], RODINO [R], LIESS-RODIN0 [LR] for non homoge- 
neous settings in the local frame, MOHAMED [M] for more general amplitudes under 
restrictive assumptions on the phase function. We do not know whether our results 
can be extended to the general case, when wz(~) is replaced by an arbitrary weight 
function of BEALS [B], H()R~L~DER [H0], globally defined in R ~ . In fact, in our proof 
we use the peculiar property that w2(~) is a polynomial. 

In Section 5, finally, we prove the continuity of our Fourier integral operators 
with respect to the H ~ ( R  ~) spaces. 

In conclusion we remark that the results of Section 3 and 4 provide the necessary 
analytical tools for the study of the spectral properties of certain operators arising 
from quantum mechanics; see the above-mentioned SchrSdinger operator. These ap- 
plications ~dll be detailed considered in a future paper. 

I wish to express my gratitude to Prof. L. RODINO whose helpful support has been 
essential for this work. 

1.  - D e f i n i t i o n s .  

Let {81, . . . ,  S k }  be k vectors in R d (d > 1). 
The convex hull of the set {s 1 , ..., s k} is said ,,convex polyhedrom, generated by 

{s 1, ..., s k} and the k vectors are said ,(vertices)~ if they are convex-linearly 
indipendent. 

Let P~ be the family of the convex polyhedrons 8" such that: 

(1.1) - -  ~ r  f o r j = l , . . . , d } ;  

(1.2) - -  8' has dimension d = dimRd; 

- -  if s i (i = 0, ..., N(8")) are the vertices of 8" then: 

(1.3) Q ( s i ) = { r e R ~ : O < < . r < , . s i } c ~  

where r <<. s i means that rj <~ s] ( j  = 1, ..., d); we set also s o = 0. 

For every ~ e P ~  there exists a non empty finite set A ( ~ ) c R d + -  {0} such 
that: 

8"= ~ { s e R d : ( a , s } < < . l }  
a e A(5') 

Let Fa (8") = {s e 8": {a, s} = 1}, F(g') = U Fa (8). A polyhedron 8" s Pe is said 
a~A(~) 
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to be ,,complete, if for every r, s e R d with s e $ and 0 ~< r < s we have r e $ - F($). 
That means that the polyhedron has no faces parallel to the coordinate hyperplanes, 
i.e. aj > 0 ( j  = 1, ..., d) for every a e A($), 

For p( ~ ) = ~, aa ~a ; ~ e Rd ; aa e C; a e N  d (No = {0, 1, 2, ...}), the convex hull of 
the set {0} t3 {a e N0~: aa ~ 0} is said ,~characteristic polyhedron, of p(~). 

Since we are interested essentially in characteristic polyhedrons of polynomials, 
we shall consider from now on only polyhedrons with integer vertices also when we 
won't state it explicitly. 

A polynomial p(~) is said ,,multi-quasi-elliptic, if its characteristic polyhedron be- 
longs to Pal, iS complete and if exist two constants C, R > 0 such that 

I~rl <<-CIp(~)I, I~1 >>.R, 
~ V ( $ )  

where V($) is the set of the vertices of ~. For references see FRIBERG [F], PINI [P], 
ZANGHIRATI [Z], CORLI [C], CATTABRIGA [CTI], [CT2]. 

According to [BG], in the preceding estimate we may replace ~ I~ ~ I with the 
,~weight function,: r ~ v(~) 

w ~ ( r  = g~. 
In [BG] we showed that w~(~) belongs to one of the Shubin classes (see [S]) and 

we used the corresponding pseudodffferential operators to define the Sobolev spaces 

H~ (R ~). 
Here we prefer to define symbol classes that are directly ,,shaped, on the weight 

function w~(~) and are therefore more suitable to develop the theory of pseudodiffer- 
ential and Fourier integral operators we are interested in. They can be regarded as a 
particular case of the general classes of BEALS [B], HORMANDER [H{~]. 

- e AQ,~(R ) the set of the DEFINITION 1.1. For m R, Q e]0, 1] we denote with ~ d 
functions a ( ~ ) e  C ~ (R d) that satisfy the following estimates: 

la~a(~)i <<.Caw~-~l~l(~), ~ e R  g 

for any mult'findex a and for suitable constants Ca > 0. 
We have w~ e A~o ' ~(R a) for a certain Qo > 0, whose largest value can be computed 

in terms of $; see [BG]. In Definition 1.1 we shall understand 0 < q < Q0 < 1. 
We will often omit the dependence from R d simply writing A ~, ~ instead of 

A~,~(Rd).  
In the ease of even dimension d = 2n, n e N,  ~ = (x, ~ ), x e R ~, ~ e R '~, we asso- 

ciate to each symbol a ~ Aq~,~(R 2~) the pseudodifferential operator: 

= (2~) -~ ~ e ~ a ( x ,  ~)~(~)d~, u e S (R~) .  (1.4) A u ( x )  
R ~ 

We say that a(x, ~) is the symbol of operator A (writing a = a(A), A = Op(a)) and 
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AQ, ~(R ). We shall be we indicate by L m (R ~ the class of operators with symbol in m 2n 
particularly interested in hypoelliptic symbols defined as follows: 

DEFINITION 1.2. - A function a e C ~ (R ~) is a hypoelliptic symbol in the class 
HA~,~(R d) if the following conditions are satisfied: 

1) there exist posive constants C1, C~, R such that: 

W m 

2) for each multiindex y exist C 7 > 0, R > 0 such that: 

m d That is, in view of condition 1): a ( ~ ) � 9  Ao, z(R ). 
If d = 2n, n �9 N, then/irL~, z(R ~) denotes the correspondent class of hypoelliptic 

pseudodifferential operators. 
t m (R,~ and HL~z(R ~) are standard. We postpone The properties of the classes ~o, ~ J 

their detailed list to Section 2. 
We give now a the definition of the Sobolev spaces H ~  (R ~) by means of hypoellip- 

m n n tic operators of type HLo, ~.( ). 

m 2 n  DEFINITION 1.3. - Let 2 �9 P ~  be a fixed complete polyhedron and am �9 HA o, o, ( R )  
be a hypoelliptic symbol; then we set: 

H ~ ( R  ~) =: A~I(Le(R~))  where Am = Op(am). 

The definition coincides with that in [BG], but there we regard Am as an operator 
in the classes of SHUBIN [S]. 

