Critical p-Laplacian Problems in $\boldsymbol{R}^{N}\left({ }^{*}\right)$.

Charles A. Swanson (**) - Lao Sen Yu (**)

Summary. - The main theorem establishes the existence of a positive decaying solution $u \in D_{0}^{1, p}\left(\boldsymbol{R}^{N}\right)$ of a quasilinear elliptic problem involving the p-Laplacian operator and the critical Sobolev exponent $p N /(N-p), 1<p<N$. The conclusion depends on the existence of a lowest eigenvalue of a related quasilinear eigenvalue problem. A preliminary result yields a Palais-Smale compactness condition for an associated functional via concentra-tion-compactness methods of P. L. Lions.

1. - Introduction.

Our objective is to prove the existence of a positive solution $u(x)$ of the quasilinear elliptic problem

$$
\begin{cases}-\Delta_{p} u=\lambda a(x) u^{p-1}+f(x) u^{p^{*}-1}+g(x) u^{q}, \quad x \in \boldsymbol{R}^{N} \tag{1.1}\\ u \in D_{0}^{1, p}\left(\boldsymbol{R}^{N}\right) \cap C_{\mathrm{loc}}^{1, x}\left(\boldsymbol{R}^{N}\right), \quad \lim _{|x| \rightarrow \infty} u(x)=0\end{cases}
$$

for all λ in some interval $\left[0, \lambda_{0}\right)$. In (1.1) $\Delta_{p}=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian and $p^{*}=p N /(N-p)$ denotes the critical Sobolev exponent, $1<p<N$. As usual, $D_{0}^{1, p}\left(\boldsymbol{R}^{N}\right)$ denotes the completion of $C_{0}^{\infty}\left(\boldsymbol{R}^{N}\right)$ in the norm $\|\nabla u\|_{p}$, where $\|\cdot\|_{p}$ is the standard $L^{p}\left(\boldsymbol{R}^{N}\right)$-norm.

Hypotheses for (1.1).

$p-1<q<p^{*}-1$ and a, f, g are nontrivial nonnegative bounded functions in \boldsymbol{R}^{N}

[^0]such that
\[

$$
\begin{align*}
& a \in L^{N / p}\left(\boldsymbol{R}^{N}\right), \quad f \in C_{\mathrm{loc}}^{0}\left(\boldsymbol{R}^{N}\right), \quad g \in L^{Q}\left(\boldsymbol{R}^{N}\right) \tag{1.2}\\
& \text { for } Q=p N[p N-(q+1)(N-p)]^{-1} ; \\
& f(0)=\sup _{x \in \boldsymbol{R}^{N}} f(x) \equiv\|f\|_{\infty} ; \tag{1.3}
\end{align*}
$$
\]

and

$$
\begin{equation*}
f(x)=f(0)+o\left(|x|^{\circ}\right), \quad g(x) \geqslant g_{0}>0 \tag{1.4}
\end{equation*}
$$

in some neighborhood of $x=0$, where

$$
\delta= \begin{cases}\frac{N}{Q} & \text { if } N \geqslant \frac{p(q+1)}{q-p+2} \\ \frac{N(Q-1)}{Q(p-1)} & \text { if } N<\frac{p(q+1)}{q-p+2}\end{cases}
$$

Theorem 1.1. - Under these conditions, there exists $\lambda_{0}>0$ such that problem (1.1) has a positive solution u_{λ} for all λ in $0 \leqslant \lambda<\lambda_{0}$.

The proof will be given in $\S 4$ on the basis of the compactness result in Theorem 3.1, where λ_{0} is defined to be the lowest eigenvalue of the problem

$$
\begin{cases}-\Delta_{p} u=\lambda a(x) u^{p-1}, & x \in \boldsymbol{R}^{N} \tag{1.5}\\ u \in D_{0}^{1, p}\left(\boldsymbol{R}^{N}\right) \cap C_{\mathrm{loc}}^{1, \alpha}\left(\boldsymbol{R}^{N}\right), & \lim _{|x| \rightarrow \infty} u(x)=0\end{cases}
$$

