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Quasimonotonicity, Regularity and Duality for Nonlinear Systems 
of Partial Differential Equations (*). 

CHRISTOPH HAMBURGER 

Summary. - We prove partial regularity for the vector-valued differential forms solving the 
system ~(A(x, co))= O, dw = O, and for the gradient of the vector-valued functions solv- 
ing the system divA(x, Du) = B(x, u, Du). Here the mapping .4, with A(x, ~o) ~ (1 + 
+ I ~o I e)(p - 2)/2 co (p t> 2), satisfies a quasimonotonicity condition which, when applied to the 
gradient A(x, oJ) = D~f(x, oJ) of a real-valued function f, is analogous to but stronger than 
quasiconvexity for f. The case 1 < p < 2 for monotone A is reduced to the case p >1 2 by a 
duality technique. 

1.  - I n t r o d u c t i o n .  

We prove partial regular i ty  for the vector-valued differential m-forms ~ = 
= (o~ 1, .... ~oN): ~9 ~ A m  solving the system of equations 

(1.1) ~(A(x, o~)) = 0 and &o = 0 ,  

for a given mapping A: ~ • Am-o Am. We call such solutions A-harmonic  differential 
forms. Here  Am - Am(R ~, RN), with n i> 2, N ~> 1, denotes the space of RN-valued al- 
ternating m-linear forms on R ~, furnished with the s tandard inner product  (-, .), d 

and ~ are the exterior derivative and the exterior co-derivative respectively and ~ is a 
bounded open subset of R ~. To avoid trivialities we assume m 1> 1. 

The system (1.1) includes the important  case oJ = du for u: t~-o  R N, reducing 

to 

(1.2) 

or, in components, to 

divA(x, Du) = 3(A(x, du)) = O, 

Here  and in the sequel we identify A 0 -= AN and A 1 

D~ [A~ (x, Du)] = 0 for i = 1 . . . .  , N .  

AN x no Thus we do not distin- 

(*) Entrata in Redazione fl 20 settembre 1993 e, in versione eorretta, il 15 giugno 1994. 
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guish between the differential du(x) eA~ and the gradient Du(x) = 
= (D~ u i (x)) �9 F~ N • ~ of a function u: D --> R N. One reason for studying the system (1.2) 
in the context of differential forms is a simple duality principle which relates an A- 
harmonic m-form with sublinear growth of A to an a-harmonic (n - m)-form with su- 
perlinear growth of a. 

DEFINITION 1 .1 . -  We say that o~ �9 Llloc(~2, A~) is a weak solution of the system 
(1.1) if A(x, oo) �9 Lie (~2, A ~ ) and 

(1.3) I( A(x ,o) ) ,d~)dx=O for all ~ �9  

(1.4) I( o ) , ~ ) d x = O  for all ~�9 

The regularity of solutions ~o �9 LP(I), Am), with 1 < p < oo, of the system (1.1) or 
(1.2) has been widely studied under the assumption that the mapping A: t) • A~ --~ 
--)Am be uniformly strictly monotone and locally Lipschitz continuous, i.e. 

(1.5) (A(x ,  o~) - A ( x ,  ~), o~ - ~) >I )~(1 + I~l e + - v l  

(1.6) IA(x, ~) -A(x, ~;)1 <- L(1 + I~,Jl 2 + ]ri]2)(P-2)/21o~ - ~1, 

for every o~, ~ �9 Am and x �9 9, with positive constants ~ and L. (1.5) and (1.6) imply 
uniform ellipticity and a growth condition for Ao~ 

(1.7) (A~(x, oJ).~, ~)>I ~(1 + 

(1.8) IA~(x, oJ)l <~ L(1 + l 12) 
for every r e Am, and for every x E ~ and almost every co e A~. Moreover, if A(x,  ") 
is of class C I, then (1.5) and (1.6) are easily seen to be equivalent to (1.7) and (1.8), cf. 
[A-F, Lemma 2.1]. 

In general we expect only partial regularity for the solutions ~o �9 L p (t), A~) of the 
system (1.1); by this we mean HSlder continuity outside a set of Lebesgue measure 
zero. The first result in this direction was obtained simultaneously by M. Giaquinta 
and G. Modica [G-M1] and by P.-A. Ivert [I] for the following monotone system with 

p = 2: 

(1.9) ' divA(x, u, Du) = B(x, u, Du). 

Partial regularity for the minimizers of the variational integral q~(u) = If(Du) dx, 

whose integrand f satisfies the quasiconvexity condition of C. B. Morrey [M, Defini- 
tion 4.4.3], was proved by L. C. Evans [El using a blow-up technique. A direct proof 
based on a reverse HSlder inequality and LP-estimates was later supplied by M. 
Giaquinta and G. Modica [G-M2]. 

Quasiconvexity of f is equivalent to the sequential weak lower semicontinuity of 
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on W 1' P (t~, R N). 
inequality 

It can be regarded as an integral version of the pointwise 

f((0o + D~) >~ f((0o) + f'((0o)'D~, 

valid for any differentiable convex function f. 

DEFINITION 1.2.  - We call f: R .  N • n___> ~ uniformly strictly quasiconvex if, for 
2 > 0 ,  

(1 .10)  f[f(o)o+D~)-f((0o)]dx>~2 ]( l  + 1(0ol2+ ID?I2)(P-2)/21D~I2dx 
R n R ~ 

for every (00eR N• and ~e  Co~(R ~, ]~N). 

In attempting to extend the theorem of L. C. Evans from minimizers to stationary 
points and, more generally, to solutions of the system (1.1) we are led to the concept 
of quasimonotonicity. Quasimonotonicity is obtained in the spirit of quasiconvexity 
by integrating the following inequality arising from (1.5) 

(A(xo, OJo + d~) - A(xo, (0o), d~} >I 2(1 + !(Ool 2 + Id~12)(P-~)nld~l ~ 

DEFINITION 1.3.-  We call A: ~ • A,~-~A~ uniformly strictly quasimonotone if, 
for 2 > 0 ,  

(1 .11)  f{A(xo, ~Oo + d~), d~}dx >I 2 f (1  + 1(Ool 2 + ld~12)(P-2)/2[d~12dx 
R n Rn  

for everyxoeD,  (00eA~ and ~eCo~(Rn, A~_I) .  

Quasimonotonicity has been introduced independently by M. Fuchs [F], by Zhang 
Ke-Wei [Z], and by the author in the present work. Zhang Ke-Wei [Z] proved the ex- 
istence of a weak solution for the quasimonotone system (1.9). 

We next discuss some properties of quasimonotonicity. We have already seen that 
monotonicity is sufficient for quasimonotonicity. We find a necessary condition for 
quasimonotonicity of mappings A of class C 1 by writing the left-hand side of (1.11) as 
(we omit the variable x0) 

1 

f ](A'((0o § d )dtdx. 
R n 0 
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Rescaling ? to r and letting s--, 0, we obtain 

(1.12) I(A'(oJo).d~, d~)dx 1> 2 i ( 1  + IOJol2)(P-2)/eld~12dx 
R~ Rn 

for every ~0 e A,~ and ~ e Co ~ ( R  ~, A~_ 1). As in the case of quasiconvexity we can 
show by using Fourier transforms and the Plancherel formula that (1.12) is equiva- 
lent to the condition of Legendre-Hadamard, i.e. (1.7) holds for all decomposable ~ = 
= V A ~., where V e A I ( R  n, R)  is a scalar 1-form and ~eAm_ I(F~ ~, R N) is a vector- 
valued (m - 1)-form. For m = 1 the corresponding matrices 4 e R N • ~ are character- 
ized by rank ~ ~< 1. 

The latter restriction on ~ being vacuous for m = N = 1, we conclude that mono- 
tonicity, quasimonotonicity and the Legendre-Hadamard condition are all equivalent 
in this case. Also, for linear A(oJ), it is clear that quasimonotonicity (1.11) coincides 
with (1.12) and hence with the condition of Legendre-Hadamard. In general the con- 
dition of Legendre-Hadamard is strictly weaker than quasimonotonicity, and quasi- 
monotonicity is strictly weaker than monotonicity. 

An example of a nonlinear quasimonotone function A: R 2 • e__~ Re • is 

(1.13) A(~) = IoJl2co + 4de to)cof~ ,  

where cofco denotes the matrix of co-factors of o) it will be discussed in the Ap- 
pendix. To obtain a uniformly strictly quasimonotone function we add ~(1 + I oJI 2) o J, 
with ~ > 0. 

The function A, as given by (1.13), is just the gradient of the real-valued 
function 

1 1~14 + 2(det~)2, = 

which is quasiconvex. This is not surprising in view of the simple fact that quasicon- 
vexity of a function f :  R N • ~ --~ R is implied by quasimonotonieity of its gradient Df. 

In the nonlinear theory of elasticity, the equilibrium equations for a non-homoge- 
neous elastic body with reference configuration ~ c R 3, deformation u: t) --) R 3, Pio- 
la-Kirchhoff stress tensor T(x, Du(x)), density ~(x), and external body forces per unit 
mass b(u(x)) are given by the system 

div T(x, Du) + ~(x) b(u) = O . 

For a hyperelastie material, quasiconvexity is the constitutive restriction which one 
imposes on the stored energy function ~ (x ,  o~) which determines the stress tensor by 
the equation T(x, oJ) = D~'~V(x, oJ), cf. [B], [Ci]. In this light, quasimonotonieity is a 
possible candidate for a constitutive restriction to be imposed directly on the stress 
tensor T(x, o~) for a non-hyperelastic material which does not possess a stored energy 
function. What is missing for applications, however, is a suitable sufficient condition 
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for quasimonotonicity that would correspond to J. Ball's polyconvexity in the case of 
quasiconvexity. 

