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Abstract.  - The Cauchy problem is studied for a class of linear abstract differential equations of 
hyperbolic type with variable domain. Existence and uniqueness results are proved for (suit- 
ably defined) weak solutions. Some applications to P.D.E. are also given: they concern linear 
hyperbolic equations either in non-cylindrical regions or with mixed variable lateral conditions. 

1. - I n t r o d u c t i o n .  

This paper is devoted to the study of the following abstract Cauchy problem. Let  
T > 0 be given. Let  Vc H - H * c V* be the standard complex Hilbert triplet. Let  more- 
over {V(t)}t~ [0, T] be a family of closed subspaces of V. We are also given a ,,sufficiently 
smooth, operator function ,,t-->A(t), from [0, T] into 2(V, V*), such that, for a.a. t e  
E [0, T], A(t)  is a hermitian and V-coercive operator. Let  finally u0 c V(0), ul e H,  and 

f ( t )  be given, where ,,t-->f(t), is a ,,sufficiently smooth, V*-valued function. Then, we 
look for a V-valued function ,,t-->u(t),, which solves, in some suitable weak sense, the 
following Cauchy problem: 

(1.1) u(t) e V(t) ,  for a.a. t e]0, T[ ; 

(1.2) u"(t) + A(t) u(t) = f ( t ) ,  in ]0, T[;  

(1.3) u(0) = u0, u ' ( 0 )  = u l .  

We remark that, in the previous setting (of variational type), (1.1)-(1.2)-(1.3) provides 
an abstract unified formulation for various important problems concerning linear hy- 
perbolic equations. So, by this way, we can treat  e.g. (for linear hyperbolic P.D.E.) the 
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Cauchy-Dirichlet problems (with e.g. homogeneous Dirichlet boundary conditions) in 
non-cylindrical regions, and the Cauchy-mixed problems with mixed variable lateral 
conditions. (See Section 5 for such particular cases). On the other hand, such problems 
could also be treated by using other abstract approaches (e.g. the semigroups ap- 
proach). In fact, we could consider the problem (1.2)-(1.3), where, for a.a. t el0, T[, A(t) 
is an unbounded (self-adjoint positive) operator in the Hilbert space H, and, moreover, 
the domain D(A(t)) of A(t) (and also D(A1/2(t))) can vary with t (while, e.g., u0e 
e D ( A ( O ) ) ,  Ul E H  , and a H-valued f(t) are given). 

Bearing in mind this last approach, we are considering, in fact, linear abstract vari- 
able domain hyperbolic problems. For the sake of brevity, we will also use this expres- 
sion for the ,,concrete- problems considered above, and for the abstract (variational) 
formulation (1.1)-(1.2)-(1.3). 

It is well known that, for linear abstract variable domain hyperbolic problems, vari- 
ous important results were proved (in various settings, and under different assump- 
tions) by KRE~N[19], KAT0 [18], DA PRATO [12], CARROLL and STATE [10], GOLD- 
STEIN [16], MAZUMDAR [25]. Afterwards, such problems were investigated by AR0- 
sIo [1], who generalized the previous results on this subject (except for the fact that 
f ( t ) -  0 is taken in [1]). In fact, he considered the problem (1.2)-(1.3) (with f ( t ) -  0), 
starting from the semigroups approach. Next, by using the fractional powers of A(t), he 
introduced a continuous one-parameter family of weak problems (related, in a natural 
way, to (1.2)-(1.3)), where the extremal cases correspond, in fact, to the semigroups 
point of view and to a variational approach. Then he proved, for such a family of prob- 
lems, various results concerning existence, uniqueness, and regularity of the solutions. 
(Notice that the paper [1] also provides a large bibliography, and a careful comparison 
with previous work on this subject). The abstract theory of [1] applies well to Cauchy- 
mixed problems for linear hyperbolic P.D.E., with mixed variable lateral conditions 
(see w 2.3 in [1]). However, it seems that such a theory is not suitable for applications to 
initial-boundary value problems in non-cylindrical regions. 

The aim of our present paper is to study the problem (1.1)-(1.2)-(1.3) (with f(t) ~ 0, 
in general) in the variational setting we introduced at the beginning of this section. 
Since we do not require, in general, that V(t) is dense in H, our abstract results also ap- 
ply to initial boundary value problems in non-cylindrical regions (as well as they apply 
to Cauchy-mixed problems with mixed variable lateral conditions). 

Let us describe the structure of our present paper. Section 2 concerns, at first, the 
notation and the main assumptions. Remark that, in particular, we require that ,~t--> 
-+A(t)-  is a BV-function on ]0, T[ (as AROSlO did in [2]), and that, for a.a. t el0, T[,A(t) is 
a hermitian and only weakly V-coercive operator. Then, in Section 2, we give a (natural) 
notion of a weak (variational) solution to (1.1)-(1.2)-(1.3) (see Definition 2.1). The most 
part of Section 2 concerns various preparatory results, which will be used in the sequel. 
In particular, we consider the projection operator P(t) of V onto V(t)• and we approxi- 
mate it through a suitable regularization by convolution. We also approximate by con- 
volution the data A(t) and f(t), by proceeding as in [2]. 

In Section 3 we prove, through Theorem 3.1, that a weak solution to (1.1)-(1.2)-(1.3) 
actually exists, when we assume (besides the ~natural- hypotheses on A(t), f(t), Uo, uj ) 
that {V(t)} is a non-decreasing family with t. (Observe that a similar monotonicity 
condition is needed for the existence results in [1]). Our main tool, in the proof, is a suit- 
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able procedure of penalization, which is based on the (regularized) projection operators 
P(t). (Such a procedure was previously employed in [6], in a less refined form, for some 
linear abstract variable domain parabolic problems). Moreover, by means of Theo- 
rein 3.2, we obtain that the weak solutions have a further regularity property, when we 
also assume (besides the previous hypotheses) that the spaces V(t) are dense in H.  

Section 4 concerns our uniqueness result, which we keep quite separate from the 
previous ones. In fact, we prove, through Theorem 4.1, the uniqueness of the weak sol- 
ution to (1.1)-(1.2)-(1.3), when we assume (besides the other ,natural- hypotheses) that 
{V(t)} is a non-increasing fami ly  with t. Our proof is based on a classical argument 
due to LADYZENSKAJA [20] (which we employ suitably, by also using some procedures of 
[2]). (Observe that, in [1], the uniqueness result, which corresponds to the variational 
point of view in [1], requires, in fact, that V(t) - constant). 

Now, considering our Theorems 3.1 and 4.1 together, we see that we can get the ex- 
istence and the uniqueness of the weak solution only in the case where V(t) - constant. 
However, in our general abstract framework, our results seem to be rather sharp: in- 
deed, we do not expect, in general, the existence or the uniqueness of the weak sol- 
ution, if the family {V(t)} does not fulfil the appropriate monotonicity condition. A full 
account of this fact will be given in subsection 5.2 (see, in particular, Remark 5.6), by 
means of some ~concrete, examples, to which our abstract theory applies. (On the 
other hand, it is clear (also see subsection 5.2) that, in some special and ,concrete, cas- 
es (e.g. in the case of the classical (linear) wave operator), one can obtain sometimes 
even sharper results, by using a more direct approach). 

Section 5 of our present paper concerns the main examples of applications of our ab- 
stract results: in particular, subsection 5.1 is devoted to Cauchy-mixed problems, with 
mixed variable lateral conditions, for linear hyperbolic P.D.E., while subsection 5.2 con- 
cerns initial-boundary value problems, for linear hyperbolic P.D.E., in non-cylindrical 
regions. 

(As for further regularity of our weak solutions, we expect (by considering the re- 
sults in [1]) that the assumption V(t) - V is needed. Then, in this case, such results are 
well known: we refer e.g. to [3], [15], [1], [2], and to the references therein). 

Let us also remark that, for linear abstract variable domain problems, the literature 
is much wider in the parabolic case than in the hyperbolic one: let us only mention the 
very recent paper by SAVAR~ [27] (and the references therein). (Observe that we will 
also use, in the sequel, some preparatory results contained in [27]). 

* * *  

These authors would like to thank G. SAVAR~ for some helpful discussions and sug- 
gestions, and C. GIORGI for some useful comments. 

2 . -  Notation and main assumptions; the weak solutions. Some preliminary 
results. 

2.1. Let T be given, with 0 < T <  + ~ .  We will use the well known spaces 
Ck([0, T]; X), LP(0, T; X), Wk'P(0, T; X), where X is some Banach space, 1 ~<p ~< 
~< + ~ ,  and k is some non-negative integer. 
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Let now (as e.g. in LIONS and MAGENES [24]) 

(2.1) Vc_H=-H*c_V * , with V separable, 

be the standard complex Hilbert triplet (i.e. V and H are two complex Hilbert spaces, 
with Vc_ H, and such inclusion is continuous and dense; H is identified with its antidual 
space H*,  so that H can be continuously and densely imbedded in V*). (., �9 ) denotes 
both the scalar, product in H and the antiduality pairing between V* and V; ((., �9 )) de- 
notes the scalar product in V. i1" II, t '1, and I1" II. are respectively the norms in V, H, 
and V*. We are also given 

(2.2) a family {V(t)}~E[0, T] of closed subspaces of V. 

We will use the following notation. Let p be given, with 1 <~ p ~< + ~ ; then: 

(2.3) LP(O, T; V(t)) =- {w(t) eLP(0,  T; V)[w(t) e V(t), for a.a. te]O, T[}. 

Next, let us introduce a suitable function A(t) of bounded variation on ]0, T[, with 
values in the space ~(V, V*) of linear and continuous operators from V into V*. So, 
throughout the present paper, we assume that: 

(2.4) A(t) eBV(O, T; s V*)) ;  

(2.5) (A(t) u, v) = (A(t) v, u), Vu, v e V,  

(hermitian symmetry of A(t)) ; 

and for a.a. t e ]0, T[ 

(2.6) 3c > 0, and 32 I> 0 such that : 

(A(t)u,u)+; luL2> cHull 2, vu V, 
(weak V-coerciveness of A(t)).  

and for a.a. te]0,  T[ 

We will also consider functions f(t), such that 

(2.7) f(t) =fl( t )  +j~(t), where f~(t) ELl(O, T; H),  and f2(t) eBV(O, T; V*). 

Now, let us introduce a natural notion of weak solution to the problem (1.1)-(1.2)-(1.3). 
Towards this aim, let us firstly recall that WI'P(0, T; X)cC~ T]; X), where 1 ~< 
~< p ~< + ~ ,  and X is any Banach space. Then, we define 

(2.8) W = {w(t)iw(t) eLl(O, T; V(t)) N WI, I(0, T; H); w(T) = 0}. 