We remark that H ~ ( R  ~) depends neither on Q nor on the particular symbol 
m 2 n  ameHAo,~,(R ) choosen, but only on m e R  and 2 � 9  

To complete the description of H ~ ( R  '~) we recall from [BG] the main features of 
these spaces; we refer to this paper for more detailed statements and proofs. 

PROPOSITION 1 . 4 .  - H ~ ( R  ~) has a Hilbert space structure given by the inner 
product: 

(u, v)~ = (A~u, AmV)L 2 + (Ru, RV)L~ 

where Am is a hypoelliptic operator defining the space H ~  (R ~) according to Definition 
1.3 and R is a regularizing operator, R = I - fi~mA~, with Jim left parametrix of A,~ ac- 
cording to Definition 2.9 and Proposition 2.10 below. 

We will indicate for short with Ilull m the norm of an element u in the space 
H~(R'~). 

PROPOSITION 1 . 5 . -  The topological dual H~(R'~) * of H ~ ( R  ~) coincides as Hilbert 
space with Hj~(R'~). 



20 PAOL0 BOGGIATT0: Sobolev spaces associated, etc. 

PROPOSITION 1.6. - Let S(R n) be the Frechet space of ~,rapidly decreasing, func- 
tions on Rn; we have the following continuous immersions: 

id : S(R ~) --, H~ (R ~) ; id : H~ (R ~) --, S'  (R ~) 

for any m e R, and the compact immersions: 

id: Ht (R  ~' ) --) H$(R ~) 

f f t > s .  

We recall also that an equivalent definition of the spaces H~(R ~) = H~(R ~) is: 

H~(R ~) = {u e S'(R~): xaD~u e L2(R ~) for (a, fl) e 8 ~} 

and the inner product: 

(u, v)~,= • (xaD~u, xaDZv)i ~ 
(a,~)~x 

gives H~(R ~) an equivalent Hilbert space structure. 

We generalize now the pseudodifferential operators to the following type of 
Fourier integral operators. 

m 2 n  DEFINITION 1.7. - Let a e A~, ~(R ) and q~ be a smooth real valued function satisfy- 
ing the following condition: 

a ~ E A ~  2") for every y with 171 = 2 .  

Then we define the Fourier integral operator: 

Aa,~u(x)=(2~)-~ f ei~(~'~la(x,~)~t(~)d~ for ueS(R~) .  
R" 

We shall come back to this type of Fourier integral operators in Section 3. 

2. C l a s s e s  o f  s y m b o l s  "~ d - AQ, z (R  ) a n d  HA~,~(R~). 

We summarize now the main properties of the classes of symbols A~, ~(R d) and hy- 
poelliptic symbols HA ~, x(Rd). 

Their properties are very similar to those of other classes of pseudodifferential 
operators (in particular the Shubin classes) and can be easily recaptured from the 
general calculus in BEALS [B], HORMANDER [H()], so we don't go into the details of the 
proof. For the quasi-elliptic case, i.e. the case when the polyhedron ~P has a single 
face, see for example GRUSHIN[G], HELFFER-RODINO[HRD], and BOVE-FRANCHI- 
OBRECHT [BFO]. 
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PROPOSITION 2.1. - Le t  m � 9  ~)�9 1]; then: 

1) "~ d Ao, z (R ) is a vector space; 

2) if a l � 9  a e e A ~ , ~ ( R  a) then a l a ~ z � 9  d) 
= min(~)~, Q2); 

3) for every mult'findex a e N d :  ~ a  �9 A~,~ el~l ( R d ) ;  

4) ~QnA ~, ~(R d) = S(Rd). 

(2.4) 

with Q = 

DEFINITION 2.2. - Le t  aj �9 A ~ z ( R  d) and mj --+ - ~ for j --) + ~ .  We write 

a - ~ a j  
j = l  

and a - ] ~  a~�9  ~) where ~ = m a x m j .  We have then 
j = l  j>~r 

if a � 9 1 7 4  ~) 
a �9 A~)z(Rd). 

PROPOSITION 2 .3 . -  I f  aj �9 A~/~(R d) with my--+ - ~  for j--+ + ~ then there exists 
a �9 C | (R d) such that: 

a - ~ a j .  
j = l  

Furthermore  if b is another function such that  b - ~ bj holds then a - b �9 S(Rd). 
j = l  

= L m (Rn~ If  d 2n,  according to (1.4), a pseudodifferential operator A = Op(a) �9 o, ~ J 
with a symbol a �9 A~, z(R e~) is defined. The following properties hold for the opera- 
tor A. 

2n PROPOSITION 2.4. - Le t  a �9 A e ~, ~(R ), then A defines a continuous map: 

(2.1) A:  S(R" ) ~ S(R~ ) , 

that  extends to a continuous map: 

(2.2) A : S' (R ~) -+ S' (R ~). 

Furthermore:  

if a � 9 1 7 6  2~) then A extends to a continuous map: 

(2.3) A : L2(R ~) --) L~ (R~) ; 

if a �9 A~,~(R2~), m > 0, then A extends to a compact operator: 

A : L2(R ~) -->L2(Rn). 

DEFINITION 2.5. - Let  A �9 L~ ~, ~(Rn), we indicate with tA the operator defined by 

the condition (Au, v) = (u,~Av), u, v �9 S(Rn), where (u, v) = f u(x) v(x) dx, and with 

R ~ 
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A* the operator defmed by the condition (au, v ) =  (u, A ' v ) ,  u, v eS(R~), where 

(u, v) = ~ u(x) ~(x) dx. 
R ~ 

PROPOSITION 2 . 6 .  - I f A  E L m ~R n~ ~A e , ~  ~then eLo ,~(R n) a n d A * e L  ~ ~R ~ e, ~ ~, further- 
more the following asymptotic expansions hold: 

) - o(,0, - ~), 

~ 1  . ~ -  a(A * ) - ~ O~ D~ a(x, - ~). 

m l  + PROPOSITION 2.7. - Let A1 e L~,'~(R ~) and A~ e L~,~(R~); then A1A2 e Le, ~ m(Rn) 
and 

1 a~al(x, ~)D~a2(x, ~) cx(A1A2) - ~ 

where al(x,  ~) = a(A1), a2(x, ~) = a(A2). 
We state now the main properties of hypoelliptic symbols and operators intro- 

duced in Definition 1.2. 

PROPOSITION 2.8. 

1) If a e H A ~ e ( R  d) then a - l  eHA~,'~(R d) and (~a) /aeH/ l~ ,~a t (R  d) 
for all a (eventually after a modification of a(~) on a compact set). 