We list the hypotheses of our regularity theorems as they apply to a function 
A: -~ • Am--~Am; for a function A: D • F~N• ~--~ F~ N• they should be read replacing 
A~ and Am-1 by R N• and R N respectively. 

HYPOTHESIS H1. - A  is uniformly strictly quasimonotone, i.e. (1.11) holds. 

HYPOTHESIS HI*. - A  is uniformly strictly monotone, i.e. (1.5) holds. 

HYPOTHESIS H2. - A(x,  ") is of class C 1, uniformly with respect to x �9 ~, and satis- 
fies (1.8), which implies that 

(1.14) IA~(x, oJ)-A~(x , )7) l  < ( 1 +  IoJ]2+ I -vl) 

for a continuous, bounded function l(t, s), with l(t, O) = O, which is increasing in t for 
fixed s and increasing and concave in s for fixed t. 

HYPOTHESIS H3.-  (1 + [oJI2)-(P-1)/eA( ", o~) is a Hblder continuous function on 
uniformly with respect to o~ �9 Am, i.e. 

(1.15) IA(x, ~o ) -A(y ,  o~) l <~ L(1 + Io)12)(p-1)/21x- yl ~ 

with some exponent ~e]0, 1[. 

HYPOTHESIS H4. - B: ~ • R N • ]~N • n ..._> ]~N is a Carath~odory function with nat- 
ural growth, i.e. there exist constants a~ b and M such that 

(1.16) IB(x, u, co)l <. alo~lP + b fo r eve ry  lul <~ M , x � 9 1 4 9  N• 

In the following all constants may depend on the data n~ N, m, p, ~, L, ~, a, b, M 
and we shall indicate dependence only on other parameters. 

We define the mean value and the excess of a differential m-form ~o: ~9--*Am on a 
ball B~. (x) = {y �9 F~ ~: l Y - x l < r} c t~ by 

~o~,r= ~ oJdy= IBr(x) l-~ I o~dy and ~(x ,r )=  ~ [V(~)-V(~)~,rl~dy 
B r (x) Br (x) Br (x) 

respectively, where we have used the auxiliary function 

(1.17) V(oJ) = (1 + Io~12)(P-2)/4~o. 
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We also define the regular and the singular set of ~o by 

Reg[co] = {xo e t]: ~ is continuous in a neighbourhood of Xo}, 

Sing [~] = ~ \  Reg [o~]. 

Obviously the regular set is open. We then have 

THEOREM 1.1. - Let p >I 2 and suppose that A: ~ x Am ~ Am satisfies Hypotheses 
H1, H2 and H3. 

Then any weak solution co e L~c(t~, Am) of the system (1.1) is locally HSlder con- 
tinuous with exponent ~ e]0, 1[ on the regular set Reg [~], for ~ the exponent of Hy- 
pothesis H3, and the singular set has Lebesgue measure I Sing[o~]t = 0. 

We moreover have that 

(1.18) Reg[~o] = {Xo e ~9: sup ]oJ~0,r ] < ~ and lim inf r r) = 0}.  
r > O  r - ~ O +  

THEOREM 1.2. - Let p >1 2 and suppose hat A(x, o9 and B(x, u, co) satisfy Hypothe- 
ses H1, H2, H3 and H4. Let u ~ Wlloc p A L :r (t~, R N) be a weak solution of the 
system 

(1.19) divA(x, Du) = B(x, u, Du), 

satisfying the condition 

(1.20) IlUIIL~<<.M with 2aM<~, 

for ~ the quasimonotonicity constant in (1.11). 
Then the gradient Du is locally H6lder continuous with exponent ~ e ]0, 1[ on the 

regular set Reg [Du], for ~ the exponent of Hypothesis H3, and the singular set 
Sing [Du] has vanishing Lebesgue measure. Moreover, setting o~ = du, the regular set 

is given by (1.18). 

For  the case 1 < p < 2 and monotone A, we rely on the duality principle for A- 
harmonic forms of Section 2, thereby reducing the problem to the case p I> 2. Since a 
duality principle does not hold if A is quasimonotone, we shall consider only mono- 
tone A in the case 1 < p < 2. Then we obtain 

THEOREM 1.3. - L e t  1 < p < 2 and suppose that A: t~ • Am--> A~ satisfies Hy- 
potheses HI*, H2 and H3. 

Then any weak solution o~ ~ L~c(t~, Am) of the system (1.1) is locally H61der con- 
tinuous with exponent ~ e]0, 1[ on the regular set Reg[~] ,  for ~ the exponent of Hy- 
pothesis H3, and the singular set has Lebesgue measure I Sing [~]1 = 0. 

Theorem 1.2 has been obtained by M. Fuchs[F]  in the special case that  
A: R y • ~ --~ R N • ~ has linear growth (p = 2) and no dependence on the variable x. His 
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proof uses an indirect blow-up argument. In the present paper we employ a direct 
method in proving the general case with p i> 2. Theorems 1.2 and 1.3 are also partial 
generalizations of the result of[G-M1] and [I] for the monotone system (1.9) to p t> 2 
and 1 < p < 2 respectively. 

We here outline the direct method used in the proof of Theorems 1.1 and 1.2 which 
is based on the work of M. Giaquinta and G. Modica [G-M2]. Our aim is a decay esti- 
mate of the form O(Xo, p) < c~: 2~ implying regularity for V(o)) by virtue of Campanato's 
integral characterization of HSlder continuity. This is accomplished by comparing the 
local potential E, which satisfies dE = ~o - ~o0 for some OJo �9 A~ in a ball B around Xo, 
with the solution ~ of the coercive system with constant coefficients 

~(A~(xo, OJo)'d~) + cd~[ = 0 in B 

and boundary condition ~ = E on aB. From the L 2- and LP-estimates satisfied by ~, we 
obtain a decay estimate for :~ [V(~o 0 + d~) - V(co o + d~)xo,~[2dx, which yields an 

B~ 
analogous decay estimate for ~(Xo, ~) modulo an error term. We control the error 
term, which is essentially f IV(coo + d ~ ) -  V(o)o)12dx with ~ = ~ - E ,  by using the 
quasimonotonicity (1.11) of A and a reverse HSlder inequality with increasing sup- 
ports. For xo �9 ~ with sup I o~xo, r [ < r162 and lim inf ~(x0, r) = 0, it turns out that the 

r > 0  r - ->0+ 

error term can be neglected and the desired decay estimate for ~(x0, ~:) results. This 
proves that ~ is HSlder continuous in a neighbourhood of Xo. 

In Section 3 we construct the local potential E, which satisfies dE = ~ - OJo in a ball 
B, on the basis of the plus-potential of C. B. Morrey in the class of Neumann forms. 
We then prove the interior LP-estimate IIDEllLp ~ el]co - coollLp for p > 1. To this end we 
first establish LP-estimates up to the boundary of B for the plus-potential with p >I 2, 
and thence derive the LP-estimate with 1 < p < 2 by duality. For the case of Theorem 
1.2, however, all requirements for the local potential are trivially met by oJ = du and 

~ = u - ~ O o ' ( X  - X o ) .  

The reverse HSlder inequality with increasing supports needed in the proof of 
Theorems 1.1 and 1.2 is 

(1.21) IV(~o) - V(coo)lqdx <<. c 

BR/2( O) BR(XO) 

I V(~o) - V(~oo)ledx + H( I~o [)R 2~, 

for some exponent q > 2 and a nondecreasing function H. For the case of monotone A, 
(1.21) is easily derived from Caccioppoli's first inequality, for which we provide a 
proof in Section 4. Under the weaker assumption that A be only quasimonotone, we 
can still prove (1.21) provided that p I> 2. This is a consequence of Caccioppoli's sec- 
ond inequality, which has been proved for minimizers of quasiconvex variational inte- 
grals by L. C. Evans [E]. In Section 4 we adapt his proof to the situation of A-har- 
monic forms and quasimonotonicity of A. We then deduce (1.21) with the help of a 
higher integrability theorem of F. W. Gehring, M. Giaquinta and G. Modica. 
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We do not know whether Theorem 1.2 extends to the general quasimonotone sys- 
tem (1.9). Both the direct and the indirect proof of the theorem do not work in this 
case since they rely heavily on the Caccioppoli inequality which, as we have seen (cfi 

~r, ~ p + ~  
(1.21)), implies higher integrability for the gradient, i.e. lJu e ~-1oc for some ~ > 0. 
That higher integrability as well as differentiability of the gradient of a solution of 
such a system can fail is illustrated by the following example taken from [G-S]. We 
note, however, that the solution in this example is partially regular. 

EXAMPLE. - We let D c R 3 be the ball with radius e -2 centred at the origin and we 
define the function 

u(x) = x ~ W 1, 2 (~, R3 ) 
IxlS/ log Ixl 

which does not belong to any Wllo'c p (t~, F~ ~ ) with p > 2 nor to W12& 2 (t~, R a). Let  ~(s) be 
a smooth bounded function such that V(s) = s-1 for s i> 1. Since lul 1, we have 
7( lu[ 2) = lul-e,  and it is not difficult to check that u is a solution of the quasilinear 

system 

div [A(x, u)'Du] = 0 

with 

( 9) 
Ai~(x, u ) = ~ i j ~  + log-=lxl-  v(lul2) i k   u% 

s~jk being the completely antisymmetric tensor. A(x, u) is clearly bounded, of class C ~ 
in x and smooth in u, and it satisfies a Legendre-Hadamard condition which implies 
that A(x, u).o) is quasimonotone in o~. 

2. - The duality principle. 

For a proof of the following lemma and other important properties of the dfffeo- 
morphism V: Am--->A,~, defined for p > 1 by (1.17), we refer to[G-M2] and[HI. 