Next, suppose that u(t) satisfies ,,formally, (1.1)-(1.2)-(1.3), and ,,multiply, (in the 
antiduality pairing between V* and V) both sides of (1.2) by any w(t) ~ W; then, inte- 

T 
from 0 to T. By integrating by parts the term I (u"(t), w(t))dr, and taking into grate 

0 
account (1.3), we are led, in a natural way, to give the following definition of weak sol- 
ution to the problem (1.1)-(1.2)-(1.3). 
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DEFINITION 2 . 1 .  - Let (2.1)-(2.2) and (2.4)-(2.5)-(2.6) hold. Let Uo e V(0), u 1E H, and 
f ( t )  be given, where f ( t )  satisfies (2.7). Then, we say that u(t) is a weak solution to the 
problem (1.1)-(1.2)-(1.3), i f  and only i f  

(2.9) a) u ( t ) e L ~ ( O , T ; V ( t ) ) N W I ' ~ ( O , T ; H ) ,  b) u(0) =u0 ,  

and the following equality holds: 

T T 

(2.10) I [(A(t) u(t), w(t)) - (u'( t) ,  w ' ( t ) ) ]d t  = f ( f ( t ) ,  w( t ) )d t  + (Ul, w(0)) , 
o o 

for every w(t) ~ W (where W is defined in (2.8)). 

Let us observe (see Remark 5.6 in subsection 5.2 below) that, under the only previ- 
ous assumptions, we have, in general, neither the existence nor the uniqueness of the 
weak solution to (1.1)-(1.2)-(1.3). We shall prove, in Section 3, an existence result, by as- 
suming (besides the previous hypotheses) that {V(t)} is a non-decreasing family with 
t, i.e. that 

(2.11) V( t l )C_V( t2 ) ,  V t l ,  t 2 such that O<~tl<<.t2<.T. 

The following subsections are devoted to some preparatory results for the proofs in 
Sections 3 and 4. 

2.2. We assume, throughout this subsection, that (2.1), (2.2), and (2.11) hold. We ex- 
tend the definition of {V(t)} .to all of R, by setting 

(2.12) V(t) =- V(O), Vt < 0 ; V(t) -- V(T),  Vt > T .  

T h e n ,  { V ( t ) } t ~  , is also a non-decreasing family with t. Next, we define, for every 
t e R :  

I z(t) - projection operator from V onto V(t) ; 

(2.13) [P(t) - I - z(t) (I = identity operator). 

(Hence, P(t) is the projection operator from V onto V(t) • , where V(t) • denotes the or- 
thogonal subspace of V(t) in V. Of course, thanks to the previous assumptions, 
{V(t) z }t~R, is a non-increasing family with t). Now, consider, for every u, v e V, the 
function ,R~ t - ->( (P( t )u ,  v))-. Thanks to a general result due to SAVAR~ [27] (see 
Prop. 2.1 in [27]), we have that 

(2.14) there exists a (at most) countable set Sp c R, such that the function 

,R~t- ->((P( t )  u, v))- is continuous in R\Sp ,  Yu,  v c V .  

Moreover, since {V(t) 1 }t~R is a non-increasing family, it is clear that 

(2.15) Vv e V, the function ,,R~t-->llP(t) v II 2 = ((P(t) v,v)), is non-increasing, 

and hence differentiable for a.a. t e R, with a non-positive derivative. 
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We remark that the operator function ,R~t - ->P( t ) ,  (with values in 2(V, V)) has only, 
in general, little regularity (even in some (,concrete, cases, where the family {V(t)} 
-seems to depend smoothly on t,; see [7]). For our purposes, we need to approximate 
such a function by more regular maps: we do it by refining an argument used in [6]. So, 
let {Cfk(t)}k>~l a sequence of ,smoothing kernels,, i.e. such that (Vic/> 1) 

[ cpk(t) e C0~ (R) ; ~k(t) ~>0, V t e ~ ;  

1 ] +~ (2.16) ) supp(~k( t ) )c  - - ~ ,  0 ; -~f ~k(t) dt 

Then, we define (Yk >i 1) 
+ r  

= 1 .  

(2.17) P k ( t ) = P ( t ) * c f k ( t ) - -  I P ( t - v )  qJk(v)dT, VteF~.  

(The Bochner-type integral in (2.17) exists, thanks to the previous assumptions on the 
family {V(t)}. On the other hand, observe that the definition (2.17) makes sense, in 
general, by requiring only that the ~(V, V)-function ,~t---~P(t), is strongly measur- 
able). It is clear that (Vk I> 1) 

(2.18) ,t--~ Pk( t ) ,  E C ~ (R; s V)).  

Now, we collect some properties of Pk(t) in the following lemma. 

LEMMA 2.1. - Let (2.1), (2.2), (2.11), and (2.12) hold. Let Pk(t) be defined through 
(2.17) and (2.16). Then, for every k~>l, for any t e R ,  and any u, v e V ,  it results 
that: 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

((Pk(t) u, v)) = ((u, Pk(t) v)) ; 

IIPk(t)vll 2 <<. ((Pk(t) v, v)) ; 

iIPk(t) vll <<-liP(t) vii (and, of course, liP(t) vii <~ Ilvll) ; 

d ((rk(t) v)) -- ((P~ (t) v)) <~ O . v,  v ,  

PROOF. - (2.19) follows easily from the definition (2.17), and the fact that P(t) is a 
projection operator. (2.20) results from the following calculation, thanks also to the 
Jensen inequality (see, e.g., RUDIN [26]): 

]tPk(t)vll 2= _ !  P( t - - v )  VCfk(T) <<- _ l lP( t -T)  vllcfk(v)dv <~ 

+cr  +co  

<<- [ IlP(t - v) vll2 cf k(v) dr= f ((P(t - v)v ,  v)) cf k(v) dr= ((Pk(t) v, v)) . 
J 

(2.21) follows readily from (2.17), by using the fact that supp (elk(t))r [ -  1/k, 0] (see 
(2.16)), and that the function ,~t----> IIP(t)vll, is non-increasing (see (2.15)). Finally, (2.22) 
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results obviously from (2.17), (2.18), and (2.15). (Observe that, in this proof, (2.19) and 
(2.20) were deduced without using the monotonicity of the family {V(t)}). 

The following remark will also be important in the sequel. 

REMARK 2.1. - Under the assumptions in Lemma 2.1, consider any t ~ R, and any 
w e V(t). Then, it results that 

(2.23) ((Pk(t) v, w)) = O, Vv e V ,  and Vk ~> 1. 

In fact, Pk(t )v  belongs to V(t)• : this follows from (2.17), since the family {V(t) • } is 
non-increasiilg, and supp (of k(t)) c [ - 1/k, 0] (see (2.16)). 

In the sequel, we will also use the following lemma. 

LEMMA 2.2. - Under the assumptions in Lemma 2.1, take any u(t) cL2(O, T; V). 
Then, it results that 

(2.24) Pk(t) u(t) --~P(t) u(t) strongly in L2(0, T; V), as k---~ + 

PROOF. - We have, from (2.14), that there exists a (at most) countable set Sp r ]0, T[, 
such that 

(2.25) Vt e]0, T[\Sp, lim_ ((P(t) u, v)) = ((P(t) u, v)), Yu, v e V. 
t---->t 

On the other hand, from (2.16) and (2.17), we get that (Vk~>l, V teR ,  Vu, veV)  

(2.26) I((Pk(t) u, v)) - ((P(t) u, v)) I = [P(t - T) u - P(t)u] q~ k(v) dr, v <<. 

o 

<<- f [ ( ( P ( t - r )  u - P ( t ) u , v ) ) l c f k ( v ) d ~ "  
- 1 / k  

Hence, from (2.25) and (2.26), we deduce that 

(2.27) Vt e]0, T[\Sp, Vu, v e V, ((P~(t)u, v))---)((P(t)u, v)), as k--> + ~ (i.e. that, 

for a.a. te]0,  T[, and V u e V ,  P k ( t ) u - - . P ( t ) u  weakly in V, as k---)+ ~) .  

Take now any u(t), v(t) eL2(O, T; V). Thanks to (2.27), (2.21), and to the Lebesgue 
dominated convergence theorem, we get that 

T T 

I((Pk(t)  u(t), v(t)))dt--> I((P(t)  u(t), v( t ) ) )dt ,  as k--) + ~ ,  
o o 
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and hence that 

(2.28) 
[Vu(t) eL2(0,  T; V), 

) 

[Pk(t) u---~P(t) u weakly in L2(0, T; V), as k---> + zc 

On the other hand, from (2.21), we also have that 

Hence, since L 2(0, T; V) is a Hilbert space, (2.24) follows from (2.28) and (2.29). 

REMARK 2.2. - In the paper [6] (devoted to a class of abstract variable domain differ- 
ential equations of parabolic type), the author assumed, besides the monotonicity by- 
pothesis (2.11), that, Vv~ V, the V-valued function , t - ~ P ( t ) v ,  had to be strongly con- 
tinuous in [ 0, T]. Now, we remark that the results in [6] still hold, if we drop there this 
last assumption (as we can see by reviewing the proofs in [6], in the light of Lemmas 2.1 
and 2.2 above). Anyway, the recent results by SAVAR~ [27] generalized and improved 
considerably those in [6], even in the case where this assumption is removed. 

2.3. For our proofs in the following sections, we also need to approximate the given 
functions , t - -~A( t ) ,  (see (2.4), (2.5), (2.6)), and ~,t---~fl(t),, ,(t--~f2(t), (see (2.7)) by 
more regular maps. We do it in the present subsection, by also using the convolution 
method, and proceeding as AROSm did in[2]. Let us introduce the following 
notation: 

(2.30) i f X i s  a Banach space, a, b e [ - ~ ,  + ~ ] ,  and g ( t ) e B V ( a ,  b;X), 

~(a,  b; g(t); X) denotes the total variation of g(t) in ]a, b[. 

Consider now the BV-functions , t---)A(t),  and ~t---~f2(t)-. The left (resp. right) limits 
A(t  - ), f ~ t  - ) (resp_A(t + ), f i ( t  § )) exist for every t e]0, T] (resp. t e [0, TD. Then, de- 
note by A(t) (resp. f2(t)) the extension ofA(t) (resp. f2(t)) to all of •, such that A(t) = 
= A(0 § ) (resp. f2 (t) = fi ( 0 § ) ) for every t < 0, and such that A(t) = A (T - ) (resp. f2 (t) = 
= j~ ( T - ) )  for every t > T. On the other hand, denote by]'~ (t) the extension off1 (t) to all 
of R, such that ]'2(t) = 0 for every t < 0 and every t > T. Consider now a sequence 
{4 k (t) }k i> 1 of -smoothing kernels-, such that (Yk >I 1) 

lk(t) E Co~(R) ; zk(t) ~>0, V t ~ R ;  [1] ! (2.31) I supp(xk(t))c O, ; xk(t) dt = 1. 

