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Quasi-Minimal Enumeration Degrees 
and Minimal Turing Degrees (*). 

THEODORE A. SLAMAN(**) - A. SORBI(***) 

A b s t r a c t .  - We show that there exists a set A such that A has quasi-minimal enumeration degree, 
and there are uncountably many sets B such that A is enumeration reducible to B and B has 
minimal Turing degree. Answering a related question raised by Solon, we also show that 
there exists a nontotal enumeration degree which is not e-hyperimmune. 

1. - I n t r o d u c t i o n .  

We adopt the formalization of enumeration reducibility given by Friedberg and 
Rogers in [3], and our exposition follows [11]. In the Friedberg-Rogers formalization, 
an enumerat ion operator ~b: 2~--~ 2 ~ is derived from a recursively enumerable set W~ 
by the equation 

r  = { x : ( 3 u ) [ ( x ,  u ) ~ W z  and D~GB]}, 

where D~ is the finite set with canonical index u. Henceforth, we may write (x, D} in- 
stead of (x, u}, when D is equal to Du. Given an effective listing {W~: z e ~} of the re- 
cursively enumerable sets, we get a corresponding indexing {~b: z e co} of the 
e-operators. 

A set A is enumerat ion  reducible (e-reducible) to another set B (notation: A ~<eB), 
if (3z)[A = Cz(B)]. Let ---e denote the equivalence relation generated by ~<e, and let 
[A]e be the enumerat ion  degree (e-degree) of A. The degree structure (0)~, ~<~} is de- 
fined by setting G98 = {[A]~: A _c~o}, and setting [A]~ ~<~[B]~ if and only if A ~<eB. The 
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structure (De is an upper semilattice with least element 08 = [A]8, where A is any recur- 
sively enumerable set. The operation of least upper bound is given by [A]e ~/[BL = 
= [A@B]e, where A O B  = {2x: x ~ A }  O {2x + 1: x e B } .  By identifying partial func- 
tions with their graphs, where graph (9) = {(x, y): ~(x) = y}, we shall write cp -<sF to 
mean graph ((;) --<sgraph (9). This reducibility coincides with the reducibility between 
partial functions introduced by Kleene in [5]. Similarly, given any set A and any partial 
function q~, A ~<89 means A --<s graph (q~). 

Let (~T, V,  0~) denote the upper semilattice of Turing degrees (T-degrees), with 
partial ordering relation ~<T. It is possible to view O~ as a substructure of 0)~ in a sense 
that is made precise by the following theorem. 

THEOREM 1.1 (Embedding Theorem [11]). - Define i([A ]T) = [ CA ]e (where A is any 
set and CA denotes the characteristic function of A). Then i is a well-defined embed- 
ding from 59T into (D e preserving 0 and V .  

PROOF. - For all sets A,  B, we have 

A <~TB<=>CA ~TCBC=>CA ~8CB , 

where CA, CB are the characteristic functions of A, B respectively. The previous implica- 
tions are justified by the following observations: for all sets A and total functions f,  g, 
we have that A <~Tf~A <~sf; f<~eA~f<~TA; hence f<~g<:~f<~sg. 

It is easy now to see that i, as defined above, is an embedding preserving 0 
and V. m 

DEFINITION" 1.2. - An e-degree a is total if a e range(i). 

It is easy to see that a is total if and only if (3 to ta l f ) [ fEa] .  We also say that a set 
A is single-valued if A is the graph of a partial function, and A is total if it is the graph 
of a total function. Thus a is total if and only if a contains a total set A. 

The existence of non-total e-degrees is an easy consequence of the existence of 
quasi-minimal e-degrees, first shown by Medvedev ([9]). We recall the  definition of a 
quasi-minimal e-degree. 

DEFINITION 1.3 ([9]). - An e-degree a is called quasi-minimal if 

�9 a#Oe~ 

�9 (V total b)[b <~ a ~ b  = 98]. 

It is easy to see that a non-zero e-degree a is quasi-minimal if and only if 
(VA ~ a)(V total f ) [ f < ~ A ~ f  recursive]. 

A classical result of the theory of degrees of unsolvability is Spector's Theorem 
([14]) asserting the existence of minimal T-degrees, i.e. atoms of the structure 0~T. 

It was an open problem for many years whether the structure 0)8 possesses minimal 
elements. The solution to this problem (namely 0~e does not have minimal elements) 
was given by Gutteridge ([4]; see also [1]). Gutteridge's theorem can also be viewed as a 
measure of the extent to which the T-degrees and the e-degrees are different. It ex- 
hibits a V3-formula in the language of partially ordered sets which is satisfied by 0~8 
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and not satisfied by (~T" The fact that  0~ and 0~ T have the same existential theories fol- 
lows from Theorem 1.1. 

DEFINITION 1.4. - An e-degree b is minimal total if b is total and 

(Va)[(a is total and a < b ) ~ a  = 0~]. 

In other words, b is minimal total if and only if there exists a minimal T-degree a 
such that  i(a) = b, where i is the embedding of Theorem 1.1. 

Since 0)e does not have any minimal elements, every minimal total e-degree is pre- 
ceded by quasi-minimal e-degrees: 

THEOREM 1.5. - If  b is minimal total, then 

(Va)[0~ < a < b ~ a  quasi-minimal]. 

PROOF. - If  B has minimal T-degree and f is a total function such that  f<e B, then 
f<~TB; on the other hand, we can not have B <-T f ,  as this would give B ~<ef, by totality 
of f .  Therefore f < T B ,  hence f is recursive. �9 

Indeed, no total e-degree can be a minimal cover nor can it have  a minimal cover 
(see [4], [1]; see also [7]). However, these properties do not characterize the total e-de- 
grees, since, as shown by [7], they are satisfied by all e-degrees containing 2:2 sets. On 
the other hand, there are 2:2 sets whose e-degrees are not total, see e.g. [9] or [2]. 

We prove that  there exist quasi-minimal e-degrees with as many as possible mini- 
mal total e-degree s above them. 

THEOREM 1.6. - There exist an e-degree a and a family of e-degrees {bi: i e I} of 
cardinality 2 ~~ such that, for all i e I, 

�9 bi is minimal total; 

�9 a is quasi-minimal; 

�9 a < b i .  

P R O O F .  - See next section. �9 

This theorem answers a question raised by [13]. However, it leaves open the follow- 
ing interesting question. 

PROBLEM 1. - Prove or disprove that for every quasi-minimal e-degree a there is a 
minimal total e-degree b such that a < b. 

2. - P roo f  of  Theorem 1.6. 

We first review some definitions and terminology dealing with strings and trees 
which will be used in the proof of the theorem. For a detailed account of the use of trees 
in recursion theory see [8] and [10]. 
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2.1. String and tree notations. 

If  B is any set, then the elements of the set B <~, (i.e. the functions 0: n--)B, for 
some n e w), are called B-strings. If  0: n---)B is a B-string, then the number n is the 
length of 0 (notation: 101 ). I f  b e B and k e (o, then the symbol b [k] denotes the length k 
string with constant value b. 2-strings will be called binary strings, or simply, 
strings. 

Any partial order relation < on B originates a corresponding partial order relation 
< on B < ' ,  defined as follows: for all 0, v~B <~, let 

a < v<=>Eacv or i(a, v) $ and a(i(a, ~)) < ~(i(0, T))], 

where, 

least {x: x < [o I , I vl anda(x)  ~ v(x)}, if such an x exists ; 

i (a,  T) = ~ ,  otherwise.  

When dealing with (binary) strings, we will use <~ to denote the lexicographic ordering 
on 2 <~. If  a and T are B-strings (for any set B), we write a i r  to indicate that  ag:T and 
v~a.  We denote the concatenation of a and v by a * v. I f n  ~< la] then a~n denotes the 
restriction of a to n;  the symbol a ~ ~> ~ denotes the string of length equal to I a l - n and 
such that  a~>~(x) = a ( n  +x) ,  for all x such that  n + x <  ]a]. 

A tree is a function T: 2<~--~2 <~ such that, for all strings ~ and ~], 

�9 ~_c~T(~) c_ T(~); 

�9 ~i~r(~) I T(~). 