The existence of λ_{0} and an associated weak positive solution of (1.5) will be established in Theorem 2.1 via the constrained variational problem

$$
\begin{equation*}
\lambda_{0}=\inf \left\{\|\nabla u\|_{p}^{p}:\|u\|_{p, a}=1, u \in D_{0}^{1, p}\left(\boldsymbol{R}^{N}\right)\right\} \tag{1.6}
\end{equation*}
$$

where

$$
\|u\|_{p, a}^{p}=\int_{R^{N}}|u(x)|^{p} a(x) d x
$$

The necessity of the condition $\lambda<\lambda_{0}$ in Theorem 1.1 can be shown from an adaptation of Egnell's proof [7, Theorem 8], given for a case of (1.1) in a bounded domain Ω. If $g(x) \equiv 0$, positive solutions of (1.1) do not exist in general for $\lambda \leqslant 0$ by Pohožaevtype identities, e.g., no positive solution exists for $\lambda=0$ if $g(x) \equiv 0, f(x)$ is nonconstant, and $x \cdot(\nabla f)(x)$ is either nonnegative or nonpositive throughout \boldsymbol{R}^{N}. However, a positive solution can exist for $\lambda \leqslant 0$ if $g(x) \equiv 0$ and $f(x)$ is a constant, as demonstrated by Benci and Cerami [3] in the case $p=2, \lambda=-1, f(x) \equiv 1$, and $\|a\|_{N / 2}$ sufficiently
small. It is well known that the equation $-\Delta_{p} u=u^{p^{*}-1}$, with $\lambda=0$ and $f(x) \equiv 1$, has solutions

$$
\begin{equation*}
u_{\varepsilon}(x)=K\left(\frac{\varepsilon^{1 /(p-1)}}{\varepsilon^{p /(p-1)}+|x|^{p /(p-1)}}\right)^{(N-p) / p}, \quad x \in \boldsymbol{R}^{N} \tag{1.7}
\end{equation*}
$$

for any $\varepsilon>0$ and a suitable normalization constant $K>0$, as well as all translations of $u_{s}(x)$. This fact is crucial in the theory of critical p-Laplacian problems.

Problems of type (1.1), usually with $g(x) \equiv 0$, in bounded domains have been studied in depth by Azorero and Alonso [1], Benci and Cerami [3], Brezis and Nirenberg [5], Egnell [7], Guedda and Veron [8], and Knaap and Peletier [10]. Surprisingly the requirement $N \geqslant p^{2}$ for these results is not needed here. As far as we are aware, only Ni and Serrin [14], Noussair et al. [15], and Zhu and Yang [20] considered p-Laplacian equations in unbounded domains; however, the nonlinear structure, objectives, and/or methods differ from those presented here.
$\S 2$ contains notation, definitions, and an existence theorem for (1.5). A PalaisSmale compactness condition is proved in §3, as required for the proof of the main Theorem 1.1 in § 4 .

2. - Preliminaries.

Let $B_{\rho}(x)=\left\{y \in \boldsymbol{R}^{N}:|y-x|<\rho\right\}, B_{\rho}=B_{\rho}(0)$, and $B_{\rho}^{\prime}=\boldsymbol{R}^{N} \backslash B_{\rho}$ for $\rho>0$, $x \in \boldsymbol{R}^{N}$. The standard norm in the weighted Lebesgue space $L^{\sigma}(\Omega, a)$ will be denoted by

$$
\|u\|_{\sigma, a, \Omega}=\left[\int_{\Omega}|u(x)|^{\sigma} a(x) d x\right]^{1 / \sigma}, \quad \sigma \geqslant 1, \Omega \subseteq \boldsymbol{R}^{N},
$$

and we set $\|u\|_{\sigma, a}=\|u\|_{\sigma, a, R^{N}},\|u\|_{\sigma}=\|u\|_{\sigma, 1}$. The space $E=D_{0}^{1, p}\left(\boldsymbol{R}^{N}\right)$ is the completion of $C_{0}^{\infty}\left(\boldsymbol{R}^{N}\right)$ in the norm $\|\nabla u\|_{p}$. The norm in E is sometimes denoted by $\|u\|_{E}$.

Theorem 2.1. - The infimum $\lambda_{0}>0$ in (1.6) is attained by a positive weak solution u_{0} of (1.5).

Proof. - Clearly $\lambda_{0}>0$ since

$$
\begin{equation*}
\|u\|_{p, a}^{p} \leqslant C\|a\|_{N / p}\|\nabla u\|_{p}^{p} \tag{2.1}
\end{equation*}
$$

for all $u \in E$ by Hölder's inequality and the continuity of the embedding $E \hookrightarrow L^{p^{*}}\left(\boldsymbol{R}^{N}\right)$, where C is the embedding constant. The boundedness of a minimizing sequence $\left\{u_{n}\right\}$ for (1.6) implies that $\left\{u_{n}\right\}$ has a weakly convergent subsequence (also denoted by $\left\{u_{n}\right\}$) with weak limit $u_{0} \in E$. The procedure for (2.1) yields the estimate

$$
\begin{equation*}
\left\|u_{n}-u_{0}\right\|_{p, a}^{p} \leqslant\|a\|_{\infty}\left\|u_{n}-u_{0}\right\|_{p, 1, B_{k}}^{p}+C\|a\|_{N / p, 1, B_{k}}\left(\left\|\nabla u_{n}\right\|_{p}^{p}+\left\|\nabla u_{0}\right\|_{p}^{p}\right) . \tag{2.2}
\end{equation*}
$$