Then, we define (Vk t> 1, Vt e •): 

(2.32) Ak(t) =--4(t) *xk(t) ; flk(t) ~]'l(t) *~/k(t); j~k(t) ~)v2(t) * zk(t),  

where the convolution product * is meant as in (2.17). (The definitions in (2.32) make 
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sense, since the convolution products are, in fact, Bochner-type integrals, which exist, 
thanks to the properties of , t - - )A( t ) , ,  ,,t-->fl(t),, and ,,t--~f2(t),). It is clear that 
(Vk I> 1): 

(2.33) 
i oo o , , , t ---~Ak(t) ,eC (R, 2(V, V*))"  

cr . [, , t -->f2k(t) ,eC (R,  V*) .  

, t  ---> f~k ( t ) ,  e C " (R; H) ; 

We list now various properties of such functions: some of them are obvious; the others 
are proved in AROSIO [2]. Firstly, consider the functions ,t---~Ak(t),. Thanks to (2.4), 
(2.5), (2.6), (2.31), (2.32), it results that (Vk I> 1): 

(2.34) 

(2.35) 

(Ak(t) u,  v) = (Ak(t) v, u),  Vu, v e V ,  Vt e R ; 

(dk(t)u,u)+ lul > elull rubY, Vt R; 

(2.36) Ak(0) =A(0§  A~(0) = 0 .  

Moreover, by denoting by Ill " Ill the usual operator norm in 2(V, V*), and using the no- 
tation (2.30), we also have that: 

(2.37) lim IIIAk(t) - A ( t )  III = 0,  for a.a. t e]0, T[; 
k---~ + ~ 

(2.38) l l lAk(t)  III <" ess sup IliA(v)Ill = M ,  Yt  ~ R ,  
r e ] 0 ,  T[ 

Vk~>l,  

and hence, in particular, 

(2.39) A k ( t ) ~ A ( t )  strongly in L I ( 0 ,  T; 2(V, V * ) ) ,  as k---> + oo ; 

(2.40) 
t 

f ILIA; (~)Itl dr 
0 

= ~(0, t; Ak(v); 2(V, V*)) ~< ~(0, t; A(v); 2(V, V*) ) ,  

VtE [0, T], u 

Next, let us consider the functions ,,t---~flk(t)-, and ,t---)f2k(t),. Thanks to (2.7), (2.31) 
and (2.32), it results that: 

(2.41) flk(0) = 0 ,  f2k(0) =f2(0+),  yk~> 1 ; 

(2.42) 
t t t a) Iflk( )l dT<  lfl( )l VtE[0,  T], Vk~>l;  

0 0 

b) f l k ( t ) ~ f l ( t )  strongly in LI(o ,  T; H), as k-~  + ~ ; 

(2.43) lim Ilfik(t) - f i ( t ) I I .  = 0,  
k----) + r162 

(2.44) IIf2k(t)ll.~<ess sup I l f i (~)H.=N, 
rE ]0 ,  T[ 

for a.a. t e]0, T[ ; 

' r  , Yk~>l,  
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and hence, in particular, 

( 2 . 4 5 )  ~k(t)-->fi.(t) strongly in L~(O, T; V*), as k--~ + ~ ; 

(2.46) 
0 

= v(o, t; f2k(T); V*) < ~0 ,  ~; f2(T); V*) ,  

Vtc [0, T], Vk t> 1. 

2.4. This last subsection is devoted, for the most part, to another approximation 
lemma, which we will use in Section 3, for the proof of our existence result. Firstly, let 
us introduce the following notation. Since (2.1) holds, 

(2.47) we denote by J the canonical antiduality operator from V into V*, which 

is defined by (Ju, v) = ((u, v)), Vu, vEV.  

It is obvious that J is an isometric isomorphism of V onto V*. 
Now, we can state the following approximation lemma. 

LEMMA 2.3. - Let (2.1), (2.2), (2.11), and (2.12) hold, and consider the definitions 
(2.13), (2.16), and (2.17). Let A(t) (resp. f2(t)) satisfy (2.4), (2.5), and (2.6) (resp. (2.7)), 
and consider A(0 + ), and f2(0 + ) (as we did in subsection 2.3). Take any u0 e V(0). Then, 
there exists a sequence {U0k}k~>l such that 

(2.48) 

[a) UokeV, Vk >~ l ; 

b) u0k-~u0 strongly in V, as k--> + ~ ; 

l c) [ f2(O*)-A(O+)uok-kJPk(O)uok]cH,  Vk~>l; 

d) kIIPk(O)uokil<~c -1 , Vk~>l (where c is given in (2.6)). 

PROOF. - Firstly, for the sake of brevity, we define (Vk >/1): 

( 2 . 4 9 )  f = f i ( 0 + ) ;  A- -A(0+) ;  Ak,~=A+~I+kJPk(O) ,  

where ~ is taken (and henceforth is fixed) as in (2.6). Thanks to (2.4), (2.6), (2.20), and 
(2.47), it is clear that (Vk/> 1): 

(2.50) Ak,~e~(V,  V*); (Ak,~v, v)>~cllvll 2, V v e V  (where c is as in (2.6)). 

Hence, Yk >I 1, Ak. ~ is an isomorphism of V onto V *. Moreover, we observe that, i f A ~  
denotes the inverse operator of Ak, ~, (2.50) also gives that (Vk I> 1): 

(2.51) IIAk.~wll <~e-lllwll,, y w e  V*. 

Next, by considering (2.49) and Uoe V(0), we define: 

(2.52) g - - f - A u o - ~ U o  (where ~ is as above). 
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Now, since g e V*, and since H is dense in V*, we have that: 

(2.53) there exists a sequence {gk}k~> 1, such that: gk e l l ,  Vk i> 1; gk--og strongly 

in Y*, as k--> + ~ ,  and, in particular, I lgk-gl l .  <~k-1, Vk>~ 1. 

Next, let us fix any k I> 1, and consider the vector f -  gk (e V* ). Thanks to the proper- 
ties of the operator Ak. 4, we get that: 

(2.54) there exists a unique Uok e V, which satisfies Ak, ~uok = f - g k .  

Hence, we obtain, in fact, a sequence {Uok }k ~> 1 of elements of V. Let  us show that such a 
sequence fulfils (2.48) b), c), and d). Firstly, from (2.54) and (2.49), it results 
that: 

(2.55) f - Auok - kJPk(O) Uok = gk +/tu0k, Vk I> 1, 

and hence (thanks also to (2.53)) (2.48) c) is proved. Next, since uoeV(O),  and since 
Pk(0) v e V(0) • , Vv e V, Vk I> 1 (see Remark 2.1), we also have that: 

(2.56) Pk(O)uo = 0,  Yk I> 1. 

Now, by using (2.51), (2.54), (2.52), (2.56), and (2.53), we obtain that: 

(2.57) IlUok--Uoll=llA[,~(Ak,~(Uok--Uo))ll<<.C-lllAk,~Uok--Ak,~Uoll.= 

= c - 1 ] l f - g k - [ d + ~ I + k J P k ( O ) ] u o l l , = c - l l l g - g k f l . < ~ c - l k - 1  , Vk~>l .  

Hence, (2.48) b) is also proved (with, moreover, an estimate for llu0k - Uol]; such an esti- 
mate is, in particular, a consequence of the estimate in (2.53)). Finally, thanks to (2.56), 
(2.21), and (2.57), we get that: 

(2.58) kllPk(O)uokll=kllPk(O)(uok-Uo)ll<~klluok-Uo]l<~c -1 , Yk >~ l ,  

and (2.48) d) is also proved. 

We shall also use, in the sequel, a suitable generalized Gronwall lemma. Now, we 
recall it (see e.g. BAIOCCHI [ 4 ] ,  also for more general results in this direction). 

LEMMA 2.4. - Let  g(t), a(t), fi(t) be given with: 0 ~< g(t) ~ C~ T]); 0 ~< a(t) 
e L l ( 0 ,  T); 0 <<.fi(t) e L l ( O ,  T). Let go be a non-negative constant. Assume that, for 
every t e [0, T], 

t t 

(2.59) g2(t) <~ go 2 + f a(s) g(s) ds + f fi(s) g2(s) ds 
o o 
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holds. Then, it results that 

(2.60) g(t)<.2 go+ a(s) ds -exp 2 fl(s) ds , 
o 

Yt e [0, T]. 

3. - E x i s t e n c e  o f  w e a k  s o l u t i o n s .  

We prove, in this section, that a weak solution to (1.1)-(1.2)-(1.3) actually exists, 
when we assume that (besides the other ,natural,  hypotheses) the monotonicity con- 
dition (2.11) holds. (Such a solution is not unique, in general, as we shall see in Re- 
mark 5.6 of subsection 5.2 below). 

THEOREM 3.1. - Let (2.1), (2.2), (2.11), and (2.4) (2.5), (2.6) hold. Take anyf( t )  as in 
(2.7), any u0 e V(0), and any Ul e l l .  Then, there exists a (not necessarily unique) weak 
solution u(t) to the problem (1.1)-(1.2)-(1.3) (i.e. a function u(t) satisfying (2.9) and 
(2.10)). 

PROOF. - Our proof consists of the following steps a), b), c). Firstly, we use a proce- 
dure of penalization (with a suitable regularization of the data), in order to approximate 
(1.1)-(1.2)-(1.3) through a sequence of (~regular, problems. Each of them has a unique 
solution, which is (<smooth enough,. Let {uk(t)}k~>l denote the sequence of such sol- 
utions. In the step b), we prove some estimates for the functions uk(t) (independently of 
k) in some suitable norms. In the step c), we pass to the limit: thanks to the estimates in 
b), we can extract from {uk(t)}k >~1 a subsequence, which converges to a function u(t) in 
some suitable weak topologies. Then, we prove that such u(t) satisfies (2.9) and 
(2.10). 

a) Firstly, by proceeding as in subsection2.2, consider the definition (2.17) of 
Pk(t). Next, by proceeding as in subsection 2.3, consider the definitions (2.32) of Ak(t), 
flk(t), and f2k(t). Now, since uoEV(O), Lemma2.3 applies: so, let {Uok}k~>l be a se- 
quence satisfying (2.48) (where J is defined in (2.47)). Moreover, since V is dense in H, 
take 

(3.1) a sequence {Ulk}k~> 1, such that uik E V, Vk >/1, and Ulk---->Ul strongly in H, 

as k--~ + ~ .  

Then, take any integer k/> 1, and consider the following problem: 

(3.2) u~'(t) + Ak(t) uk(t) + kJPk(t) uk(t) = flk(t) +f2k(t), O < t < T ; 

(3.3) uk(0) : U0k, U~ ( 0 )  = U l k .  