2) If a~ e H A ~ ( R  d) and a2 e H A ~ ( R  d) then al a2 e HA~,~  TM (Rd). 

A1A2 eHLe ,~  (R~). 3) If A1 e HL~,'~(R ~) and A2 e H L ~ ( R  ~) then ~ + "~ 

4) If  A e HL~, ~(R n) then tA e HL~, ~(R ~) and A* e HL~, ~(R~). 

L ~ R ~ DEFINITION 2 . 9 .  - An operator R e ~ R  e' ~( ) is said ,~regularizing,. 

Regularizing operators define continuous maps R: S '  (R ~) ---~S(R~). 

PROPOSITION 2.10 (Existence of the parametrix). - Let A e HL~, ~(R~); then there 
exist an operator B e HLe,'~(R ~) and two regularizing operators R1 and R2 such 
that: 

A B  = I + R1, BA = I + R2. 

B is said <,parametrix, of A. If  B' is another parametrix of the same operator A 
then B -  B '  is a regularizing operator. 

PROPOSITION 2.1 (Regularity of hypoelliptic operators). - Let A e HLe~,~(Rn). If  
Au  e S(R ~) for some u e S '  (R n) then necessarily u e S(R~). 
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An asymptotic expansion formally identical to that given, for example, in KU- 
MANO-GO [K] (cap. 2, par. 5) could be given for the parametrix of an operator 
A �9 HL ~e, ~,,~'/, for brevity we won't rewrite here this formula. 

The proof of the follow~ag proposition will be detailed, since the argument will be 
useful for the proof of Theorem 5.5 in the sequel. 

L m c u ~  then it defines a continuous operator: P R O P O S I T I O N  2.12. - If A �9 Q,e~** 

A: H~(R~)-+ H~,-'~(R~). 

8 - - m  PROOF. - Let A~ �9 HL~, ~ and A~ _ �9 HL.  ~ the operators defining the spaces 
H$(R ~) and H$-m(R ~) respectively, and A~, A~_~ be two parametrices (of As and 
A~ -m respectively). 

Then A~ _ ~ �9 HLQ,~ and A~ _ ,~ �9 HL~,(~ - ~), so the operator A~ _ ~AA8 belongs to 
the class L~  ~) and defines a continuous map of L2(R') .  

The conclusion follows from the definition of the norms of H~(R ~) and 
H~-~(R~). 

P R O P O S I T I O N  2.13. - Let A �9 HL mQ, ~,tR n~'/, then it defines a Fredholm operator: 

A: H$(R ~ ) --* H~- m (Rn ) . 

The proof is the same as in [BG], where also we proved a formula for the calcula- 
tion of the index. 

3. - Fourier  integral  operators.  

We consider now Fourier integral operators according to Definition 1.7. 
We show first of all that, under additional assumptions on the phase function, our 

operators define continuous maps from S(R ~) to S(R~). 
We set f - g  i f f (~ )  and g(~) are two functions satisfying the condition: 

Clf(~) ~<: g(~) ~< C2f(~) (for every ~ � 9  2n) 

where C:, C2 are suitable positive constants. 
We begin with two technical lemmas. 

LEMMA 3.1. - Let ~b(x, ~) satisfy the assumptions in Definition 1.7. Let p~(x, ~) be 
given in A Q ~, ~. 

If ~ . . . . . .  wz~x, v~gtx, ~ ) ) -  wo,~x, ~) then p(x, V ~ [ x ,  ~ ) )eA~,z .  
If w~(V~b(x, ~), ~) - w ~ ( x ,  ~) then p(V~b(x, ~), ~ ) � 9  AQ~,~. 

m 2 n  PROOF. - We show that p(x, V~$(x, ~))eAe, z(R ). 
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The following estimate holds for the function p(x, V~q~(x, 8)): 

~ '  "~ ~x V~e(x, 8)) -< Cwt(x, 8) lp(x, V~q~(x, 8))1 ~< ,~ ,wxt , 

where C', C > 0 are suitable constants. In order to estimate the derivatives of the 
function p(x, V,~rp(x, 8)), preliminarly we show by induction that: 

(3.8) 8r~[p(x, V~r 8))] = ~ ~ (8~p) (x ,  V=q~(x, 8))28(x, 8) 
0 < 8 ~ < ~ ,  

Ae(181 - I~i) (R2~). for some 2 8e o,v 
If [rl = 1 then (3.8) holds. Assume now that it holds for every r with i~l =mo 

(too e N) and let 8~ = 8~ 8r (the same calculation, even somewhat semplified, holds if 
8~ = 8~ 8zr), then we have: 

a~ [p(x, v ~ ( ~ ,  8))] = a~ ~ [ p ( x ,  v~r  8))] = 

1 

0 < 8  ~< ~,~ ~ 

= ~, [(8~,8r V~q~(x, 8));ts(x, 8) + 

+ k~(8,kS~p)(x,  rl) "(8~a~k~b)(X, 8)'~'~(X, 8) + 
= ~ = V~q~(x, ~) 

+(~pl (x ,  V~q~(x, 81)8~3.~(x, 8)]. 

But 3~3~k~eA~ so (8~8~0)x~'~8 ~Ae(181- I r l ) o ,  ~ and 8x~3.seA ~176 o, 
- Ao[Pl - 171) 
- -  O ,  L~ 

Then for suitable ~Be A~ ~ -I~,t). 

(8~p)(x, V~q~(x, 8)) = E ( 8 ~ p ) ( x ,  V~(x ,  8))~B(x, 8), 

i.e. (3.8) holds for ~ e N with 17] =mo + 1. 
We can now estimate the derivatives of p(x, V~b(x, 8)) as follows: 

18r~[p(x, V=O(x, 8))] ~< Z t (8~P)(X,  V~(x ,  8))1 13.8( x, 8)1 < 

-< C E w t-~ (x, v ~ ( x ,  8))wg ('8' -I~L)(x, 8) -< C'wt~ -~lyl (x, 8), 
0<.8~< t, 

m 2 n  This proves that p(x, V~q~(x, 8))eAQ,~,(R ). 

LEMMA 3.2. - Let ~(x, 8) satisfy the assumptions in Definition 1.7. Let (x, 8) e N~ ~ 
be given, and assume that x ~, 8 8 can be regarded as symbols in AeM~ for some 

M e R .  