Given a tree T, we denote by [T] the collection of infinite paths through T. 
A partial tree is a partial function T: 2<~--~2 <~ which can be extended to a 

tree. 
Let TI, T2 be partial trees and let ~, A be a string and a set, respectively. Then 

write T1 c_ T2 if range(T1) c range(T2); and write ~ e T1 if ~ e range(T1). 
I f  S c 2  <~ and T is a tree, then T~s denotes the restriction of T to S. Let  S~ = {~ 

e2<~:  ]~[ < n } .  We write T~. for T~s~. A partial tree T is said to be saturated if 
domain(r)  = S~, for some number n,  or domain(T)=  2 < ' .  Given any number n, let 
{~!~): i ~< 2 n - 1 } be the enumeration in order of magnitude (with respect to <) of the 
set {~: I~1 = n } .  

We now define several operations on trees. 

1) If  ~ is a string and T is a tree then ~ * T denotes the following tree: for all y,  

* T(y) = ~ * (T(~])). 

2) Let  T* be a partial tree such that domain (T*) = Sn, for some n, and let T 
be a tree such that  T* c T. Define R(T*, T) to be the subtree of T defined as follows: 
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for all ~, 

{ T*(~) if < n ,  

R(T* ,T ) (~ )=  T ( ~ * ~  ~>~-1) if [~l ~>n. 

where, if I~1 ~>n, then ~ is such that T(-~)= T*(~n). 
3) Given ~ e 2  <~ and T a tree, let Ex t (T ,  ~) be the 

Ext  (T, ~)(~]) = T(~ * ~). 
tree defined by 

e-total trees and e-splitting trees. We recall that a tree T is e-total if (V~)(Vx)(3y ~ 
~)[0T(~)(X) ~ ]. A sufficient condition for a tree T to be e-total is the following 

(1) (Vn)(V~)[ I~ I = n~cp~oT(~)(n) ,~ ]. 

We will often construct e-total trees, by making our trees satisfy property 1. 
Given a tree T, we say that a number )~ is the level of e-totality of T at stage s if 

~ $ ]. (Vx t I e,, 

A tree T is an e-splitting tree if (V~)(3X)[gT(~*0)(X) $ ~ Cp~ (~* 1)(X) ~ ]. A pair 
(T(~), T(~])) is called an e-splitting if, for some x, cpT(~)(X) $ ~ cpT(~)(X) ~ ; if 0 is such 
that 0 c ~ ,  ~], and (T(~), T(~)) is an e-splitting then we say that (T(~), T(~?)) is an e- 
splitting of T(O). 

We say that a number e is the level of e-splitting of T at stage s if  

, ~^T(~* 1)(X) ~ ] 

Similarly, one defines the notion of level of e-totality and level of e-splitting for a tree, 
i.e. replacing cp e. ~ with cp e in the above definitions. 

The following definitions are due essentially to Lachlan ([6]), on which we base our 
proof of Theorem 1.6. For  notations and terminology relative to uniform trees, we fol- 
low closely [8]. 

DEFINITION 2.1. - 1) A tree T is uniform if for every n there exist strings ~]on, Y~n 
such that I ~] On I = I ~] 1 I and 

(V~)[ I~ I = n ~ T ( ~ .  0) = T(~) �9 yo and T(~ ,  1) = T(~) * ~]1]. 

2) A tree T is strongly uniform (s.u.) if T is uniform, and for every n, ~]o and ~]~ 
differ on exactly one place (yo, y l  being as before). If  I~1 = n, then the number on 
which ~]o, ~]~ differ will be called the n-level branching value of T. 

The above definition extends naturally to saturated partial trees. We note 

LEMMA 2.2. - The identity tree Id: 2<~--~2 <~ is s.u. Moreover, i f  T* is a s.u. satu- 
rated partial tree, T is a s.u. tree, and T*c_T, then R(T*,  T) is s.u. I f  T is s.u., then 
~ ,  T is s.u. 
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P R O O F .  - Immediate. [ ]  

Finally, we recall the following two definitions. See [8]. 

DEFINITION 2 . 3 .  - Let  T be a tree and let Z be a subset of 2 <~ such that there is an 
m e w  such that  each C e Z  has length m. Let  (~, ~]) be such that  I~1, lYl > 0 .  We say 
that  the pair (~, ~]) induces a s imultaneous e-splitting for  Z relative to T if 

(vsez)(3x)[O~ (~ ~)(x) $ ~ ~ ( o ,  ")(x) $ ]. 

If  T is strongly uniform, then a simultaneous e-splitting as before is called strongly 
uni form if I~1 = I~]l and ~, ~] differ on exactly one place. 

DEFINITION 2 . 4 .  - Let  T be a s.u. tree and let Z c 2 < ~ be such that, for some number 
m, for all ~ e Z,  I~1 = m. We say that T is right e-splitting for  Z if, for every 0 e Z, and 
for every n,  the pair (T(O . 0 En! �9 0), T (O .  0 ~n~ �9 1)) is an e-splitting. 

The following result, due to Lachlan ([6]), is fundamental for the construction be- 
low. We follow the exposition of [8]. 

LEMMA 2.5. - Let T be a s.u. recursive e-total tree. Let Z c_ 2 < o~, f i e  2 < ~ be such that, 
for  all ~ e Z ,  I ~1 = l fi l " Suppose that T is right e-splitting for  Z, but with no s.u. simul-  
taneous e-splitting for  Z U {fi}. Then there are no e-splittings in Ext (T ,  fi). 

PROOF. - See [8, Lemma VI.5.14]. [] 

2.2. Requirements  and strategies. 

In order to prove Theorem 1.6, it is enough to construct a strongly uniform tree G, a 
set A, and an e-operator q~ such that, for all M e [G], 

�9 M has minimal T-degree; 

�9 A has quasi-minimal e-degree; 

�9 A is uniformly e-coded by r relative to any branch of the tree G, i.e. 
A = O(M), for all M e [G]. 

Since there are 2 ~~ paths M e [G], it follows that the set A, together with the family 
of T-degrees {[M]T: M e [G]}, satisfies the theorem. 

The way we guarantee the last item is by defining r so that  

(VM, M '  e [G])[O(M) = r  

then letting A = O(M),  for any M e [G]. 
The construction aims at satisfying the following requirements, for all e, k, i and 
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all branches M e  [G]: 

M~: ~Mis to t a l~  (cpMis recursive V M  <T~M), 

Nk : A ~ Wk, 

P~:{~: Izl < /}cdoma in (G) ,  

where A = r for any M �9 [G], and r is a suitable e-operator. In fact, for every ax- 
iom <x, D> �9 r  card(D) < 1) so r will be an s-operator. The construction will also en- 
sures that r  = r  for every M, M '  e [G]. 

We note that satisfaction of all requirements M~'s and Pi's guarantees the construc- 
tion of a tree G such that for each branch M of G, M has minimal T-degree. By Theorem 
1.5, satisfaction of all Nk's makes [A]e a quasi-minimal e-degree. The fact that the tree 
is strongly uniform is fundamental for constructing an e-operator 4, such that, for all 
M, M ' � 9  [G], we have that 4,(M) = q,(M'). 

The strategy for the requirement Me is the usual strategy for getting minimal T-de- 
grees as adapted by [6] to strongly uniform trees: given a strongly uniform tree T, find 
a strongly uniform subtree T'  of T such that if T'  is e-total then either T' is an 
e-splitting tree--ensuring, for all M in [G], if r is total, then c; M I> TM-~or T' has no 
e -  

splitting--ensuring that if cp M is total then cp M is recursive. 
The strategy for Nk consists as usual in appointing a suitable witness n such that 

n�9 i.e. for all M � 9  [G], n�9 
Finally, the strategy for Pi should make sure that the tree thinning activity per- 

formed on behalf of the M-requirements does not prevent us from eventually getting a 
tree, i.e., for every i ensure that {~: I~1 < i} c_ domain (G). Lower priority require- 
ments are satisfied in the environments (i.e. trees) provided by higher priority 
requirements. 