Now, we have to recall that: Ak(t) satisfies (2.33), (2.34), (2.35), (2136); J is defined in 
(2.47); Pk(t) satisfies (2.18), (2.19), (2.20);flk(t) andf2k(t) satisfy (2.33), (2.41) (so that, in 
particular, f lk (0)+i lk(0)=f2(0+) ,  Vk 1> 1); u l k e V  (see (3.1)); u0k satisfies (2.48) (in 
particular, (2.48) a) and c)). Then, thanks to such properties, we can use a particular 
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case of a general result by GILARDI [15] (see Teor. 4.4 of [15] with h = 1) to obtain that 

(3.4) there exists a unique uk(t) eCl([0 ,  T]; V) A C2([0, T]; H), 

solution to (3.2)-(3.3). 

b) Consider any integer k ~> 1, and take uk(t) as in (3.4). Since uk(t) is ,smooth 
enough,, we can ,,multiply- (in the antiduality pairing between V* and V) both sides of 
(3.2) by uk' (t). By taking the real parts, and using (2.33), (2.34), (2.47), (2.18), (2.19), we 
get 

d lu;(t) 12 d (3.5) ~ + (Ak(t) uk(t), uk(t)) - (A;(t) uk(t), uk(t)) + 

+k d ((pk(t) uk(t), uk(t))) - k((P~(t) uk(t), uk(t))) = 

Now, we take into account (2.22), and we integrate (3.5) from 0 to t (0 ~< t ~< T). By also 
using (2.36), (2.41), and (3.3), we obtain 

(3.6) lu; (t)12 + (Ak(t) uk(t), uk(t) ) + k((Pk(t) uk(t), uk(t) )) <~ 

t 

lUlk 12 -]- (A(O + ) Uok, Uok) + ~ (A; (s) uk(s), uk(s) )ds + 
0 

t 

+k((Pk(O) u0~, uok))+ 2 [ I(flk(S), u; (s))lds + 21 (f2k(t), uk(t))] + 
0 

t 

+2 1 (f2(0 +), u0k)l + 2 f I (f2'k(s), uk(s))l ds, Yt E [O, T]. 
o 

Now, it is obvious (from (2.48) a) and b), and from (3.1)) that there exist two positive 
numbers M1 = Ml(uo) and M2 = M2(ul), such that 

(3.7) IlUokH ~<M1 and lulk I~<M2, Yk/> 1. 

Then, starting from (3.6), and using (2.35), (2.20), (3.7), (2.38), (2.48) d), (2.44), and some 
standard inequalities, we get 

(3.8) lu; (t) 12 + clluk(t)l12 + kllPk(t)uk(t)l12 <~ 21uk(t) l~ + M~ + MM12 + 

t t 

+ ~ IIIA~(s) lll'll~k(S)ll 2 ds + M1 c-1 § 2 I Iflk(S) l "lUk(S) l ds + 
0 0 

t 

2 N2 c f II + -  + -I luk(t)II2+2NMI+2 f~k(s)ll,'lluk(s)llds Vt~[0,  T]. 
c 2 

0 
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On the other hand, an easy calculation shows that 
t 

(3.9) luk(t) 12<<.21Uokl2+2t~lu;(s)12ds, Vte [0, T]. 
o 

Hence (denoting by 5 a positive number such that I vl ~< ~ I]v]t, Vv e V; see (2.1)), we ob- 
tain (from (3.8) and (3.9)) 

(3.10) rain( l ;  c/2).[tu;(t)12 + lluk(t)ll 2] ~< 

2 N2 <~ 2~c2M~ + M 22 + MM12 + M~ c -~ + - + 2NMi + 
C 

+ f [22T + IliA; (s) t11] [I ~;  (s) j2 § II~(s)II ~] ds § 

o 

+ 2 f[  Ifl~(~) I + lJf~'~(~)ll, ]. [i ~; (~) 12 + Iluk(s)112] "~ ds,  
0 

Then, we use here Lemma 2.4, and we get 

(3.11) [ tu ;  (t)12 + Iluk(t)ll2 ] 1/2 ~< 

~<2max(1;2c  -~) 2 2 ~ 2 M ~ + M ~ + M M ~ + M ~ c - l +  +2NM~ + 
c 

Vt e [0, T]. 

+2  (If~k(s) j § llf2k,s)ll), ds 
o 

�9 exp 2 m a x ( 1 ; 2 c  -t) [22T+ ItlA;(s)lil]ds , v t ~ [ o ,  T]. 
o 

Hence, we take into account (2.40), (2.42) a), and (2.46). So, from (3.11), we obtain 
that 

(3.12) there exists a positive number C, depending on T, V, H, A(t), ~(t) ,  )~(t), 

Uo, u~, but independent of k and of t, such that lu;(t)!  +lluk(t)ll<<.C, 

Vt~[0 ,  T], Vk1>l .  

Now, we come back to (3.8), and we take into account (3.12), (2.1), (2.40), (2.42) a), and 
(2.46). Then, we also get that 

(3.13) there exists a positive number D, independent of k and of t, such that 

kl/211Pk(t)uk(t)ll<<.D , Vt~[0 ,  T], Vk~>l.  
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Hence, we have obtained that 

(3.14) {uk(t)}k~>l is bounded in L ~ (0, T; V); 

(3.15) {u; (t)}k~> 1 is bounded in L ~ (0, T; H) ; 

(3.16) {kl/2pk(t)uk(t)}k~ 1 is bounded in L ~ (0, T; V). 

c) Firstly, it is obvious (from (3.16)) that 

(3.17) Pk(t)uk(t)---~O strongly in L ~(0, T; V), as k--> + 

Moreover, thanks to (3.14) and to (3.15), we can extract from {uk(t)}k >11 a subsequence, 
still denoted by {uk(t)}k>~l, such that, as k--~ + ~ ,  

(3.18) uk(t) ---~u(t) weakly star in L ~(0, T; V), and also weakly in L2(0, T; V); 

(3.19) u; (t) - ~ u  ' (t) weakly star in L~(0 ,  T;H) ,  and also weaklyin L2(0, T ; H ) .  

We will show that u(t) satisfies, in fact, (2.9) and (2.10). Firstly, it is obvious that u(t) e 
e L  ~(0, T; V)N W 1' ~(0, T; H). To verify that (2.9) a) holds, we need only to prove 
that 

(3.20) u(t) e V(t) for a.a. t e]0, T[. 

Towards this aim, consider the above subsequence {uk(t)}k~>l, and take any v ( t )e  
eL2(0 ,  T; V). By using (2.19), (3.18), and Lemma2.2, we get that 

T T 

(3.21) f ((P(t) u(t) - Pk(t) uk(t), v(t))) dt = f ((P(t) u(t) - Pk(t) u(t), v(t))) d t+  
0 0 

T 

+ ~ ( ( u ( t ) -  uk(t), Pk( t )v( t ) ) )dt - - )O,  as k---~ + 
0 

i.e. that 

(3.22) Pk(t)uk(t)---~P(t)u(t) weakly in L2(0, T; V), as k---> + 

Hence, from (3.17) and (3.22), we deduce that P( t )u ( t )=  0 for a.a. te]0 ,  T[. Then, 
thanks also to the definition (2.13), (3.20) is proved. (Actually (see Remark 3.2 below), 
we shall obtain something better than (3.20), i.e. that u( t )eV( t ) ,  for every t e 
e [0, T]). 

Next, we verify that (2.9) b) also holds. Firstly, we have, obviously, that u( t ) e  
eC~ T]; H). Moreover, we can readily deduce, from (3.18) and (3.19), that, in 
particular, 

(3.23) uk(0) ---~u(0) weakly in H ,  as k---~ + 

On the other hand, thanks to (3.3) and to (2.48) b), we also have that 

(3.24) uk (0) --~ u0 strongly in V, as k ---> + 



224 M.L.  BERNARDt - G. BONFANTI - F. LUTEROTTI: On some abstract, etc. 

Hence, (2.9) b) is proved. (Also see Remark3.1 below, for some complementary 
observations). 

Finally, we show that u(t) satisfies (2.10). Towards this aim, take any w(t)~ W 
(where W is defined in (2.8)), and ~,multiply, (in the antiduality pairing between V* and 
V) both sides of (3.2) by w(t). Thanks to Remark 2.1, we get 

(3.25) (u~'(t), w(t)) + (Ak(t) uk(t), w(t)) = (flk(t) +f2k(t), w(t)), for a.a t el0, T[. 

Next, integrate (3.25) from 0 to T. Then, by making an integration by parts, and using 

T T 

(3.26) ~(Ak(t) uk(t), w(t))dt - ~(u;(t), w'(t))dt = 
0 0 

T T 

= (ulk, w(0 ) )+  ~(flk(t), w(t))dt + [(f2k(t), w(t))dt. 
0 0 

Take now, in (3.26), any element uk(t) of the above subsequence {uk(t)}k~>l, satis- 
fying (3.18) and (3.19). Thanks to (2.8), (3.1), (3.19), (2.42) b), it is clear that, as 
k--> + ~ ,  

~lk, W(0) ) - - ->  (Ul ,  W ( 0 ) )  ; 

T 

(u; (t), w' (t) )dt--> ~ (u ' (t), w' (t) )dt ; 
(3.27) o 

T 

(flk(t), w(t) ) dr----> ] (f~(t), w(t) ) dt . 
o 

On the other hand, we claim that, as k ~ + ~ ,  

( T T 

a) ](Ak(t) uk(t), w(t))dt--> I(A(t) u(t), w(t))dt; 

(3.28) 0 0 
T T 

b) f (f2k(t), w(t))dt--> ~(f2(t), w(t))dt. 
0 0 

(Bearing in mind (2.8), it is clear that only w(t) eLl(O, T; V) can be used in (3.28), as 
only w(t) E W t' 1(0, T; H) was used in (3.27)). To verify (3.28) a), we use firstly (2.34), 
and we take into account (3.18). Then (3.28) a) is proved, if we are able to show 
that 

(3.29) Ak(t)w(t)-->A(t)w(t) stronglyin LI(O, T; V*), as k--->+~ 

Now, (3.29) is, in fact, true, thanks to (2.37), (2.38), and to the Lebesg~e dominated con- 
vergence theorem. Similarly, (3.28) b) can also be proved, by using (2.43), (2.44), and the 
Lebesgue theorem again. 

(2.8) and (3.3), we obtain 
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Hence, from (3.26), (3.27), and (3.28), we get that u(t) satisfies (2.10). So, Theo- 
rem 3.1 is completely proved. 

For the sequel, we also need the following notation: 

(3.30) if X is any Banach space, then Xw denotes the space X endowed with its 

weak topology. 

REMARK 3.1. - Bearing in mind (2.9), we observe that, in particular, any such u(t) 
satisfies u ( t ) e L  ~(0, T; V)A C~ T]; H). Hence (thanks also to (2.1)), we can use 
Lemma 8.1 of chap. 3 of LIONS and MAGENES [24] to obtain that 

(3.31) any weak solution u(t) to (1.1)-(1.2)-(1.3) (defined through Def. 2.1 above) 

satisfies, moreover, u(t) �9 C~ T]; Vw). 