PAOLO BOC~IATTO: Sobolev spaces associated, etc. 25 

If  wz(x ,  V~q~(x, ~)) - we(x,  ~) then 

(3.1) x"D~ e ~(~' ~) = e ~(~' ~) b(x, ~) 

where b(x, ~) is in A m with principal symbol x"(V=~(x,  ~))P. 

PROOF. - Let  us write ~ = (x, ~). We begin by proving that: 

a ( D  
(3.2) a~e ~(O = e i*(O Z c,(~) .... ,(~)ar q~(~) . . . .  , ~(~)~b(~) 

a(1)  . . .  a (m)  

where c~(, ..... ,(~) are suitable coefficients and the sum ranges over all the m-tuples of 
multiindices (a (~), ..., a (m)) such that 1 ~< m ~< Ifll and a (1) + ... + a ('~ = fl, a (a) # 0 
for h = 1, ..., m. 

The identity (3.2) holds for 1/51 = 1. 
Suppose now it holds ibr a fixed 5 e No ~'. 
I f j  = 1, ..., 2n, then: 

c~ae/r l a(~) r r = e ~(O[i8~0(~)  ~ ca(,) ,(~)~r ~b(~), ... ~(~)r  + 
a (1), . . . ,  a (m) ' . . . ,  

+ 
a ( 1 ) ,  . . . ,  a ( m ) /  . . . . .  h = l  . . . . .  , m  

This expression is of the same form as (3.2) with fl such that a~ = ar a~ ; so (3.2) is 
proved. 

In (3.2) we further recognize that  all the terms, but  the term i1,1 (V=~b(x, ~))Z, 
contain at least one second order derivate of ~b(x, ~). The conclusion follows then from 
the properties of Definition 1.7 and from Lemma 3.1, by observing that  if 7 < fl we 

M - r  have X a ~ P e A M ~  for some e > 0, and therefore also x~(Vxq~(x, ~))~ e Ao, ~ . 

PROPOSITION 3.3. - Let  a(~) and r (~ = (x, ~) e R~ x R~), satisfy the condition 
of Defmition 1.7. 

I f  wz(V~b(x, ~), ~) - w~(x, ~), then the Fourier  operator 

Aa, ~u(x) = (2z)  -~ f e ~(=' ~)a(x, ~) ~(~) d~ 
R ~ 

defines a continuous map: 

Aa, ~, : S(R" ) ----> S(R n ) . 

PROOF. - (I) We begin by showing that Aa, r is a bounded function whenever  
u e S(R'*). We associate here to the function w~(x, ~) 2 2,~ AQ, ~(R ) the following 
operator: 

w~(D~, ~) = E ~2PD~a. 
(a,~)ea' 
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Then we have, exchanging the role of the x and the ~ variables in Lemma 
3.2: 

w~ (D~, ~)[e i~(x' ~) ] = e io(~, ~) E 
~ a ( 1 )  . (m) 

J ~  co(, .... ~ ~ . . . _ o  
(a, 8) ~ 5' (~) (m ~ a  + . . . + a  ) = 2 a  

= e i~(~' ~) ~ ( ~  (V~ 0(x, ~))~ + R. (x, ~)) = e ~r ~) (w~(V~(x ,  ~), ~) + R(x, ~)), 
( a , ~ ) ~  

where R,(x, ~) and R(x, ~) are suitable functions and the latter belongs to the class 
2 - e 2n  Aq, ~ ( R )  (e > 0). Note that w~(V~q~(x, ~), ~ )e  A~, z(Re~), in view of Lemma 3.1 and 

our assumption w~(V~q~(x, ~), ~) - w e ( x ,  ~). 
In follows that w~(V~(x ,  ~), ~ ) +  R(x, ~);~ 0 for large (x, ~) so that we can 

write: 

~ D ~ [ e  ~r ] 
e ~ ( x ,  D = ( a , ~ ) ~  = : K ~ , , ~ ( e i r  

w~(V~r ~), ~) + R(x, ~) 

where we have set: 

: ~ ' r  (.,~)~z w~(V~(x,  ~), ~) +R(x, ~) D~"" 

We can crite: 

A~, ~ u(x) - 1 Ieir ~)~(~)d~ = 
(2z) ~ 

R n 

1 fg~,~[e~(~,~)]a(x, ~)~t(~)d~- 
(2z) ~ 

R n 

1 o[a(x, ~)~(~ ) ]d~=  
(2~)~ 

/J 

So if we set: 

(2at [ a(x, ~) 
a~,~(x, ~) = ~ 7 ]D[ [ w~(V~b(x, ~), ~) + R(x, ~) 

~r,z(x, ~) = D~a-~(~2~u(~)), 
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then we have: 

~, ~ f e~(~'~)a:,,a(x, ~)~tr,~(~)d~, 
(a, fl) r ~' 7 <<- 2a 

A a ,  ~ u ( x )  ---- 

m - 2 2n  with at, a �9 A o, $ ( R )  and ~ ,  ~ �9 S(R~). 
Iterating this procedure we obtain analogous expressions where 

at, a �9 A om,, ~,k (R 2n) with arbitrarily great k. 
This shows that A~,~u(x)  is a bounded function on R ~. 

(II) Using part (I) we show now that x ~ (~A~, ou)(x )  with u �9 S (R  ~) is a bound- 
ed function for every couple of multiindices (a, fl) �9 No ~". This implies 
A~, r u �9 S(R~). 

We can formally write: 

X, a (a~A~, ~ u) (x)  = (2z) -~ f x ~ a~ [e i~(~' ~) a(x, ~)] ~(~) d~ 
R n 

so it follows from the Leibnitz rule and Lemma 3.2: 

x"  (a~Aa, c u) (x )  = (2z) -~ f e i~(~' ~) b., ~ (x, ~) ~(~) d~ 
R ~ 

where b.,~ �9 A m + M ( R  2~ for some M �9 R depending on a and ft. Q, g) ~ )' 

We conclude from part (I) with a ( x , ~ )  replaced by b~,~(x,~),  that 
xa(a~Aa , r  is a bounded function. 

(III) Finally we show that Aa, r : S (R  n) ---> S (R  n) is continuous. We make use of 
the closed graph theorem. 

Let uk - )  u in S (R  "~) and Aa, ~ uk ---) v in S(Rn). Then fi  (x, ~ ) = e ~(~' ~) a( x, ~) uk (~) 
converges pointwise to f (  x, ~ ) = e i*(~' ~ ) a( x, ~ ) ~( ~ ). 

