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Quasimonotonicity, Regularity and Duality for Nonlinear Systems
of Partial Differential Equations (*).

CHRISTOPH HAMBURGER

Summary. - We prove partial regularity for the vector-valued differential forms solving the
system 2(A(x, w)) =0, dw =0, and for the gradient of the vector-valued functions solv-
ing the system divA(x, Du) = B(x, u, Du). Here the mapping A, with A(x, )= (1+
+ |w|2)P =22 (p = 2), satisfies a quasimonotonicity condition which, when applied to the
gradient A(x, ») = D, f(x, o) of a real-valued function f, is analogous to but stronger than
quasiconvezity for . The case 1 < p < 2 for monotone A is reduced to the case p =2 by «
duality technigque.

1. - Introduction.

We prove partial regularity for the vector-valued differential m-forms w =
=(w!, ..., oY): Q- A,, solving the system of equations

{L.1) 8A(x, w)) =0 and dw=20,

for a given mapping A: @ X A,, — A,,. We call such solutions A-harmonic differential
forms. Here A,, = A,,(R”, RY), with n = 2, N 2 1, denotes the space of R¥-valued al-
ternating m-linear forms on R®, furnished with the standard inner product (-, -), d
and ¢ are the exterior derivative and the exterior co-derivative respectively and { is a
bounded open subset of R"™ To avoid trivialities we assume m = 1.

The system (1.1) includes the important case w = du for u: Q — RY, reducing
to

(1.2) divA(z, Du) = ¢(A(z, du)) =0,
or, in components, to
D, [A}(x, Du)]=0 fori=1,..,N.

Here and in the sequel we identify A, = R and A; = R¥*" Thus we do not distin-

(*) Entrata in Redazione il 20 settembre 1993 e, in versione corretta, il 15 giugno 1994.
Indirizzo dell’A.: Mathematisches Institut der Universitit Bonn, Beringstrafie 4, D-53115
Bonn, Germany.
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guish between the differential du(x)eA; and the gradient Du(x)=
= (D, u'(x)) e RY*" of a function u: Q — RY, One reason for studying the system (1.2)
in the context of differential forms is a simple duality principle which relates an A-
harmonie m-form with sublinear growth of A {o an ¢-harmonic (% — m)-form with su-
perlinear growth of a.

1
loc

DEFINITION 1.1. — We say that we L (0, A,,) is a weak solution of the system

(1.1) if A(x, w)e L} (2, A,,) and

loc

(13) j(A(x, o), dgydr =0 for all peC (2, Ap_1),
Q
(14) j<w, ayde =0 for all ge G (2, Apyr).
Q

The regularity of solutions w € L? ({2, A,,), with 1 < p < «, of the system (1.1) or
(1.2) has been widely studied under the assumption that the mapping 4: 2 X A, —
— A, be uniformly strictly monotone and locally Lipschitz continuous, ie.

(1.5) (A, ) — A, ), 0 — 1) Z M1 + |w|? + [9]|2)P 220w - y|?,
1.6) |Az, ) — Az, n)| < L1+ |o]* + |9]*)® 2P |w ~ ],

for every w, ne A, and x e Q, with positive constants A and L. (1.5) and (1.6) imply
uniform ellipticity and a growth condition for A,

1.7 (A, (®, @) 5 &) 2 M1 + |w|)P D22,
(1.8) (4, @) < L1 + |w]|?)® =272,

for every £e A,,, and for every x € @ and almost every w e 4,,. Moreover, if A(x, )
is of class C', then (1.5) and (1.6) are easily seen to be equivalent to (1.7) and (1.8), cf.
[A-F, Lemma 2.1].

In general we expect only partial regularity for the solutions w e L?(Q2, A,,) of the
system (1.1); by this we mean Holder continuity outside a set of Lebesgue measure
zero. The first result in this direction was obtained simultaneously by M. Giaquinta
and G. Modica[G-M1] and by P.-A. Ivert[I] for the following monotone system with
p=2
1.9) div A(x, u, Du) = B(x, u, Du).

Partial regularity for the minimizers of the variational integral F(u) = [ f(Dw) de,

whose integrand f satisfies the quasiconvexity condition of C. B. Morrey'([)M, Defini-
tion 4.4.3], was proved by L. C. Evans[E] using a blow-up technique. A direct proof
based on a reverse Holder inequality and LP-estimates was later supplied by M.
Giaquinta and G. Modica [G-M2].

Quasiconvexity of f is equivalent to the sequential weak lower semicontinuity of &
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on WiP(Q, RY). It can be regarded as an integral version of the pointwise
inequality

Ao+ Do) =2 flwg) + f(wg) Do,

valid for any differentiable convex function f.

DEFINITION 1.2. — We ecall f: RY*" — R uniformly strictly quasiconvex if, for
A>0, '

(1.10) J-[f(cuo + Do) — flwy)lde = A f(l + |w0|2 + |D¢|2)(”—2)/2 [Dgolzdx
R" R*

for every woe RV*™ and g e C5° (R*, RY).

In attempting to extend the theorem of L. C. Evans from minimizers to stationary
points and, more generally, to solutions of the system (1.1) we are led to the concept
of quasimonotonicity. Quasimonotonicity is obtained in the spirit of quasiconvexity
by integrating the following inequality arising from (1.5) -

<A(.'X/‘0, w0+dg0)—A(£U0, 6"0)! d¢>2A(1 + Iw0l2+ |d¢[2)(11—2)/2|d¢|2.

DEFINITION 1.3. - We call A: 2 x A,, — A,, uniformly strictly quasimonotone if,
for A >0,

1.11) j(A(xo, wy + do), dgo)dx?kf(l + w2 + |dp|2)? 22 |do|? du
R® RrR"

for every z,eQ, wyeAd,, and peCyr (R*, A, _1).

Quasimonotonicity has been introduced independently by M. Fuchs[F], by Zhang
Ke-Wei[Z], and by the author in the present work. Zhang Ke-Wei[Z] proved the ex-
istence of a weak solution for the quasimonotone system (1.9).

We next discuss some properties of quasimonotonicity. We have already seen that
monotonicity is sufficient for quasimonotonicity. We find a necessary condition for
quasimonotonicity of mappings A of class C* by writing the left-hand side of (1.11) as
(we omit the variable ;)

1
f(A’(wg + tde)-de, dp)dtde .
R" 0
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Rescaling ¢ to ¢ and letting ¢ — 0, we obtain

1.12) j(A’(wo)'dgo, do)dx = ) J’(1 + w|2)® D72 |do| da
R* R*

for every woeA,, and ¢e Cy° (R", A,, ;). As in the case of quasiconvexity we can
show by using Fourier transforms and the Plancherel formula that (1.12) is equiva-
lent to the condition of Legendre-Hadamard, i.e. (1.7) holds for all decomposable £ =
=n A\ ¢, where ne A;(R", R) is a scalar 1-form and e A, -, (R", RY) is a vector-
valued (m — 1)-form. For m = 1 the corresponding matrices £e RY *" are character-
ized by rank £<1.

The latter restriction on ¢ being vacuous for m = N = 1, we conclude that mono-
tonicity, quasimonotonicity and the Legendre-Hadamard condition are all equivalent
in this case. Also, for linear A(w), it is clear that quasimonotonicity (1.11) coincides
with (1.12) and hence with the condition of Legendre-Hadamard. In general the con-
dition of Legendre-Hadamard is strictly weaker than quasimonotonicity, and quasi-
monotonicity is strictly weaker than monotonicity.

An example of a nonlinear quasimonotone funetion A: R?*2%— R2*2 jg

(1.13) Alw) = |w[2w+4detwcof(u,

where cofw denotes the matrix of co-factors of » it will be discussed in the Ap-
pendix. To obtain a uniformly strictly quasimonotone function we add &(1 + |w|?)w,
with ¢ > 0.

The function A, as given by (1.13), is just the gradient of the real-valued
funetion

flw) = zll-lwl4+ 2(det w)?,

which is quasiconvex. This is not surprising in view of the simple fact that quasicon-
vexity of a function f: RV *™ — R is implied by quasimonotonicity of its gradient Df.

In the nonlinear theory of elasticity, the equilibrium equations for a non-homoge-
neous elastic body with reference configuration Q ¢ R3, deformation u: Q — R3, Pio-
la-Kirchhoff stress tensor T{(x, Du(x)), density o(x), and external body forces per unit
mass b(u(x)) are given by the system

div T'(z, Du) + p(x) b(u) = 0.