Then, note that the initial condition (2.9) b) can also be meant in the sense of 
C~ T]; Vw) (and not only in the sense of C~ T]; H)). On the other hand, in 
the context of Definition2.1, the initial condition u ' ( 0 ) = u l  of (1.3) can only be 
meant, in general, in the sense that (2.10) holds true. However, we will show (by 
means of Theorem 3.2 below) that, under a suitable additional assumption (i.e. (3.33) 
below), any weak solution u(t), obtained through Theorem3.1, satisfies moreover 
u'( t )  �9 C~ T]; Hw) (and in this sense u ' ( 0 ) =  ul can also be meant). 

REMARK 3.2. - The weak solutions u(t) (defined through Def. 2.1) satisfy, in particu- 
lar, (3.20). Now, we can prove that, moreover, 

(3.32) when (2.11) also holds (e.g. in the case of Theorem 3.1 above), it results that 

u(t) �9 V(t), for evemj t �9 [0, T]. 

Towards this aim, let us firstly observe that u ( 0 ) =  u0e V(0). Next, define E = { t �9  
c [0, T] l u(t) �9 V(t)}. Since (3.20) holds, we have that E is dense in [0, T]. Now, take any 

�9 ]0, T], such that t ~t E.  Then, there exists a non-decreasing sequence {tn }~ ~>1, with 
t~eE,  Vn I> 1, and such that t~---) t, as n--> + ~ .  On the other hand, thanks to (3.31), it 
results that u(t~) ---~u(t) weakly in V, as n--> + ~ .  Now, we have that u(tn) �9 V(t~), 
Vn i> 1, and hence, thanks to (2.11), that u(t~) �9 V(t), Vn i> 1. Then, since V(t) is weakly 
closed, we obtain that u ( t ) �9  V(t), and the proof of (3.32) is complete. (We refer to 
SAVAR~ [27] for the proof of several interesting properties of the families {V(t)}, also 
under more general assumptions). 

We want to stress the fact that, in Theorem 3.1, the only assumptions on the family 
{V(t)} are (2.2) and (2.11). Hence, the family {V(t)} can actually have, in particular, 
-jump discontinuities,. 

We want also to stress the fact that, in Theorem 3.1, we do not make any density 
assumption of the spaces V(t) in the space H (so that, in particular, Theorem 3.1 also 
applies well to initial-boundary value problems for linear hyperbolic P.D.E. in non- 
cylindrical regions; see subsection 5.2 below). On the other hand, we can prove that, 
when we make such a density assumption too, then any weak solution, obtained 
through Theorem 3.1, has an additional regularity property. 
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THEORE?CJ[ 3.2. - Let all of the assumptions of Theorem 3.1 hold. Suppose, moreover, 
that 

(3.33) V(0) is dense in H 

(and hence, thanks to (2.11), any V(t) (0 <<. t <<. T) is dense in H). Then, every weak sol- 
ution u(t) to (1.1)-(1.2)-(1.3), obtained through Theorem 3.1, satisfies moreover u '  (t) e 
eC~ T]; Hw) (and in this sense u ' ( 0 ) = %  can also be meant). 

PROOF. - We adapt here, to our framework, a technique which was used by ARO- 
SI0 [1], [2] (see, in particular, p. 159 in [2] and p. 191 in [1]). 

We start as we did in the part a) of the proof of Theorem 3.1. So, let us consider the 
sequences {Pk(t)}, {Ak(t)}, {flk(t)}, {]~k(t)}, {u0k}, {ulk}. Firstly, let us remark (as 
in [2]) that 

(3.34) for every k>~l ,  the modulus ok(5) of uniform continuity in [0, T] of 

t 

Fk(t) = f i f lk (s )]ds  does not exceed the modulus a(5) of uniform continuity of 
3 

0 

t 

F(t) -~ f ]J~(s) lds in [0, T]. 
0 

Next, let us proceed as in the proof of Theorem 3.1. So, consider the problems (3.2)- 
(3.3), the corresponding results (3.4), and the sequence (uk(t)}k >~1 of the corresponding 
solutions u k ( t ) e C l ( [ 0 ,  T]; V)• C2([0, T]; H) (satisfying, in particular, (3.12)). Let 
{uk(t)}k~>l also denote a subsequence satisfying (3.18) and (3.19) (where, as we know, 
u(t) fulfils (2.9) and (2.10)). We will show that 

(3.35) V h e H ,  the sequence {(uk'(t), h)}k~>l is equicontinuous on [0, T]. 

Now, since also (3.12) holds, we can use the Ascoli-Arzel~ theorem, to deduce that there 
exists a subsequence, still denoted by {(u; (t), h)}k~> 1, which converges (to (u ' ( t ) ,  h), 
of course) in C~ T]), as k--> + ~ .  Hence, we have that u ' ( t )  ~ C~ T]; H.) ,  and 
(thanks also to (3.3) and to (3.1)) it is clear that in this sense u ' ( 0 )  = Ul can also be 
meant. 

Then, the present theorem is proved, if we verify that (3.35) holds. Towards this 
aim, take any v ~ V(O), and ,multiply, by v (in the antiduality pairing between V* and 
V) both sides of (3.2). Then, since Pk(t) uk(t)EV(t)•  1 (see Remark2.1), we 
get 

d 
(3.36) --- (u; (t), v) + (Ak(t) uk(t), v) = (flk(t) + f2k(t), v) , Yt  ~]0, T[. 

td 

Next, we integrate (3.36) from tl to t2 (0 ~< t l  ~< t2 ~< T ) ,  and we take into account (2.38), 
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(2.44), (3.12), and (3.34). Hence, we obtain 

(3.37) ](u; (t2) - u ;  (t~), v) I 
t2 

I I(Ak(t) uk(t), v)dt 
t; 

t2 

+ f(flk(t)  +f2k(t), v)dt 
tl 

t2 te ] 
<~llvll" f IIl(Ak(t) IIl'lluk(t)lldt + ~llf2k(t)ll. dt + 

tl tl 

+[vlII f lk( t )  ldt<<.llvll .(MC+N)(t2-t~)+lvla(t2-t~) , Yk>>-l. 
tl 

Take now any h e H .  Then, by using (3.12) and (3.37), we get, for every v ~ V( O ), and for 
any tl and t~ with 0 <<. tl <~ t2 <~ T,  

(3.38) I ( u k ' ( t 2 ) -  u ~  ( t l ) ,  h) I <~ I(u;(t2)-u;(t~),  h - v )  I + I(u;( t2)-u;( t l ) ,  v) I <~ 

<~2CIh-v I +llv]l(MC+N)(t2-t l)+ Ivla(t2-t~),  Vk~  l. 

Hence, thanks to (3.38) and to assumption (3.33), it is clear that (3.35) holds true. 

Finally, by reviewing the proof of Theorem 3.2, we see that (by the same method) 
we can obtain, in fact, the following more general result. 

PROPOSITION 3.1. - Let all of the assumptions of Theorem 3.1 hold. Suppose, more- 
over, that there exists t e [0, T[ such that 

(3.39) V(t) is dense in H 

(and hence, thanks to (2.11), any V(t), with t ~< t ~< T, is also dense in H). Then, every 
weak solution u(t) to (1.1)-(1.2)-(1.3), obtained through Theorem 3.1, satisfies moreover 
u'(t)  ~ C~ T]; Hw). 

4. - U n i q u e n e s s  o f  the  w e a k  s o l u t i o n .  

We prove, in this section, the uniqueness of the weak solution to (1.1)-(1.2)-(1.3), 
when we assume that (besides the other ,natural,  hypotheses) {V(t)} is a non-in- 
creasing family (see (4.1) below). However (see Remark 5.6 in subsection 5.2 below), it 
can happen that, under only such assumptions, a weak solution to (1.1)-(1.2)-(1.3) does 
not exist. 

Bearing in mind Definition 2.1 (and since our problem is a linear problem), we have 
that our uniqueness result is given by the following theorem. 

THEOREM 4.1. - Let  (2.1), (2.2), (2.4), (2.5), and (2.6) hold. Assume, moreover, 
that 

(4.1) V(tl)~_V(t2), Vtl, t2 such that O<~tl <~t2<~T. 
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Let u(t) satisfy (2.9) and (2.10), with uo = 0, ul = 0, andf(t)  = 0, for a.a. t e]0, T[. Then, 
it results that u(t) = O, V t e  [0, T]. 

PROOF. - We adapt, to our framework, a procedure which was used by AaosIo [2] 
(see p. 156 in [2]). (We have here some slight supplementary difficulties, since, differ- 
ently from [2], our operator A(t)  is only weakly V-coercive). Such a procedure relies on 
a classical argument, which is due to LADYZENSKAJA [20] (also see, e.g., LIONS [21], 
LIONS and M_~GENES [24]). 

So, let us fix any s e]0, T], and define 
$ 

(4.2) v( t )=  - ~ u ( r ) d v ,  Vt~[0 ,  s]; v( t )=O,  V t ~ [ s , T ] .  

Since u(t) satisfies (2.9) (with Uo = 0), and since (4.1) holds, we have that v(t) is an 
,admissible test-function,, i.e. that v ( t ) e  W (where W is defined in (2.8)). In fact, 
we have something better, i.e. that v( t )E C~ T]; V), v( t )EV(t ) ,  V t~  [0, T], v ' ( t )  
e L  ~ (0, T; V(t)) ,  along with v(T) = O. 

Now, take w(t) = v(t) in (2.10) (where ul = 0 andf(t)  -- 0). So, by considering the re- 
al parts, we get (thanks also to u ( 0 ) =  0) 

; ( 1 [u(s)[ 2 (4.3) Re (A(t) v ' ( t ) ,  v ( t ) )d t  = Re (u ' ( t ) ,  u ( t ) )d t  = -~ 
9 0 

Next, go back to subsection 2.3, and recall the definition (2.32) of Ak(t)  (k >I 1, t ~ R), 
along with the properties (2.33) and (2.34). Then, from (4.3), we obtain, for every inte- 
ger k >I 1, 

8 8 

1 
lu(s ) [2 = Re f (Ak(t) v '  (t), v(t) )dt  + Re f ([A(t) - Ak(t)] v'  (t), v(t) )dt  = (4.4) 

0 0 

1 
_ 1 (Ak(s) v(s), v(s)) - -~ (Ak(0) v(0), v(0)) - 

2 

8 8 

- -~ ~(A; ( t )  v(t), v ( t ) )d t  + Re(([A(t)  -Ak( t ) ]  v ' ( t ) ,  v ( t ) )d t .  
o o 

Now, by using (4.2), (2.36), (2.40) (along with the notation (2.30)), we get from (4.4), for 
every integer k/> 1, 

1 ~2 1 
(4.5) ~ ]u(s) i <~--~(A(O+)v(O) ,v (O))+ 

1 ( sup jlv(t)H) 2 .(o, s; A(t); ~(V, V*)) + 

§ iiv sup ijv t ll)f llA    J ldt 
\ t~]O, s[ \ t r  0 
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Next, we pass to the limit as k----> + oo, and we take into account (2.39). By also using 
(2.6), we obtain 

(4.6) lu(s) 12+cllv(o)ll2<~lv(O)12+ ( sup IIv(t)ll/2.v(o, s;A(t); ~(g,  g* ) ) .  
\ t ~  [o, s] / 

(Remark that, when A(t)  is <<more regular, than in (2.4) (e.g. when A ( t ) � 9  
W 1' 1(0, T; s V*))),  (4.6) can be deduced directly from (4.3), (2.5), (2.6), without 
using the approximation through the ,,smooth, operators Ak(t). In the general case (i.e. 
when (2.4) holds), the above procedure comes from AROSIO [2]). Now, we define 

t 

(4.7) z(t) = ~ u(T) d~, Vt �9 [0, T], 
0 

and we observe that (thanks also to (4.2)) 

(4.8) v(t) = z(t) - z(s), Vt �9 [0, s], and, in particular, v(0) = - z ( s ) .  