As uk -* u in S(R~), for fixed s > 0 and s �9 N, we have: 

I I ( )11 - -  

for great k. 
It follows 

8 ((~> = "~./1 + I ~ l ' ) ,  

]u~(~)i ~< - ~  + lu(~)] and ) if (x, [a(x, + �9 

The righthand side of the above estimate, for fixed x �9 R ~ , is a function belonging 
to L 1 (R~) provided that s is taken greater then m + n. 

The Lebesgue bounded convergence theorem shows then that Aa, ~ uk converges 
pointwise to Aa, ~ u. 

For uniqueness of the limit in S ( R  ~) we conclude that v = Aa, ~ u, so the continuity 
of Aa, ~ follows from the closed graph theorem. 
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In order to consider Fourier integral operators acting on the H~(R  ~) spaces we 
extend now these operators to the space S ' (R  '~) topological dual of S(R~). 

THEOREM 3.4. - Let a(~) and ~b(~), (~ = (x, ~) eR~ • R~), satisfy the condition of 
Definition 1.7 and suppose that: 

(3.3) w~(V~(x,  ~), ~) ~ w~,(x, ~) 

(3.4) wx (x, V~ q~(x, ~)) - wz (x, ~). 

Then the Fourier integral operator 

(A~, r  = (2~) -~ I e~O(~' ~)a(x, ~)~(~)d~ (u e S(R'~)) 
R ~ 

has a continuous extension: 

A~, ~ : S ' (R '~ ) --> S ' (R'~ ) . 

PROOF. - It is sufficient to show that the transposed operator tA~, ~ maps continu- 
ously S(R  ~) into itself. 

For u, e S (R  ~) we have: 

v) = (2~)-~ ~ e ~(~' ~) a(x, ~) e -i~Yu(y) v(x) dx d~ dy = (A~, U~ r 
ha. 

= ( 2 ~ ) - n ~ u ( y ) d y  ~ e  -i~v d~ I ei~(~'~)a(x, ~)v)(x)dx 
R~ R~ R~ 

where we have set (v(x)= v(x). 
If we denote by 5: the Fourier transform, we have: 

where: 

(Aa, r u, v) = (u, fro G o :7-1 (v)) 

(Gw)(~) = (2z) -~ [ e ~(~' ~)a(x, ~) ~(x) dx .  
R n 

If we set tq~(x, ~) = ~(~, x) and t a(x, ~) = a(~, x), we remark that the hypotheses 
assumed for q~ and a remain valid for the functions tq~ and ta. 

Then G is a Fourier integral operator of phase t~b and symbol ta, that is G = A~,~, 
and for the transposed operator we have the expression: 

CA = ~ o A ~  o 5 ~-1 

which shows the continuity of tA. 
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We have the following result about the composition of a Fourier integral operator 
and a pseudodifferential operator, 

THEOREM 3.5. - Let A be a Fourier integral operator with amplitude 
a(~) e A ~ = ~,~(R ~'~) m ~ R ,  ~ ] 0 , 1 ] ) ,  ~ ( x ,~ ) eR  ~'~ and phase q~(~). We assume 
that: 

(3.5) - -  ~b is a real valued function such that: a~q~(x, ~ ) e A ~  

for I~'1:2,  

( 3 . 6 )  - -  w~(V~(x, ~), ~) - w a x ,  ~), 

( 3 . 7 )  - -  w~(x, V~q~(x, ~)) -w~.(x, ~). 

Let P be a pseudodifferential operator with symbol p(~) E At, z(R') .  Then PoA is a 
Fourier integral operator of phase ~(~) and amplitude h(~) defined, modulo regulariz- 
ing terms, by the following: asymptotic expansion: 

h(x, ~ ) -  • ca(x, ~) 
a e lV~ 

where 

c~,(x, ~)= (1.)a~p(x,  V=~(x, ~))D~[ei~(~,~,~) a(z, ~)]~=~ 

with ~(x,  z, ~) = ~(z, ~) - q~(x, ~) - (V=~(x, ~), z - x). 
We prove this theorem in the next section. Here are Lemmas that we will need; 

some of them will used also in Section 5. 

LEMMA 3.6. - Under the same hypotheses of Theorem 3.5 we have: 

Ca e A m  + t - ~  ( ~ )" 

PROOF. - We prove thai; for every multiindex f le  N~: 

(3.9) [ a~ e iv(z, ~, ~) ]~ 0 2~ =xeAo,~(R ). 

This follows easily from the following facts: 

- -  [ e i ~ ( : c ' z ' ~ ) ] z = : c  = 1 ; 

for j = 1, ..., n ;  

- -  [~eiV(~'"~)]~== with 1/51 I> 2 is a sum of products of derivatives of 

~b(x, ~) of order greater than 2, so it is a function belonging to A ~ z. 
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Finally from (3.9) we have: 

[a~zei~(x, z, $)az -fla(z, ~)]z = x ~ Ae m, ~ qla -f l [ ,  

so that  D2 [e iv(~' ~' ~) a(z, ~)]~ = ~ E Aq ~, x by the Leibniz rule. 
This together with the fact that, in view of Lemma 

_ A m + t - Q I a i  p(x, V~b(x, ~)) e A~, ~(R2~), shows that  Ca ~ ~'e, 
3.1, we have 

In the proof of Theorem 3.5 we will make use of following fact that  we also formu- 
late here as a lemma. 

LEMMA 3.7. - Le t  C > 0 be a suitable small constant. I f  131 ~< Cw~(~ + 3) we 
have: 

w~(~ + 3) - vo~(~). 

PROOF. - I f  we consider the function w~ ( ~ ) e  AS, ~, thanks to the estimates defin- 
ing the classes A e ~, z we have: 

IVcw~(~)i ~< const,  

so from the following Proposition 3.8 we can assert  that: 

w~(~ + 3) - w~(~)  

as long as we take ]31 ~< Cw~(~ + 3) with C sufficiently small ( that is we satisfy (3.10) 
below with f =  w~ as a particular case). 

The conclusion follows taking the 1/~) power of w~(~). 