For a hyperelastic material, quasiconvexity is the constitutive restriction which one
imposes on the stored energy function WX, ») which determines the stress tensor by
the equation T(x, w) = D, W(z, ), cf.[B],[Cil. In this light, quasimonotonicity is a
possible candidate for a constitutive restriction to be imposed directly on the stress
tensor T(x, w) for a non-hyperelastic material which does not possess a stored energy
function. What is missing for applications, however, is a suitable sufficient condition
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for quasimonotonicity that would correspond to J. Ball’s polyconvexity in the case of
quasiconvexity.

We list the hypotheses of our regularity theorems as they apply to a function
A: O x A, —A,,; for a function A: J X RV *" — RV *” they should be read replacing
A, and A, _; by R¥*™ and RY respectively.

HypoTHESIS H1. - A4 is uniformly strictly quasimonotone, ie. (1.11) holds.
HyrorHESIS H1% - A is uniformly strictly monotone, ie. (1.5) holds.

HyYPOTHESIS H2. - A(x, -) is of class C, unlformly with respect to x € Q, and satis-
fies (1.8), which implies that

114 A, (&, @) — A, @, )| S (14 o]+ 9P 22l(|o], |o - 1])

for a continuous, bounded function (%, s), with I(¢, 0) = 0, which is increasing in ¢ for
fixed s and increasing and concave in s for fixed ¢

HypoTHESIS H3. ~ (1 + |w|?) P~ V2 A(, w) is a Hélder continuous function on O
uniformly with respect to wed,,, ie.

(1.15) |A(x, ) — Ay, »)] S L(1 + ||2)P V2 |g -y

with some exponent ¢€]0, 1[.

HypoTHESIS H4. — B: O X RY X R¥** » R¥ is a Carathéodory function with nat-
wral growth, ie. there exist constants ¢, b and M such that

(116) |B(z, u, w)| < a|w|P+b for every |u| <M, xel and we RV*",

In the following all constants may depend on the datan, N, m, p, , L, & a, b M
and we shall indicate dependence only on other parameters.

We define the mean value and the excess of a differential m-form w: 2 —A4,, on a
ball B.(x) = {yeR™: |y —x| <r}cQ by

Wy = ][ wdy = |B,(x)|* f wdy and @z, r)= ][ [V(w) — V(w),, -|?d
B, (x) B, (x) B,(x)

respectively, where we have used the auxiliary funetion

(1.17) V(w) = (1 + |w|2)e-2/,
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We also define the regular and the singular set of w by

Reglw] = {xy € Q: » is continuous in a neighbourhood of x,},

Sing[w] = O\ Reglw].
Obviously the regular set is open. We then have

THEOREM 1.1. - Let p = 2 and suppose that A: @ X A,, — A,, satisfies Hypotheses
H1, H2 and H3.

Then any weak solution » € L. (Q, A,,) of the system (1.1) is locally Hélder con-
tinuous with exponent & €10, 1[ on the reqular set Reglw), for ¢ the exponent of Hy-
pothesis H3, and the singular set has Lebesgue measure |Sing[w]| = 0.

We moreover have that

(1.18) Reglw] = {acer: sup {wg,,»| < ©  and limoinf D(xy, 1) = 0}.
r>0

r—0+

THEOREM 1.2. — Let p = 2 and suppose hat A(x, ) and B(x, u, ») satisfy Hypothe-
ses H1, H2, H3 and H4. Let ueWo! NL*(Q, RY) be a weak solution of the
system

1.19) div Az, Du) = B(x, u, Du),
satisfying the condition
(1.20) lellp-<M  with 2aM<2,

for A the quasimonotonicity constant in (1.11).

Then the gradient Du is locally Holder continuous with exponent €10, 1[ on the
reqular set Reg[Dul, for & the exponent of Hypothesis H3, and the singular set
Sing [Du] has vanishing Lebesgue measure. Moreover, setting w = du, the regular set
is given by (1.18).

For the case 1 < p <2 and monotone A, we rely on the duality principle for A-
harmonic forms of Section 2, thereby reducing the problem to the case p = 2. Since a
duality principle does not hold if A is quasimonotone, we shall consider only mono-
tone A in the case 1 < p < 2. Then we obtain

THEOREM 1.3. — Let 1 <p <2 and suppose that A: QxA,,— A, satisfies Hy-
potheses H1*, H2 and HS.

Then any weak solution o € L. (Q, A,,) of the system (1.1) is locally Hdélder con-
tinuous with exponent ¢ €0, 1[ on the regular set Reglw), for & the exponent of Hy-
pothesis H3, and the singular set has Lebesque measure |Sing [w]]| = 0.

Theorem 12 has been obtained by M. Fuchs[F] in the special case that
A: R¥*® s R¥ %" hag linear growth (p = 2) and no dependence on the variable x. His
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proof uses an indirect blow-up argument. In the present paper we employ a direct
method in proving the general case with p = 2. Theorems 1.2 and 1.3 are also partial
generalizations of the result of[G-M1] and[I] for the monotone system (1.9) to p = 2
and 1 < p < 2 respectively.

‘We here outline the direct method used in the proof of Theorems 1.1 and 1.2 which
is based on the work of M. Giaquinta and G. Modica [G-M2]. Our aim is a decay esti-
mate of the form @(x, o) < ce* implying regularity for V(w) by virtue of Campanato’s
integral characterization of Hélder continuity. This is accomplished by comparing the
loeal potential £ which satisfies dé = w — wq for some wye A,, in a ball B around =,
with the solution ¢ of the coercive system with constant coefficients

8(4, (g, wo)-dl) +cdéz=0 in B

and boundary condition ¢ = £ on dB. From the L2- and LP-estimates satisfied by 7, we

obtain a decay estimate for [ |V(w,+d{) — Viw, +d¢ )z, o |2 d, which yields an
BF’

analogous decay estimate for ®(xzy, o) modulo an error term. We control the error
term, which is essentially [ |V(w,+ dp) - W(wy)|2dz with ¢ = £ — &, by using the
quasimonotonicity (1.11) of A and a reverse Hilder inequality with inereasing sup-

ports. For x, € 2 with sup |wg,,»| < ® and hm mf D(xy, r) = 0, it turns out that the

error term can be neglected and the desired decay estimate for @(x,, o) results. This
proves that o is Holder continuous in a neighbourhood of x,.

In Section 3 we construct the local potential £ which satisfies d& = w — w in a ball
B, on the basis of the plus-potential of C. B. Morrey in the class of Neumann forms.
We then prove the interior LP-estimate |D&,» < cllw — wyL» for p > 1. To this end we
first establish LP-estimates up to the boundary of B for the plus-potential with p = 2,
and thence derive the LP-estimate with 1 < p < 2 by duality. For the case of Theorem
1.2, however, all requirements for the local potential are trivially met by w = du and
E=u— (l)o'(x - :)00).

The reverse Holder inequality with increasing supports needed in the proof of
Theorems 1.1 and 1.2 is

2/q
1.21) ][ |V (w) — V(wy)|?dex sc J: |V(w)—V(w0)|2doc+H(|w0|)R2°‘

Bgys(xq) Bp(29)

for some exponent ¢ > 2 and a nondecreasing function H. For the case of monotone 4,
(1.21) is easily derived from Caccioppoli’s first inequality, for which we provide a
proof in Section 4. Under the weaker assumption that A be only quasimonotone, we
can still prove (1.21) provided that p = 2. This is a consequence of Caccioppoli’s sec-
ond inequality, which has been proved for minimizers of quasiconvex variational inte-
grals by L. C. Evans[E]. In Section 4 we adapt his proof to the situation of A-har-
monic forms and quasimonotonicity of A. We then deduce (1.21) with the help of a
higher integrability theorem of F. W. Gehring, M. Giaquinta and G. Modica.

-
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We do not know whether Theorem 1.2 extends to the general quasimonotone sys-
tem (1.9). Both the direct and the indirect proof of the theorem do not work in this
case since they rely heavily on the Caccioppoli inequality which, as we have seen (cf.
(1.21)), implies higher integrability for the gradient, ie. Du e Lf, ° for some ¢ > 0.
That higher integrability as well as differentiability of the gradient of a solution of
such a system can fail is illustrated by the following example taken from[G-S]. We
note, however, that the solution in this example is partially regular.