LEMMA 2.1. - There exist two positive constants c 1 and c2 such that, for all 

r ~7 �9 Am, 

I v ( u )  - v( )l 
(2.1) cl ~< 2 )(p - 2)/4 i~ o ~< c2. 

(1 + I 12 + 171 - wl 

PROPOSITION 2.1. (Duality principle for A-harmonic forms). - Suppose that 
oJ e L~c(D, Am) is an A-harraonic differential forra and that A: -~ • Am-->Am satis- 
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ties (1.5), (1.6) and (1.15)for p > 1. Define the (n - m ) - f o r m  ~ �9 L~c (~9, A~_ m ) by the 
formula 

(2.2) �9 z = A(x, oJ), 

where �9 denotes Hodge duality, and where p'  is the conjugate exponent of p defined 
by p' +p  =pp' .  

Then A(x, .): Am--> Am is a bijection for every x ~-~, and z is an a-harmonic dif- 
ferential form for the map a: t) • A~_m--> A~_m defined by a(x, z) = 
= �9 A(x,  . )-1(.  z). 

Moreover, a satisfies the same estimates (1.5), (1.6) and (1.15) with p replaced by 
p'  ; and i f  A satisfies (1.14) for 1 < p < 2, then a satisfies 

(2.3) la~(x, z) - a~(x, o') I <~ c(1 + I ' l l  2 + Io-12) (p' -2>/2. 

�9 l(c(1 + I~-I~) ( ' ' - ' / 2 ,  c(1 + 1~-12)(p'-~)/~l ~- - ~1 + cl= - ~ 1 " -  t ) .  

PROOF. - We first prove that  A(x, "): Am ~ Am is bijective. From (1.5) we deduce 
that  

(2.4) (1 + I~12 + Ivl2)(,-2)/21~ - vl -< clA(x, ~o) - A ( x ,  v)l, 

which implies injectivity of A(x, .). Setting ~; = 0 in (2.4) and noting that  A(x,O) is 
bounded on ~ we obtain the first half of 

(2.5) c(1 + Io~12) p-1 ~< 1 + tA(x, o))l 2 <~ c(1 + 1~12), -1,  

the second half following directly from (1.6). 
We fix x e ~ and we write A = A(x, -): Am --)Am and Br = Br(0) cAm. (2.5) implies 

that  IA(~)I I> R = [c(1 + r2) p-1 - 1] 1/2 for I~l = r. Thus BR NA(aB~) = O, and the 
mapping degree deg (co, A, Br) is defined and constant for co ~ BR. Now suppose that  
~o~tA(Am) for some ~o0eA m. Then for R > leo01 we have deg(~o0, A, B,)  = 0, and 
hence deg(co, A, Br)--0 for every oJ e BR. Since A: A,~'-'~Am is injective, it follows 
that  BR A A(Br) = 0. As R --) oo for r -+ ~ ,  we obtain a contradiction. Thus we have 
shown that  A: Am-'>Am is surjective. 

Consider now the ( n -  m)-form v and the m-form co which are related by (2.2) 

A(x, co) = * z r a(x, v) = * co. 

It  follows that  

~(A(x, ~o)) = +_ �9 dz and ~(a(x, ~)) = +_ �9 

and we see that  v is a-harmonic if and only if ~o is A-harmonic. 
(2.5) and the identity (p - 1)(p' - 2) = 2 - p yield 

(2.6) c(1 + I0)12 + Ivl~)(2-p)/2 ~< (1 + IA(x, 0))] 2 + IA(x, v)12) (p'-2)/2 ~< 

c(1 + Io~l = + lvl~)(=-~)/= 
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On account of (2.6), (1.6) and (1.5) give 

(2.7) (1 + I A ( x ,  oJ) l 2 + I A ( x ,  )7)12)(p' - 2)/21A(x, ~) - A (x ,  )7)1 ~ <<. 

~< c(1 + Io~12 + 1~12)(P-2)/2 I~o - )712 ~< c(A(x,  oJ) - A ( x ,  )7), o~ - ~),  

while (2.4) gives 

(2.8) I ~ - )71 ~< c(1 + I~ol 2 + I)71e)(2-P)/21A(x, oJ) - A ( x ,  )7)1 <~ 

~< c(1 + ]A(x, co)l 2 + IA(x,  )7)l~)(P'-2)/~lA(x, o)) - A ( x ,  )7)1. 

(2.7) and (2.8) correspond to (1.5) and (1.6) with A replace by a and p replaced 
by p ' .  

For  future reference we note here that  (2.4) multiplied by (2.8) furnishes the first 
and (2.7) furnishes the second of the inequalities 

c l V p ( ~ )  - up()7)]  ~ <. [Vp,(A(x, o~)) - Vp,(A(x ,  V))l 2 <~ cIVp(oJ) - Vp()7)l 2. 

Thus, since by (2.5) and (1.15) 

[U~,(A(x,  ~) )  - Up , (A(y ,  ~))J~ <. c(1 + 1~12)~/21x - y l  ~ ,  

we obtain 

(2.9) c IVp (o~) - Vp (~7)[ 2 _ c( 1 + loJl 2 F/2 Ix - y[2~ << I Vp,  (A(x,  oJ)) - Vp, (A(y,  )7))12 <~ 

<- clU.(~o)  - v~()7)l ~ + c(1 + I~ol~)~/~lx - y l  2~ 

In order to prove the analogue of (1.15) for a, we let x, y e ~ and v ~ An -,~, and we 
choose oJ, )7 ~ A,~ satisfying �9 z = A ( x ,  oJ) = A ( y ,  )7). Then, on account of (2.8), (1.15) 
and (2.5), we have for p '  >I 2 

l a(x, ~) - a(y,  z) I = 

= [0~ - )71 ~< c(1 + IA(x,  0~)12 + IA(x,  V)I2)(P'-2)/2tA(y, ~) - A ( x ,  )7)1 <<- 

~< c(1 + I v l2) ( f  - 2)/21A(y, )7) - A ( x ,  )7)1 + c lA(Y ,  )7) - A (x ,  )7)1 p ' - I  ~< 

~< c(1 + 1~]2)(~'-u)/2(1 + Ivl~)(p-~)/2lx-yl~+ c(1 + 1~12)1 /21x-y l  ~(p'-I) <~ 

c(1 + Ivl2)(P'-~)/elx - y]~ 

For  the case 1 < p '  < 2, we omit the second terms in the above estimate and obtain 
the same result. 

We finally examine how the continuity condition (1.14) on A~ determines a similar 
condition on a~ f o r p '  t> 2. For  z, z ~ A ~ _ m w e  let o~, )7 ~Am satisfy A(x,.o~) = * v and 
A(x ,  V) = * z. From the definition of a, we have a~(x, z) = * A~(x ,  co) -~ * etc., and, 
using the estimate for a corresponding to (1.8) as well as (1.14), (2.6), (2.8) and (2.5), 
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we obtain 

la~(x, z) - a~(x, ~)1 = la~( x, a)[a~(x, ~)-1 _ a~(x, z ) - l ] a ~ ( x ,  ~)1 <<- 

<- la~( x, ~)1 la , (  x,  ~)1 IA~( x,  o~) - A ~ ( x ,  ~7)1 <<- 

<~ c(1 + I~1~)("-~)/~(1 + I~1~)(~'-~)/~(1 + I~i ~ + I~l~)(~-~)/~l(Ivl,  I~ - ~1) -< 

<- c(1 + I~I ~ + I=l~)(,'-~>/~l(c(1 + I~i~) (~'-' /~,  c(1 + I~1 ~ + I~1~)(,'-~)/~ I ~ -  ~1), 

thus proving the estimate (2.3). [] 

3. - LP-estimates for the local  potential .  

The following proposition is proved in [H] for p i> 2, but  here  we also need the es- 
timate (3.2) for 1 < p < 2. We note that  for the special case of the system (1.2) or 
(1.19), whose solution is given as a differential ~o = du  with u ~ W 1' 2(t~, RN), Propo- 

sition 3.1 is trivially satisfied by ~ = u -  o J o ' ( x -  Xo). However, when we invoke the 
duality principle for (1.2), as in the proof of Theorem 1.3, we end up with the (n - 1)- 
form z = _+ * A ( x ,  du),  for which Proposition 3.1 is essential. 

PROPOSITION 3.1. - Let  B R ( xo ) be an  open ball in  R ~, and  let 

oJ e L 2 ( B R ( xo ), A m ) A ker  d and  o)o e Am , for  m >1 1. Then  there exists 
E W 1' 2 ( S  R ( x  0 ), A m  _ 1 ) sat i s fy ing  

(3.1) dE = ~o - o) o and  ~ = O. 

I n  addi t ion  we have for  each p, w i th  I < p < ~ , and  for  each ~, w i th  0 < p < R ,  the 
es t imate  

(3.2) IID~]IL,(B~(~o)) <. ClICO -- O~011L~(B,(xo)) , 

where the constant  c depends only  on n, N, m, p, and  p/R.  

In the proof of Proposition 3.1 we use reflection in the unit sphere S(x )  = r - 2 x ,  
where r =  Ixl > 0. We write B = B I ( 0 )  for the unit ball, and we summarize some 
propert ies of S in 

LEMMA 3.1. - Le t  g = <., .} = dx i | dx  i and  vg = dx  = dx 1 A ... A dx  ~ be the stan- 
dard  metr ic  and  vo lume  f o r m  on R ~ respectively. 