Since $a \in L^{N / p}\left(\boldsymbol{R}^{N}\right)$ by (1.2), $\|a\|_{N / p, 1, B k} \rightarrow 0$ as $k \rightarrow \infty$, and hence the compactness of the embedding $W^{1, p}\left(B_{k}\right) \hookrightarrow L^{p}\left(B_{k}\right)$ implies that $\left\{u_{n}\right\}$ has a subsequence, denoted the same way, such that $\left\|u_{n}\right\|_{p, a} \rightarrow\left\|u_{0}\right\|_{p, a}$, as $n \rightarrow \infty$. Therefore $\left\|u_{0}\right\|_{p, a}=1,\left\|\nabla u_{0}\right\|_{p}^{p}=\lambda_{0}$, i.e., u_{0} attains the infimum in (1.6), and consequently u_{0} is a weak solution of (1.5) by the Euler-Lagrange principle. Since $\left|u_{0}\right|$ also attains the infimum in (1.6), it can be assumed that $u_{0} \geqslant 0$. The positivity of u_{0} then follows from a Harnack-type inequality of Serrin [16, Theorem 5]; see also [7, Proposition A3].

Remark 2.2. - The method in [6] shows that λ_{0} is a principal eigenvalue of (1.5), even if $a(x)$ changes sign in \boldsymbol{R}^{N}.

Solutions of (1.1) will be obtained as critical points of the functional J defined by

$$
\begin{equation*}
J(u)=\int_{R^{N}}\left[\frac{1}{p}|\nabla u|^{p}-\frac{\lambda a}{p} u_{+}^{p}-\frac{f}{p^{*}} u_{+}^{p^{*}}-\frac{g}{q+1} u_{+}^{q+1}\right] d x, \quad u \in E, \tag{2.3}
\end{equation*}
$$

where $u_{+}(x)=\max \{u(x), 0\}$. On account of the continuity of the embedding $E \hookrightarrow L^{p^{*}}\left(\boldsymbol{R}^{N}\right)$ and estimates of type (2.2), standard procedure from the Calculus of Variations shows that $J(u)$ is well-defined on E and has a continuous Fréchet derivative given by

$$
\begin{equation*}
J^{\prime}(u) v=\int_{R^{N}}\left[|\nabla u|^{p-2} \nabla u \cdot \nabla v-\lambda a u_{+}^{p-1} v-f u_{+}^{p^{*}-1} v-g u q v\right] d x, \quad u, v \in E . \tag{2.4}
\end{equation*}
$$

Furthermore, any critical point u of the variational problem in $\S 4$ for $J(u)$ satisfies $J^{\prime}(u)=0$ in E^{*}, meaning that u is a weak solution of the equation

$$
\begin{equation*}
-\nabla_{p} u=\lambda a u_{+}^{p-1}+f u_{+}^{p^{*}-1}+g u_{+}^{q}, \quad u \in E . \tag{2.5}
\end{equation*}
$$

We use the notation $S=C_{p}^{-p}$, where C_{p} is the best ($=$ minimum possible) constant for the Sobolev inequality

$$
\|u\|_{p^{*}} \leqslant C_{p}\|\nabla u\|_{p}, \quad u \in E .
$$

It is known [12] that C_{p} is attained by the function u_{ε} in (1.7), i.e.,

$$
\begin{equation*}
S=\left\|\nabla u_{\varepsilon}\right\|_{p}^{p} /\left\|u_{\varepsilon}\right\|_{p^{*}}^{p}=\inf _{0 \neq u \in E}\left[\|\nabla u\|_{p}^{p} /\|u\|_{p^{*}}^{p}\right] . \tag{2.6}
\end{equation*}
$$

Since u_{ε} solves $-\Delta_{p} u_{\varepsilon}=u_{\varepsilon}^{p^{*}-1}$, as already mentioned, integration by parts yields $\left\|\nabla u_{\varepsilon}\right\|_{p}^{p}=\left\|u_{\varepsilon}\right\|_{p^{*}}^{p^{*}}$ implying in view of (2.6) that

$$
\begin{equation*}
S=\left[\int_{R^{N}} u_{\varepsilon}^{p^{*}}(x) d x\right]^{p / N} . \tag{2.7}
\end{equation*}
$$

3. - The palais-smale compactness condition.

The functional J on E is said to satisfy the (PS) $)_{c}$-condition if and only if every sequence $\left\{u_{n}\right\}$ in E for which $J\left(u_{n}\right) \rightarrow c$ and $J^{\prime}\left(u_{n}\right) \rightarrow 0$ in E^{*}, as $n \rightarrow \infty$, has a convergent subsequence in the E-norm.