ExaMPLE. — We let Q ¢ R® be the ball with radius e 2 centred at the origin and we
define the function

X 1,2 3
wx) = —————— e W02, R®)
@) = LePlog 2]

which does not belong to any Wis.” (2, R?) with p > 2 nor to WZ2(Q2, R?). Let n(s) be
a smooth bounded function such that n(s) =s~! for s = 1. Since |u| =1, we have
n(|u|?) = |u| "3 and it is not difficult to check that u is a solution of the quasilinear
system

div[A(x, ) - Du] =0
with
AF(m, u) =86, + (log'2|x| - %) n(u|?) egpensutur,
e being the completely antisymmetric tensor. A(x, %) is clearly bounded, of class C*

in # and smooth in %, and it satisfies a Legendre-Hadamard condition which implies
that A(x, #) @ is quasimonotone in w.

2. — The duality principle.

For a proof of the following lemma and other important properties of the diffeo-
morphism V: A,,— A,,, defined for p > 1 by (1.17), we refer to[G-M2] and [HI.

LEMMA 2.1. — There exist two positive constants ¢, and cp such that, for all
w, neAy,

[V(w) — V(n)|
2.1 < <
2.1) ¢y 1+ |02+ [7]% Pi[w -]

;.

PROPOSITION 2.1. (Duality principle for A-harmonic forms). - Suppose that
we LE.(Q, A,,) is an A-harmonic differentiol form and that A: Q X A, — A, satis-
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fies (1.5), (1.6) and (1.15) for p > 1. Define the (n — m)-form 7 e LE.(Q, A, _ ) by the
SJormula

2.2) * v=Ax, »),

where * denotes Hodge duality, and wheve p' is the conjugate exponent of p defined
by p' +p=pp". _
Then A(x, *): A, — A, is a bijection for every x € Q, and 7 is an a-harmonic dif-
ferential form for the map a:QXA,_,—A,_, defined by oz, )=
= Az, ) (% 7).
Moreover, a satisfies the same estimates (1.5), (1.6) and (1.15) with p replaced by
p’; and if A satisfies (1.14) for 1 < p <2, then a satisfies

23 |a.(x, 1) —a. (0] <cl+ |72+ o)) 22

Ue(1 + o2 D2, (1 + |o| ) 92|z = o] + ¢|r = o7 ~1).

PRrOOF. — We first prove that A(x, -): A,, —> A,, is bijective. From (1.5) we deduce
that ’

(2.4) 1+ |w|2+ |7;|2)(p_2)/2|w—7;| < Az, w) — Az, 1)],

which implies injectivity of A(x, -). Setting » =0 in (2.4) and noting that A(x,0) is
bounded on Q we obtain the first half of

(2.5) c(1+ |f?)P <1+ |A®, w)|2<c(1 + |w|?)P7E,

the second half following directly from (1.6).

We fix « € 2 and we write A = A(x, -): A,, = A,, and B, = B,(0) cA,,. (2.5) implies
that |A(w)| = R =[e(1+r2)?~! - 112 for |w| = r. Thus Bz N A(8B,) = @, and the
mapping degree deg (w, A, B,) is defined and constant for w € B;. Now suppose that
wo ¢ A(A,,) for some wged,,. Then for R > |w,y| we have deg (w,, 4, B,) =0, and
hence deg(w, A, B,) =0 for every w e By. Since A: A,,— A, is injective, it follows
that B, N A(B,) = 0. As R — » for »— o, we obtain a contradiction. Thus we have
shown that 4: A, —A,, is surjective.

Consider now the (n — m)-form 7 and the m-form « which are related by (2.2)

Az, )=t ar,7)= % w.
It follows that
SA(, w)) =+ xdr  and &a(z, 7)) = * * dw,

and we see that v is a-harmonic if and only if o is A-harmonic.
(2.5) and the identity (p — 1)(p' —2) =2 — p yield

26) 1+ |2+ |n|2)EP2<A + A, 0)|2+ A, p)|2)P 22 <

<c(l+ Iw}z + |77|2)(2_p)/2.
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On account of (2.6), (1.6) and (1.5) give
Q7 1+ |Alx, w)|2+ |Ax, ) |2)P ~22|Ax, w) — Az, )|% <
< o1+ o)+ [n[HP P20 — q|* < (Ale, 0) — Az, 1), © — 1),
while (2.4) gives
28 |w—n| <el+ |w|?+ |5 P2A®@, ») — Az, )| <
<c(l+ |A(x, 0)|? + |Ax, 9)|2)P D2 Az, w) — Az, 1) .
(2.7) and (2.8) correspond to (1.5) and (1.6) with A replace by a and p replaced
& ZI)%;r future reference we note here that (2.4) multiplied by (2.8) furnishes the first
and (2.7) furnishes the second of the inequalities
¢|Vp(w) = V, () |2 < |V, (Al w)) = Vo (Al )| < ¢V (w) = V() |2
Thus, since by (2.5) and (1.15)
|V (A, 0)) =V, (Aly, o) |* < e(1 + o2V |z - y|*,
we obtain
2.9) ¢|V,(0)=V,(|2=c(1+ |o|* 2| - y|¥ < |V, (Alx, ) = V, (Aly, ) |* <
< c|V, (@) = V()| + e(1 + |||z — y]?.

In order to prove the analogue of (1.15) for a, we let x, y € Qandred,_,, and we
choose w, n e A, satisfying # = = A(x, 0) = A(y, n). Then, on account of (2.8), (1.15)
and (2.5), we have for p’ =2

la(z, 7) — oy, ©)| =
= o —n| e + |AG, )|* + |Al, »)|))? "2 |Aly, ) - Alw, 9| <
<c(1+ |o|2)® - 22| Ay, n) — Alx, )| + ¢|Ay, n) — A, [P "1 <
Se(l+ |7|2)® P2+ |n|H® V2 g — yP + (1 + [n|®)P e —y|P "V <
Se(l+ |7|He V2 g —yl|°.

For the case 1 < p’ < 2, we omit the second terms in the above estimate and obtain
the same result.

We finally examine how the continuity condition (1.14) on A, determines a similar
condition on a. for p’ = 2. For 7, ce A, _,, we let w, n € A,, satisfy A(x, ) = % r and
A(x, y) = = o. From the definition of a, we have a.(z, ) = = A, (x, w)~! % ete., and,
using the estimate for a corresponding to (1.8) as well as (1.14), (2.6), (2.8) and (2.5),
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we obtain

la.(x, 7) — a.(x, o)| = |a. (2, Dla.(x, )" - a.(2, D) a.(x, D] <
< |a.(z, 9)| |a.(x, )| |4, (2, w) — A, (®, n)| <
<ol + (o) PR+ [ PR+ [0l + [l 2R U], o =] <
<ce(1+ |o]2+ |02 D2Ye(l + |o]|)® V2, (14 |22 + |o|H)P P2 |z - 5]),

thus proving the estimate (2.3). =

3. — LP-estimates for the local potential.

The following proposition is proved in[H] for p = 2, but here we also need the es-
timate (3.2) for 1 < p < 2. We note that for the special case of the system (1.2) or
(1.19), whose solution is given as a differential & = du with u e Wb 2(Q, R¥), Propo-
sition 3.1 is trivially satisfied by £ = % — w¢* (x — 2y). However, when we invoke the
duality principle for (1.2), as in the proof of Theorem 1.3, we end up with the (n — 1)-
form t = * % A(x, du), for which Proposition 3.1 is essential.

ProrostrioNn 3.1. - Let Bg(xg) be an open ball in R", and let
we L2(Bg(xy), Ay,) Nkerd and woed,, for m=1 Then there exists
Ee Wh2(Bg(ao), Ay 1) satisfying

3.1 dE=w—wy, and &=0.

In addition we have for each p, with 1 < p < o, and for each g, with 0 < p < R, the
estimate

3.2) ”DE”LP(B’P(xO)) S C”w - "-’OHLP(BR(xo)):
where the constant ¢ depends only on n, N, m, p, and p/R.
In the proof of Proposition 3.1 we use reflection in the unit sphere S(x) = r %z,

where » = |x| > 0. We write B = B;(0) for the unit ball, and we summarize some
properties of S in

LEMMA 8.1. - Let g = (-, ") = dz' @ dz’ and v, = dx = dx' A ... A dz™ be the stan-
dard metric and volume form on R™ respectively.

Letg=S*g, with assoctated norm T: 1, volume form vz, Hodge dual * and exteri-
or co-derivative . Then, for any m-form Q, we have

(@) g=rtg,
(b) vy=ry, =~ S*y,

(C) ;‘kQ:,,.Aim—Zn*Q,
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(d) 80 =r*3Q + (4m — 2n) 1%, Q,

(e) S*(=2)=-%8*Q2,

(f) S*eQ=35*0Q,

(@) S*@)T=07 and (S*2)*=-0* on B,
(h) S*Q=Q on OB if and only if Q=0 on 3B.