The infinite priority nature of the construction (amounting to a 0"-priority argu- 
ment) is due essentially to the fact that we may need to perform an infinite amount of 
activity to select, by finite approximations, the right subtree T'  (e.g. if the eventual 
T'  is going to be an e-splitting tree, by adding at infinitely many steps new levels of 
e-splittings) of a given tree T. 

We give below a more detailed account of how the strategies work. 

The requirement M~. (The strategy acts inside some given s.u. tree T. ) Given any 
s.u. tree T, find a s.u. subtree F c  T, such that every M e  [F] satisfies the requirement 
Me. We want however F~m+ 1 = T~m+ 1, where m = 2e, i.e. we want to preserve the first 
m levels of the tree on behalf of higher priority N- and P-requirements (namely, 
Nk, P~, with i, k < e). 

Our action will have certain ,,outcomes-, or, better, ~<component outcomes,, since 
the outcome may be broken into two components, when our action aimed at satisfying 
the requirement consists of two moves, each one with its own outcome. 

Here is how F is defined. Notice that there are 2 m strings such that I ~ I = m: for 
every i < 2  ~, let ai=T(~!~)) .  Construct by induction a sequence of s.u. trees 
T_I, To, ..., T2~-1, starting with T-1 being the s.u. tree defined by ao * T - I ( ~ )  = 

= T(~(0 ~) * r Having defined T~_ 1, define Ti as follows. First look for a s.u. saturated 
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(possibly partial) subtree T * c  T~_ 1 (with maximal domain) such that a~ * T* satisfies 
!~roperty (2.1) relative to all strings ~ such that !~1 < k, where domain(T*) = Sk. Le t  
T = R ( T * ,  Ti-1). 

1) Fa i lu reof  extending T* to a total tree yields a string a such that, for some x, if 
M e [ a i  * Ext(T,  a)], then M Cp ~ (X) 1". I f  this is the case then the outcome of our action 
aiming at satisfying Me is a number which measures the level of e-totality of 

a i * Ext(T, a). Define T~ = Ext  (T, a). 

2) Otherwise, the first ,component outcome,, is (o, and we succeed in finding a 

s.u. subtree T c T~ _ 1 such that  a i * T is e-total (notice that  in this case eventually T = 
= T*, since in this case T_* grows up to a total tree). We proceed our action as follows. We 
look for a s.u. subtree T c T with the aim of obtaining eventually an e-splitting tree 
a~ * T. This is done by employing Lachlan's technique in [6] for constructing minimal 
T-degrees. 

�9 Failure of finding an e-splitting tree will result in getting a set of strings Z 
and a string fi (such that, for all ~ e Z,  I ~ t = I fi] ), such that  the tree a ~ * T'  (where 

_ _  A 

T' = R(T, T)) is right e-splitting for Z,  but there are no s.u. simultaneous e-splitting for 
Z U {fi}, and, thus, by Lemma 2.5, there are no e-splittings in a i  * Ext  (T' ,  fi). In this 
case we define T~ = E x t ( T ' ,  fi). The second ,,component outcome, in this case is the 
string ft. 

�9 If  a~ �9 T eventually grows to an e-splitting tree, then the second ~component 

outcome,, is (o, and Ti = T. 

Having defined T2~-1 we define the tree F as follows: 

{ r ( ~ )  if I ~ [ < m ,  

F(~) = T(~)m) * T2- , -1(~>~)  otherwise.  

The requirements Nk and Pi. Let  F be a s.u. tree satisfying all the M-requirements. 
For  every k, call x(k) the 2k-branching value of F .  Construct an e-operator ~ such 
that, for every k there are numbers n(k) such that (n(k), {x(k)}} e ~ ,  and ensure that, 
for every set M e [F], we have that  n(k) e r e M.  Consider the subtree G c 
c F  defined by induction as follows: 

�9 G ( ~ )  = F ( 0 ) ;  

�9 suppose that  G(~), with ]~1 = k, is defined, and, say, G(~)=  F(~'):  then, for 
every j e  {0, 1}, let G ( ~ * j ) = F ( ~ '  �9 h . j )  where h is chosen such that  

F(~' �9 h . j ) (x(k)  ) = 1 <=>n(k) et We. 

The tree G clearly enables us to meet all the requirements Nk, Pi. In particular notice 
that, for every k, n(k) eA*>n(k)  ~tWk. 

DEFINITION 2.6. - If  a tree G is defined from a tree F as above, we say that  G is the 
N-reduced subtree of F .  
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2.3. The tree of strategies. 

Let  B = ~ [J { ~ .  ~ ,  ~ * f i:f i  c 2 <~ }. Given fi, f i ' e  2 <~, let fl <Bfi' if and only if 

[]fil V[lfil--I/ 'l a n d f i '  < f i ] ] .  
Extend <B to B as follows: given any Q, ~ '  EB,  let Q<B~ '  if and only if 

[ Q , Q ' e c o  and Q~>~']  or [ ~ ) e a u  and Q ' e w ]  

or [Q, Q ' ~ a  M and (3fi, f i ' ) [ Q = w * f l  and q ' = w , f i ' a n d  fl<Bfi'] or p = o ~ , w ] ,  

where a M = {0)  * 09, (2) * f l :  f l  E 2 <~ }.  The tree of strategies (or tree of outcomes) X is the 
smallest  set consisting of B-strings satisfying the following clauses. Together  with the 
nodes of 2:, we simultaneously define the requirement assignment Ro. 

1) 0e2 : ;  0 is an M-node; R~=Mo; 

2) if a E 27 then 

�9 i f  a i s  a P-node then a �9 w e 2: and a * co is an M-node, called an originating M- 
node; if Ro=Pi  then Ro ,~  = M i + l ;  w is the outcome at a; 

�9 i f  a is an N-node then a �9 co E 2: and a * w is a P-node. I f  Ro = Nk, then Ro,  ~ = 
= P~; w is the outcome at a; 

�9 if a *  w is an originating M-node and Ro ,~  = Me, then a is followed by 22e M- 
nodes ao, ..., a2~-1, with a 0 = a , w .  For  all j < 2  ~e, let R ~ = M e .  For  all j < 2  ~e, 
a j  �9 ~ e X ,  where Q EB.  I f  a is a terminal M-node i.e. a = a ~ _  ~, where  R~ = Me, then 
a ,  q (with p EB)  is an N-node; in this ease, i fRo  = Me then Ro ,e  = Ne. The elements of 
B are the possible outcomes at a .  

REMARK 2.7. - Notice that  there are no distinct outcomes for a ,  if o is an N-node or a 
P-node. The inclusion of nodes for N- and P-requirements  in the t ree of outcomes has 
only the purpose of recording some activity we do on behalf  of the P-  and N-require-  
ments  at those nodes. 

The order  relation <B of B extends to 2:, as we have already discussed in Subsection 
2.1. We thus obtain an ordering <B on 2:. 

REMARK 2.8. - I f  a is an M-node, then we also allow ourselves to write o �9 w _c T (or 
even a �9 ~ c f ,  i f f i s  a branch of Z), to mean that, for some Q E aM, a * ~ C_ T and ~(0) = 
(or (3QE a M ) [ a *  Qc_f and Q(0) '= ~]  i f f  is a branch in 2:). 

REMARK 2.9. - Henceforth we will follow the convention of using ~, a ,  T, ... as vari- 
ables for elements of Z,  we will use the lower case Greek let ters ~, ~, 0, ... as variables 
for elements of 2 < ~. We will happen to write M~ (No, Po) if R~ = Me (R~ = Nk, Ro = Pi), 
respectively, for some e, k, i. We may  also happen to write Wo for Wk, if Ro = Nk. 

2.4. The construction. 

At step s of the construction, we define a str ing 6 8 E Z of length s. We define also 
the values of several parameters ,  for each a EZ .  We define also pa ramete r s  
~ ( a .  ~ ,  s), f l ( a .  ~o, s), if a is an M-node. Here  is a list of the parameters .  
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�9 A s.u. tree To,.~. 