On the other hand, starting from (4.7), an easy calculation shows that 

8 

(4.9) Iz(s) 12 <~ s f lu(t)12 d t .  
o 

Then, we put (4.8) and (4.9) in (4.6). So, by considering that an arbitrary s �9 T] was 
taken, and that u(0) = z(0) = 0, we get 

8 

(4.10) lu(s) 12 4- cllz(s)ll 2 ~ ~s ~ in(t)12 dt 4- 
o 

+4(kt ~suPE0, ~; IIz(t)ll2)~o, s; n(t); ~(g ,  g * ) ) ,  

Next, thanks to (2.4), we have that there exists d �9  T], 
~ 0 ,  5; A(t); ~e(V, V*)) < c/8 (e.g.), and hence we obtain 

8 

C 
(4.11) lu(s) 12 4- cllz(s)lP < ks ~ lu(t)12 at 4- - ( sup IIz(t)ll2/, 

o 2 \t~[o, ~1 ] 

Now, from (4.11), we can readily deduce that 

8 

(4.12) sup IIz(t)ll2<<.2ac ls~lu(t)12dt, V s � 9  
t e [0, s] 

0 

Vs �9 [0, T]. 

such that 

Vs e [0, ~] .  
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and hence, going back to (4.11), we get 
8 

(4.13) iu(s) 12 <~ 2;.5] lu(t) i  2 d t ,  Vs e [0, 5]. 
0 

Then, by using Lemma2.4 (in a very particular case), we obtain that u ( t ) =  O, Y t e  
[0, 5]. Let us prove that, in fact, u(t)  = O, V t e  [0, T]. By assuming that 5 < T, and 

proceeding as in [2], we define y -= sup {t ~ [0, T] lu(s) = O, Vs e [0, t]}; hence y I> 5. 
Suppose that y < T. Then, it results that u(y) = 0. Hence, by also using the above pro- 
cedure (when y is taken in place of 0), we can obtain that u(t)  - 0 in a right neighbour- 
hood of ~/. Then, we have a contradiction. So, the proof of Theorem 4.1 is complete. 

REMARK 4.1. - We want to stress the fact that, in Theorem 4.1, the only assumptions 
on the family {V(t)} are (2.2) and (4.1). So, in particular, {V(t)} can have -jump discon- 
tinuities,. On the other hand, we do not require any density assumption of the spaces 
V(t) into the space H. Moreover, by reviewing the above proof of Theorem 4.1, we can 
observe that the monotonicity assumption (4.1) was only used to get that the test func- 
tion v(t) (defined through (4.2)) satisfies v(t) e V(t) for (a.a.) t E [0, T]. Anyway (as we 
will see in Remark 5.6 of subsection 5.2 below), when (4.1) does not hold, we cannot ex- 
pect, in general, the uniqueness of the weak solution u(t)  to (1.1)-(1.2)-(1.3). 

REMARK 4.2. - Bearing in mind the results of Theorems 3.1 and 4.1, we can obtain 
the existence and the uniqueness of the weak solution u(t)  to (1.1)-(1.2)-(1.3), when (be- 
sides the other assumptions) we have that V(t) = V, Vt E [0, T], where ~" is a (fixed) 
closed subspace of V. If, in particular, rd= V, we deduce from Definition2.1 that 
(u"( t )  ~ L I ( O ,  T; V*)  and) u(t)  satisfies (1.2) in the sense (e.g.) of 0Y(0, T; V*). In 
this case, Theorems 3.1, 3.2, 4.1 (along with Remark 3.1) give the existence and the 
uniqueness of u(t)  eC~ T]; V~) A CI([0, T]; Hw), solution to (1.2)-(1.3). (In fact, in 
this case, such result is well known, and one also has that u ( t ) e C ~  T]; V) 
N C1([0, T]; H); see AROSIO [2], Thm. 1.1). 

REMARK 4.3. - Our paper concerns the forward  Cauchy problem (1.1)-(1.2)-(1.3). We 
can also consider the corresponding backward Cauchy problem, i.e. we take (1.1)-(1.2) 
again, but we replace (1.3) with 

(4.14) u(T)  = u0, u ' ( T )  = u l ,  

where Uo c V(T) and ul ~ H are given. We can define (similarly to Definition 2.1) a natu- 
ral notion of weak solution to (1.1)-(1.2)-(4.14), and we can prove (similarly to Sections 3 
and 4 of the present paper) the correponding results, concerning the existence or the 
uniqueness. The conclusions are similar to the ones in the present paper for (1.1)-(1.2)- 
(1.3), except for  the fact  that, considering (1.1)-(1.2)-(4.14), we have to assume (4.1) (re- 
sp. (2.11)) instead of  (2.11) (resp. (4.1)) for the existence (resp. uniqueness) results. 

5. - S o m e  e x a m p l e s  a nd  r e m a r k s .  

This section is devoted to some examples of applications of the ((abstract- results in 
Sections 3 and 4. In particular, we deal, in subsection 5.1, with Cauchy-mixed problems, 
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with mixed variable lateral conditions, for linear hyperbolic P.D.E.. On the other hand, 
subsection 5.2 concerns Cauchy-Dirichlet problems (also for linear hyperbolic P.D.E.) 
in non-cylindrical regions. 

5.1. Let T > 0 be given. Let ~ be an open bounded subset of R N, whose boundary 
F -  8~ is a ( N -  1)-dimensional manifold of class (e.g.) C 1. Let Q denote the open 
cylinder Q = t2 z ]0, T[, and 2 : -  F x ]0, T[ the lateral boundary of Q. Let moreover 
{Fo(t)}t~[o. T] be a family of Cl-submanifolds (with boundary) of F, and define 

(5.1) 2: 0 -  U Fo(t) x{t}; ~1----2:\~0. 
0< t<T  

Let us consider (formally) the following second order linear differential operator d ,  
with variable coefficients: 

(5.2) C~u - - E aij(x, t) + c(x, t) u 
i,j=l ~ ~ ' 

where aij(x, t) (i, j = 1, ..., N) and c(x, t) are given (complex-valued) functions (de- 
fined in Q). Let finally v~ = va(x ,  t) be the related conormal vector to 2:. Then, we con- 
sider, in a formal  way , the following Cauchy-mixed problem. Given f ( x ,  t) (defined in 
Q), and Uo(X), u t (x)  (both defined in tg), to find u(x,  t) (defined in Q), such that: 

(5.3) 

" a2u 
a) - ~  (x, t) + 4u(x ,  t) = f ( x ,  t) in Q; 

b) u ( x , t ) = O  on E0; 

C) ~_._UU (X, t)  = 0 on ~ 1  ; 
0v a 

d) u ( x , O ) = u o ( x )  in ~2; 

8u 
e) --~ (x, O) = ul(x)  in t2. 

By also proceeding in a ybrmal way, let u(x,  t) satisfy (5.3). Take any ,<sufficiently 
smooth>> function w(x,  t) in Q, such that w(x,  t) = 0 on 2:0, and such that w(x,  T) = O, 
Vx ~ t2. Then, multiply both sides of (5.3) a) by w(x,  t), and integrate on Q. By using 
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the Green theorem and the integration by parts formula, we obtain that u(x, t) 
satisfies: 

(5.4) 

a) 
T t~ r 3u 3w 

E jdtfau(x,t)--~x(X,t) -~xj(X,t)dx+ 
i ' j = l o  9 

T T 

+ fdtfc(x,t)u(x,t)w(x,t)dx- fdtf - ~  (x, t) -~- (x, t) dx = 
0 t) 0 f2 

T 

: f dt ff(x, t)w(x, t)dx + ful(x)w(x, o)dx, 
0 t~ t) 

for every ,~sufficiently smooth,, w(x, t) in Q, with w(x, t) = 0 on 2:0, 

and with w(x, T) = O, Vx ~ f2 ; 

b) u(x, 0) =u0(x) in f2; 

c) u(x , t )=O on 2:0 . 

(5.4) gives a formal definition of a weak solution u to the problem (5.3). Now, we set 
(5.4) in the framework of Definition 2.1. Towards this aim, we take 

(5.5) H=L2(~) ,  V = H I ( t ~ )  (and hence V* = ( H I ( ~ ) ) * ) ,  

so that (2.1) holds. Moreover, we take, for every t e [0, T], 

(5.6) V(t)=H~o(t)(f2)-{veHl(f2)lv=O on Fo(t) (in the sense of traces)}, 

which is, of course, a closed subspace of V, and is dense in H. It is clear that 

(5.7) (2.11) (resp. (4.1)) holds iff {Fo(t)}t~[o. T] is a non-increasing 

(resp. non-decreasing) family with t .  

Now, let us consider the operator d .  We assume that: 

(5.8) 

[a) ,<t---~a~j(., t)>> (i, j = 1, ..., N) and <,t->c(., t )-  
J 

1 belong to the space BV(0, T; L ~(~) )  ; 

l b) aij(x, t) = a-~i(x-~ for a.a. (x, t) e Q (i, j = 1, ..., N), 

and the function c(x, t) is real-valued; 
N N 

lc) 2 a > 0 ,  such that ~ aij(x,t)~i~j>~a i, i 2, 
i , j=  1 i~=l 

V(~I , . . . ,~N)  e C  N, and for a.a. (x , t )  e Q .  
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Then, we define, for a.a. te]0,  T[, and for any u, v E V = H I ( ~ ) :  

N 
(5.9) a(t; u, v) =- 

i , j = l  
9u f c(x, t) ~ aij(x, t) ~ (x) 3V (x) dx + u(x) v(x) dx . 

~Xj 

Thanks to (5.8) a), it is clear that {a(t ; . ,  -) I for a.a. t e]0, T[} is a family of sesquilinear 
and continuous forms on V • 2 1 5  Then, we can define, for a.a. t e  
e]0, T[, and for any u, veV:  

(5.10) (A(t) u, v) - a(t; u, v), 

where (., �9 ) denotes the antiduality pairing between V* and V. We have thus defined a 
family {A(t)Ifor a.a. te]0,  T[} of linear and continuous operators from V into V* 
(which are related, in a natural way, to a and to V). Then, it is clear that, for such a fam- 
ily {A(t)}, (2.4), (2.5), and (2.6) hold (thanks, respectively, to (5.8) a), b), and c)). 