Proor. — From the equation
(3.3) S*dgt = d(r 2z') = r 2de’ — 2r *xtaida’,

we find that S*g = (S*da®) ® (S*da’) =r *g, which is (a). The formulas v; =
= [det (g; )2 dx and S* dec = det DS dx, with DS = r 21 - 2r %z @ x), give (b). (c) is
obtained by comparing the following definitions of the Hodge duals * Q and * Q, for
vectors X, 11, --., X, using (@} and (6)

(34) (* Q)(Xm+1, (EET) X’n)vg ='Q/\g(Xm+17 IN .. /\g(Xny ')7
3.5 GDXpr1s 0 XD = QN9 X i1, IN N J X, ).

{d) follows from the definition N=(-1"*""%d %0, () and the identity
*[Q N\ g(X, )] =iy * Q. In order to show (e), we operate with S* on both sides of
(8.4), where we set X; =S,Y;. By virtue of (b), this yields

—(+ DSy Yms1y 0 S Y)v=8*QAN gV, 1, IN ... NGy, ).

Therefore, from (3.5),
'—S*(* ‘Q)(Ym+l? tery Yn)Q)ﬁ: E (S*'Q)(Ym+17 (RS Yn)v'g"’

and we obtain (e). (f) follows directly from (¢). By symmetry it suffices to check (g)
at the point (0, ...,0,1)e 8B, which is obvious from (38.3). (k) is implied by

(@. =
We define the subspace of Neumann forms in W"2(B, 4,,)
BB, A,)={Q€ WbY2(B,A,,): 2+ =0 on 8B}.

We note that the space of harmonic Neumann m-forms on B is, for m =1,
trivial

H*(B,Ay)={QeL*B,A,):=d2=0in B and 2* =0 on 3B} =0,

by the fundamental result of Duff and Spencer[D-S] that its dimension equals the
m-th Betti number of B.
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REMARK 8.1. - The equations defining $* are understood in the weak sense
as

I(Q, dp)dx = J(Q, dydr=0 for every pe C” (B, Ap_1) and ¢ e Cy (B, Ay yy).
B B

We shall use the following notation: we extend a given m-form Q: B—A,, from
the unit ball B to R” by

Qx) for xe B,

G0 ) = { S*Q(x) for we B,

We let D(Q) denote the Dirichlet integral of Q over B
D@ = [(|dQ|* + [60]*) dx,
B
and we start by proving the following inequalities valid for © on R*.

LEMMA 3.2. [M, Thm. 7.7.2]. — For Qe B* (B, A,,), we have Q e WE2(R", 4,,)
and

(37) ”Q“IZJZ(B) < C@(Q) ,

(3.8) 101 2,0 < D).

PROOF. — O e W2(B, A,,) implies S*Q e Wi;,”(B®, A,,). Further, by Lemma 3.1
(h), @* =0 implies S*Q =Q on 3B, and we conclude that O e W22 (R", A

Let n e Cy” (B5(0)) be a cut-off function with 0 < » < 1 and 5 = 1 on B, (0). Using
the identity D;D; = A= éd + dg, as well as formulas following from Lemma 3.1(b, f)
such as [aS*Q|%v; = — S*(|éQ|%v,), we obtain the estimate

D@D)|*de = [ (Jde)[? +

B3(0) B3 (D)

$(nd)|*) das <

scj(|s)|2+|dg|2+|amz)dx+c j (7S* Q1% + TdS* 2|2 + T3S* Q%) v; <
B B3 (O\B

<c[(|Q? + |da]? + |se|®)da,
B

and we conclude that

(3.9) IC1R. 28,0 < QU 2s) + eDQ).
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If (3.7) were not true, then there would exist a sequence {Q,}c®* such
that

(3.10) ”‘Qk”Lz(B) =1 and @(.Qk)—ﬂ).

By (3.9), {Q,} is bounded in W 2, which implies that for a subsequence and for some
QeP*

8.11) 0, —0 weakly in W2 and strongly in L.

By the sequential weak lower semicontinuity of the Dirichlet integral, we infer from
(8.10) and (8.11) that D(Q) =10 and hence that Qe H* =0. This contradicts

I2l2s) = 1.
(3.8) is obtained by combining (3.9) and (3.7). =

DEFINITION 8.1. [M, Thm. 7.7.8]. - Qe 87 (B, A,,) is called the plus-potential of
weL?(B, A,,) if

312) D@,y = j (dQ, dg) + (59, 8Y) dx = [ (0, $)d
B B
for every e B (B, A,,).

REMARK 3.2. — The bilinear form (0, ¢) associated with the Dirichlet integral is
coercive on * by Lemma 8.2, and the plus-potential is furnished by the Theorem of
Lax-Milgram [G-T, Theorem 5.8].

REMARK 8.3. — By[M, Thm. 7.7.4(i)] we have d@2, 2Q e . From (3.12) we then in-
fer the pointwise equation

(3.13) 8dQ+déd=—w.

LEMMA 3.3. — Let Q e B* (B, A,,) be the plus-potential of w € L>(B, A,,). Then the
following LP-estimate holds for 1 <p < »

(3.14) |dQlLs sy + 162Le ) < e@wlzres)-

ProoF. — We define the operator T: L2(B, A,,) = L2(B,(A,)") by Tw =DQ =
=(D,9, ..., D,Q), where Q € B+ (B, A,,) is the plus-potential of w e L%(B, A,). We
show T to be continuous.

We let @ and Q be the extensions to R” of the forms w and Q as in (3.6). By substi-
tuting ¢ = Q2 in (3.12) and using (3.7) and (3.8), it follows that

(3.15) 1Clw 2,00 < cllwllzzm -

This proves that T: L% — L? is continuous. The next step is to show that T is also
continuous as an operator between the spaces T: L* —C%° for 0 <o < 1.
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We define a Lipschitz metric g on R" by
g(x) for xeB,

ple) = { gx)=r"*g(x) for xeB°,

with associated exterior co-derivative 3. We claim that 8dQ + d20 = — , ie. that for
every ¢ e Cy (R*, A,,)

(3.16) [1G(d2, do) + 530, 3p)]v5 = [ 5@, 6)v.
R™ R”

To see this we note that Lemma 3.1(g) asserts that ¢ = o+ S*peP"(B, A,), so we
can insert it into (3.12):

J[g(d.Q, d) + g(5Q, sp)]v, + j[g(dg, dS* ) + g(a0, 88* ¢)]v, =
B B

= jg(w, o)y, + jg(w, S*o)v, .
B B h

We then convert the integrals involving S* ¢ into integrals over B by using Lemma
3.1(b, ) and the equation S°S = id, for example

[ 960, a5 90, = — [8* {9502, 8% 0),} = [ GES* 0, Fpyvy = [ 5@, 3p) v,
B B° B¢ B°

In this manner we obtain (3.16).

We write B; = B;(y,) for ype Band 0 <t <1, and we let ¥ € W"2(B,, A,,) be the
solution of the Dirichlet problem A¥ =0 in B,, =0 on 8B,. Then o= Q-
-XeWi(B,, A,,) and we obtain .

j |Do|?de = j(D@ — DS, Dy)ds = j((d@, do) + (20, sp)) dac .
Bt Bt Bt
Subtracting (3.16) and using Lemma 3.1(g, b, d), the fact that |1 — rk| < c(k)t on
B,NB° for t <1 and the Poincaré inequality for ¢, we have
[ 1Dgl2dw = [§@, )us+ [ (1 ="+ D=2)(dD, dg) + (40, ) ~
B, B; B;N B¢
—(4m = 2n) '™ T2 (30, iy 0) + (1,Q, 29)) — (4m — 202t T2 (3,0, i, o)) dw <
<c[lallgldz+e | ¢IDQ] + [5,Q0)|Dg| +¢7|p])dw <

B, BN B*

sazf |a12dx+ct2j |DG|2d + ¢ j 4,22 da + élegolzdx.
B, B, B,NB° By
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The formula 2+ = (z, ') A i,© holds on 8B, whose unit normal is x. We define the

radial component Q.4 =7 %(z, ) A\ i,Q, which satisfies i,0 = 4,0.,3. Now 0,4 =
="+ =0 on 9B, so we can apply the Poincaré inequality on B; N B®

f 14, 8|2dz < ¢ [ |fzmd]2dmsct2f(|§12+1D§|2)dx.
B;NB® B,NB° By
We thus obtain
817 jwqp(?dx < ol "2 + ct2j(|ﬁ12+ |D2|2) der.
B, B