�9 I f  a is an M-node, then we will define elements ~.(a. co, s), e(a* O, s) (with ~) E 
e aM) of O)U{ cc }. We briefly describe the meaning of these parameters. Suppose that  
an M-node, Ro = Me, say. Let  o = a~, where a 0 c . . .  c a~ _ ~ are the consecutive M~-nodes 
preceding o (o0 being the originating M-node preceding a). 

Let  m = 2 e ,  and, for every ~5.~) (j~<2 m -  1) let aj= To,~(~}'~ 
At step s we define a string a + (with a+ = a ,  0, for some Q EB) and a s.u. subtree 

To.,,C_To,.~. 
If  Q(O)= co, the parameter  ,~(a. co, s) measures the level of e-totality at stage s of a 

tree a i * T, which arises from our attempts to build an e-total subtree of a i * T, where 
T is given by ai .T(~)=To, , (~!  m) .~ ) ,  needed to define To+,,: the parameter 
2(a* co, s) gives a restraint to lower priority requirements, which are supposed to be 
respectful of this restraint  if the construction suggests that  the final tree To+ is such 
that  Ext  (To +, ~ ~'~)) is e-total. In a similar way, the parameter e (a * Q, s), measures the 
level of e.splitting at stage s of the tree Ext(To§ ~('~)). 

| If  a is an M-node, then we will define an element x(a*  Q, s) of co U { ~ }, a 
string a ( a*  Q, s), a string f i ( a .  co, s) and a corresponding set of strings Z(fi(o.  co)) 
(this set is uniquely determined by the string fi(a* co, s)); we use the parameter 
a ( a *  Q, s) to approximate a string a which is a witness, when Q e co, of the fact that  the 
construction is suggesting that  the final tree Ext(To§ ~!~)) will not be e-total: in this 
case we have 

{ To,,(~) if I~l ~<m, 

To+, , (~)= To,~(~) ,0*Ext(T,a)(~)~>m) if ]~1 > m ,  

We use the parameters fi(a * co, s) and Z(fi(a. co, s) to denote a string fi and a set of 
strings Z, respectively, such that  

[ To..~(r if ir ~<m, 
To+ / 

' [T<, (~m) .Ex t (T ' , f i ) (~>~,n)  if I ~ l > m ,  

for some tree T'  of the form T' = R(T, T), when there is evidence that  T '  will eventual- 
ly end up growing to a tree T'  such that  a ~ �9 T '  is right e-splitting for Z but with no s.u. 
simultaneous e-splitting for Z U {fi} (for some fl and Z:  at step s, the parameters 
f i ( a .  09, s) and Z(fi(o, w, s)) are approximations to the final values fi and Z.) 

Without loss of generality, we will assume that  

Z(fi(a*co, s ) ) =  {~: ]~1 = Ifi( ~176 s)] and ~<f i (a*w ,  s)}. 

The parameter X(a .  0, s) measures the level of right e-splitting of a i * T' with respect 
to Z(fl), when C)=w*f i ,  for some f iE2  < ' .  

�9 I f  a is an N-node then we define numbers n(a, s), x(a, s) and a set co(a, s). The 
parameter n(o,  s) denotes the current witness of No and x(a, s) is some number such 
that  <n(a, s), {x(a, s)}> E ~ .  

Finally, let co(a, s) = {x(a, t): t ~< s}. 
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�9 I f  o is a P-node, Ro = Pi say, then we will define a parameter  y(o, s) to record 
the branching value, of the appropriate level, which is reserved for satisfying the re- 
quirement Po. 

At step s, let also 

v(o, s) = least {2(T, s), ~(T, s), X(T, s): ~ c o } ,  

and, for every o, let H(o, s) = { t < s :  ac_6t}. 
Assume that  {~,:  a e 2  <~ } is a recursive partition of co into infinite recursive 

sets. 
We assume also that x < ~ ,  for all x e co, and ~ - m  = ~ for every m e co. 
I f  we need at step s to define values of some parameters,  then we do this in such a 

way to preserve already defined values of the same parameters,  if these still work. 
More precisely, suppose we are given some recursively enumerable relation F_c co~ +2, 
for some n.  We will always implicitly refer  to some suitable selector function for F, i.e. a 
partial recursive function Cr such that, for every ~ e co~, 

�9 Cr(~) $ r (3y)(3s)  F(~, y,  s); 

�9 $ 

If  (3y)(3s)  F(5, y ,  s), then we say that (cr(x))o is chosen consistently. Thus, if at 
stage s, given some parameters  5, we need to choose some y such that F(~, y,  s), then 
we choose y consistently. In applications of this criterion, for simplicity we will always 
omit to specify the particular relation F which we will be dealing with, this relation be- 
ing clear from the context. 

All the parameters  retain their values until they are assigned a new value at some 
later stage of the construction. Notice that, given any M-node o, at step s the construc- 
tion may change values of 2 ( 0 .  Q, s) only if Q = co, and of e (o *  Q, s) only when 
e = (co, co). 

We now proceed with the construction. 

STEP 0. - Define 60 = r For  all o e 2 : ,  and for all o of the form o = v .  co, where T is 
an M-node, define: 

�9 Z(o ,  O) = e (o ,  O) = Z(o ,  O) = oo ; 

�9 n(o,  O) = x(o, O) = y(o,  O) = 1' and co(a, O) = ~; 

�9 a ( o ,  0)  = / 3 ( o ,  0)  = 0; 

�9 To, 0 = Id .  

STEP S + 1. - We define 6s+1 by induction as follows. Let  6s+l~0 = 0. Suppose that  
for every m ~< n we have already defined 6~ § l~m, together  with the values of the corre- 
sponding parameters.  Suppose also that each T~z+l~, ~ +1 is a s.u. recursive tree. 

Let  o = 6 ~ + 1 ~ .  We will define a string o + such that o c o  + and ]o+ ] = n + l .  
Eventually we will let 6 ~ + 1~ + 1 = o + 

We distinguish three cases, according whether  o is an M-node, or o is an N-node, or 
o is a P-node. 
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Case 1). a is an M-node, i.e. Ro = Me, for some e. Let  m = 2e. We recall that  there 
are 2 "~ consecutive M-nodes a i  such that  Ro~ = M~. Let  o = oi ,  for some such ~ .  

Let  To, ~ + ~ ( ~ ) )  = a~ and let T be the tree defined by the following equation, for 
each ~: 

a~ �9 T(~) = To, ~+~(~P) * ~). 

That such a tree T exists follows easily from the fact that  To, ~ + 1 is s.u. 
We first define a saturated partial tree T * c T  so that  T*c_T~v(o,s+l)-u. The re- 

straint v(a, s + 1) - m is meant to ensure that  our action at o ~11 be respectful of the 
levels of e-totality, e-splitting and right e-splitting previously determined for higher 
priority M-requirements. 

The idea is to define T* such that  a~ �9 T* satisfies property (2.1), on all strings of 
its domain. 

Let  T* (0) = 0. Assume by induction that  we have already defined T* on Sk (with 
0 < k < s), and consider the sequence ~(0 k-l)  ~(k-1) , . . . ,  %2 k-  1 _ 1 o f  strings of length k - 1 .  

We define by induction a sequence ~-1,  ~ 0, . . . ,  ~j (for some j ~< 2 k- 1 _ 1). Assume 
-1 = r and let us suppose we have already defined ~ 0, . . . ,  ~ - 1 .  

See whether there exists ~ such that  

O r * ( ~ }  k - l ) )  * ~ T ~ u ( o , s + l ) _ m _ l ;  

�9 c f ~ .  ~ , ~ + ~  ~(k) $ .  

Choose consistently some such ~j.  
If  we successfully define ~ 2k-~_ 1, then we extend the partial tree T* to Sk +1 in the 

following way. Let  ~7 be such that  T(~]) = T*(~(2~:~) 1) �9 ~2k ~ 1- Then let 

T * ( ~  k)) = T* ((~k))rk_ ~ * b) = T((~k))pk_ ~ * ~7 p~>k-1 * b). 