Theorem 3.1. - Let λ_{0}, S be the numbers in (1.6), (2.6), respectively. If $0 \leqslant \lambda<\lambda_{0}$, then $J=J_{\lambda}$ satisfies the (PS$)_{e}$-condition for every c in the interval

$$
\begin{equation*}
0<c<N^{-1} S^{N / p}\|f\|_{\infty}^{(p-N) / p} . \tag{3.1}
\end{equation*}
$$

Proof. - Let $\left\{u_{n}\right\}$ be a sequence in E such that $J\left(u_{n}\right) \rightarrow c$ and $J^{\prime}\left(u_{n}\right) \rightarrow 0$ in E^{*}. By (2.3) and (2.4) this means that

$$
\begin{equation*}
\int_{R^{N}}\left[\frac{1}{p}\left|\nabla u_{n}\right|^{p}-\frac{\lambda a}{p} u_{n+}^{p}-\frac{f}{p^{*}} u_{n+}^{p^{*}}-\frac{g}{q+1} u_{n+}^{q+1}\right] d x=c+o(1) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{R^{N}}\left[\left|\nabla u_{n}\right|^{p}-\lambda a u_{n+}^{p}-f u_{n+}^{p *}-g u_{n+}^{q+1}\right] d x=o(1)\left\|u_{n}\right\|_{E}, \tag{3.3}
\end{equation*}
$$

as $n \rightarrow \infty$, implying

$$
\left(1-\frac{p}{p^{*}}\right) \int_{R^{N}} f u_{n}^{p^{*}} d x+\left(1-\frac{p}{q+1}\right) \int_{R^{N}} g u_{n+}^{q+1} d x=c p+o(1)+o\left(\beta_{n}\right)
$$

where $\beta_{n}=\left\|u_{n}\right\|_{E}$. Since $p<q+1<p^{*}$ it follows that

$$
\begin{equation*}
\int_{R^{N}} f u_{n+}^{p^{*}} d x=0(1)+o\left(\beta_{n}\right) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\boldsymbol{R}^{N}} g u_{n+}^{q+1} d x=0(1)+o\left(\beta_{n}\right) . \tag{3.5}
\end{equation*}
$$

Combining (3.3)-(3.5) we obtain

$$
\beta_{n}^{p}-\lambda\left\|u_{n+}\right\|_{p, a}^{p}=0(1)+o\left(\beta_{n}\right) .
$$

Then the definition of λ_{0} in (1.6) yields

$$
0<\left(1-\frac{\lambda}{\lambda_{0}}\right) \beta_{n}^{p} \leqslant 0(1)+o\left(\beta_{n}\right),
$$

implying that $\left\{\beta_{n}\right\}$ is a bounded sequence. It follows that $\left\{u_{n}\right\}$ has a subsequence, also denoted by $\left\{u_{n}\right\}$, which converges weakly in E to a weak limit $u \in E$. Also the se-
quence of norms $\left\{\left\|\nabla u_{n}\right\|_{p}\right\}$ has a convergent subsequence (denoted the same way) whose limit must be positive as a simple consequence of (3.2):

$$
\begin{equation*}
L \equiv \lim _{n \rightarrow \infty}\left\|\nabla u_{n}\right\|_{p}^{p}>0 . \tag{3.6}
\end{equation*}
$$

The weak lower semicontinuity of the functionals, as described in $\S 2$, implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\boldsymbol{R}^{N}}\left(\lambda a u_{n+}^{p}+g u_{n+}^{q+1}\right) d x=\int_{\boldsymbol{R}^{N}}\left(\lambda a u_{+}^{p}+g u_{+}^{q+1}\right) d x . \tag{3.7}
\end{equation*}
$$

We now verify that

$$
\begin{equation*}
H \equiv \int_{R^{N}}\left(\lambda a u_{+}^{p}+g u_{+}^{q+1}\right) d x>0 . \tag{3.8}
\end{equation*}
$$

If $H=0$, (3.3) would imply

$$
\begin{equation*}
\int_{R^{N}}\left|\nabla u_{n}\right|^{p} d x=\int_{R^{N}} f u_{n+}^{p^{*}} d x+o(1)+o(1)\left\|u_{n}\right\|_{E} \tag{3.9}
\end{equation*}
$$

as $n \rightarrow \infty$. In view of (3.6), it follows from (3.9) in the limit $n \rightarrow \infty$ that

$$
\begin{equation*}
L=\lim _{n \rightarrow \infty} \int_{R^{N}} f u_{n+}^{p^{*}} d x>0, \tag{3.10}
\end{equation*}
$$

and consequently (3.2) yields

$$
c=\frac{L}{p}-\frac{L}{p^{*}}=\frac{L}{N},
$$

i.e., by (3.1),

$$
\begin{equation*}
L=N c<S^{N / p}\|f\|_{\infty}^{(p-N) / p} . \tag{3.11}
\end{equation*}
$$