The Campanato estimates satisfied by X for s <t (see[G, Thm. 2.1 and Remark
2.3, pp. 78-79]) are

3.18) j(iz|2+ (DE|?)de < c(s/t)ﬂjqzﬁ + |DZ|?) de,
B, By
(3.19) j(D):—Dzm,mdxsC(s/t)Mj |Dx - D3, ,|?de.
B, B

(3.18) translates, by virtue of (3.17) and the Poincaré inequality for ¢, into an estimate
for Q

f(|fz|2 + |DD|?)dx < cl(s/t)" + t2]f(}f)]2 +|1DB)2) dx + cllol » gyt 2.
B, B,

By applying Lemma 8.4 and (3.15) we obtain, for 0 <o <1 and s <t <{y(o) €1,

6200 [(IR12+ (DRI do < clo/ty =2+ [ (81 + 1DDI) e + coff -5~ <
B B

< el - @ s" 7

Inserting (8.20) (with ¢ in place of s) into (3.17), we infer from the Campanato esti-
mate (3.19) that

B,

j |DG - D@, ,|?dw < c(s/t)””j |DQ - DD, ,|2dw + el t"
Bﬁ

A further application of Lemma 3.4 and (3.15) gives

[ D@ - DA, o[*ds < o3/t~ [ DD ~ DDy, oo + el s+ <
Bs B,

< cOlwlas"
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Using Theorem 3.1 and (3.15), we conclude that
|1DQllco. -5 < C(HDQ“LZ(B) +[DQ, 4 8) < c”w”L""(B)-

We have shown that T: L% — L% and T: L ® — C%° are continuous. Hence, by the
interpolation theorem of Stampacchia[G, Thm. 1.4, p. 75], T is continuous as an oper-
ator T2 LP— L? for all p with 2<p < », In particular, we obtain (3.14) for
p = 2.

Now let we L2(B, A,,) and ¢ e Cy° (B, A,, +1), with plus-potentials Q and ¥ re-
spectively, and let 1 < p < 2. Then (3.14) holds for ¥ and ¢ with the eonjugate expo-
nent p’ > 2, Therefore, since d¥* =80+ =dQ+* =0 on 9B,

j (60, $)de = — j (8Q, 5d¥) + (2Q, do¥)) dz = j (dsQ, d¥)dx =
B B B

== J(w +8dQ, d¥)de = ~ J(w: d¥)de < |lollLe @ |d¥ Ly @) < e@ ol @ 1l @) -
B B

As C;° (B) is dense in L?'(B), we infer that
[6QlLr ) < e@)wllzr ez

for 1 <p < 2. The LP-estimate of dQ for 1 <p <2 is obtained similarly. =

PROOF OF PROPOSITION 3.1. — We prove the proposition for wy =0, ;=0 and R =
=1, the general result following by a homothety argument.

We let Q € 8+ (B, A,,) be the plus-potential of w e L2(B, A,,) N ker d. We observe
from (3.13) that ¢dQ2 = —w — déQ e kerd, while dQ € L implies that (¢dQ2)* =0 on
9B. Thus ¢d2eH* and we conclude that ¢dQ=0. This in turn implies that
dQe 9" =0, and (3.13) reduces to déQ = — w. This last equation becomes d¢ = w,
where &= — Q. With this choice we also have &£ =0 and hence (3.1) is satis-
fied.

Next, (3.1) implies that ¢ is a weak solution of 4% = éw in B. Therefore the LP-the-
ory for elliptic equations with constant coefficients furnishes the interior estimate,
for 1 <p< oo,

”DE”LF(BP) < o(p, p)lollzr e + |ElLr @) -
Combining this, for & = — 80, with (3.14) yields (3.2). =

In this section we have used the following lemma and theorem, which are proved
in [G, Lemma 2.1, p. 86] and in [G, Thm. 1.2, p. 70] respectively.

LEMMA 34. - Let f(t) be a nonnegative and nondecreasing function. Suppose
that

f(8) S Al(s/t)* + €] f(t) + Bt#
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forall0<s<t<T,with A, B=0and 0 <8 <a Then there exist constants ¢y and ¢
depending only on A, « and B such that, for e <eqgand 0<s<t<T, we hove

f(s) < el(s/t)Pf(t) + Bs”].

THEOREM 3.1. (Campanato’s characterization of Holder continuity). — Let the
bounded open set Q in R” satisfy |Q,(xq)| = Ap™ for some positive constant A and
for every xy€ 2 and 0 < ¢ < diam Q, where Q ,(x,) = B,(x,) N Q. Then, for c > 0 and
p=1, ueC%(Q) if and only if we L?(Q) and

1/p
[u]P,c;Qz sup o ° } Iu_uxomlpdx <>,
xoe 2
0 < p < diamg 0, ()

where Uy, , = .f. wdx. Moreover, an equivalent norm on C%°(Q) is defined by

Q,(20)
Hullp, ¢ = ”u”LP(Q) + [u]p, a; Q-

4, - The Caccioppoli inequalities.

We recall Caccioppoli’s first inequality which applies to the case of monotone A,
and we present Caccioppoli’s second inequality for the case of quasimonotone A.
They both lead to a reverse Holder inequality with increasing supports.

Proofs of Caccioppoli’s first inequality for m =1 can be found in[G],[C1],[C2]
and [N-W]. As a first application of the duality principle for the case 1 <p <2, we
here give a proof valid for arbitrary m and p > 1. We note in particular that the re-
striction[C2, (1.5)] is superfluous.

PrOPOSITION 4.1. (Caccioppoli’s first inequality). — Let 1 <p < o and suppose
that A: Q X A,, — A, satisfies (1.5), (1.6), and (1.15) with ¢ =1, i.e. A(:, ») is Lip-
schitz continuous. Let we LE,(Q, A,,) be an A-harmonic differential form.

Then Viw) e WE2(Q, A,,), and for every ball By (o) cc 2 and for every woe A, we
have

“.1) j | D[V(w)]|2da < cR 2 j | Vw)— Viwg) | 2dz +c j 1+ || 2P dz.

Bpjoleo) Br(#y) Bp(xo)

Proor. — We first assume that p = 2. We use the notation DX(x) = h ™' [¢(x +
+ he,) — W] for the difference quotient. Inserting ¢ = D "¢, for ¢ € Cg° (Q, Ap_1)
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and h < dist(supp¢, 32) in (1.3), writing w,(x) = w(x + he,) and using (1.15),
gives

“.2) h‘lf(A(x + hey, wp) — A + ke, w), dy)de < cj(l + |0|2)® V2| dy|ds .
0 Q .

For By (x,) ccQ and wge A,,, we let £ WHP(Bg(2y), A1) be the (m — 1)-form of
Proposition 3.1. We choose a cut-off function »eCy° (©2) such that 0 sy <1,
Supp n C Bagy (%), 7 =1 on Bgjy (%) and |Dy| < cR~'. We then set ¢ = D}&n? in
(4.2), for which

dy = Dlwn?+ 2ndy A Dke,

and we deduce, using (1.5) and (1.6), that

A[(l + wp|2+ |w|2)P P2 Dre|Ppide <
0
scf(l + o |?+ |o|)? P2 D} w|n| Dy| | D} E|de +
0
+cf(1 + |w|2)®~V2(|D}Fw|n? + n|Dy| | DEE]) da <
0

<e [+ foa]?+ 0] Dho]?yds +
0

+c(e)j(1 + oy |®+ ]w|2)(p‘2’/2|D77|2IDa"Elzdx+c(a)j(1 t+ w|?PqPd,
Q Q

and hence

j IDF[V(w)]|2de <

Bgfe
<cR2 1+ |w, 24 lw 2)(p_2)/2 Drel2de + ¢ 1+ |w|2)2dy.
2 >
Bsrjs ' Bg

Since w;—w and D}¢— D, in LE, as h—0, we infer that D,[V(w)] exists in
L2.(Q, A,,) and that

j | DIV(w)l|2da < cR 2 f (1+ |w|2)<P—2>/2|Ds|2dx+cj(1+ |w|2)P2 da.
Bg

Bgye Bspja
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Further, with the aid of Young’s inequality and (3.2), we estimate the term

j (1+ |o|)? 22| De|2dx <

Bsgys

<c¢ J [(1+ |we|?)? 22| DE|? + |w — wo|P + | DEP1da <

Bsgys

$CJ[(1 + |wo|H)P PR |w — wy]® + lw~w0ip]daz$cJ’ [V(w) = V(wg)|*dee,
Bg Br

and we obtain (4.1) for p = 2.
In the case 1 < p < 2 we invoke the duality principle, Proposition 2.1, thus obtain-
ing (4.1) for the forms 7= + x Az, ) and 7= = % A(%, wo): '

4.3) j DIV, (A(z, )] |2de <
Bsrs

<e¢R™? J |V, (A, ) — Vi (Al we N |2dx + ¢ J (1 + |AGx, w)|2)P 2da <

Bg Bp

< cR~2j |V, () = V, (o) |2da + ¢ j(1 + |2 2d.