We note that  (Yx~<k)(Y~)[l~ I = k ~  ~ * r * ( ~ ) ~  ,t ~ e,s + 1 ~w) $ ]. Also notice that  T~'k + ~ c 
C T~v(o+ 1 ) -  m" 

Next, t ry  to extend T* to strings of length k + 2. We say that  the process stops at 
k + l  if T* is defined on S~, but we can not extend T* to S~+~: in this case 
domain (T * ) = S~. 

Finally, let 

= R(T*,  T). 

We now look at what progress we have made towards obtaining e-totality of 
a i * T .  

Assume that  the process stops at k. We have the following possibilities: 

Case a) towards obtaining a s.u. tree that is not e-total. If  

k ~< max {~.((~. w, t): t e H ( o *  w,  s + 1)}, 

then let j be such that  the above sequence ~ 1, ~0, . . . ,  ~j-1 can not be further 
extended. 
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Let  a(a, s + 1) be such that T(a(a,  s + 1)) = T * ( ~  k-l))  * ~ j - 1 ,  and let 

�9 O'+ = (~s+l~n+l  = o ' U { ( n ,  k)};  

�9 ; t ( a + ,  s + l )  = ~ ;  

�9 finally, let 

[ To,~+~(~), if I~] <m, 
T~§ To,.~+l(~)*Ext(T,a(a,s+l))(~r~>~), if I~l>m" 

Case b) progress towards a s.u. e-total tree. If 

k > max {; t (a .  a~, t): t e l l ( a *  oJ, s + 1)}, 

we say that s + 1 is an e-total a-expansionary step. Then the outcome at ~ will 
be of the form ~ e aM, with Q(0) = w, i.e. the first component outcome is w. Let  ;t((~ +, 
s + 1) = m + k, and proceed as follows. 

As before we first define a saturated partial subtree T c T, such that T c 
_c T~(o .  ~. ~+1)-~ (notice that T~(o.  ~, ~+1)-~ = T*). 

We argue by induction on t ~< s as follows, see [8, Proposition VI.5.15]: 

SUBSTEP 0. - Define 

�9 Z0  = $1  = 

�9 T(O) = 0, hence domain (T)-- $1. 

SUBSTEP t + 1). - See if (a) and (b) below are true. 
Let  Vt = {5:(3~)[T(5) = T(~) and ~cZt ]} :  

(a) There exist strings ~, ~] such that 

1) (VSEVt)[15* ~1 = 15.~]] and 5 . ~ ,  5 .  ~edomain (T*) ] ;  

2) (~, r]) induces a s.u. simultaneous e-splitting for the set Vt (relative to the 

tree a i  * T). 

(b) Zt = St -- 1. 

Subcase 1) If (a) is true, then choose consistently ~0+1 , ~+1 satisfying (a). 
Extend T to strings of length t + 1 as follows. Given ~ such that I ~ I = t, let 5 be 

such that T ( 5 ) =  T(~) and for all j ~  {0, 1}, let 

T(~ * j )  = T(6 * ~ +  1). 

Subcase 1.1) If  (b) is true, let Zt+l- -  {~: I~] = t +  1}. 

Subcase 1.2) If  (b) is false, then let Z~+I= {~*0 :  ~ e Z t } .  In both cases, let 
= t .  
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Subcase 2) Case (a) is false. Then there are Z c_ Zt and ~ e Zt - Z such that (a) holds 
with Z in place of Zt, but (a) fails for Z i J{~}  in place of Zt. 

Choose consistently such a string ~. Notice that we can assume that the corre- 
sponding Z is given by Z = {~: I~l = ~l and ~ < ~}. The set Z is called the Z-set  corre- 
sponding to ~ and we define Z ( ~ ) =  Z. 

If  Z = 0 then stop defining T . thus  domain (T~= St+ 1- Do not proceed to substep 
t + 2 .  

If  Z ~ 0, then repeat  the above procedure and extend the definition of T~n a similar 
way, with Z in place of Zt. Let  now 

~ /3t+1 = ~; 
| Z t §  { a * 0 :  a e Z } .  

Notice that  we get in this case a sequence of distinct strings fi tl, .-.,/3 t~, with tl ~< 
~< t2 ~< ...t~, and n i> 1 such that (a) fails with Z(fltj)LJ {fltj} in place of Zt above. 

Now, for any 17 in the sequence, define 

Z(a* co . /3,  s + 1) = 

= I max{h :  (Y~EZ( f i ) ) (Yk  < h) [F(~ .  0Ek]* 0), (F(~* 0Fkl* 1 ) e -  split]} 

t O0 

We say that s + 1 is right e-splitting (a, ~3)-expansionary if 

z (a*o~*f i ,  s + 1) > max{)r  o~.fi ,  t): t e l l ( a *  w * f i ,  s + 1)}. 

At this point, let 

/3(0* co, s + 1) = [<B-least{fltj:  s + 1 is right e-splitting (a, fltj)-expansionary} 

l i f  any fit~ s + (a, fit~)-expansionary, a n y j .  if 1 is not for 

We now measure what progress we have made towaeds an e-splitting tree. 
Let  e be maximal such that a i  * T ~  is e-splitting. 

Towards a s.u. tree with no e-splitting. If 

~ max {e(a* oJ * co, t): t e l l ( a *  09 * o~, s + 1)}, 

then define 

�9 Q = w * f i ( a * o J ,  s + l ) ;  

t T '  = Ext  (R&,  T),/3(0* a~, s + 1));  

�9 ~ ( a * Q , s + l ) =  oo. 

Progress towards a s.u. e-splitting tree. If 

> m a x { e ( o ,  oJ.  oJ, t): ~ e H ( a *  w *  09, s + 1)}, 

then we call s + 1 an e-splitting a-expansionary step. In this case we let 

i f Z ~ 0 ,  

otherwise.  
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�9 T' : R((T)~, T); 

�9 Q = w . w i s t h e o u t c o m e a t o a t s + l ;  

�9 s ( o , Q , s + l ) = m + s .  

Finally, let a + = 6~+1~+1 = o U {(n, ~)}, and let 

{ To,~+I(~), 

T~ To, ~+~(~ ~m) * T ' (~  ~>~), 

if < m ,  

if > m .  

This concludes the case of a being an M-node. 

A _ _  

REMARK 2.10. - We notice that  the partial trees T*, T, T, T '  defined at step s + 1 
are in fact parameters depending on a and s, i.e. it would more correct to write 

T* To ~, To.  ~ ~, T~', ~, We have omitted the subscripts for simplicity, and will con- 
tinue to do so as long as the context makes superfluous mentioning a and s. 

Case 2). a is an N-node. Then a + = a .  w. If  some requirement P~, with Tc_a, is not 
satisfied at s + 1, then do nothing. Otherwise, suppose that Ro=Nk,  and let 
m = 2 k .  

If  m >! v(a, s + 1 ) then do nothing. Otherwise, let x be the m-level branching value, 
i.e. let x > ]T~.~+ 1(~)[ be such that To, ~+ 1(~ * 0)(x) ;~ To.~+ 1(~ * 1)(x) (where ~ is any 
string such that [~[ = m . )  Let  n be the least number in ~o such that <n, 0}~tr  ~. 
Let  

n ( a , s + l ) = n ,  x ( o , s + l ) = x .  

Let  also x(a, s + 1) e to(a, s + 1), and To+,~+I = To,~. 

Case 3). a is a P-node. Then a + = a*  ~o. Let  Ro = Pi. Let  m = 2i + 1. If  some re- 
quirement P , ,  with vc a, is not satisfied at s + 1, then do nothing. 

Otherwise, let ~] be the least string such that 

Ta, s+l(~ *~*O), Ta, s+l(~ *~]* l)e(Ta, s+l)~v(a,s+l) 

(where ~ is any string such that ] ~1 = m), and the m + ] ~]]-level branching value y of 
To.~+I is such that y ~ U {oJ(a', s + 1): a '  <~a} .  For  every ~, let 

To§ ~+1(~)= I To,~+I(~) if ]~1 ~<m, 
' [ T o , ~ + l ( ~ m * ~ ] * j * ~ > m + l )  if ]~1~># and ~ ( m ) = j .  