Le t  ~ = S ' g ,  w i th  associated n o r m  T" I, vo lume f o r m  vy, Hodge dual  ~ and  exteri- 
or co-derivative 3. Then, f o r  any  m- fo rm  t), we have 

(a) ~ = r - 4 g ,  

(b) vy = r-2nvg = - S * v g ,  

(c) ~ t~ = r 4"~- ~ �9 t) , 
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(d) ~t) = r 4 ~ t )  + (4m - 2n)r~i~t~,  

(e) S * (  * Q)  = - ~ S ' Q ,  

( f )  S*  ~Q = "~S* ~ , 

(g) (S ,Q)T ~_. QT 

(h) S * Q  =Q on 8B 

and ( S ' Q )  ~ = - ~ •  on 8 B ,  

i f  and only i f  t ~ •  on 8 B .  

P R O O F .  - From the equation 

(3.3) S* dx i = d ( r - 2 x  i) = r -2  dx i - 2 r - 4 x i x  j dx j ,  

we find that S * g = ( S * d x i ) |  which is (a). The formulas v~= 
= [det(~ij)]l/2dx and S* dx = d e t D S d x ,  with DS = r - 2 ( I  - 2 r - 2 x  | x), give (b). (c) is 
obtained by comparing the following definitions of the Hodge duals �9 t~ and ~ Q, for 
vectors Xm + 1, ..., X~, using (a) and (b) 

(3.4) (* Q)(Xm+ 1, ..., X~)vg = Q A g(Xm+ 1, ") A ... A g ( X ~ ,  "), 

(3.5) (~  ~ ) ( x m +  1, . . . ,  Z~)v~ = ~ A ~(xm+ 1, ) A ... A ~(X,,, .). 

(d) follows from the definition & 9 = ( - 1 ) ~ + ~ d ~ Q ,  (c) and the identity 
�9 [Q A g ( X ,  ")] = ix * t). In order to show (e), we operate with S* on both sides of 
(3.4), where we set X~ = S ,  Yi. By virtue of (b), this yields 

- (  �9 Q)(S , Y~ + 1, ..., S ,  Y~)vy = S* Q A g(Ym + 1, ") A ... A g(Y~, "). 

Therefore, from (3.5), 

- S* ( * t~)(Ym + l,  ..., Y~)V~ = -* (S* Q)(Ym + I, ..., Y~)v~, 

and we obtain (e). (f) follows directly from (e). By symmetry it suffices to check (g) 
at the point (0, ..., 0, 1)eBB, which is obvious from (3.3). (h) is implied by 
(g). I I  

We define the subspace of Neumann forms in WI'~(B ,  Am) 

?~+(B, A m ) =  { Q e W I ' 2 ( B ,  Am):Q • = 0  on 8B}. 

We note that the space of harmonic Neumann m-forms on B is, for m >I 1, 
trivial 

~ + ( B ,  A m ) = { t ~ e L 2 ( B ,  A m ) : ~ = d D = O  in B and t ~ ' = 0  on a B } = 0 ,  

by the fundamental result of Duff and Spencer [D-S] that its dimension equals the 
m-th Betti number of B. 
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REMARK 3.1. - The equations defining ~+ are understood in the weak sense 
a s  

I I - (t~, d~} dx = (t~, ~ }  dx = 0 for every ~ �9 C ~ (B, Am- ~ ) and ~b �9 Co ~ (B, Am + ~ ). 
B B 

We shall use the following notation: we extend a given m-form t~: B - - ) A m  from 
the unit ball B to R ~ by 

{~(x)  for x ~ B ,  
(3.6) ~(x) = S* t ) ( x )  for x e B  ~. 

We let ~(~2) denote the Dirichlet integral of t~ over B 

~(t~) = ~(id~] e + 1&gle)dx, 
B 

and we start by proving the following inequalities valid for ~ on ~+.  

LEMMA 3.2. [M, Thin. 7.7.2]. - For t~ e ~+ (B, Am), we have ~ e W~o~e(R n, Am) 
and 

2 (3.7) h~IIL2(B) < C ~ ( ~ ) ,  

(3.8) I[~ll~,~(,~(o)) ~ c~(~). 

-- uIrl'2/l~c Am). Further, by Lemma 3.1 PROOF. ~eWI'2(B, Am) implies S*t~e  ,,]oc ~ , 
(h), ~•  = 0 implies S*t~ =t~ on aB, and we conclude that ~ �9 W]lc2(R ~, Am). 

Let V �9 Co ~ (Bs (0)) be a cut-off function with 0 ~< ~ ~< 1 and V = 1 on Be(0). Using 
the identity DiDi = A = ~d + d~, as well as formulas following from Lemma 3.1(b,f) 
such as ~2S*t~12v~ = - S * ( l ~ 9 1 2 v g ) ,  we obtain the estimate 

f ID(~7~)] 2dx = f (Id(v~)] 2 + ]~(V~)i2)dx ~< 
Bs(O) B8(0) 

-<c~(l~j~+ I~1 ~ + I~12)dx+c f (TS*~I e + TdS*~l 2 + ~S*~le)v~< 
B B~ (0) \B 

and we conclude that 

~<cf(l~Je+ IdOl2+ i~12)dx, 
B 

(3.9) II~II~v1,2(B2(0) ) ~ eII~c~II22(B) + e ~ ( ~ ) .  
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If  (3.7) were not true, then there would exist a sequence {t~k} c ~  + such 
that  

(3.10) II kll.(,) = 1 and ~ ( t ) k ) - ~  0.  

By (3.9), {t)k } is bounded in W ~' 2, which implies that  for a subsequence and for some 

(3.11) t)k~--->t~ weakly in W ~'2 and strongly in L 2. 

By the sequential weak lower semicontinuity of the Dirichlet integral, we infer from 
(3.10) and (3.11) that  ~ ( ~ ) =  0 and hence that  t ~ e ~  + =  0. This contradicts 

Ilal.(, ) = 1. 
(3.8) is obtained by combining (3.9) and (3.7). �9 

DEFINITION 3.1. [M, Thm. 7.7.3]. - t~ �9 !l~ + (B, Am) is called the plus-potential of 
o)�9 Am) if 

(3.12) ~(t~, ~) : . [({d.Q, d~} + (~E2, ~})dx : I{~o, ~}dx 
B B 

for every ~b e ~+  (B, Am). 

REMARK 3.2. - The bilinear form ~( t ) ,  ~) associated with the Dirichlet integral is 
coercive on ~§  by Lemma 3.2, and the plus-potential is furnished by the Theorem of 
Lax-Milgram [G-T, Theorem 5.8]. 

REMARK 3.3. - By[M, Thm. 7.7.4(i)] we have ds ~E~ �9 ~+ .  From (3.12) we then in- 

fer the pointwise equation 

(3.13) ~dt~ + d~t~ = - co. 

LEMMA 3.3. - Let t) e ~+ (B, Am) be the plus-potential of o~ �9 L2(B, Am). Then the 
following LP-estimate holds for 1 < p < 

(3.14) Hd~HL,(B) + II~t)IIL~(B) <~ c(P)II~IIL~(B). 

PROOF. - We define the operator T: L2 (B, Am) --~ L 2 (B, (Am)') by T~ = Dt~ = 
= (D1E2, ..., D~t)), where t) e ~+  (B, Am) is the plus-potential of ~ �9 L2(B, Am). We 
show T to be continuous. 

We let ~ and ~ be the extensions to R ~ of the forms o~ and t~ as in (3.6). By substi- 
tuting ~ = E~ in (3.12) and using (3.7) and (3.8), it follows that  

(3.15) II Nwl cll lLL2( ). 
This proves that  T: L 2 - ~ L  2 is continuous. The next step is to show that  T is also 

continuous as an operator between the spaces T: L ~ -~ C o, : for 0 < a < 1. 
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We define a Lipschitz metric ~ on R ~ by 

g(x) for x � 9  

g(x) = g(x) = r -4g(x)  for x �9 B ~, 

with associated exterior co-derivative ~. We claim that  ~d~ + d ~  = - g, i.e. that  for 
every 9 �9 Co ~ (Rn, A~) 

(3.16) fE~(d~, d~) § ~(g~, ~)]~ = f ~(~, ~)~ 

To see this we note that  Lemma 3.1(g) asserts that  r = ~ + S*~ �9 ~+  (B, Am), so we 
can insert it into (3.12): 

f [ g(d~, d~) + g(~t), #)]v~ + f[g(d~, dS*~) + g(~2, ~s.~)]vg = 
B B 

= f g(~, ~)vg+ fg(~,s* ~)vg. 
B B 

We then convert the integrals involving S*~ into integrals over B c by using Lemma 
3.1(b,f)  and the equation S ~  = id, for example 

f g(~, ~s* ~)v~: - f z* {g(~, ~s* ~)v~} : f ~(~s*~, ~)v~= f ~(~, ~)v~. 
B B c B e B e 

In this manner we obtain (3.16). 
We write B t = Bt (Yo) for Yo �9 B and 0 < t ~< 1, and we let Z e W 1' 2 ( B t ,  A m) be the 

solution of the Dirichlet problem AS = 0 in B t ,  • = ~ o n  a B  t . Then ~ = ~ -  
- ~ e W 1' 2 (Bt, Am ) and we obtain 

f ID~lZdx= f(D~ - D~,D~)dx = f((~, d~> + <~, r 
Bt Bt Bt 

Subtracting (3.16) and using Lemma 3.1(a, b, d), the fact that  I 1 -  rkl<~ c(k)t on 
B t N B c for t ~< 1 and the Poincar6 inequality for 9, we have 

f lD~12dx = f ~ ( ~ , ~ ) v ~ +  f ((1-rn(m+l)-2n)((d~Q,d~)+(~,~))- 
Bt Bt B t N B e 

- (4m - 2n)r4m+2- 2n( (~ ,  i ~ }  + ( i ~ ,  ~ ) )  - (4m - 2n)2r4m-en(ix~ , ix~))dx <<. 