Bg Bg
The last inequality is due to (2.9) with =1 and (2.5). From (2.9) also we have
| DAV, ()]|2 < ¢| DXV, (A, o)]|® + o1 + w]*P72,
which, by (4.3), gives

J ID:L[Vp(w)]lzd.’ESCR_zj le(w) —Vp(w0)|2dx+cj(1 + |(D|2)p/2dﬂ(}.
Bg

Bgye Br

We conclude that V, (w) € Wiz(Q, A,,) and letting & — 0 we recover (4.1) for the case
l<p<2 ®

By an application of the Poincaré-Sobolev inequality and [H, Lemma 2.3], we de-
rive from (4.1) a reverse Holder inequality with increasing supports

2/q
( ][ |V(w)—V(w)x0,R/2|qu) <o J[ | V(w) — V(wo)|2de + cR(L + |wo |22,

BR/Z (wp) Bp (o)
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g =2*=2n/(n —2) > 2 being the Sobolev exponent associated with the embedding
Wb2c L%, For quasimonotone A and p =2 a similar reverse Holder inequality fol-
lows from

ProposITION 4.2. (Caccioppoli’s second inequality). — Let p = 2 and suppose that
Alx,w) and Blx, u, w) satisfy (1.6) and Hypotheses H1, H3 and H4. Let
we LE.(Q, A,,) be a weak solution of the system (1.1) or let u e WL> N L>(Q, RY) be
a weak solution of the system (1.19) satisfying condition (1.20) and set w = du.

Then, for My > 0, there exist positive constants Ry(My) and ¢ such that, for every
ball Bg(x,) ccQ with R < Ry and for every woe A, with |wy| < M,, we have

(4.4) ][ |V(w) = Viwo)|2de <

Bz (%)
2/2,
<c ][ {V(w) = Viwo) | da +eRZE(1 + |wg|2)P 222,
Bg(xo)

where 2, = 2n/(n + 2) < 2 is the inverse Sobolev exponent.

PrOOF. — We treat the systems (1.1) and (1.19) together by considering the
system

4.5) S(A(x, w)) =B(x,w) and dw=0,

with |B(x, )| < a|w|? + b. We suppose that we are given either (i) a solution w of
(4.5) with @ = 0 or (ii) a solution « = du of (4.5) for u e W? N L= (Q, RY) satisfying
(1.20). For Bg(xy) ccQ and wge A,, with |wy| < M, we let £ be the (m — 1)-form of
Proposition 8.1 and we set &, = £, 3z/s. For the case (i), we choose £ = u — w," (x —
— %y) for which &, = u, sp/4.

For R/2 < s <t <8R/4, welet neCy (Q) be a cut-off function such that 0 < <
<1, suppn e By(%,y), n =1 on B,(xy) and |Dy| < c(t — s)”Y, and we define

p=nE—&) and ¢=(1-nIE~&).
By (3.1) and (1.20), we have, in either of the cases (i) or (ii),
(4.6) w=wotdp+di, alp| <2aM+aMyR and 2aM <.

We infer from the quasimonotonicity of 4, (4.5), (4.6), (1.6), (1.15), Young’s in-
equality, the estimate (a + 8)" < (1 + ¢)a” + ¢(¢)8” and the Poincaré inequality ap-
plied to ¢ on B, that

3L+ o |? + |de]®)P 272 dg[2d < [(AGwy, wg + do) — Alzy, ), de)da +
B, B,
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+ j (Ao, w) — A®, w), dp)dx — j (B, w), ¢)da <

B, B,

Sc[(l + |wol® + |dp|? + |dg|?)? P2 |dy| |de|dw +
B

+cR3J(1 + 2% V2| dg|dx + j(a1w|1° +b)|p|dw <
B, B,

<e(l+ |w012)<P—2>/2[ |dy| |de|de + [2(1 + &) aM + e(1 + My) R® + e]j |do|? dae +
By

B,
+c(e)J' |dg|Pde + c(e) R (1 + |w0|2)P/2j |Do|dz .
Bt Bt

By choosing ¢ and R small enough so that 2(1 + ¢)aM + ¢(1 + M) R® + ¢ < A, we con-
clude, since ¢ =0 on B,, that

j|V(w)—V(w0)|2dms j [V(wo + dp) — Vw,) |2da <
B By

<ot =5 2L+ oo [ |E—El2dn tet -9 [ |i—g|Pda+
Barps Bsrys

+ep j |V(w)—V(w0)|2dm+cR5(1+|w0|2)”/2J | De|dax +
By \\B;s Bsgys

+CRn+2A‘(1 + lmOIZ)(p-PZ)/Z'

We fill the hole, that is we add ¢; times the left hand side to both sides. We then di-
vide through by 1 + ¢; and apply Lemma 4.1 with 6 = ¢; /(1 + ¢;) < 1. In this manner
we arrive at

|V(w) — Vwe)|2de < cB "2(1 + | |2)? 22 ][ &~ &|*da +

Bgpo Bsg/s

+cR7? J(.[a—golpdx+cR*(1+Iwolz)”ﬂ ][]D§|dx+c}228(1+iwolz)@”)ﬂs

Bsrys Bspyy

2/2, »/p,
:l:]DE|2*dx) +c( ][|D5|p*doc) +

Bspys Bsrys

S o1+ |ag|)® 22




CHrisToPH HAMBURGER: Quasimonotonicity, regularity and duality, etc. 343

2/2,
+eRP(1 + |wo|2)P+2 < (1 + {w0|2)<1’—2>/2( ][ fw w0|2*dx) +

Bg

+c

p/p.
J[lw—www) +RH (L a2 -9 <
Bp

<¢c

2/2,
J:IV(w)—V(wO)IZ.dw) +cha(1+ ‘wolz)(p+2)/2,
Br

which proves (4.4). We have also used the Sobolev embeddings W' 2 c L% WhP-c LP
and the estimate (3.2). Note that, since 2, = 2n/(n + 2) < 2, we require (3.2) for
1<g<2. n

We fix Bg () cc £ with R < Ry and wge A,, with |wg| < M. We then apply The-
orem 4.1 below to the function g = |V(w) — V(wy)|? and the constant function f=
= cR*(1 + |wg|*)®*?/2 on the ball B (i, ), for s = 2, /2 < 1. In this manner we obtain
the

COROLLARY 4.1. — Let the assumptions of Proposition 4.2 be satisfied. Then, for
M, >0, there exist positive constants Ry(M,) and ¢ and an exponent q > 2 such
that

2/q
4.7 { |V(w) — Vewg)|?d <
Brya(29)

S¢ ]( [V(w) = Viwg)|2dw + cRZ(1 + |wq|2)P 22,
Br(w)

for every ball Bg(xy) ccQ with R < R,y and for every wge A, with |wy] < M,.

In this section we have used the following lemma[E, Lemma 5.2] or [G-G, Lemma
1.1}, and the following theorem[G, Prop. 1.1, p. 122].

LEMMA 4.1. - Let f:[R/2, 3R/4] > [0, »[ be bounded and satisfy
fO<efH)+ At —-s)2+B(t—-s)?+C,

for R/2 <s<t<8R/4, where A, B, C are nonnegative constants and 0 <9< 1.
Then there exists a constant ¢, = ¢y (6, p) such that

f(R/2) < cy(AR"2+ BR™? + ().
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THEOREM 4.1. (Higher integrability theorem). — Let Q be a bounded open set in
R" and let geLl.(Q) and feLi.(Q) be mnonnegative functions with
0<s<1<t< o Suppose we have

][ gdxsb( ][ gsdx)l/s+ ][fdx

BR/z(:vo) B () Bg (x0)

for every ball Bg(x,) cc Q. Then g e LLF<(Q) for ¢ < ¢, and

11 +9
:[ g'teda <c ][ gdx + ¢ ][fl”dx

/(1 +e) (
B, (xp) Bp (20) Br(xg)

for any ball Bp(xg)cc and 0<p< R, where cg=¢¢(n,s,t,b) and c=
=¢(n, s, t, b, o/R, <.