If  no such ~] exists, then do nothing. If  such a string ~] exists then we say that  Po is 
satisfied at s + 1. Otherwise we say that Po is not satisfied at s + 1. 

Updating cp. Update the e-operator ~ as follows: 

1) for all ac_6~+1, let <n(a, s + 1),{x(a, s + 1 ) } > ~ + 1 ;  

2) for every y and n,  if < n , { y } > ~ r  ~ and y ~  {y(o, s + 1): a_c6~+1}, then let 
( n ,  0)  E ~  s + l  . 
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2.5. Proof that the construction works. 

The proof  that  the construction works consists of several lemmas. Le t  H ( a ) =  
= {s: a _ c ~ } ,  and, similarly, define H ( a .  ~)  = {s: a .  w c ( ~ } .  

LEMMA 2.11. - For every n, the following hold 

1) lim inf 5 ~ ~ exists (where the lira inf is taken with respect to the ordering rela- 

tion <B of Z;  ) 

2) I f  a = lira inf58~n then 

a) lim v(a ,  s) = ~ ; 
$ 

b) there exists t such that 

�9 the sequence {v(a,  s): s >I t} is nondecreasing; 

�9 for all s >I t, i f  s e H(a) then 

(Vu I> s)[(T~, 8)~(o, 8) : (T~, ~)~(o, ~)]; 

�9 for all ~, lira To, ~(~) exists; 

c) i f  a = ~ * ~, ~ is an M-node and Q = ~ * fi, then lira inf fl(v �9 ~o, s) = fi, where 
the lira inf is taken with respect to <B; 

d) there exists t such that (Vs >1 t ) [ a (a ,  s) = a(a, t)]; 

e) there exists a stage t such that for all s >1 t, ~o(a, s) = ~o(a, t), n(a, s) = 
= n(a, t), x(a, s) = x(a, t), hence lira ~o(a, s), lim n(o, s) and lim x(a, s) exist. 

f )  there exists t such that, for all s >i t, y(a, s) = y(a,  t); moreover, i f  a is a P- 
node, then Po is satisfied at any s >I t. 

PROOF. - The proof  is by induction on n. 
For  n = 0 the claim is trivial. 
Assume that  the l emma is t rue  of n:  let (l = l im in f  ~ ,  ~ .  By inductive assumptions, 

for each a ' < B a ,  let l imTo, ~ ( ~ ) = T o , ( O :  this defines a t ree T o , = l i m T o , , 8 ;  let 

lim w(a ' ,  s) = oJ(a'), lira n ( a ' ,  s) = n(a') ,  lim x(a' ,  s) = x(a'); let lim y(a ' ,  s) = y(o'); 

let lira a(a' ,  s) = a ( a ' ) .  The above limits exist, with the understanding that  we allow 
8 

ourselves also the case when the p a r a m e t e r  under  consideration is eventually 
undefined. 

Let  to be a stage such that  to satisfies, for all r c  o and for s >I to, the s ta tements  of 
the lemma, and such that, for all a ' < B a  and a ' ~ a ,  for all s>~to, we have that  

We want  first  to show that  ~ + = lim inf ~ ~n + 1 exists. Clearly we need only consid- 

er the case when a is an M-node. I f  there  are only finitely many  stages s such that  
a .  co c b 8, then the construction ensures  that, for some n e co, a + = ~*  n ,  hence a + 
exists. I f  there  exist infinitely many  s such that  a *  ~ c 6 ~, then, when there  exist in- 
finitely many  stages s such tha t  o * (o �9 (o c ~ ~, we obtain a + = a * ~o �9 ~o. Otherwise, as in 
the proof  of [8, Proposition VI.5.15], we are able to select a set  of strings Z, and a str ing 
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fl such that, for all ~ E Z, ] ~ I = I fl I, and we construct a tree which is right e-splitting for 
Z, but with no s.u. simultaneous e-splitting for Z t3 {fi}, thus eventually obtaining a s.u. 
tree with no e-splitting. The argument to show that  a § exists can be sketched as fol- 
lows. Let  to I> to be a stage such that  (Ys I> t0)[s ~ H ( a  * co �9 co)]. Then there exist a string 
fi 1 and a stage tl/> to such that, for every s I> tl, if s e H((~ * ~o), then we get a sequence 
{ill: 1 ~< j ~< nl } at s beginning with fi ~ = fi 1; if H ( a  * a, �9 fi 1 ) is not infinite, then there 
exist a string fi~ and a stage t2/> t l ,  with fil <Bfi2, such that, for every s I> t2, if s e 
e H ( a  �9 ~o), then we get a sequence {fi~: 1 ~<j ~< n2 } at s beginning with fie = fi I and fi~ = 
= fi 2. Notice also that Z(fl 2) = { ~ * 0 Ih~: ~ e Z }, for some proper subset Z r Z(fl 1 ); hence 
card(Z(fi2)) <ca rd (Z( f l l ) ) .  But, then, eventually we find a string fin such that 
H(a * f i ~ )  is infinite: otherwise we would obtain an infinite sequence 
fll <Bfl2 <8... "<Bfl+~ < .. . ,  and, for every n, c a rd (Z( f i~+ l ) )<  card(Z(fi~)), a contra- 
diction. 

This shows that  there exists the <B-least string fi for which H ( a ,  ~ . f l )  is 
infinite. 

Next, notice that clearly lira v(a +, s) = oo. 
8 

We know by induction that for every ~ r  § for every ~, lira T~,s(~) exists, say 
lira T~ s(~) = T~(~). 

8 

Case 1). First  suppose that a is an M-node, Ro =M~, say, and let m = 2e. Let  
~ = o ~ ,  i.e. assume that  a is preceded by consecutive M-nodes (~oEOlC...Oi_l, 
where R o  = Me, for every j ~< i - 1. Let  also T be the tree defined by: a~ * T(~) = 
= To(~Cmf, ~) Let  ~ be such that  a t = o ,  ~) Let  t~ I> t~ be such that  for all s I> t~, 

T~,s~m+ 1 = TO, ~l~m+l. 

1) ~)e w. Let  t2 I> tl be such that, for all s I> t2, 

�9 a ( o  § , s )  = a ( o  + , t2): l e t  a = l ira a ( a  § , s ) ;  
8 

�9 § = 

Such a stage t2 exists; in fact it is easy to see that lim T* exists. Let  T* be this limit O~ 8 s 
(notice that domain (T*) is finite): it follows that lira To, .~ = R(T*, T) exists, equal, say, 
to T. Thus lim To+.~ = To+ exists, where 

= I i f  < m ,  

[ T~(~ ~m) * Ext  (T, a)(~ ~>m) otherwise. 

Moreover, for all s>~t2, if s cH(o § then, since our choices of parameters are 
consistent, 

(Yu/> s)[(To+, ~)~(o+, ~) = (To+, ~)[~(~+, ~>]. 

2) ~ = o~ �9 ft. Since we have a �9 Q _c 6 ~ only at e-total expansionary stages, we have 
that  there exists te >t tl such that the sequence 

{~(a,~o,  s): s>~t2 and s e H ( a . o ) }  

is strictly ascending. 
Similarly, since we have a ,  ~ c_ 5~ only at stages that are right e-total (a, fi)-expan- 
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sionary, we m a y  assume also tha t  the sequence  

{ Z ( a * e ,  s): s>~t~ and s c H ( a , q ) }  

is s t r ict ly ascending; trivlally, for  all s >I t~, if s ~ H ( a  �9 ~), we have tha t  fi(a * o9, s) = ft. 
L e t  Z = Z(fi). 

- -  t I t  is now easy  to see tha t  lim~ T o . . ,  ~ and, consequently,  lira T o .  ,~, ~ exist: thus,  de- 

fine T = lim~ T o . . ,  ~, and T '  = l imT~ .  ~, ~ (clearly T '  = R(T, T): notice tha t  T need not  

be partial ,  i.e. we m a y  get  T '  = T, if Z ~ 0. ) 
Then  lira To+, ~ exists, this limit being the following t ree  To+ : 

T~§ = T o ( ~ m ) * E x t ( T ' , f l ) ( ~ > ~ )  o the rwi se .  