Take now: 

(5.11) f 
a) f (x ,  t) =fl(x ,  t )+ f i (x ,  t), where ,,t----)fl(', t ) ,  ~ L I ( 0 ,  T; L2(~9)), 

and ,,t----)f2(', t ) ,  ~BV(O, T; ( H i ( Q ) )  * ) ;  

b) Uo(X) eV(O) =Hlo(0)(Q); Ul(X) e H = L 2 ( t g ) .  

We now remember that we started from the ,,concrete, problem (5.3), and that we in- 
troduced its ,,formal, weak formulation (5.4). On the other hand, by means of (5.5), 
(5.6), and of (5.8)-...-(5.11), we can use Definition 2.1 to give a precise weak formulation 
of (5.3) (together with a precise notion of weak solution). For the sake of brevity, we do 
not rewrite here Definition 2.1 in the present case (i.e. by specifying V and H as in (5.5), 
V(t) as in (5.6), etc.). Let us only remark that: (5.3)d) is given by (2.9)b) (also see 
(5.4) b)); (5.3) b) is contained in (2.9) a) (also see (5.4) c)); (5.3) a), c), e) are contained in 
(2.10) (also see (5.4)a)). 

Now, by considering (5.7), we can use Theorems 3.1, 3.2 (along with Remarks 3.1 
and 3.2), and Theorem 4.1, to obtain the following results. 

PROPOSITION 5.1�9 - Let the above assumptions on ~2, F, {Fo(t)}tr T] hold. Take 
moreover: H and V as in (5.5), V(t) as in (5.6), A(t) as in (5.10) (where a(t; u, v) is de- 
fined in (5.9), and (5.8) holds). Finally, take any f,  u0, Ul as in (5.11). Then, the following 
conclusions hold. 

a) Assume, moreover, that {Fo(t)}t~ [0, T] is a non-increasing family with t (and 
hence (2.11) holds). Then, there exists a (not necessarily unique) weak solution u to the 
problem (5.3) (in the sense of Definition2.1). Such u satisfies u(t)~ C~ T]; Vw)N 
n CI([0, T]; Hw) (and in this sense (5.3) d) and e) can also be meant). Moreover, it re- 
sults that u(t) eV(t) for every t e  [0, T]. 

b) On the other hand, assume that {Fo(t)}t~[O,T] is a non-decreasing family 
with t (and hence (4.1) holds). Then, if there exists a weak solution u to (5.3) (in the 
sense of Definition 2.1), it results that such u is unique. 
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REMARK 5.1. - Firstly, it is clear that, in Proposition 5.1 (a) and b)), the family 
{Fo(t)}t~[o, T] (of CZ-submanifolds of F) is allowed to have -jump discontinuities, with 
respect to t. 

Now, bearing in mind Definition 2.1 (in the present case of (5.3)), we recall that, in 
particular, (5.3) a) and c) are contained in (2.10): in such a general context, they cannot 
be better specified. On the other hand, it is clear that, by taking more regular data (e.g. 
a more regular f ,  etc,), we could deduce from (2.10) a more precise information on 
(5.3) a) and c) (e.g. the fact that (5.3) a) is satisfied in the sense of O~' (Q), etc.). How- 
ever, for the sake of brevity, we do not insist here on this point. 

REMARK 5.2. - We observe that the problem (5.3) was also treated by ARosIo [1] (see 
w in [1]), in the special case where el= - A x  and f - O .  Indeed, in this case, he 
proved (as an application of his abstract theory [1]) a result like the one in the part a) of 
Proposition 5.1, i.e. that a (not necessarily unique) weak solution actually exists, when 
{Fo(t)}t~[0, TI is a non-increasing family with t. 

We also remark that the problem (5.3) was formerly studied by BARDOS and CooP- 
ER[5] (see Section4 in [5]), in the case where ~ u = - A x u + u +  [u[Qu, with 
~o 1> 0 (and where f~L2(Q) ,  Uo ~ V(O) N L2+e(t2), us eL2(t2)  are taken). They studied 
directly such a -concrete- (nonlinear) problem, and they were able to prove the exis- 
tence and the uniqueness of the weak solution to (5.3), without assuming any mono- 
tonicity property of {F0(t)}tE [0, T], but under more general hypotheses on the set 2: o. 
On the other hand, by means of Proposition 5.1, we have results for the problem (5.3), 
with a general (linear) operator c1 (although we have to require a monotonicity proper- 
ty of {Fo(t)}t~[o, T]). 

REMARK 5.3. - Even if we concentrated on the example (5.3) (where 6L is given by 
(5.2)), our abstract results also apply to Cauchy-mixed problems (with mixed variable 
lateral conditions) for higher order linear differential operators of hyperbolic type (or 
hyperbolic in the sense of Petrowski, as e.g. 32/3t2+ A~). However, for the sake of 
brevity, we do not insist here on this point. 

5.2. We now consider another application of our abstract results. Let T > 0 be 
given. Let { t 2 ( t ) } t E [ 0 ,  T ]  be a family of open bounded subsets t2(t) of R N. We assume 
that, for every l e  [0, T], the boundary F(t) --- 3t2(t) of t2(t) is a ( N -  1)-dimensional 
manifold of class (e.g.) C 1. Let us define: 

(5.12) {~ - U 9(t) x{t}; 
0 < t < T  

R N x ]o ,  T [ .  

~=- U F(t) • { t }  ; 
0 < t < T  

We also suppose, for the moment, that 

(5.13) Q is an open subset of R N +1. 

Let us now consider (formally) the partial differential operator ~, which is given by 
(5.2). We assume that its coefficients a~j(x, t) (i, j = 1, ..., N) and c(x, t) are complex- 
valued functions defined in B. Then, we consider, in a formal way, the following 
Cauchy-Dirichlet problem. Given f (x ,  t) (defined in Q), and Uo(X), ul(x) (both defined 
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m 

in t~(0)), to find u(x, t) (defined in Q), such that: 

(5.14) 

" ~ u  

a) - ~  (x, t) + ~u(x, t) = f (x ,  t) 

b) u(x, t) =O on ~:; 

c) u(x, O)=uo(X) in ~(0) ;  

8u 
d) ~ -  (x, 0) =Ul(X) in t~(0). 

in Q; 

Now, let us give a definition of a weak solution to the problem (5.14), according to our 
-abstract,  Definition 2.1. Towards this aim, we take 

(5.15) H = L2(RN), V = H I ( R  N) (and hence V* = H - t ( R N ) ) ,  

so that (2.1) holds. Moreover, we take, for every t e  [0, T], 

(5.16) V(t) = {v e H ~ (F~ N) t supp (v) c ~9(t)}, 

which is, of course, a closed subspace of V. (Note that, if v e V(t), then its restriction to 
~9(t) belongs to H~(~(t))) .  Remark however that V(t) is not dense in H. It  is clear 
that 

(5.17) (2.11) (resp. (4.1)) holds here iff {f2(t)}t~[0, T] is a non-decreasing 

(resp. non-increasing) family with t .  

Now, let us consider the operator ~ (given by (5.2)), and assume that 

(5.18) (5.8) holds, where we replace ~9 (resp. Q) in (5.8) a) 

(resp. (5.8) b) and c)) with R N (resp. B). 

Next, define (for a.a. te]0 ,  T[, and any u, v e V = H I ( R N ) )  a(t; u, v) as in (5.9) (where 
we replace t9 with RN). Clearly, {a( t ; . ,  ")l for a.a. t e]0, T[} is a family of sesquilinear 
and continuous forms on V • V. Then, starting from such forms, and proceeding as in 
(5.10), we can define the related family {A(t) I for a.a. t e]0, T[} of linear and continu- 
ous operators from V =  H i ( J R  N) into V* = H - I ( R N ) .  (They are connected, in a natural 
way, with ~ and with V). Thanks to (5.18), it is clear that, for such a family {A(t)}, (2.4), 
(2.5), and (2.6) hold. 

Take now: 

(5.19) 

a) f (x ,  t) = fl (x, t) + f2(x, t), where ,,t----> fl (', t ) ,  e L ~ (O, T; L2(RN)), 

and ,t--->f2(, t ) ,  eBV(O, T; H-I (RN)  ) ; 

b) Uo(X)eV(O) = { v e H l ( R  N) I supp(v) c Q---(-0-)} ; u l ( x ) e H = L 2 ( R N ) .  

(Remark that, thanks to (2.8) and (2.10), -the values, o f f  (resp. of ul) in B\Q (resp. in 
F~N\Q----(~) do not affect, in the present case, the weak solution u in Definition2.1). 
Then, thanks to the previous definitions and remarks, we can use Definition 2.1 to give 
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a precise weak formulation of the problem (5.14) (together with the corresponding no- 
tion of weak solution). For the sake of brevity, we do not rewrite here Definition 2.1 in 
the present case (i.e. by specifying V and H as in (5.15), V(t) as in (5.16), etc.). Let us 
only remark that: (5.14) c) is given by (2.9) b); (5.14) b) is contained in (2.9) a); (5.14) a) 
and d) are both contained in (2.10). Now, by considering (5.17), we can use Theorem 3.1 
(along with Remarks3.1 and 3.2), and Theorem4.1, to obtain the following re- 
sults. 

PROPOSITION 5.2. - Let the above assumptions o n  {Q(t)}t~[o, T], and {F(t)}t~[o. ~] 
hold. Take moreover: H and V as in (5.15), V(t) as in (5.16), A(t) as in (5.10) (where 
a(t; u, v) is defined in (5.9) (~9 replaced with R N) and (5.18) holds). Finally, take any f,  
u0, ul as in (5.19). Then, the following conclusions hold. 

a) Assume, moreover, that {Q( t ) } t  ~ [0, T] is a non-decreasing family with t (and 
hence (2.11) holds). Then, there exists a (not necessarily unique) weak solution u 
to the problem (5.14) (in the sense of Definition 2.1). Such u also satisfies u( t )e  

C~ T]; V.) (and in this sense (5.14) c) can also be meant). Moreover, it results that 
u(t) ~V(t) for every t~ [0, T]. 

b) On the other hand, assume that {Q(t)}t~[o, T] is a non-increasing family with 
t (and hence (4.1) holds). Then, if there exists a weak solution u to (5.14) (in the sense of 
Definition 2.1), it results that such u is unique. 

REMARK 5.4. - Observe that, in Proposition 5.2, we did not use the assumption (5.13). 
Hence, in general, the family {~(t)}t~L0, T~ is allowed to have ~,jump discontinuities, 
with respect to t. So, (5.14) a) and d) (which are here contained in (2.10)) cannot, in gen- 
eral, be better specified. On the other hand, by taking more regular data, we can expect 
to deduce from (2.10) a more precise information on (5.14) a) and d) (e.g. the fact that 
(5.14) a) is satisfied in the sense of (~' (Q), etc.). However, we do not insist here on this 
point. 