PROP0SITi0~ 3.8. - Le t  f be a complex valued function on R d whose derivatives of 
order one are bounded, say max I V~f(u) ] ~< K. I f  for h ~ R d : 

ueR d 

,h, < c inf (V(u)l + V(u + h)i) 
u e R  d 

(3.1o) 

with C < 1/K,  then: 

If(u + h) i - If(u) j �9 

PROOF. - Observe that: 

t If( u + h) i - f f (u)  l i <<- If( u + h) - f ( u )  1 <~ 

~< max i(Vf)(~)[ t h[ <~ gc(] f (u )]  + If(u + h) ] ) ,  

provided that  (3.10) holds, so that  

(3.11) If(u + h)i <~ ( 11 + KcKC) " 
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In the same way we prove: 

(3.12) tf(u)l << ( 1 +__ KC ) If( u + h) t 
1 KC 

From (3.11) and (3.12) we have 

I f (u  + h)  l - I f (u)  l �9 

Lemma 3.7 will be used also in the proof of Theorem 5.4. It states essentially that 
w~(~) is a weight function in the sense of BEALS [B]. 

4. - P r o o f  o f  t h e  c o m p o s i t i o n  t h e o r e m .  

The proof of the composition Theorem 3.5 we give here is rather long and intricate 
but we follow a standard technique used by many authors in analogous theorems for 
other classes of Fourier integral operators. For reference see KUMANO-GO [K], PAREN- 
TI-SEGALA[PS], RODINO [R], HELFFER-ROBERT [HRB], MOHAMED [M]. The difficulty 
consists only in the adaptation of this technique to our case. 

From the functional composition of P with A we have: 

PAu(x)  = f e ~(~' ~) ~i(~) d~ ~ e -i~(~, ~)e~p(x ,  ~7) eiZ, ei~(~, ~)a(z, ~) dz &]. 
1~ R 2~ 

Then we can write formally PA = Ah,, with 

h(x, ~) = e -~(~' ~) ~ e ~ p ( x ,  ~l) e -~z~ ei~(~, ~) a(z, ~) dz d~] = e -~)(~' ~) P(e -~)(" ~) a ( . ,  
. 

R 2n 

Let e > 0 be fixed and q~ e Co ~ (R ~) be a real function satisfying the following 
conditions: 

- -  0 ~ < ~ < 1 ;  

- -  q~(t) = 0 for I tl I> 2 

8 
- -  q~(t) = 1 for I tll ~< ~-. 

If we set g(x, z) = of(Ix - z 12/((x, z))~q), then :~(x, z) is a bounded function togeth- 
er with its derivatives of every order. 

We set now: 

hi (x, ~)  = e - i~(x ,  o ~ ei(X - z, ' )p(x, ~1) e ir ~);~(x, z) a(z, ~) dz d~] 
R2n 

= e -~(~' ~)P(e i~('' ~)Z(', ~)a(., ~)) ; 
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h~(x, ~) = e -i~(*'~) ~ eii~-~"~)p(x, r/)e~(~'~)[1 -;~(x, z)]a(z, ~)dzd~l = 
J 

R2n 

= e -ir ~)P(e ~('' ~) [1 - Z(', ~)] a(., $)) .  

Then h(x, ~) = h! (x, ~) + h~ (x, ~) and consequently PA = A~, ~ + A~, ~. 

(I) We will show that  h2 e A e-: ~ and this will allow us to prove the theorem with 
h(x, ~) replaced by hi (x, ~). 

Consider the operator  

i- z 
A direct calculation shows that ~ [ e  ~(~ - ~' ~)] = e ~(~ - ~' ~) 
Since 1 - Z(x, z) = 0 in a neighbourhood of the hyperplane x = z, we can use the 

operator ~ to write h~ (x, ~) as follows, with an arbi t rary integer r > 0: 

Ih2(x,~)i=i!ie~(~-~"7)ei~(~'~)(1-~t(x,z))a(z,~)tgrC[p](x,z,  rl)dzdt]l .  
R 

We define now: 

(a,~)~ w~(z, V~(z ,  ~)) + R(z, ~) 

with R(x, ~) as in par t  I of the proof of Proposition 3.3, the role of the variables z and 
being now exchanged. 

We observe that  2~, r [e ~(~' ~)] = e i~(~' ~), so: 

R 

~< f It.~,~[e-i~'7(1 - Z(x, z))a(z, ~)t:)rff[p](x, z, ~l)i ]dzdt] 
R2n 

for every s E N. 
I t  is possible to give an explicit expression for tg~r[p](x, z, ~?) as sum of te rms of 

?* 

type a~p(x, ~]) • 3~l(Xkj - zkj)/Ix - zl 2, where 10 t = r. 

In (4.1) we apply then t ~ , ~  to the product a(z, ~)b(x, z, ~]) where we have 

set: 

b(x, z, ~]) = a~p(x, 77)e - ~ ( 1  - •(x, z)) lZI xks - zkj 
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We show that for every mult'findex a we have for all k > 0: 

(4.2) l S~ b(x, z, ~)1 <<- c., ~ (x) -~ (z) -~ (~]) -~ 

for some constants c., ~. 
In fact it is easy prowed by induction that for every 5: 

I Z)) -to : , 

for suitable positive constants ~, ~ and for every (x, z ) e  R 2~. 
Then using the precediing estimate and the fact that p e A~, z, we have from the 

Leibnitz rule: 

-< cr, ((x, z)) 

where C, cr, ~ are positive constants. 
As r is arbitrary this prooves (4.2). 
We consider now the explicit expression: 

t~,~[a(x,~)b(x,z,~)]= ~ D~[(  z 2~ ) ] 
(a, ~)~ ~ w~(z, V~ ~(z, ~)) + R(z,  ~) a(z, ~)b(x, z, 77) . 

Estimates analogous to (4.2) hold for z2"b(x, z, ~]) and the hypothesis (3.7) implies 
A m - 2  that (a(z, ~))/(w~(z, V~b(z, ~)) + R(z, ~))e  Q, z , so applying s times the operator 

ts ~ we get: 

t s 2~, ~ [a(x, ~) b(x, z, y)] = ~ [% (x, ~) bp (x, z, ~])] 
p 

where % ( x , ~ ) e A  m-2sq,z and bp(x,z,y) satisfy (4.2), involving z-derivatives of 
b(x, z, ~) of order not greater then Ms, M a suitable integer. From (4.2) and from the 
estimates defining the classes A '~ -2, q, ~ we obtain that for every k exists an s such that 
for a suitable C > 0: 

This shows at the same time that the integrals defining he (x, ~) make sense and, 
since for the derivatives of he (x, ~) one can procede in a completely analogous, way, 
that he(x, ~) eA~,~.  