I t  also follows that,  ~%r all s/> te, if s c H ( a  + ) then,  by  consis tent  choices, 

(Vu I> s)[(To+, ~)~.(o+, ~) = (To+, ~)~(o+, ~)]. 

3) ~o c a M and ~) = w * ~ .  L e t  T be as in the previous case: Since a * ~) c 5 ~ only at  e- 
expans ionary  stages,  we have tha t  the re  exists some t2 I> t~ such tha t  the sequence 
{e(a  + , s): s >1 t2 and s c H ( a  + )} is s t r ict ly increasing. Moreover ,  it is easy  to see tha t  
lira To+ exists, this limit being the t ree  def ined as follows: 

8 , 8  

To(~) if I~1 ~<m,  
T o + ( ~ )  = 

T o ( ~ ) *  T ( ~ > ~ + I )  o the rwi se .  

Moreover ,  for  all s I> t2, if s c H ( a  + ) then,  by  consis tent  choices, 

(Yu I> s)[(T~+, ~)~,(o+, ~) = (To+, ~))~.(o+, ~)]. 

Case 2). Suppose tha t  a is an N-node.  L e t  Ro = Nk and let  m = 2k; wait  for  a 
s tage tl>>-to such tha t  all P~, with T c a ,  are  satisfied at  any s>>-t~ and ( V s ~  > 
>/tl ) [ ( To, ~ ) ~ ~,, ~ 1 = ( To ) ~ ~ + 1 ]. Then,  at  any t2 >1 tl,  we can choose a suitable n ( a ,  t2 ) e ~ o, 
and for  all s >~t2, n(a ,  s ) = n ( a ,  t2) and x(a ,  s ) = x ( a ,  t2), because at  subsequent  
stages,  no action forces us to enumera t e  (n ,  0> c O ;  finally notice tha t  ~o(a, s ) =  
= ~o(a, tg,), for  all s i> t2. 

Case 3). L e t  ~o be chosen as in the  preced ing  cases. Le t  R~ = Pi and let  m = 2 i  + 1 ; 
wait  for  a s tage tl >t to, with tl e l l ( a ) ,  such tha t  all P~, with vc  a ,  are  satisfied at  any s I> 
i> t~ and 

�9 ( V S / >  tl)[(To, s)~m+l = (To)~ ,m+ 1]; 

�9 t he re  is a s t r ing ~] such tha t  

and the s tr ings To, tl(~} m) * ~*  0), *o, t l ~ j  ~ r~(m) * t / *  1) differ on some y, such tha t  y 
~t U {oJ(a~): a '  <B a} and y is the  m + ]~/I-level b ranching  value of To, t~. 
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Then if s/> t~ is such that  a_c 5 ,, it follows that y(a,  s) = y(a,  t~). So Po is eventually 
satisfied. 

I t  follows that  

{ To(~) 
To§ = To(~ ~,~ * ~]* i*  ~ ~.>~+1) 

for a suitable string ~] as above. �9 

if I~1 ~<m, 

if I~1 > m and ~(m) = i ,  

By the previous lemma, Let  f be the true path, i.e. f ~  = lirn inf 5 ~ .  

LEMMA 2.12. - For every a t  f ,  the tree To is s.u. 

PROOF. - Immediate since in the construction, at every node a we start  with a s.u. 
tree and we use tree operations that take s.u. trees to s.u. trees. �9 

LEMMA 2.13. - 1) For all a, a ' c f ,  a c a '  ~ T o ,  C To; 

2) for every ~, let 

a(~) = least { vc f :  v is an M-node, R~ = Me, say, and I~1 <~ 2e)}. 

Then (V(I)[~(~) c_ ~ c f ~  To(~) = To(~)(~)]. 

PROOF. - Part  1) is obvious.  
Part  2) follows from the fact that at each node a, and stage s, we are allowed to mod- 

ify To,~ only on strings y's such that  I ~] I > 2 e, if a is an M-node and Ro = Me, and [y I > 
> 2i + 1, if a is a P-node and Ro = Ni. �9 

Lemma 2.13 enables us to define a tree F as follows: for every ~, let F ( ~ ) =  
= T o ( ; ) ( ~ ) .  

Finally, let G be the Noreduced subtree of F. 
We now pass on to show that  the requirements are satisfied. 

L E M M A  2.14. - For every e �9 w we have: 

(VM�9 M total~q~ M recursive or M <-Tq~M]. 

PROOF. - Let  M �9 [F]. Let  e �9 w be given and let a 0 _of be such that Roo = M,,  and a 0 
is an originating M-node. Let  m = 2e. By Lemma 2.11 and Lemma 2.13, there exists 
some i such that  i < 2 ~ - 1 and Too(~ ~)) r  Let  Q be the true outcome at a i .  If  r is 
total then, by construction, • �9 aM. We have two cases. 

Case 1). Q = o ~ . f i .  By Lemma 2.5 there is no e-splitting in a ~ . E x t ( T ' , f i ) ,  
where a i =  Too(~m)); notice that ai  * Ext (T ' ,  fl) = Ext(T(o0§ , ~!m)). Since M e  
�9 [Ext(T(o~)§ ~!~))], we conclude that cp M is recursive, by the following procedure: in 
order to compute ~cM(x), wait for s such that s I> t(o~)+ and s � 9  + ) and, for some 

Ext(T(z. + s, ~!m)))(~)(X ) $ . such that  I~] + m <  v((ai) +, s), we have that ~e,~ ~ ' 
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Then ~M (x) =  .4)Ext(T(~i)+.s'~?~)(~)(X). The procedure is clearly recursive by Lem- 
ma 2.11. 

Case 2). If  Q = w �9 ~ ,  then we conclude as in [8, Proposition VI.5.15] that  a i * T'  is 
an e-splitting tree, thus M ~< T O M, by known arguments, using a recursive set of stages 
that, as in the previous case, are true stages in the approximation to T(o~)+. [] 

Let  q)= U r Then 
8 ~ 0 9  

LEMMA 2.15. - For every M, M '  ~ [G], O(M) = q)(M'). 

PROOF. - Let  M, M ' E  [G] be given. I t  is enough to show that  

(Vn)[n e q ) ( M ) ~ n  ~ q)(M ')]. 

Suppose that  n E q)(M). If  (n, 0} E r  then the claim is trivial. Otherwise the claim fol- 
lows from updating of q), since if M(x) ~ M '(x) and {n, {x}} ~ q), then the construction 
forces (n, O) E q~ (since M, M '  are allowed to differ only on numbers of the form y(v), 
for some To f ) .  [] 

By the previous lemma, let now A = q)(M), for any M E [G]. 

LEMMA 2.16. - For every k ~ ~,  the requirement Nk is satisfied. 

PROOF. - Let  k be given, and let a c f b e  such that  Ro = Nk. By Lemma 2.11 and by 
updating of q), it follows that  

n(a) ~A(c:>(VME [G])[x(a) c M])<=>n(a) ~ Wk. " 

LEMMA 2.17. - For every i ~ w, the requirement Pi is satisfied. 

PROOF. - Immediate by Lemma 2.11 and Lemma 2.13. [] 

REMARK 2.18. - Inspection of the proof shows that  A ~ A 3- 

3. - O n  a q u e s t i o n  o f  S o l o n .  

In this section, we apply the properties of Lachlan minimal degrees to answer a 
question of [12]. 

DEFINITION 3.1 ([12]). - �9 If  H is a set, let PH be the principal function for H, that  is 
PH is the function which enumerates the elements of H in increasing order. 

�9 A set H is e-hyperimmune ff for every total function f such that  H/> ef there 
are infinitely many n such that  pH(n) > f ( n ) .  

Solon was interested in characterizing the e-degrees of nontotal functions. In this 
direction, he proved the following theorem. 
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THEOREM 3.2 ([12]). - For any set H, i f  H is e-hyperimmune then the e-degree of H 
is not total. 

Solon posed the question of whether the converse of Theorem 3.2 is also true. An af- 
firmative answer would give a natural characterization of nontotality. However, we 
show that  the converse fails. 