5. — Partial regularity.
We first prove

PROPOSITION 5.1. — Suppose that the hypotheses of Theorems 1.1 or 1.2 are satis-
fied. Set w = du for the case of Theorem 1.2. Then, for ¢y > 0 and M,y > 0, there exist
positive constants c;, ¢, ¢(cq), H(My) and Ry(My) such that, for every Bg(w,) ccQ
and for every p with 0 <o <R,

B Bz, 0) < 1 ((o/RY + (B/p) [e0 + cleo) x(Mo, Py, B), R)]) ®(xy, R) +
+ec(ey) HMo ) R/e)" R®

provided that

(5.2) R<R, oand |wg r|+c®, R)/"<M,.

Here x(M,, @, R) is a continuous nonnegative function with y(M,, 0, 0) = 0.

ProoF. — We first assume the hypotheses of Theorem 1.1. We only have to prove
(5.1) for 0 < p < R/4. We choose wq € A, in such a way that V(w,) = V(w),, - Then,
since

(w— wp)de | < ca®(wy, R)'P,

By

|wwq,R - 0)0! =

assumption (5.2) implies that

(5.3) ICL)ol < |(1)x0’RI +Cz@(%0,R)l/pSMO.



CHRISTOPH HAMBURGER: Quasimonotonicity, reqularity and duality, etc. 345

By (1.12), the bilinear form

Ble, ¢) = f (A, (2, wg)-dp, dp)y + (1 + [wg|?)P =D/ (sp, aL)) de

Bru

is coercive on the Hilbert space Wi 2(Bg /4 (%), Ay —1). The Lax-Milgram theorem [G-
T, Theorem 5.8] therefore provides a solution g e Wi'2(Bgy (i), Ay —1) of the
system:

(5.4) J- (A, (g, wg) (dp + & — wy), dg) + (1 + |w0|2)(p_2)/2<é‘jo, &) de = 0

Bpys
for all Y e Wol’z(BR/4(xo), A1)

We set { = ¢ + &, where & is the (m — 1)-form on Bgjy(x,) defined in Proposition 3.1
which satisfies d& = w ~ wg, 6 = 0. Then we have

(5.5) di=dg + o — w, 8 =dgp,

and we recognize ¢ as the solution of the Dirichlet problem

(56) {d‘(Aw(xD, wo)'dZ)+(1+ |w0l2)(p_2)/2dé‘ﬁ=0 in BR/4(960),

=& on 0Bgu,(w).

As a coercive system with constant coefficients, it yields the following L2 and LPf-es-
timates (see[G, ch. III}), for all p < R/4 and 2< ¢ < o,

5.7) ][ De|?de < o ][ \DZ|2da,
B, Brys
58) f1D- D2, 110 < ctae/Ry | 102~ Dty gyfoa,
B, Bra
(5.9) f |DZ}%dx < e(q) f | Dg|?dx .
BR/4 BR/4

We note that the constants in (5.7) to (5.9) are independent of w,.
Since ¢ = { — £, (5.9) together with (8.2) imply, for ¢ = 2, that

(5.10) f ldgalquSc(q)f !D@quxSc(q)J |w — wo|dz .

Brja Bpys Brp
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From (5.8), (5.9) and (8.2) it follows, for p < R/4, that

)[ [d¢ — d¢y,, .1 9da < c(q) ][ |D{ — D%, ,|1de < c(q)(p/R)" ][ |Dgjtde <
B, B,

Bp4

< c(q)(p/R_)" ]( |w — wo|?de.

Bgje

Finally, by (5.7), (5.9) and (3.2), we have

2
Id:xo,plzz ’ }d:dw Sc{ IDzlzdeC :F |DCI2dxsc :F Iw—w0|2dx.
B, B,

Brs Bryz

These estimates yield

][ |V(wg + d2) — V(wg + dly,, )| ?de <
B

/3

<e(l+ |wgl2+ |d:xoy_c}2)@'2>/2][ ldc—dCxO,Plzdx+cJ[ [d¢ — dey,, . |Pdu <
Bp B,

< c<p/R>2(<1 + g |2)E 2 ][ | — wo|?dx + )[ lw — wovdx) <

Bzp Bgo
< c(p/R) ][ |[V(w) — V(wg)|2dx = c(p/R)* P(x,, R).
Bg
By (5.5), we thus obtain, for all p < R/4,

O(xg, 0) = ][ IWV(w) — V(w)y,, .| de <
BF
<2 :l: |V(w) = Viwg + d2)|?dw + 2 ][ | V(wg + d2) — V(wy + dE,, )| Pde <
B, B,

< o(B/o)" ][ |V(w) = V(w + dg) |2dw + c(o/R} &(xy, R).

Br/s
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So it remains to estimate

f |V(cu)—V(w+dgo)|2dx$C f(1+|m0|2+|w—w0l2+Id¢]2)(p_2)/2ldg@|2de
Brs Bays

$50J | — wy|Pde + cleg) j[(1+ lewg|2)® 22| do|2 + |dp|?]da <
’ Brys Bry

SEOCJ 1 W(w) — Vwe)|Pda + cep) j |Viwy + do) — Viwg)|2de.

Bg Brys

Using the quasimonotonicity of A, as well as (5.4) with ¢ = ¢, (1.3), (1.15) and (1.14),
we control

cj [V(wg + d) — Viwy)|2dx < j(A(xo,wOer@), dy)de =

By By

= j (Aiy, wo + dp) — Ay, wg) — A, (g, wo)- dp, do)da +
Brys

* f (Aly, w) = A, wo) — A, (%9, o) (0 — wp), dp)dx +

Brjs

+ j (Alx, w) — Alzy, o), do)de — j (1+ Lol 2?2235, 25y da <
Bgy Bru

1
< [ (14, (o, 00+ tds) = A, @y, wo)]-ds, de)dide +

BR/4 0

1
+ J j([Aw(wD, tw + (1 =t we) — A, (2, w)] (v — ), do)dtdx +

BR./4 0

+eR® [ (14 |0V |dplde <
Bgrys

sc J(l"' Jwgl? + Jwo + dol®)? P2 |dg |2U(wo], |de|)da +
Bps

+c J-(l + 'w0l2+ ,w—wolz)(p~2)/2[w—w0]ldgpll(lwol, I(U_Cl)ol)dx“l'
Bg
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e [ 1A+ oo 2R ]dg |2 + dp|?1de + & RY [ [ = wy|Pdw +
Bry Brs

+e()R" B (1 + |awg|2)P2=(4) + (B) + (C) + (D) + (E).

We estimate the second term with the help of Young’s inequality and the bounded-
ness of [

B)se¢ j[(l + |w0|2)(”_2)/2|w—wol + ]w——wol”_l]ldqoll(lmﬂ, o~ wo|)de <
Brya

Se j [(1+ |w )P 22| dp|? + |dg|?1de +
Bgjs

+c(e) J'[(1+ !w0|2)(p'2)/2|w—w0|2+ lw = wo|P1U|wq |, |w*w0|)dﬂc.
Bp/s

By absorbing the two terms with coefficient ¢ in the left-hand side and using (5.3), we
thus obtain

J |V(wg + do) ~ Viwg)|2dz < c J [V(wy + do) — wo) |PUM,, |de|)de +

Brj Brys

+c J |V(co)—V(w0)|2l(M0, lw_w()!)dx‘l"CRap'J' |V(CU)“‘V(O)0)|2dx+

By Bg

+HMy)R™* ¥ = (I) + 1) + (II) + (V).