(II) It remains now tA) proove that h~ (x, m + t ~) e Ae, ~ and that the required asimp- 
totic expansion holds. 
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( x ,  = 

We set 0 = ~] - V~ ~(x, ~), and we get 

~) = (2z)  -n ~ ea~ Vx~(x, ~) + O)d~? ~ e-iZ~ ~)X(x, z)a(z, ~)dz. hi(x, 
R~ R ~ 

From the Taylor formula (see for instance PARENTI-SEGALA [PSI) we have: 

with: 

R~(x, ~) = (2~)-~ I e~Or~(x, ~, O)~-~o{D:[eiV(~'~'~)Z(x, z)a(z, $)]}dO, 

and 

1 

r~(x, ~, O) = f (1  - t)k-l(a~p)(x,  Vx~(x, ~) + tO)dt. 
o 

But from Lemma 3.6: 

=z Am+t-o[al a: ](a~p)(x, V ~ ( x ,  ~))D:[eiV(~'~'~)Z(x,z)a(z, ~)]~ ~ q,~ , 

then we need only to show that  for every # e N there is a constant C > 0 such that  if 
]a] is sufficiently large we have: 

(4.3) ]R~ (x, ~) ] <~ Cw~ ~ (x, ~). 

Analogous estimates will be easily deduced for the derivatives of R ,  (x, ~). 
Using Lemma 3.1 and Lemma 3.7 to estimate r ,  we see that: 

(4.4) Ir.(x, ,o)l if Iol 

for some suitable small constant C > 0 (see Lemma 3.7) and suitable great  C > 0. This 
estimate is easily generalized to ~ r , ( x ,  ~, 0). 

We take now Z* (~]) e Co ~ (R =) such that: 

)~*(r/) = 1 for It/] ~< _C 2'  

for t' it>C. 
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We consider first the integral: 

I ( 0  )r~(x,~,O)~_.o{D:[ei~(~,~,~))~(x,z)a(z,~)]}dO = I =  (2z) -" e~Ox* w~(x, ~) 
R n 

= If~(x, ~, x - u)D2[ei~(~'~'e))~(x, u)a(u, ~)]du 

[ (o)] 
f . (x ,  $, v) = ( 2 : ~ ) - ~ _ . ~  ra(x, ~, o)X* w~(x, ~) " 

Since on the support of X*(O/(w~(x, ~))) is J0] ~< Cw~(x, ~), then from (4.4) we 
have for every mult'findex fl: 

IvZfa(x, ~, v)l <. const(w~(x, ~))t+Q~-ql~l-ql~l 

(here and later on we indicate with const suitable positive constants). 
This shows that for every positive constant L: 

If~(x, ~, v) I :<~ const(1 + Ivlw~(x, ~))-2Lwt+'-ol"i  (x, ~). 

If we set L = L1 + Le we get for the integral I the estimate: 

(4.5) III ~< cost(w~(x, ~))t+~-~l~l sup {ID~[e~(~'~'~);~(x, u)a(u, ~)]l x 
u 

x(1 + Ix - uiw~(x, ~))-2L, } I (1 + iVlWee(X, ~))-2L2dv. 
R n 

We assume L2 great enough to let the integral converge and we give now esti- 
mates of the term with sup~. 

From the hypothesis (3.5) on ~ we have that: 

l a , ~ ( u ,  ~ ) -  8~q~(x, ~)i ~< const(1 + I x -  ulwAx, ~)). 

It  follows that: 

(4.6) IDs u)a(u, $)]1 < cons tw~+ '+  1( x, ~)(1 + Ix - ulwe(x , ~))~o 

wuit suitable r e R" . 
Finally from (4.5) and (4.6) we have: 

III ~< const(wz(x, ,~))t+m+2.+i-Q[a I 

As a can go to - r162  we have obtained the conclusion for the part  I OI ~< 
<. (C/2)w~(x, ~) of the domain of the integral defining R,(x, ~). 

We consider now the case Iol i> (C/2)w~(x, ~). 

with 
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We set w(x, z, ~, O) = zO - ~f(x, z, ~), and we have: 

~_-~ {D2[e ~'p(~' ~' ~)X(x, z) a(z, ~)]} = 

f l+~,+t=a 
R n 

: Z G. i f l + 7 + 5 = a  
R" 

e -i~o Jz e ~(~' ~' ~) 3~Z(x, z) ~ a(z, ~) dz = 

e -~(~' ~' ~' e)(~(x,  z, ~) 9~z(x,  z) a~a(z, ~ )dz ,  

iz - x{ <<. C' (s /2)  1/2 <- C'(s /2)i /2w~(x,  ~) 

for some C > 0. From (4.8) we obtain then: 

(4.10) i V ~ ( z ,  ~) - V~b(x,-~)1 ~ C'(s/2)l/2w~ (x, ~)" 

and, if Ix! ~< 1: 

where a s are sums of products of derivatives of the function ~(x ,  z, ~) that  we can es- 
timate according to (3.5). 

We show now that  in the region {0{ I> C/2w~(x,  ~) we have: 

(4.7) lV~w(x, z, ~, 0) I >1 constw~(x,  ~). 

Since, in view of (3.5), the second derivatives of the function q~ are bounded, we 
have: 

(4.8) IV~qXz, ~) - V ~ ( x ,  ~)1 ~< const {z - x{ 

But the presence of the cut-function Z(x, ~) allows us to control the growth of {z I 
by means of {x{, more precisely we can limit us to the domain: 

(4.9) lz - x{ 2  /2(1 + Ixl 2 + 

with a suitable small ~ > 0, and here we have: {z{ ~< a{x{ + b where a, b are suitable 
positive constants. 

Substituting in (4.9) we obtain: 

i z -  x{ <~ (s/2)1/2(1 + Ix{ ~ + a 2 {xl ~ + b 2 + 2ab{x{) d2. 