One can produce a counterexample to Solon's proposal in more than one way. For  
example, Spector ([14]) produced a set M of minimal Turing degree such that  every 
function recursive in M is bounded by a recursive function. Gutteridge ([4]) showed 
that  there is no minimal nontrivial e-degree, so there is a nontotal enumeration degree 
X below M. By the same argument that we will give below, the e-degree of X cannot 
contain an e-hyperimmune set. The advantage to the proof below is that  we can directly 
construct the required counterexample using just  the techniques of the previous 
section. 

THEOREM 3.3. - Using Lachlan's construction, it is possible to construct a set M 
such that the enumeration degree of M is not total and M fails to be e-hyperim- 
mune. 

PROOF. - Exploit Lachlan's techniques, to construct a sequence Tk of s.u. recursive 
trees such that, for every k, Tk§ as follows. Begin with T 0 = I d .  A Step 
3 k + 1 ,  

�9 if there is a s.u. recursive subtree T c T~k such that  T is not k-total, i.e. there 

exists some x such that  for no path M e [ T ] ,  do we have q~M(x)$, then let 
T3k+l-- T. 

�9 Otherwise, let T be a k-total s.u. recursive subtree of T3k. Then letT~k + 1 be ei- 
ther a k-splitting s.u. recursive subtree of T, or a s.u. recursive subtree of T with no k- 
splitting, i.e., in the latter case, Tsk 41 = Ext (T, fl), where fi is a string such that, for 
some set Z o f  strings, all of the same of length as fi, we have that  T is a s.u. recursive 
subtree of T and T is right k-splitting for Z but with no s.u. simultaneous k-splittings 
for z u 

At step 3k + 2, we construct a s.u. subtree T3k+2 of Tsk+l so as to satisfy the follow- 
ing requirement: for all M e [T3k+2] , M ~ Wk. For this, let x be the 0-1eve1 branching 
value of T3k + 1, and let T3k + ~ = Ext  (T~k + 1, h), where h e { 0, 1 } is the string of length 1 
such that  Tsk + t(h)(x) = l r Wk. 

Finally, at step 3k + 3 we ensure quasi-minimality as follows. We contruct a s.u. 
subtree Tsk§ of Tsk+2 such that 

(VMe [T3k+a])[r total ~ O k ( M )  recursive]: 

if there is a finite set D and a branch M e [ T~k + 2 ] such that D c M and O k (D) is not sin- 
gle-valued, then it is easily seen that  there is a s.u. recursive subtree Tsk § 3 _c T3k + ~ such 
that De_M, for all M e  [T3k+s] (indeed, T3k+~ = Ext  (T3k+2, ~), for a suitable string ~]). 

Otherwise, there is no branch M e  [T3k+2] such that  q)k(M) is not single-valued. In 
this latter case, take T3k+3 = T3k+2, and use the fact that  T~k+2 is recursive to show 
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that, for all M e  [T~k§ if Ck(M) is total then Ck(M) is recursive, being 

Ck(M) = {x: (3~)[x E q)~Y: T~k+~(~)(y)= 1}]}. 

NOW, let M e [Tk], for all k. Clearly M has quasi-minimal e-degree. Then, consider 
M as a total object. (One can substitute the characteristic function of M for M in this 
context.) Any function ~ which is Turing computable relative to M is forced to be total 
by Tsk§ But, then, q~k is total relative to any path through T3k+~. But then, by com- 
pactness, for each n there is a bound on the values achieved by q~ k relative to paths in 
T~k + ~ and this bound can be found recursively. Thus every function which is recursive 
in M is bounded by a recursive function. 

Suppose that W is recursively enumerable in M. Then W has an infinite subset R 
which is recursive in M and PR is recursive in M. Since R c_ W, for each n pR(n) >i pw(n); 
that is to say that the n-th element of R is greater than or equal to the n-th element of 
any superset of R. Thus the principal function of any set which is e-reducible to M is 
dominated by a function which is recursive in M and hence by a recursive func- 
tion. 

Thus, M has nontotal enumeration degree and each set which is enumeration re- 
ducible to M has a principal function which is dominated by a recursive function, as 
required. �9 

4. - Concluding remarks. 

The notion of a quasi-minimal e-degree can be relativized as follows. 

DEFINITION 4.1. - Given any 5c ~ ,  we say that an e-degree a is 5-quasi-minimal if 

�9 ( r e  e ~)[c < a]; 

�9 (V total c)[c <~ ac:>(3b e ~)[c ~< b]. 

THEOREM 4.2. - For every countable ideal 5, Z-quasi-minimal e-degrees exist. 

PROOF. - The proof is similar to the proof of the Exact Pair Theorem in [14]. Let ~ be 
a countable ideal. Then, by known arguments, we can find a sequence of sets B_ 1 ~< 
<~eBO ~e "" ~eBu ~e ' " ,  whose e -degrees  generate 5. Assume that B_I = 0. Let B = 
= (J {Bi: i e w}: without loss of generality, we may also assume that B is coinfinite. 

Construct a set A such that (Vn)[Bn ~< ~A] and satisfying, for all i, e e oJ, the follow- 
ing requirements: 

N(e,i): A ~ cP~(Bi) 

Pk: q~k(A) t o t a l ~ b k ( A )  ~eBk-~. 

Given any set X, let X~= {(x, y}: x = n  and (x, y } e X } ,  and let n •  
= {(n, x}: x e X}. We construct A of the form A = [J { O k: k >/ - 1 }, where, for every n, 
A n = (n • B~) U G, for some finite set G (assume O -1 = 9.) This yields that Bn <~eA, 
for every n. 

During the construction, define also by induction finite sets Fk, Ek, and values of 
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parameters xk. Eventually we will have that Fk is contained in A, whereas Ek N A = 0, 
for every k e w. 

The set Ok will be defined at stage 2k + 1. 

Step 2k. This step aims at satisfying the requirement Nk. Let k = (e, i}. Choose xk 
r such that (k, xk} r (where we a s s u m e  F _  1 = E _ I  = ~), Define 

F2k = I F 2 k - l u { ( k ' x k } }  f f (k ,  xk}ctO~(Bi), 

[ F2k otherwise, 

and 

E2k = I E 2 k - l ( j { ( k ' x k } }  i f (k ,  xk}eCe(Bi) ,  

[ E2k otherwise. 

Step 2k + 1 (Requirement Pk). Say that a finite set F is compatible with Ok- i ,  if 
F A [J {wi: i ~< k - 1} _c Ok-1 (assume w -1 = 0). 

We distinguish the following two cases. 

�9 (3F) [F finite and F N E2k = ~ and Ck(F) not single-valued and F compatible 
with Ok-z].  

In this case choose the least (e.g. with least canonical index) such set F, let F2k + 1 : 
= F2k U F ,  E 2 k + l  = E 2 k  and let Ok = O k- l U F2k + l U (k • Bk). 

�9 Otherwise, let F2k+l = F2k, E2k+l = E2k and Ok = Ok-1 U (k • Bk). 

To show that the requirement Pk is satisfied, assume for a contradiction that ~ k (A) 
is total. Then it is not difficult to show that 

~bk(A) = {x: (3F)[F • E2k = 0 and x e Ck(F) and F compatible with Ok_ 1]}. 

This clearly implies that q~k(A) ~<~Bk-1, as desired. �9 

In particular, if Z is a principal ideal, we are led to the following definition: 

DEFINITION 4.3. - Given any b, define an e-degree a to be b-quasi-minimal if a 
is ~-quasi-minimal, where ~ is the principal ideal generated by b, (i.e. b < a and 
(V total c)[c <. a ~ c  <~ b]. ) 

Theorem 1.6 can be relativized to any total e-degree b: 

THEOREM 4.4. - For every total e-degree b there exist a b-quasi-minimal e-degree a, 
and a fami ly  {bi: i e I}  of cardinality 2 ~~ such tha~ for all i ~ I ,  

�9 b < bi and there is no total e-degree c such that b < c < b~; 

�9 a<b~.  

PROOF. - Given any total set B carry on the construction of Theorem 1.6, but using 
B-pointed trees (see [8, Section V.4]). �9 
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