However, by the definition of S in (2.6),

$$
\begin{aligned}
& L=\lim _{n \rightarrow \infty}\left\|\nabla u_{n}\right\|_{p}^{p} \geqslant S \lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{p^{*}}^{p} \geqslant S\|f\|_{\infty}^{(p-N) / N} \lim _{n \rightarrow \infty}\left[\int_{R^{N}} f u_{n}^{p^{*}} d x\right]^{(N-p) / N}= \\
&=S\|f\|_{\infty}^{(p-N) / N} L^{(N-p) / N},
\end{aligned}
$$

equivalent to $L \geqslant S^{N / p}\|f\|_{\infty}^{(p-N) / p}$, contradicting (3.11). This completes the proof of (3.8). On account of (3.8), it cannot be that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{y \in R^{N}{ }_{B_{R}}(y)} \int_{n}\left(\lambda a u_{n+}^{p}+g u_{n+}^{q+1}\right) d x=0 \tag{3.12}
\end{equation*}
$$

for all $R \in(0, \infty)$, i.e., «vanishing» of the sequence $\left\{\lambda a u_{n+}^{p}+g u_{n+}^{q+1}\right\}$ cannot oc-
cur [11, p. 115]. We next show that the sequence $\left\{z_{n}\right\}$ defined by

$$
\begin{equation*}
z_{n}=\left|\nabla u_{n}\right|^{p}+\left|u_{n}\right|^{p^{*}}+\lambda a u_{n+}^{p}+g u_{n+}^{q+1} \tag{3.13}
\end{equation*}
$$

is «tight», as defined by Lions [11, p. 115]. Note first from (3.6) that

$$
\begin{equation*}
L_{0} \equiv \lim _{n \rightarrow \infty} \int_{R^{N}} z_{n}(x) d x>0 \tag{3.14}
\end{equation*}
$$

passing to a subsequence if necessary. Since «vanishing» of $\left\{z_{n}\right\}$ cannot occur, it follows from the proof of LIONS [11, pp. 116-117] that $\left\{z_{n}\right\}$ is tight unless, for arbitrary $\varepsilon>0$, there exist $R>0, \Lambda \in\left(0, L_{0}\right)$ and sequences $R_{n} \uparrow+\infty, y_{n} \in \boldsymbol{R}^{N}$ such that

$$
\left\{\begin{array}{l}
\left|\int_{B_{R}\left(y_{n}\right)} z_{n}(x) d x-\Lambda\right|<\varepsilon, \tag{3.15}\\
\left|\int_{B_{R_{n}}\left(y_{n}\right)} z_{n}(x) d x-L_{0}+\Lambda\right|<\varepsilon, \\
\left|\int_{B_{R_{n}}\left(y_{n}\right) \backslash B_{R}\left(y_{n}\right)} z_{n}(x) d x\right|<\varepsilon,
\end{array}\right.
$$

for all $n \geqslant n_{0}(R)$. We introduce functions $\phi^{i} \in C_{0}^{\infty}\left(\boldsymbol{R}^{N}\right)$ such that $0 \leqslant \phi^{i}(x) \leqslant 1, i=$ $=1,2$, and

$$
\phi^{1}(x)=\left\{\begin{array}{ll}
1 & \text { if }|x| \leqslant 1, \\
0 & \text { if }|x| \geqslant 2,
\end{array} \quad \phi^{2}(x)= \begin{cases}0 & \text { if }|x| \leqslant 1 \\
1 & \text { if }|x| \geqslant 2\end{cases}\right.
$$

and we define $u_{n}^{i}=\phi_{n}^{i} u_{n}, i=1,2, n=1,2, \ldots$, where $\phi_{n}^{1}(x)=\phi^{1}\left(\left(x-y_{n}\right) / R\right)$, $\phi_{n}^{2}(x)=\phi^{2}\left(\left(x-y_{n}\right) / R_{n}\right)$. Then supp u_{n}^{1} and $\operatorname{supp} u_{n}^{2}$ are disjoint sets for every $n=$ $=1,2, \ldots$ Use of (3.15) in (3.2) and (2.4) (taking $v=u_{n}^{i}$), respectively, gives