Then, ff l xi /> 1, it is: 

iz - x{ <<. C'(~/2)1/2(1 + {x{2) Q/2 ~< C'(~./2)1/2w~( x, ~); 



PAOLO BOGGIATTO: Sobolev spaces associated, etc. 37 

As ]0[ >>- (C/2)w~(x, ~) we have: 

(4.11) IV~o(x, z, ~, 0)] = ]0 - V~b(z, ~) + V~b(x, ~)[ I> 

I lOI -- IVz~)( Z, ~) + Vx~(X, ~)l I ~ ( C / 2 ) w ~ ( x ,  ~) - c ' ~ l / 2 w ~ ( x ,  ~) 

I> const w~ (x, ~). 

as long as we choose s small enough to have C/2 > C' e ~/~. 
This proves (4.7) which allows us to make use in (4.6) of the operator 

s = - i ~ cj (x, z, ~, 0)a~. with 
j= l  

integrating by parts: 

(4.12) ~-~ e [D~ eiV(~' ~, ~)X(x, z) a(z, ~)] = 

c~ (x,  z, ~, e)  = 
az~ ~o(x, z, ~, 0) 

IV.~o(x, z, ~, e)l 2 '  

= ~ C~ro f e-~(~'z'$'e)t~[ap(x, z, ~)a~X(x, z)a~za(Z, ~)]dz 
/~+y+5=a R n 

where s is an arbi trary positive integer. 
We set now f (x,  z, ~)= ap(x, z, ~)ar~X(x, z)a~a(z, ~) and observe that  there 

exists a constant v e R + such that  for every mult'findex a: 

(4.13) 10~f(x, z, ~, 0)[ = const (x)~ (z)~ (~)~ ( O) ~. 

Considering the operator ts = - i  ~, a~j[cj(x, z, ~, 0)[.]] we observe also 
j=l  

that: 

(4.14) la~ci(x, z, ~, O) I <~ const(x)-~(z)-~(~)-~(O) -~. 

for a suitable u > 0. 
Therefore an iterated application of the operator ts  shows that  for every # > 0 

there exists an integer s such that: 

I t.~ [az (x, z, ~) 3~X(x, z) a~ a(z, ~)]] ~< const (x)-"  (z) -~ (~)-~ (O) -~ ~< 

~< const ((x, ~)) - '  (z) -~ (O)-~. 

This guarantees the convergence of the integrals in the definition of Ra, and at the 
same time it proves (4.3). 

H m (Rn~ 5. - Four i e r  in tegral  operators  on ~ ~ j spaces. 

So far we have defined Sobolev spaces H~ (R  ~) r S'(R ~') (m e R) and Fourier inte- 
gral operators Aa, ,  defined[ on S'(R').  Both were modelled on a fixed polyhedron 

r R 2~ , so it turns out quite natural to look at the behaviour of such operators with 
respect to the H ~ ( R  ~) spaces. 
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The result  we obtain is that  these operators are continuous provided that a fur- 
ther  condition on the phase function ~(x, ~) is assumed. 

In order to prove this we will use a result  of Asada-Fujiwara (for references see 
ASADA-FUJIWARA [ A F ] ,  and HELFFER [H]). We will s tate it in semplified form after  
some preliminary definitions and then prove our theorem of continuity. 

DEFINITION 5.i. - Let  a((x, ~ ) ) e  C = ( R 2 n ) .  We say that  a e S ~ o if 

18~8~a(x,~)[ <~C~, x e R  ~, ~ e R  ~, 

for suitable constants a, ft. 

DEFINITION 5.2. - We say that  ~(x, ~) e C | (R 2~) is an admissible phase func- 
tion if: 

- -  ~(x, ~) is real valued; 

- -  inf Idet[a~ja~k~e~b(x , ~)][ >I 60 for some positive constant 60; 
(x, ~) ~ R 2" 

- -  a ~ q ~ e S ~  for [ a + f l l  = 2 .  

PROPOSITION 5.3 ( A S A D A - F u J I W A R A  [ A F ] ) .  - Let  a e S ~ o and let ~(x, ~) be an ad- 
missible phase function. Then the Fourier  integral operator  

u(x) = ( 2 z ) - "  ~ e ~(=' ~) a(x, ~) ~(~) d~ A~, 
R ~ 

defines a continuous linear map: 

Aa,~: L2(R n) --* L~ (R~). 

Coming back to our case we state first the following Lemma, whose proof is 

trivial: 

LEMMA 5.4. - A~176 �9 

We can now formulate our final result. 

THEOREM 5.5. - Let  a(x, ~) and q~(x, ~) satisfy the same hypotheses as in Theo- 
rem 3.5 and suppose further  that: 

(5.4) inf J d e t [ a ~ 3 ~ ( x ,  ~)]J I> 60 
(~, ~) e R 2~ 

for some positive constant 60. 
Then the Fourier  integral operator  Aa, ~ defines a continuous linear map: 

A~,  ~ : H ~ / R n  j ~ --~ H ~ - m ~ R  n J 

for any s e R .  
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0 2n PROOF. - (I) First of all we remark that for every symbol ao e Aq, ~(R ) the fol- 
lowing map is continuous: 

(5.5) Aoo ' ~: L 2 (R . )  __. L 2 (R, ) .  

This is an easy consequence of Asada Theorem (Proposition 5.3) as we see from Lem- 
ma 5.4 and from our assumptions on the phase function q~(x, ~), which is admissable 
according to Definition 5.2. 

We consider now a symbol a,  e A~, ~ and show that the composition Ao~, ~ oA_~ is 
L2-continuous (where A_~ is an operator defming the space HS"(R  ") and at the same 
time a parametrix of the operator A~ that defines H~(R')).  

From the proof of Theorem 3.4 we recall that 

tAo,, ~ = ~oA%,~O o ~-: 

and similarly considering A_s as a Fourier Integral operator: 

tA_, = ~7o~_~ 05 <-I 

where .4_~ is the pseudodifferential operator with <,transposed>> symbol two(x, ~) = 
= we(~, x) (incidentally we remark that two(x, ~) is associated to the <<transposed, 
polyhedron t~). 

But the composition Theorem 3.5 implies that/t_~ oAto,,~r is a Fourier integral op- 
erator with phase function tr and symbol in the class A ~ ~, so from (5.5) we obtain 
that it is L2-continuous. 

Then the map tAt_~A~,~, r = 5~oA_~ oA%,t~ o 5 ~-1 is L2-continuous and so is its trans- 
posed Ao, r oA_~. 

(II) We want to show now that there exists a positive constant C such that for 
any u e H~(Rn): 

IIAa, ulls-m CllulI . 

From the definition of the norms of the spaces H~ (R n) we easily see that this is 
equivalent to: 

As A_~ is a parametrix of A~, we have u = A_~Asu + Ru  for some regularizing op- 
erator R, so (5.6) is true ff As-mAa,r  is an Le-continuous operator. 

To show this we just  need to observe that A, _ mAa, ~ is, according to the composi- 
tion Theorem 3.5, a Fourier integral operator with phase ~(x, ~) and symbol in the 
class A ~ ~, so part (I) implies the L2-continuity of A , - m A a , ~ A - , .  
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