REMARK 5.5. - It is well known that the ,~concrete, problem (5.14) (in a non-cylindri- 
cal region Q) was formerly investigated by several authors, in the special case where 
c~u = - A x u  (or, more generally, where au = - A  ~u + F(u), with suitable nonlinear 
functions F). We refer, in particular, to LIONS [22] (and also [23], chap. 3, w BARDOS 
and COOPER [5], INOUE [17], COOPER [11], SIKORAV [28], ZOL~SlO [29], [30]. As for weak 
solutions to (5.14) (with ~ = - A  x), we have (from [5], [11], [17], [28]) the existence and 
the uniqueness, when (besides the other natural hypotheses) we assume that 2: is a 
smooth N-dimensional manifold in R N+I, and that X is strictly time like. Moreover, 
some sharp existence, uniqueness and regularity results were proved by DA PRATO and 
ZOLl~SlO[14] for the problem (5.14), with a general linear operator ~, in suitably 
smooth non-cylindrical regions Q of special type: they were obtained through a suitable 
change of variables, and by using some abstract results due to KATO [18] and to DA 
PRATO and IANNELLI [13]. On the other hand, our Proposition 5.2 gives results for 
(5.14), with a general (linear) operator d ,  in a general (not necessarily smooth) non- 
cylindrical region Q, but we have to require a monotonicity property of 
{Q(t)}t~ [o, T]. 

Let us also mention the geometrical method by B O V E ,  F R A N C H I ,  O B R E C H T  [ 8 ] ,  which 



M. L. BERNARDI - G. BONFANTI - F. LUTEROTTI: On some abstract, etc. 237 

is useful to handle initial-boundary value problems, in non-cylindrical regions, for vari- 
ous types of evolution P.D.E.. 

REMARK 5.6. - We also consider (5.14), where a = -LI x. When X is not time like, 
such a problem is not well posed, in general (as we can deduce, e.g., from the careful 
study, which was performed in Section I of BARDOS and COOPER [5]). Now, we observe 
that a similar conclusion (and a conclusion similar to the one in Remark 5.5, corre- 
sponding to the case where 2: is strictly time like) can, of course, be readily obtained 
when we take, more generally, ~ = -sxl x, where s is an arbitrary positive constant. 
Let us view directly a behaviour of this type, in the following very particular case of 
(5.14). Fix any 1 > 0 and any s > 0. Take any a e R, and fLX any T > 0 (such that 1 + 
+ aT > 0, when a < 0). Then, our problem is to find u(x, t) such that: 

(5.20) 

32 u 32 u 
a) ~ ( x , t ) - ~ - - ( x , t ) = 0  

3X2 

(x, t) e Q =  {(x, t) e R  2 10 < t < T ;  0 < x < l + a t } ;  

b) u ( O , t ) = u ( l + a t ,  t )=O,  0 < t < T ;  

c) u(x, O) = Uo(X), 0 < x < l ; 

3u 
d) - ~ ( x , O ) = % ( x ) ,  0 < x < l ;  

where Uo(X) ell01(0, l), and ul(x) eL2(0 ,  l) are given. Observe that, for the differen- 
tial operator in (5.20) a), the characteristic lines are x +_ V~t = const. Now, considering 
the weak solutions to (5.20), we have the following conclusions (which can be readily de- 
duced, by using the results of [5]). We have the existence of such a solution, when a > 
> - V~; but the existence fails, in general, when a < - ~ .  We have that such a solution 
is unique, when a < V~; but the uniqueness fails, when a > u Now, if we view (5.20) 
in our abstract framework, we have here that, in particular, t~(t) = {x e R 1 10 < x < 1 + 
+ at}, and V(t) --- {v e H~(R)Isupp (v)r t2(t)}. Then, the above conclusions show that 
the well-posedness (or not) of the problem (5.20) depends on the fact that the speed of 
the variation (with respect to t) of ~9(t) (and hence also of V(t)) is less (or greater) than 
the speed of the waves related to the hyperbolic differential operator in (5.20) a). Any- 
way, for every s > 0, a suitable monotonicity property of {f2(t)} (and hence of {V(t)}) 
guarantees the existence or the uniqueness of the weak solution to (5.20). 

REMARK 5.7. - Even if we concentrated on the example (5.14) (where ~ is given by 
(5.2)), our abstract results also apply to various initial-boundary value problems, in 
non-cylindrical regions, for higher order linear differential operators of hyperbolic 
type (or hyperbolic in the sense of Petrowski, as e.g. ~ / 3 t 2 +  A~). However, for the 
sake of brevity, we do not insist here on this point. 

R E M A R K  5 . 8 .  - Let us also mention a paper by CANNARSA, DA P R A T O ,  and Z O L E -  

sIo [9]. It concerns initial-boundary value problems, in non-cylindrical regions, for lin- 
ear damped wave equations (hence, equations with both hyperbolic and parabolic 
~,characters,). 



238 M . L .  BERNARDI - G. BONFANTI - F. LUTEROTTI: On some abstract, etc. 

R E F E R E N C E S  

[1] A. AROSIO, Abstrac~ ~inear hyperbolic equations with variable domain, Ann. Mat. Pura 
Appl., (4) 135 (1983), pp. 173-218. 

[2] A. AROSlO, Linear second order differential equations in Hilbezr spaces. The Cauchy 
problem and asymptotic behaviour for large time, Arch. Rat. Mech. Anal., 86 (1984), pp. 
147-180. 

[3] C. BAI0CCm, Soluzioni ordinarie e generalizzate del problema di Cauchy per equazioni dif- 
ferenziali astratte lineari del secondo ordine in spazi di Hilbert, Ricerche Mat., 16 (1967), 
pp. 27-95. 

[4] C. BAIOCCHI, Sulle equazioni differenziali astratte lineari del primo e del secondo ordine in 
spazi di Hilbert, Ann. Mat. Pura Appl., (4) 76 (1967), pp. 233-304. 

[5] C. BARDOS - J. COOPER, A nonlinear wave equation in a time dependent domain, J. Math. 
Anal. Appl., 42 (1973), pp. 29-60. 

[6] M. L. BERNARDI, Sulla regolarit& delle soluzioni di equazioni differenziali lineari astratte 
del primo ordine in domini variabili, Boll. Un. Mat. Ital., 10 (1974), pp. 182-201. 

[7] M. L. BERNARDI - F. BREZZI, Alcune osservazioni sugli operatori di proiezione in spazi di 
Hilbert, Boll. Un. Mat. Ital., 9 (1974), pp. 495-512. 

[8] A. BOVE - B. FRANCHI - E.OBRECHT, Straightening ofa noncylindrical region and evolution 
equations, Rend. Sere. Mat. Univ. Padova, 71 (1984), pp. 209-216. 

[9] P. CANNARSA - G. DA PRATO - J. P. ZOLESI0, The damped wave equation in a moving domain, 
J. Diff. Eqs., 85 (1990), pp. 1-16. 

[10] R. W. CARROLL - E. STATE, Existence theorems for some weak abstract variable domain hy- 
perbolic problems, Can. J. Math., 23 (1971), pp. 611-626. 

[11] J. COOPER, Local decay of solutions of the wave equation in the exterior of a moving body, J. 
Math. Anal. Appl., 49 (1975), pp. 130-153. 

[12] G. DA PRATO, Weak solutions for linear abstract differential equations in Banach spaces, 
Advances Math., 5 (1970), pp. 181-245. 

[13] G. DA PRATO - M. I~'~NELLI, On a method for studying abstract evolution equations in the 
hyperbolic case, Comm. in P.D.E., 1 (6) (1976), pp. 585-608. 

[14] G. DA PRATO - J. P. ZOL~SlO, Existence and optimal control for wave equation in moving 
domain, in Stabilization of Flexible Structures, pp. 167-190, Lecture Notes in Control and 
Inform. Sci., 147, Springer, Berlin (1990). 

[15] G. GILARDI, Teoremi di regolarit5 per la soluzione di un'equazione differenziale astratta 
lineare del secondo ordine, Rend. Ist. Lombardo, A-106 (1972), pp. 641-675. 

[16] J. A. GOLJ)STEIN, Variable domain second order evolution equations, Applicable Anal., 5 
(1976), pp. 283-291. 

[17] /L INOUE, Sur [~u + u 3 = f dans un domaine noncylindrique, J. Math. Anal. Appl., 46 (1974), 
pp. 777-819. 

[18] T. KATO, Linear evolution equations of,,hyperbolic, type, J. Fac. Sci. Univ. Tokyo, 17 (1970), 
pp. 241-258. 

[19] S. G. KRE[N, Linear Differential Equations in Banach Spaces (in Russian), Moskow (1967) 
(transl. in: Transl. of Math. Monographs, 29, A.M.S., Providence (1971)). 

[20] O. A. LADYZENS~JA, The Mixed Problem for Hyperbolic Equations (in Russian), Gosu- 
darstv. Izdat. Tehn.-Teor. Lit., Moskow (1953). 

[21] J. L. LIONS, Equations Diffdrentielles Opdrationnelles et Probl~mes aux Limites, 
Grundlehren, Band 111, Springer, Berlin (1961). 

[22] J. L. LIONS, Une remarque sur les p~vbl~mes d'dvolution nonlindaires dans les domaines 
non cylind~ques, Rev. Roum. Math. Pures Appl., 9 (1964), pp. 11-18. 

[23] J. L. LIONS~ Quelques Mdthodes de Rdsolution des Probl~mes aux Limites non Lindaires, 
Dunod-Gauthier Villars, Paris (1969). 



M. L. BERNARDI - G. BONFANTI - F. LUTEROTTI: On some abstract, etc. 239 

[24] J. L. LIONS - E. MAGENES, Non-Homogeneous Boundary Value Problems and Applications, 
Vol. I, Grundlehren, Band 181, Springer, Berlin (1972). 

[25] T. MAZUMDAR, Existence of solutions for linear systems and hyperbolic problems with vari- 
able domains, Applicable Anal., 11 (1981), pp. 279-290. 

[26] W. RUDI~, Real and Complex Analysis (third edition), Mc Graw-Hill, New York 
(1987). 

[27] G. SAVAR~,, Parabolic problems with mixed variable lateral conditions: an abstract ap- 
proach, J. Math. Pures Appl., 76 (1997), pp. 321-351. 

[28] J. SIKORAV, A linear wave equation in a time-dependent domain, J. Math. Anal. Appl., 153 
(1990), pp. 533-548. 

[29] J. P. ZOL~SIO, Galerkin approximation for wave equation in moving domain, in Stabiliza- 
tion of flexible structures, pp. 191-225, Lecture Notes in Control and Inform. Sci., 147, 
Springer, Berlin (1990). 

[30] J. P. ZOL~SIO, Eulerian Galerkin approximation for wave equation in moving domain, in 
Progress in P.D.E.: the Metz Surveys, pp. 112-127, Pitman Res. Notes Math. Ser., 249, Long- 
man, Harlow (1991). 