$$
\begin{align*}
& \sum_{i=1}^{2} \int_{R^{N}}\left[\frac{1}{p}\left|\nabla u_{n}^{i}\right|^{p}-\frac{\lambda a}{p}\left(u_{n+}^{i}\right)^{p}-\frac{f}{p^{*}}\left(u_{n++}^{i}\right)^{p^{*}}-\frac{g}{q+1}\left(u_{n+}^{i}\right)^{q+1}\right] d x= \tag{3.16}\\
&=c+o_{n}(1)+o_{\varepsilon}(1)
\end{align*}
$$

and

$$
\begin{equation*}
\int_{\boldsymbol{R}^{N}}\left[\left|\nabla u_{n}^{i}\right|^{p}-\lambda a\left(u_{n+}^{i}\right)^{p}-f\left(u_{n+}^{i}\right)^{p^{*}}-g\left(u_{n+}^{i}\right)^{q+1}\right] d x=o_{n}(1)\left\|u_{n}\right\|_{E}+o_{\varepsilon}(1) \tag{3.17}
\end{equation*}
$$

where $o_{\varepsilon}(1) \rightarrow 0$ as $\varepsilon \rightarrow 0+$.

As in (3.6), passing to subsequences if necessary, there exist nonnegative limits $\alpha_{i}, \beta_{i}, i=1,2$, defined by

$$
\begin{align*}
\alpha_{i} & =\lim _{n \rightarrow \infty} \int_{R^{N}}\left[\lambda a\left(u_{n+}^{i}\right)^{p}+g\left(u_{n+}^{i}\right)^{q+1}\right] d x \tag{3.18}\\
\beta_{i} & =\lim _{n \rightarrow \infty} \int_{R^{N}} f\left(u_{n+}^{i}\right)^{p^{*}} d x, \quad i=1,2 \tag{3.19}
\end{align*}
$$

It follows from (3.17) that

$$
\begin{equation*}
\int_{R^{N}}\left|\nabla u_{n}^{i}\right|^{p} d x=\alpha_{i}+\beta_{i}+o_{n}(1)\left\|u_{n}\right\|_{E}+o_{\varepsilon}(1) . \tag{3.20}
\end{equation*}
$$

Since $q+1>p$ by hypothesis, substitution of (3.18)-(3.20) into (3.16) leads to

$$
c \geqslant \sum_{i=1}^{2}\left(\frac{\alpha_{i}+\beta_{i}}{p}-\frac{\beta_{i}}{p^{*}}-\frac{\alpha_{i}}{p}\right)+o_{\varepsilon}(1),
$$

equivalent to

$$
\begin{equation*}
c \geqslant \frac{\beta_{1}+\beta_{2}}{N}+o_{\varepsilon}(1) . \tag{3.21}
\end{equation*}
$$

It can be verified easily from (3.15), similarly to (3.16) and (3.17), that either

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{R^{N}}\left[\lambda a\left(u_{n+}^{2}\right)^{p}+g\left(u_{n+}^{2}\right)^{q+1}\right] d x=0 \tag{3.22}
\end{equation*}
$$

or

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\boldsymbol{R}^{N}}\left[\lambda a\left(u_{n+}^{1}\right)^{p}+g\left(u_{n+}^{1}\right)^{q+1}\right] d x=0 \tag{3.23}
\end{equation*}
$$

according as $\left\{y_{n}\right\}$ is bounded or $\left|y_{n}\right| \rightarrow \infty$, respectively. In the case (3.22), let $n \rightarrow \infty$ in (3.17) to obtain, in view of (2.6) and (3.19),

$$
\beta_{2}+o_{\varepsilon}(1)=\lim _{n \rightarrow \infty}\left\|\nabla u_{n}^{2}\right\|_{p}^{p} \geqslant S \lim _{n \rightarrow \infty}\left\|u_{n+}^{2}\right\|_{p^{*}}^{p} \geqslant S\|f\|_{\infty}^{(p-N) / N} \beta_{2}^{(N-p) / N} .
$$

By (3.21) this implies that

$$
N c \geqslant \beta_{2}+o_{\varepsilon}(1) \geqslant S^{N / p}\|f\|_{\infty}^{(p-N) / p}+o_{\varepsilon}(1),
$$

contrary to hypothesis (3.1) since ε is arbitrary. Virtually the same procedure also leads to a contradiction in the case (3.23). Accordingly, (3.15) is impossible and hence the sequence $\left\{z_{n}\right\}$ in (3.13) is tight, i.e., there exists a sequence $\left\{y_{n}\right\}$ in \boldsymbol{R}^{N} such that,
for arbitrary $\varepsilon>0$ there exists $R \in(0, \infty)$ with

$$
\begin{equation*}
\int_{B_{k}\left(y_{n}\right)} z_{n}(x) d x<\varepsilon . \tag{3.24}
\end{equation*}
$$