<~c I I~ollpldx+c ] (tiDal + li~[21)(]Dpl +t-llpl)dx<~ 
Bt B t N B e 

1 ~ct~f I~l~dx +ct=f ID~I~d~ § f li~l~d~ + ~ f lD~l~d~. 
Bt Bt B t A B c B t 
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The formula ~ • = (x, ") A i ~  holds on 0B, whose unit normal is x. We define the 
radial component ~ , d  =r-~(  x, "}A i ~ ,  which satisfies ix~ = iz~ad. Now ~ = 
= [2 z = 0 on 0B, so we can apply the Poincar6 inequality on Bt (3 B ~ 

[ li~[21Zdx ~ c f [~aaledx ~ ct zf (1~12 + ]D~]2)dx. 
B t N B c B t N B c Bt 

We thus obtain 

t ~+2 ctuf(l~] 2 (3.17) I ID?IZdx <~ C[[r176 + + ]D~212)dx" 
B t Bt 

The Campanato estimates satisfied by Z for s < t (see [G, Thin. 2.1 and Remark 
2.3, pp. 78-79]) are 

(3.18) I (IZI2 + IDZlZ)dx <~ c(s/t)~ f (IZI2 + IDZI2)dx' 
B s Bt 

(3.19) f lD,~ - D22yo, s ]2 dx <<. c(s/t) ~ * 2 f I D~ - DZvo, t I z dx. 
B s Bt 

(3.18) translates, by virtue of (3.17) and the Poincar6 inequality for ~, into an estimate 
for 

2 tn+2. f (1~[~ + ID~le)dx <" c[(s/t)~ + t2] I (]~l + ]DD]2) dx + clIcolI2L~(B) 
B, Bt 

By applying Lemma 3.4 and (3.15) we obtain, for 0 < a < 1 and s < t ~ to (z) ~< 1, 

(3.2o) f ( l~l  ~ + ID~12)dx<<.c(s/t)~-2+2~ 2+ ID'~12)dx+clloJll~L~(B)S '~-2+2:~ 
Bs Bt 

Inserting (3.20) (with t in place of s) into (3.17), we infer from the Campanato esti- 
mate (3.19) that 

f IDa2 - D~yo,~12dx < c(slt)~+z I IDD -D~v~,t l2dx + cll~olleL=(B)t ~+e= 
B s Bt 

A further application of Lemma 3.4 and (3.15) gives 

, C OJ 2 ~ n + 2 z  f ID'~-D~yo s]edx<.c(s/t)~+2~f ID~-D[2vQ,tl2dx+ L~(B)o < 
B~ Bt 

c( t )ll411 o ( , ) s  + 
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Using Theorem 3.1 and (3.15), we conclude that  

IID llco c(IID IIL ( )+ [DO]z, ~; B ) < c[l llLo (B)- 

We have shown that  T: L 2 -~ L 2 and T: L ~ -~ C o, ~ are continuous. Hence, by the 

interpolation theorem of Stampacchia [G, Thin. 1.4, p. 75], T is continuous as an oper- 
ator  T: LP- - )L  p for all p with 2 ~< p < or In particular, we obtain (3.14) for 
p~>2. 

Now let r �9 L 2 (B, A~) and ~b �9 Co ~ (B, A~ + 1 ), with plus-potentials 0 and W re- 
spectively, and let 1 < p < 2. Then (3.14) holds for F and ~b with the conjugate expo- 
nent  p ' >  2. Therefore,  since d T •  = 3t2 •  dO• = 0 on OB, 

B B B 

I "  

= - |(co + ~d~, d F ) d x  = - 
B B 

As Co ~ (B) is dense in L p' (B), we infer that  

for 1 < p < 2. The LP-estimate of dO for 1 < p < 2 is obtained similarly. 

I (~ d~ ~ dx <. HcO[ILp (8)lld~[L~'(B) <~ c(p' )I]OJIILP(B)II~I[L~' (B). 

PROOF OF PROPOSITION 3.1. - We prove the proposition for ~0 = 0, x0 = 0 and R = 
= 1, the general result  following by a homothety argument.  

We let /2 �9 ~+  (B, A,~) be the plus-potential of ~o �9 L2(B,  Am) N kerd .  We observe 
from (3.13) that  ado  = - ~ - daO �9 ke rd ,  while dO �9 ~+  implies that  (~do)• = 0 on 
aB. Thus ado  �9 ~+ and we conclude that  ~d~ = 0. This in turn implies that  
dO �9 ~+ = 0, and (3.13) reduces to d~O = -o J .  This last equation becomes d~ = ~, 
where ~ = -  aO. With this choice we also have ~ = 0 and hence (3.1) is satis- 
fied. 

Next, (3.1) implies that  ~ is a weak solution of A~ = &o in B. Therefore  the LP-the - 
ory for elliptic equations with constant coefficients furnishes the interior estimate, 
for l < p <  or 

[ID~IIL,(B~) <~ c(p, 

Combining this, for ~ = - ~ O ,  with (3.14) yields (3.2). �9 

In this section we have used the following lemma and theorem, which are proved 
in [G, Lemma 2.1, p. 86] and in [G, Thin. 1.2, p. 70] respectively. 

LEMMA 3.4. - Let f(t) be a nonnegative and nondecreasing function. Suppose 
that 

f (s)  <<. A[(s/t)  ~ + ~] f ( t )  + Bt  ~ 



338 CHRISTOPH HAMBURGER: Quasimonotonicity, regularity and duality, etc. 

for all 0 <~ s <<. t <<. T, with A ,  B >I 0 and 0 <<. ~ < ~. Then there exist constants ~o and c 
depending only on A, ~ and ~ such that, for ~ < ~o and 0 <<. s <<. t <<. T, we have 

f ( s )  <. c[(s/t)~f(t) + BsZ]. 

THEOREM 3.1. (Campanato's characterization of HSlder continuity). - Let the 
bounded open set t) in F~ ~ satisfy It~p(Xo)l >I A ~  for some positive constant A and 
for every Xo e t~ and 0 < p < diamt~, where t~(Xo) = B~(xo) A t). Then, for z > 0 and 
p i> 1, u e C~ i f  and only i f  u e LP(t)) and 

)lip 
[u]p, =; ~ = sup ~ - = ~ ~ I u - U=o ' p I p dx < ~ , 

xoe~7 
0 < ~ < diamQ Qp(Xo) 

where U~o, ~ = ~ u dx. Moreover, an equivalent norm on C~ is defined by 
~p(xo) 

Ilullp, o = I l u l l - - )  + I;ul,,,o; 

4. - The Caccioppoli inequalit ies.  

We recall Caccioppoli's first inequality which applies to the case of monotone A, 
and we present Caccioppoli's second inequality for the case of quasimonotone A. 
They both lead to a reverse HSlder inequality with increasing supports. 

Proofs of Caccioppoli's first inequality for m = 1 can be found in [G], [C1], [C2] 
and [N-W]. As a first application of the duality principle for the case 1 < p < 2, we 
here give a proof valid for arbitrary m and p > 1. We note in particular that  the re- 
striction[C2, (1.5)1 is superfluous. 

PROPOSITION 4.1. (Caccioppoli's first inequality). - Let 1 < p < ~ and suppose 
that A: -Q • Am-o  A,~ satisfies (1.5), (1.6), and (1.15) with ~ = 1, i~e. A(.,  o)) is Lip- 
schitz continuous. Let  o~ eL~:(~9, Am) be an A-harmonic differential form. 

Then V(o)) e W~o~e (t~, A,~), and for every ball BR(xo) r162 and for every ~Oo eArn we 

have 

(4.1) I ID[V( )]12dx< cR 2 I IV( )-V( ~ I (1+ ]oJi2)P/2dx. 
BR/2(XO) BR(XO) BR(XO) 

PROOF. - We first assume that  p I> 2. We use the notation D ~ ( x )  = h -] [~(x + 
+ he~) - ~(x)] for the difference quotient. Inserting ~ = D j ~ b ,  for ~b e Co ~ (~9, Am-1) 
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and h <  dist(supp~, ate) in (1.3), writing oJh(x )=a ) (x+he~)  and using (1.15), 
gives 

(4.2) h - 1 1 ( n ( x  -.l- hect) (Oh) -  n ( x  -.I- hea, o9), d~>dx ~ c  I ( 1  ~- I(ol2) ( ' -  1)/21d~ldx. 
t) D 

For BR(xo) Cr and (oo �9  we let ~ �9  WI'p(BR(XO), Am-l)  be the (m - 1)-form of 
Proposition 3.1. We choose a cut-off function V �9 Co~(t)) such that 0 ~< ~ ~< 1, 

�9 Da~ 2 supp~cBsR/4(Xo), V - 1 o n  BR/2(Xo) and IDol ~< cR -1 We then set @ = ~ V in 
(4.2), for which 

d~ = D~(o)y p + 2)Tdv A D~,h 

and we deduce, using (1.5) and (1.6), that 

) , f(1 + I(o~l ~ + I(o12)(~-2)/21D2(o12~2dx 
t~ 

~< c f(1 + I(ohl ~ + I(ol~)(P~)/2lD2(olvlDvl ID:$ldx + 
Q 

+c f(1 + I(ol~)(~- l)/~( ID2 o~lV ~ + vlDvl ID~ ~l )dx <~ 

~< s I (1  + I(ohl 2 + I(ol~)(p2)/2lD2(ol~v2dx + 

+c(~) I(1 + I(ohl 2 + l(oi2)(~ ~>/~lDvl~lD2vl~dx + c(~) ~(1 + Io~12?/~v~dx, 
t) Q 

and hence 

I [D~[V((o)]12dx <<" 
BR/2 

~R -~ ~ (i + Io~I ~ + l~l~)(,-~)/~ID:~l=d~+c f(1 + lo~l~?/~dx. 
BSRla BR 

Since (oh--*(o and D ~ - - ) D ~  in LlPoc as h-- .0 ,  we infer that D~[V((O)] exists in 
2 Lloc(t), Am) and that 

f ID[V((o)]ledx <<. cR -2 f (1 + 1~12)(P-2)/21D$lSdx + c I (1  + t(ol2)~/2dx. 
BI~/2 B3R/4 B R 
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Further ,  with the aid of Young's inequality and (3.2), we estimate the te rm 