By virtue of the reverse Holder inequality (4.7), and Jensen’s inequality together
with the concavity of [ in its second argument, we estimate the second term by

2/q 1-2/¢
(D <c J V() — Viwg)|da Jl(Mo, lw — wy|) dae <

Bg2 By

Bp

1-2/g
SCJ lV(w)—V(wo)lzdac( :,: M,, Iw—wol)dx) + HM,)R"*¥ <
Br/s

1-2/¢
st ‘V(w)“'V(wo)l2dwl(M0, J[ |w—w0!dm) +H(M0)Rn+25'

Br Brj
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(I) is estimated in a similar way by making use of (5.10) which yields
f [V(wg + do) ~ V(we)|?dx < ¢ J [(1+ |wo|2)P =272 |do|? + |dp|?12dx <

Brja Bgy

scf[(1+ g |2)® =22 |0 — wg |2+ lw—wofqufzdmsfcj [V(w) = Vwy)|?de .
BR/Z BR/Z

This completes the proof of (5.1), under the hypotheses of Theorem 1.1, with
2(My, &, R) = UM,, cOV/?PY ~2/4 + R¥ . m

REMARK 5.1. — If we replace the estimate (1.14) in the hypotheses of Theorem 1.1
by the estimate corresponding to (2.3)
|A, (x, 0) — A, (x, p)| Sc(1+ |w|?+ |n|2)P 22

e+ ()P, o1+ [P [0 = g +clw ~y[7~1),
we can still prove Proposition 1.1 with
xMy, @, R) = (H(M,y), H(My) @/ + c@'/P' ) =2/ + R,
For the case of Theorem 1.2, we set w = du and £ = u — wy-(x — %) in the above

proof. Then, by applying a maximum estimate for coercive systems with constant co-
efficients [G, Prop. 2.3, p. 83] to (5.6), we infer, by (1.20) and (5.3), that

lelle= < ellell,= < e + Mo R),

and we see that ¢ = { — ¢ is bounded. We have to take into account the extra term
[ (B(x, u, w), ¢)da which we control with the help of (1.16), (5.10) and the Poincaré,
Cauchy and Hoélder inequalities

J[(B(x, u, w), pydax < )[ (a|w|?+b)|p|de <

Brys Brs

< OR(1 + |y |22 ][ |Dolda + ¢ f V() — Viwg)|? | p|de <

Bpys Brys

< ¢gq ][ [V (w) — Viwg)|2da + c(eq) R¥(1 + ,w0|2)(p+2)/2 +
Bg

+c

2/q 1-2/q
][ [V(w) = V(wy)|da ][ |99~ B dy = (3) + (i8) + (44).
B

Brs R/t
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Since we can assume that g¢/(q — 2) = pg/2, ie. that 2 < ¢ < 2 + 2/p, we estimate the
last term, using (5.10), (4.7) and (56.3), by

2/q 1-2/q
(35) < e ][ | V() ~ V(wg)|?dx ][ | Do |P92 e <
BR/4 BR/4
q/2
<c J[ [V(w) — V(wg)|%dx < ¢ ][ [V(w) — V(wg)|2da | + H(My)R*.
Bz Br
Setting

¥(My, @, R) = My, c®P)~2/9 + R¥ 4 @1/Pe-1

we obtain (5.1) for the case of Theorem 1.2. ®

Theorems 1.1 and 1.2 follow in a standard way from Proposition 5.1, see[G,
pp. 197-199]. For completeness we here repeat the argument. Let M; > 0 be given.
We write p = tR, g =7""% and My=3M; in (5.1) for 0 <7<1:

(6511) R<R,(8M,) and |wg, z|+ 2@y, R/ <3M;=

= 0(xy, TR) < ¢, 7% [2 + v " 2e(z™ T ) x(8M,, B(xy, R), R)1P(w,, R) + HyR?,
where we have set Hy = ¢(z"*2)H(8M,) = ~". We let o €13, 1[, and we choose 7 €]0, 1[
s0 as to satisfy 3¢; 72~ 2° < 1. We next choose ¢; > 0 and 0 < Ry < Ry(3M;) sufficient-
ly small that

612) R<Ri, |wg | <2M; and &, B) <2e;=>
SOy, R)VP <M, and v " Ze(x*2)y(3M;, B(x,, R), R) < 1=
= @(x,y, TR) < +¥ B(29, R) + HyR%,

by (5.11) and by our choice of =. We also suppose that we have chosen Ry small enough
so that

HyRY

723 _ TZcr

< €1~
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LeEmma 5.1. — With the above choices of Hy, o, v, e, and R; we have, for all
ke N(),

(513)k R SRI’ Ime,RI < M1 and @(900, R) < e1=
k-1
:@(xo, TkR) < TZIWQ)(%'O’ R) + Ho(Tk_lR)Za 20(720*26)3 <

HOR%

2k
< .
o 2eq7

< 72 (@(xo, R)+

723_7

PROOF BY INDUCTION. — The case k = 0 is trivial. Assume next that (5.13); holds for
0 <!<Fk and that the hypotheses of (5.13);,; are satisfied. We then have

<

~

|w$0,7l+1R - wa}(],TLRI = f ((l) - wxo,‘rlR)dx

B.l+1p

St |w— g, p|de S 67 " Bay, T RVP < gyr 26, 1V [2HIPY,

Biig

and it follows by summation that
k-1
(5.14) |ay, i | S |way, r] + Eo |@wgy, <+1R = wyy, g | < 2M],
provided that ¢, has also been chosen so small as to make
czf-"[zeljl/fol—_l:z% <M,.

Further, from (5.13);,
(5.15) Bz, T8 R) < 2¢;.
Now, (5.14), (6.15), (5.12) and (5.13); imply that
(g, T 1R) < 72 By, TFR) + Hy(z*RY¥ <

k=1
< 7% TZIWQD(LUQ, R) +HO(TIc—IR)2a‘ ZO(TZc—Zo“)s + HO(TkR)%:
5=

k
— 1-2("“)“’!15(900, R+ Ho(TkR)za E (TZcr—Za‘)s’
s=0

and we have shown that the conclusion of (5.13);,; holds. =
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The next lemma follows easily from Lemma 5.1, provided that 2¢, ¢t "~ %<
<1,

LEMMA 5.2. — Given M, > 0, there exist positive constants RB;(M;) and ¢ (M;)
such that, for every Bg(xy) ccll,

5.16) R<Ry, |wgrl <My and &w, R)<e =

=0(xy, o) < (p/R)?  for all p with 0<p<R.

If %y e Q with sup |wgy, | < © and hm 1nf ®(xy, r) =0, we can find M; >0 and

R > 0 such that the hypotheses of (5.16) are satlsﬁed at . By continuity of the func-
tions & — |w,, | and x — @(x, R), they are satisfied in a whole neighbourhood of .

Therefore, from the conclusion of (5.16) in combination with Theorem 3.1, we infer
that Viw) is Holder continuous with exponent ¢ in this neighbourhood, and hence that
%o € Reg[w]. We have thus shown that

{xer: sup @y, »| < and limoiilf@(xo,"r) =0}cReg[w],
r>0 r—

while the reverse inclusion is trivial. Finally, |Sing[w]| =0 by Lebesgue’s theo-
rem. B

THE PROOF OF THEOREM 1.3 is easily accomplished by applying the duality princi-
ple, Proposition 2.1. Recall that under the hypotheses of Theorem 1.3 the (n — m)-
form 7, given by

(56.17) % o(x) = Az, w(®)) © * o(x) = alz, «(x)),
is a solution of the system
da(x, 7)) =0, dr=0;

and that the mapping a: O X A, _,, = A, _y, defined by a(x, 7) = * A(x, 37 (% 1),
satisfies the hypotheses of Theorem 1.1 with conjugate exponent p’ > 2 and with
(1.14) replaced by (2.3). In light of Remark 5.1, we conclude from Theorem 1.1
that

reC""(Reglrl, A ) and [Sing[7]| =0.

Now, by (1.6), (1.15) and Proposition 2.1, the functions Az, o) and afx, 7) are Holder
continuous in # with exponent ¢, and Lipschitz continuous in « and = respectively.
From the relations (5.17) we thus infer that Reg[w]=Regl[r] and
weC% (Reglw], Ay). W
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Appendix.

We here prove quasimonotonicity of the funetion (1.13). For we R®*2 the re-
ordered matrix w = cof » satisfies (@, w) = 2 detw, (», &) = (v, &) and |o| = |o|. We
let ¢ € Cy° (R%, R?). Bearing in mind that those integrals vanish whose integrands
are linear in (Dg, D¢) =2detDy or in Do, and estimating |Dg|?(Dgp, wg) = —
— |Dg|®|wo] and —(1/4)XDg, Do) = —(1/4)|Dg|*, we obtain

f{A(a)g + Dg), Do)dx =
R2

= [(Jwo + Dg|*(wo + Dp, Dg) + 2@o + De, wo + Dyp¥ao + D, Dg)) das =
Rz

= [(IDg|* + 8| Do]|*(Dg, w) + 2Dp, wo)? + |Dp|* o |* +
RZ

+2<D_§D’ D§°>2 + 6<D_§D’ D@xm: w0> + 4<IT@’ w())z)dw =

> [(IDsl* +2]Dp|*(Dg, wo) — |Dg|? o] +2(De, wo)? + |Dg|? [wg |* +
RZ

+(9/4)Dg, De) ~ (1/4)| Dg|* + 6D, De)Dp, wo) + 4D, o)) dar =

= [ @(1/2)|Dpl* + (Do, wo)? + [Dal*(1/2)| Do = |w| ¥ +
RZ

+((3/2XDg, Do) + 2(Dg, o)) de=0. =
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