It must be that $\left\{y_{n}\right\}$ is bounded, for otherwise (3.24) would imply, in the limit $n \rightarrow \infty$,

$$
\int_{\boldsymbol{R}^{N}}\left(\lambda a u_{+}^{p}+g u^{q+1}\right) d x \leqslant C \varepsilon^{b}
$$

for some positive constants b and C, independent of ε, contrary to (3.8). Thus we can replace y_{n} by 0 in (3.24) to obtain

$$
\left.\int_{B_{k}}\left|u_{n}(x)\right|\right|^{*} d x \leqslant \int_{B_{k}} z_{n}(x) d x<\varepsilon,
$$

showing that $\left\{\left|u_{n+}\right|^{p^{*}}\right\}$ is tight.
It follows from the foregoing that there exist bounded nonnegative measures μ, ν on \boldsymbol{R}^{N} such that $\left|\nabla u_{n}\right|^{p} \rightarrow \mu$ weakly and $\left|u_{n}\right|^{p^{*}} \rightarrow \nu$ tightly as $n \rightarrow \infty$ [12, p. 158], and likewise $\left|\nabla u_{n+}\right|^{p} \rightarrow \mu_{+}$weakly, $\left|u_{n+}\right|^{p^{*}} \rightarrow v_{+}$tightly. Lemma I. 1 of Lions [12] states that sequences $\left\{x_{j}\right\} \subset \boldsymbol{R}^{N},\left\{\mu_{j}\right\},\left\{\nu_{j}\right\} \subset(0, \infty)$ exist such that $\mu_{j} \geqslant S \nu_{j}^{p / p^{*}}$ and

$$
\left\{\begin{array}{l}
\mu \geqslant|\nabla u|^{p}+\sum_{j \in I} \mu_{j} \delta_{x_{j}}, \tag{3.25}\\
\nu=|u|^{p^{*}}+\sum_{j \in I} v_{j} \delta_{x_{j}} \\
\nu_{+}=\left|u_{+}\right| p^{p^{*}}+\sum_{j \in I_{+}} \nu_{j+} \delta_{x_{j}}
\end{array}\right.
$$

where $\delta_{x_{j}}$ denotes a Dirac measure, $j \in I, I_{+} \subseteq I$. In the limit $n \rightarrow \infty,(3.2)$ and (3.3) then yield, respectively,

$$
\begin{gather*}
\frac{1}{p} \int_{\boldsymbol{R}^{N}} d \mu=c+\int_{\boldsymbol{R}^{N}}\left[\frac{\lambda a}{p} u_{+}^{p}+\frac{f}{p^{*}} u_{+}^{p^{*}}+\frac{1}{p^{*}} \sum_{j \in I_{+}} v_{j+} f\left(x_{j}\right)+\frac{g}{q+1} u_{+}^{q+1}\right] d x \tag{3.26}\\
\int_{\boldsymbol{R}^{N}} d \mu=\int_{\boldsymbol{R}^{N}}\left[\lambda a u_{+}^{p}+f u_{+}^{p^{*}}+\sum_{j \in I_{+}} v_{j+} f\left(x_{j}\right)+g u_{+}^{q+1}\right] d x . \tag{3.27}
\end{gather*}
$$

Since $1-p / p^{*}=p / N$ and $q+1>p$, multiplication of (3.26) by p and subtraction of the result from (3.27) gives

$$
\begin{equation*}
c \geqslant \frac{1}{N} \int_{\boldsymbol{R}^{N}}\left[f u_{+}^{v^{*}}+\sum_{j \in I_{+}} v_{j+} f\left(x_{j}\right)\right] d x . \tag{3.28}
\end{equation*}
$$

For nonnegative $\phi \in C_{0}^{\infty}\left(\boldsymbol{R}^{N}\right)$, it follows as in Guedda and Veron [8, p. 898] that

$$
\int_{\boldsymbol{R}^{N}} \phi d \mu \leqslant \int_{\boldsymbol{R}^{N}} \phi \boldsymbol{V} \cdot \nabla u d x+\int_{\boldsymbol{R}^{N}} \phi f d v_{+},
$$

where $\boldsymbol{V} \in L^{p^{\prime}}\left(\boldsymbol{R}^{N}\right)^{N}$ is the weak limit of $\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}$. If ϕ is concentrated on the sequence $\left\{x_{j}\right\}, j \in I_{+}$, this reduces to $\mu_{j} \leqslant \nu_{j+} f\left(x_{j}\right)$. Since also $S \nu_{j}^{p / p^{*}} \leqslant \mu_{j}$ from (3.25), it follows that