(1 + IoJ]2)(P-2)/21D~12dx <~ 
BSR/4 

~<c i [(1 + 1~o12)(P-2)/21D~12 + ] ~ - ~ o l P +  ]D~tP]dx<~ 
BSR/4 

_<c.  ~r(1 + ,~ol2)(~ ~'/~l~ - ~ol ~ + t~ - -01~ldx ~<c I i ' ( ~ ) -  V(~o)l~dx, 
BR BR 

and we obtain (4.1) for p i> 2. 
In the case 1 < p < 2 we invoke the duality principle, Proposition 2.1, thus obtain- 

ing (4.1) for the forms r = +- �9 A(x ,  o~) and vo = +- * A(xo, ~o): 

(4.3) I ]D[Vp,(A(x, oJ))]]2dx ~< 
B3R/4 

BR BR 

~cR-~ I Iv,(o~)-v~(o~o)l~dx+~ I(1 + Io~l~)~/~dx 
BR BR 

The last inequality is due to (2.9) with ~ = 1 and (2.5). From (2.9) also we have 

ID~[Vp(~O)]l 2 <~ cID~[Vp,(A(x , ~o))]] 2 + c(1 + Icol2) p/2, 

which, by (4.3), gives 

BR/2 BR BR 

1,2 We conclude that  Vp (~o) e Wlor (t~, Am) and letting h--* 0 we recover (4.1) for the case 
1 < p < 2 .  �9 

By an application of the Poincar~-Sobolev inequality and [H, Lemma 2.3], we de- 
rive from (4.1) a reverse HSlder inequality with increasing supports 

IV(oJ) - V(oJ)~o,R/elqdx <~ c IV(oJ) - V(oJo)12dx + cR2(1 + Io~o1~) p/e, 

BR/2 O) BR (XO) 
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q = 2* = 2n / (n  - 2) > 2 being the Sobolev exponent associated with the embedding 
W ~'2 r  2.. For  quasimonotone A and p i> 2 a similar reverse HSlder inequality fol- 
lows from 

PROPOSITION 4.2. (Caccioppoli's second inequality). - Let p >I 2 and suppose that 
A(x,w) and B(x, u, w) satisfy (1.6) and Hypotheses H1, H3 and H4. Let 
w �9 L~c (~2, A~) be a weak solution of the system (1.1) or let u �9 Wllo'c p A L ~ (~, R N) be 
a weak solution of the system (1.19) satisfying condition (1.20) and set w = du. 

Then, for/14o > 0, there exist positive constants Ro (Mo) and c such that, for every 
ball BR(Xo) r162 with R <<. Ro and for every Wo � 9  with IWol <<. Mo, we have 

I" 
(4.4) ~ IV(w) - V(wo)12dx <<. 

J 

BR/2 (xo) 

C ~ )2/2, 
~< (S.(~o) IV(w) - V(wo)12"dx + cR2~(1 + ]Wo]2)(P+2)/2, 

where 2, = 2n / (n  + 2 ) <  2 is the inverse Sobolev exponent. 

PROOF. - We treat  the systems (1.1) and (1.19) together by considering the 
system 

(4.5) ~(A(x, w)) = B(x, w) and dw = 0, 

with IB(x, w) I <<. alwlP + b. We suppose that  we are given either (i) a solution w of 
(4.5) with a = 0 or (ii) a solution w = du of (4.5) for u �9 W ~  p N L = (~, R N) satisfying 
(1.20). For  BR(Xo) cct~ and w o �9 A~ with Iw01 ~< Mo, we let ~ be the (m - 1)-form of 
Proposition 3.1 and we set ~o = ~o, 3R/4. For  the case (ii), we choose ~ = u - Wo" (x - 
- Xo) for which ~o = u~o, 3R/4. 

For  R/2  <<. s < t <<. 3R/4, we let V �9 Co ~ (t~) be a cut-off function such that  0 < V ~< 
~< 1, suppv �9  ~ -  1 on B~(xo) and IDol <<. c ( t -  s) -1, and we define 

= V(~ - ~o) and ~ = (1 - V)(~ - $o). 

By (3.1) and (1.20), we have, in either of the cases (i) or (ii), 

(4.6) w = co o + d~ + d~, al~ I <~ 2aM + aMoR and 2aM < ~. 

We infer from the quasimonotonicity of A, (4.5), (4.6), (1.6), (1.15), Young's in- 
equality, the estimate (~ +fl)P ~< (1 + ~)aP + c(~)fl p and the Poincar~ inequality ap- 
plied to ~ on Bt that  

I(1 + IwoJ 2 + 1  12)(P-2)/21d J2dx < !(A(Xo, w0 + A(Xo, w), + 
Bt B t 



342 CHRISTOPH HAMBURGER: Quasimonotonicity, regularity and duality, etc. 

§ f<n(~o, ~ ) -  n(~, ~>, d~>d~ - f<B(~, ~>, ~>d~ <~ 

Bt Bt 

~< cI(1 + 1~ol ~ + Idol 2 + Idi~12)(P-~)/~td~l I%ldx + 
Bt 

+ c R  ~ I(1 + I~1~) ~ - ' /~  Id~ld~ + i (a l~ l '  + Z')l,~ld~ 
Bt Bt 

~< c(1 + Io~o12) (v-2)/2 f IdOl Id~ldx + [2(1 + e)aM + c(1 + Mo)R ~ + ~] I Id~lVdx + 
Bt Bt 

+c(~) I Id#l~dx + c(~)R~(1 + I~176 I~)'/~ f tD~ldx. 
Bt Bt 

By choosing ~ and R small enough so that 2(1 + ~)aM + c(1 + Mo)R ~ + e < 2, we con- 
clude, since q -  0 on B,, that 

I IV(co) - V(oJo)12dx <. I IV(c~176 + d@) - V(o~o)12dx <. 
Bs Bt 

<'c(t-s)-2(1 + I~~ I I~-~~ f I~ -~~  
BaR/4 BAR~4 

IV(co)- V(oJo)12dx + cRY(1 + Io~o1~?/~ [ ID~ldx + +Cl 
Bt \ Bs B3R/4 

+cR'~*2~(1 + 10)ol2) (p+2)/~. 

We fill the hole, that is we add Cl times the left hand side to both sides. We then di- 
vide through by 1 + Cl and apply Lemma 4.1 with 0 = Cl/(1 + cl) < 1. In this manner 
we arrive at 

~ IV(oJ)-V(o~o)12dx<~cR-2(l+ 1~Ool2) (p-2)/2 ~ I~-~ol 2dx + 
f 

BR/2 BAR~4 

B31r BSR/4 

c -ID~IP*dx + ~< c(1 + IOJo12) (p-2)/2 ~ ID~12"dx + 
BAR~4 BUR~4 
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+cR2~(1 + [OJol2) (p+2)/2 ~< c(1 + ]Oo12) (p-2)/2 IoJ - ~Ool2.dx + 
B 

~ )P/P" 
+ c  I~o - ~Ool~.dx 

\BR 

+ cR2Z(1 + 1~012) (p+2)/2 < 

! )z/z. 
<. c I V ( ~ )  - V(o~o)12"dx  + cR~~(1 + IOJo]e) (p +2)/2, 

B 
which proves (4.4). We have also used the Sobolev embeddings W 1' 2. c L 2, W 1, p. c L p 
and the estimate (3.2). Note that, since 2. = 2n/ (n  + 2 ) <  2, we require (3.2) for 
l < q < 2 .  �9 

We fLX BR(Xo) Cr with R ~< Ro and COo eArn with I~01 ~< Mo. We then apply The- 
orem 4.1 below to the function g = tV(~o)- V(~o)I z and the constant function f =  
= cR e~ (1 + ] ~ 0 ] 2)(p + 2)/2 on the ball BR (Xo), for s = 2 , / 2  < 1. In this manner we obtain 
the 

COROLLARY 4.1. - Let the assumptions of Proposition 4.2 be satisfied. Then, for  
Mo > O, there exist positive constants Ro(Mo) and c and an exponent q > 2 such 
that 

2/q 

(4.7) (B~/2!o),V(oJ)-V(oJo),qdx <~ 

? 
<~ c + IV(w) - V(oJo)l~dx + cR2~(1 + 

BR(XO) 
for every ball BR(Xo)r162 with R <<-Ro and for every O~oeAm with I(Ool <<. Mo. 

In this section we have used the following lemma[E, Lemma 5.2] or[G-G, Lemma 
1.1], and the following theorem [G, Prop. 1.1, p. 122]. 

LEMMA 4.1. - Let f :  [R/2, 3R/4] ---) [0, ~[  be bounded and satisfy 

f(s) <~ Of(t) + A(t - s)-Z + B(t - s) -v + C, 

for  R /2  <<. s < t <<. 3R/4, where A~ B, C are nonnegative constants and 0 <~ 0 < 1. 
Then there exists a constant Co = Co(O, p) such that 

f (R /2)  <~ co (AR-z  + BR -p + C). 
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THEOREM 4.1. (Higher integrability theorem). - Let ~ be a bounded open set in 
R ~, and let geL11~(t~) and feL~oc(t))  be nonnegative functions with 
0 < s < 1 < t < oo. Suppose we have ()1# 

BR/2 (XO) BR (XO) BR (XO) 

for every ball Ba(xo)cot). Then g eLlloc+~(t)) for ~ < %, and ( ) ;1 
B~ (Xo) BR (xo) BR (Xo) 

+ ~) 

for any ball BR(XO)CC~ and 0 < p < R ,  where ~ o = s o ( n , s , t , b )  and c= 
= c(n, s, t, b, f / R ,  ~). 

5. - P a r t i a l  r e g u l a r i t y .  

We first prove 

PROPOSITION 5.1. - Suppose that the hypotheses of Theorems 1.1 or 1.2 are satis- 
fied. Set o~ = du for the case of Theorem 1.2. Then, for ~o > 0 and Mo > O, there exist 
positive constants cl, c2, C(~o), H(Mo) and Ro(Mo) such that, for every B~(xo) r162 
and for every p with 0 < p < R, 

(5.1) r 2) ~ Cl((~/R) 2 + (R/P)~ [Zo + c(%)Z(Mo, ~(xo, R), R)])  r R) + 

provided that 

(5.2) 

+ C(r 0 ) H(Mo )(R/p)nR 2~, 

R <~ Ro and )o)~o,R I + c2~(Xo, R)l/P <~ Mo. 

Here •(Mo, ~, R) is a continuous nonnegative function with x(Mo, 0, 0) = 0. 

PROOF. - We first assume the hypotheses of Theorem 1.1. We only have to prove 
(5.1) for 0 < ~ < R/4. We choose ~o e A,, in such a way that V(o~0) = V(o))~o,R. Then, 
since 

I~176 - ~176 = ! (~ - ~176 l ~ c2q~(x~ 

assumption (5.2) implies that  

<5~) , oi ~< I~~ I + c2O(Xo, R) lip <~ Mo. 
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By (1.12), the bilinear form 

= ((Ao (xo, + (1 + 

BR/4 

is coercive on the Hilbert space W~' 2 (BR/4 (Xo), Am_ 1). The Lax-Milgram theorem [G- 
T, Theorem 5.8] therefore provides a solution ,zeW~'2(BR/4(Xo),A~_l) of the 
system: 

(5.4) f ((A~(xo, oJo)'(d~+oJ-O)o),dr + ]o~o]z)(P-~)/2(~,z,~))dx=O 
BR/4 

for all ~ e  W~'2(BR/4(Xo), A ~ - I ) .  

We set ~ = ~ + ~, where $ is the (m - 1)-form on BR/e(Xo) defined in Proposition 3.1 
which satisfies dE = ~o - o~o, $~ = 0. Then we have 

(5.5) d~ = d~ + oJ - ~o, 3~ = ~ ,  

and we recognize ~ as the solution of the Dirichlet problem 

[ ~(A~(xo, ~o) 'd r  + (1 + [r 0 in BR/4(Xo) , 

(5.6) ~-- ~ o n  C~BR/4(x 0). 

As a coercive system with constant coefficients, it yields the following L e- and LP-es - 
timates (see [G, ch. III]), for all ~ < R/4 and 2 ~< q < o~, 

B e BR/4 

(5.8) ~ ]D~ - D~o,plqdx <~ c(q)(~/R) q ~ ID~ - D[xo,sc/41qdx, 
Bp BR/4 

(5.9) [ lDr <~ c(q) f ID~lqdx. 
BR/4 BR/4 

We note that  the constants in (5.7) to (5.9) are independent of ~ o .  

Since ~ = ~ - $, (5.9) together with (3.2) imply, for q ~> 2, that  

(5.1o) 

BR/4 BR/4 BR/2 
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From (5.8), (5.9) and (3.2) it follows, for ~ < R/4, that 

F r 

J .g 

Bp B~ BM4 

<~c(q)(p/R) q ~ [(o-OJo[qdx. 
BR/2 

Finally, by (5.7), (5.9) and (3.2), we have 

2= [[2 C 

B~ B~ ~/4 BR/~ 

These estimates yield 

~ [V(~oo + d~) - V(~oo + d~o,~)lZdx <<- 
Bp 

~< c(1 + lOJo[ 2 + Id~zo,~t2) (p-~)/z ~ Ida- d~o,~[Zdx +c ~ Ida- d~o,~tPdx <~ 
B e B~ 

<<. c(p/R)2 
BR/2 BR/2 

<. c(p/R) 2 ~ IV(co) - V(o)o)12dx = c(p/R)2~(Xo, R). 
BR 

By (5.5), we thus obtain, for all p < R/4, 

f 
= Jf IV(oJ) - V(o~)z~,~12dx <~ ~(xo, ~) 

. ?  

B~ 

t "  t" 
<< 

J . 1  

B e Bp 

<~ c(R/p) ~ ~ IV(o)) - V(o) + d~)[edx + c(p/R)2~(Xo, R).  
BMa 
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So it remains to estimate 

] ]V(t~176 f ( l+](oo]z+ ]r  ]d~12)(P-2)/21d~[2dx<~ 
BR/4 BR/~ 

BR/4 BR/4 

Bn BR/4 

Using the quasimonotonicity of A, as well as (5.4) with ~b = 9, (1.3), (1.15) and (1.14), 
we control 

c ~ fV(~o + d~) - r ( ~ o ) ) ~ d x  < ~ (A(Xo, ~o + d~), d~>dx : 
BR/4 BR/4 

= f (A(xo, Wo + d~) -A(xo,  ~Oo) -A~(xo, cOo)'d?, d~)dx + 
Bn/4 

+ f (A(xo, co) -A(xo,  r -A~(xo, r - r d~}dx + 
BR/4 

+ I (A (x '~ ) -A (x~176  I ( l +  lojol2)('-e)/e(#,~}dx~ 
Ba/4 BR/4 

1 

+ Ao( o, + 
Bn/4 0 

1 

+ [ [<L.4~(xo, t~, + (1 - t)o~o) - A~(Xo, ~ o ) ] ( ~  - ~o),  d~>dtd~ + 
BR/4 0 

+cR~ I (1 + 1o~12) (p-1)/2 Id~pldx <~ 
BR/4 

~< c f (1 + ]oJo] 2 + ]O~o + d~12) (p-2)/e [dv]~l(lo~ol, ]d~])dx + 
BR/4 

+ c  f (1 + Io~ol 2 + I~ - ~oo I~)(~-~>/~ Io~ - ~o l  I d ~ l g ( l ~ o l ,  Io) - O~ol)dx + 
BR/4 
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+~ f [(1 + I~ool~)(,-~)/~ld~l~+ Id~lP]dx+c(e)R ~0' ] I~162176176 + 
BR/4 BR/4 

+c(r + [~o]2) p/2 = (A) + (B) + (C) + (D) + (E). 

We estimate the second term with the help of Young's inequality and the bounded- 
ness of l 

(B) ~< c ~ [(1 + ~Oo1~)('-~)/~1~o - o~ol + Io~ - o ~ o l ' - ~ ] l d ~ l l ( l ~ o o l ,  Io~ - ~ ,~o l )dx  ~< 
BR/4 

<~ [(1+ 1~o12)(P-2)/~ld~12+ Id~l~]dx+ 
BR/4 

+c(r ~ [(1 + 1~o1~)<~-~)/21~ - ~ol ~ + I~ - ~~176 I~ - O~o])dx. 
BR/4 

By absorbing the two terms with coefficient s in the left-hand side and using (5.3), we 
thus obtain 

IV(oJ o + d~) - V(oJo)12dx <<. c ~ IV(oJo + d~) - V(coo)]21(Mo, Id~l)dx + 
BR/4 BR/4 

+c [ IV((o)- V(coo)lel(Mo, IoJ - o~ol)dx + cR ~' [ IV(oo)- V(oJo)12dx + 
BR/4 BR 

+H(Mo)R ~+2~= (I) + (II) +(III)  + (IV). 

By virtue of the reverse HSlder inequality (4.7), and Jensen's inequality together 
with the concavity of I in its second argument, we estimate the second term by 

( (II) <~ c I IV(~~ - V(~176 l(Mo, [co-cool)dx ~< 
M2B B 

<'CIBR IV(c~176176 l(Mo 
, ]to - Ogol)dx) 1-2/q + H(Mo)R ~+2~ <~ 

(f )1 
<~c I IV(o~)- V(~o)12dxl Mo, Ico-O~ol dx 

BR BR/4 

- 2/q 

+ H(Mo)R ~+2~ 
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(/) is estimated in a similar way by making use of (5.10) which yields 

IV(co o + d~) - V(o)o)lqdx <~ C ~ [(1 + 1o0[2)(p-2)/eld~l 2 + ]d~]P]q/2dx <~ 
B~/~ BR/4 

.< c ~ [ (1  + I ~ o l ~ ) ( ~ - ~ > / ~ l ~  - ~,ol  ~ + I~ - ~ot~J~/~dx <- ~ ~ I v ( ~ )  - V(~o)lqdx. 
BR/~ BR/2 

This completes the proof of (5.1), under the hypotheses of Theorem 1.1, with 

z(Mo, ~, R) = l(Mo, c~ 1/p)1- 2/q + R v," ,, 

REMARK 5.1. - If we replace the estimate (1.14) in the hypotheses of Theorem 1.1 
by the estimate corresponding to (2.3) 

JAw(x, o)) -A~(x,  ~)1 <~ c(1 + I~ol 2 + jVj~.)(p-2)/~. 

�9 l(c(1 + I~ot2) (p- ~)/2, c(1 + lcoJ~) (p-2)/2 i~o - ~71 + clco - r i P - l ) ,  

we can still prove Proposition 1.1 with 

z(Mo, ~, R) = l(H(Mo), H(Mo) ~ x/p + c~l/P' ) 1- 2/q + R e'  . 

For the case of Theorem 1.2, we set o~ = du and $ = u - ~o" (x - x0 ) in the above 
proof. Then, by applying a maximum estimate for coercive systems with constant co- 
efficients [G, Prop. 2.3, p. 83] to (5.6), we infer, by (1.20) and (5.3), that 

II~IILo -< ~ll~ll~,~ ~< c(M + MoR) ,  

and we see that ~ = ~ -  $ is bounded. We have to take into account the extra term 
I(B(x, u, o~), ~}dx which we control with the help of (1.16), (5.10) and the Poincar~, 
Cauchy and HSlder inequalities 

. I  

BR/4 BR/4 

<.cR(I + I~Ool2),/~ f ID~ldx+c ~ IV(~)-V(~oo)l~l~ldx <. 
BR/4 BR/4 

~o ~ IV(oJ) - V(oJo)12dx + C(~o)R2~(1 + IO~o J2) ('+2)/2 + 
Ba 

+C IV(co) - V(mo)lqdx I~lq/Cq-2)dx = (i) + (ii) + (ii i) .  
\BR/~ B 
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Since we can assume that q/(q - 2) i> pq/2, i.e. that 2 < q ~< 2 + 2/p,  we estimate the 
last term, using (5.10), (4.7) and (5.3), by 

(iii) C dx )2/q )1 

_ cf 
BR/z 

Setting 

- 2/q 
<. 

(! IV(w) - V(oJo)lqdx <~ c 117(o)) - V(oJo)}2dx + H ( M o ) R  2~. 
B 

z(Mo, ~, R) = l(Mo, c~l/P) 1- 2/q + R v '  + ~)(1/2)q- 1, 

we obtain (5.1) for the case of Theorem 1.2. �9 

Theorems 1.1 and 1.2 follow in a standard way from Proposition 5.1, see [G, 
pp. 197-199]. For completeness we here repeat the argument. Let M1 > 0 be given. 
We write ~ = ~ R ,  ~o=~  ~+2 and Mo = 3M1 in (5.1) for 0 < ~ < 1 :  

(5.11) R ~< Ro(3M1) and tO)xo, R I + c2~(Xo, R) lip <~ 3 M 1 ~  

~ ~(Xo, zR) <<. clz212 + z - ~ -  2 c( vn + 2 ) x(3M1, ~(Xo, R), R)] ~(Xo, R) + Ho R ~ ,  

where we have set Ho = c(z ~+ 2)H(3M1)z-  ~. We let z �9 ]~, 1 [, and we choose z e ]0, 1[ 
so as to satisfy 3clv 2-2: ~< 1. We next choose ~1 > 0 and 0 < R1 <~ Ro(3M1) sufficient- 

ly small that 

(5.12) R ~<R1, IC%o,R{ ~<2M1 

c2 ~(xo, R) 1/p <<- M1 

and ~(Xo, R) < 2~1~  

and z -~ - 2 c ( ~  + ~) z(3M~, ~(xo, R), R) ~< 1 

~q~(Xo, ~R) <<. v2~(Xo, R) + Ho R2~, 

by (5.11) and by our choice of v. We also suppose that we have chosen R1 small enough 

so that 

HoR~ ~ 
<~l- T2~__ T 2z 
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LEMMA 5.1. - With the above choices of Ho, ~, z, ~ and R~ we have, for all 
k e No, 

(5.13)~ R <~ R~, I O~o, ~ I <~ M~ and ~(Xo, R) < ~ 

k - 1  

~ ( X o ,  vkR) <<- v2k~(X0, R) + Ho(zk- lR)  2~ ~ ( ~ - ~ ) ~  <. 
s = 0  

HoR2 ~ ) 
<. ~2~ ~(Xo, R) + ~e~_ .~2~ < 2~1~2k~" 

PROOF BY INDUCTION. - The case k = 0 is trivial. Assume next that (5.13)z holds for 
0 ~< l ~< k and that the hypotheses of (5.13)k+1 are satisfied. We then have 

B~l + 1R 

<~ ~-~ ~ [co - OJ~o ' ~l R [dx <~ C27"-n~(x0, vtR)I/P < C2T-n[2el]I/p[T2~/P] l, 
B.:l R 

and it follows by summation that 

k - 1  

(5.14) I~ ,ka t ~< I r R I + ~ o  I~%~ "~§ ~R -- ~%o, ~tR [ ~< 2M1, 

provided that r has also been chosen so small as to make 

Further, from (5.13)k, 

czz-~[2sl]l/p 1 << M 1  " 
1 - ze~/p 

(5.15) ~(xo, zkR) < 2~1. 

Now, (5.14), (5.15), (5.12) and (5.13)k imply that 

O(Xo, vk+lR) ~< "~2Z~(Xo, vkR) + Ho(zkR)2~<~ 

<~ ,r 2~ (,v2k~(Xo , R) + Ho('rk-lR) 2~ ~, (z2~-2~) s + H0(zkR)2~ = 
s = O  

k 

= r2(k + 1):~(Xo ' R) + Ho (*kR)2~ Y~ (~2~-2~),, 
s = 0  

and we have shown that the conclusion of (5.13)~+1 holds. �9 
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The next lemma follows easily from Lemma 5.1, provided that 2e lv -n -2e~  

~<1. 

LEMMA 5.2.  - G i v e n  M 1  > 0,  there exist positive constants R 1 (M~) and ~ (M 1 ) 
such that, for every BR (xo) r t), 

(5.16) R ~< R1, I OJxo, R I < M1 and ~(Xo, R) < s l 

~ ( X o ,  p)~<(~/R) 2~ for all p with O < p < R .  

If Xo �9 t~ with sup I o~0, r I < cr and lim inf ~(Xo, r) = 0, we can find M 1 > 0 and 
r > 0  r--*0 + 

R > 0 such that the hypotheses of (5.16) are satisfied at Xo. By continuity of the func- 
tions x --> I~ ,  R I and x -o ~(x, R), they are satisfied in a whole neighbourhood of Xo. 
Therefore, from the conclusion of (5.16) in combination with Theorem 3.1, we infer 
that V(o)) is HSlder continuous with exponent ~ in this neighbourhood, and hence that 
Xo �9 Reg [o)]. We have thus shown that 

Xo �9 t~: s u p  I~o~0, r I < ~ and 
r > 0  

limr_~o+inf ~(Xo, r) = 0 t r Reg [o~], 

while the reverse inclusion is trivial. Finally, I Sing[oJ] t = 0 by Lebesgue's theo- 

rem. �9 

THE PROOF OF THEOREM 1.3 is easily accomplished by applying the duality princi- 
ple, Proposition 2.1. Recall that under the hypotheses of Theorem 1.3 the (n - m)- 

form v, given by 

(5.17) * z ( x )  = A ( x ,  o~(x)) r * ~o(x) = a (x ,  v ( x ) ) ,  

is a solution of the system 

~(a(x, ~)) = 0, dv = 0; 

and that the mapping a: D • A n - ~ A ~ - m ,  defined by a(x, ~) = * A(x, . ) -1 ( .  z), 
satisfies the hypotheses of Theorem 1.1 with conjugate exponent p '  > 2 and with 
(1.14) replaced by (2.3). In light of Remark 5.1, we conclude from Theorem 1.1 

that 

z e C o' ~(Reg[z], An-m) and ISing[z]l = 0. 

Now, by (1.6), (1.15) and Proposition 2.1, the functions A(x, co) and a(x, v) are HSlder 
continuous in x with exponent 8, and Lipschitz continuous in ~o and ~ respectively. 
From the relations (5.17) we thus infer that Reg[oJ] = Reg[v] and 
~o e C~ ~(Reg[oj], Am). �9 
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Appendix. 

We here prove quasimonotonicity of the function (1.13). For  oJ e R 2 • 2 the re- 
ordered matrix E = cof~ satisfies (~, oJ / = 2 detoJ, (~, ~) = (~o, ~) and I~l = Io~1. We 
let ~ ~ Co ~ (R  e, R2). Bearing in mind that  those integrals vanish whose integrands 
are linear in (D~ ,D~)=2de tD?  or in D?, and estimating ]D~I2(D?, ~Oo)>I- 
- ID~l s I~Oo] and - (1 /4) (D~,  D~) 2 I> - ( 1 / 4 ) I D o l  4, we obtain 

f (A(~oo + D~), D~)dx = 
R2 

= f( I~Oo + De12(o~o + D~, D~} + 2(~o + D~, O~o + D~}(~o + D~, D~})dx = 
R2 

= I ( ID~I  4 + 3 IDcpl2(D~, r + 2(Dcp, ~o> 2 + IDcpl 2 I~ool ~ § 
R2 

+ 2(D-~, D~) 2 + 6(D-~, D?}(D-~, ~Oo) + 4(D~, O~o}2) dx I> 

I> f (  IDol 4 + 2 ID~I2(D~, o~o> - IDol 3 Ir I § 2(D~, ~o} 2 + IDol ~ Ir I s + 
R2 

+(9/4)(D~, D~) 2 - (1/4) IDol 4 + 6(D~, D~)(D--~, O~o) + 4(D--~, O)o)2)dx = 

= f (2 ( (1 /2 ) IDv[  e + (D~, ~o0}) 2 + I D ~ I e ( ( 1 / 2 ) I D ~ I  - I~0[)  z + 
R2 

+ ((3/2)(D--~, D~) + 2(D--~, ~o))2)dx >I O. " 
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