$$
\nu_{j+} \geqslant S^{N / p}\left[f\left(x_{j}\right)\right]^{-N / p} .
$$

If I_{+}is nonempty, (3.28) would imply that

$$
c \geqslant \frac{1}{N} S^{N / p} \sum_{j \in I_{+}}\left[f\left(x_{j}\right)\right]^{(p-N) / p} \geqslant \frac{1}{N} S^{N / p}\|f\|_{\infty}^{(p-N) / p},
$$

contrary to (3.1). Therefore I_{+}is empty, and (3.25) shows that $\left\|u_{n+}\right\|_{p^{*}} \rightarrow\left\|u_{+}\right\|_{p^{*}}$ as $n \rightarrow \infty$. By a lemma of Brezis and Lieb [4], $u_{n+} \rightarrow u_{+}$in the norm $\|\cdot\|_{p^{*}}$.

In conjunction with (2.4), we use the notation

$$
J_{0}^{\prime}(u) v=\int_{\boldsymbol{R}^{N}}\left[\lambda a u_{+}^{p-1} v+f u_{+}^{p^{*}-1} v+g u_{+}^{q} v\right] d x
$$

for $u, v \in E$. An inequality of Thelin [17] (see also Kichenassamy and Veron [9]) yields

$$
\begin{align*}
&\left|\nabla u_{m}-\nabla u_{n}\right|^{p} \leqslant\left(\left|\nabla u_{m}\right|^{p-2} \nabla u_{m}-\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}\right) \cdot\left(\nabla u_{m}-\nabla u_{n}\right), \tag{3.29}\\
& p \geqslant 2, m, n=1,2, \ldots
\end{align*}
$$

and

$$
\begin{align*}
\left|\nabla u_{m}-\nabla u_{n}\right|^{p} \leqslant & {\left[\left(\left|\nabla u_{m}\right|^{p-2} \nabla u_{m}-\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}\right) \cdot\left(\nabla u_{m}-\nabla u_{n}\right)\right]^{p / 2} . } \tag{3.30}\\
& \cdot\left[\left|\nabla u_{m}\right|^{p}+\left|\nabla u_{n}\right|^{p}\right]^{(2-p) / 2}, \quad 1<p \leqslant 2, m, n=1,2, \ldots .
\end{align*}
$$

In the case $p \geqslant 2$, it follows from (3.29) that

$$
\begin{aligned}
&\left\|u_{m}-u_{n}\right\|_{E} \leqslant\left|J^{\prime}\left(u_{m}\right)\left(u_{m}-u_{n}\right)\right|+\left|J^{\prime}\left(u_{n}\right)\left(u_{m}-u_{n}\right)\right|+ \\
&+\left|J_{0}^{\prime}\left(u_{m}\right)\left(u_{m}-u_{n}\right)-J_{0}^{\prime}\left(u_{n}\right)\left(u_{m}-u_{n}\right)\right|
\end{aligned}
$$

This together with the convergence of $\left\{u_{n+}\right\}$ in $L^{p^{*}}\left(\boldsymbol{R}^{N}\right)$ implies the convergence of $\left\{u_{n}\right\}$ in the E-norm. The argument via (3.30) in the case $1<p \leqslant 2$ is virtually the same, completing the proof of Theorem 3.1.

4. - Proof of Theorem 1.1.

In order to apply the mountain pass theorem [1] to the functional J in (2.3), we first show there exists a function $u_{\varepsilon} \in E$ of type (1.7) such that $J\left(t_{0} u_{\varepsilon}\right)<0$ for sufficiently large $t_{0}>0$ and sufficiently small $\varepsilon>0$, and furthermore $\sup _{t \geqslant 0} J\left(t u_{\varepsilon}\right)=c$ is in the interval (3.1).

Lemma 4.1. - Under the stated conditions for (1.1), there exist positive numbers ε and t_{0} such that $J\left(t_{0} u_{\varepsilon}\right)<0$ and

$$
\begin{equation*}
0<\sup _{t \geqslant 0} J\left(t u_{\varepsilon}\right)<\frac{1}{N} S^{N / p}\|f\|_{\infty}^{(p-N) / p} \tag{4.1}
\end{equation*}
$$

Proof. - For $0<\lambda<\lambda_{0}$, Theorem 2.1 shows that

$$
\begin{equation*}
\|\nabla u\|_{p}^{p}-\lambda\|u\|_{p, a}^{p} \geqslant c\|\nabla u\|_{p}^{p}, \quad u \in E \tag{4.2}
\end{equation*}
$$

for some $c>0$, independent of u. On account of (1.2), (2.3), and (4.1), an estimate of type (2.1) for $\|u\|_{q+1, g}^{q+1}$ and the continuity of the embedding $E \hookrightarrow L^{p^{*}}\left(\boldsymbol{R}^{N}\right)$ imply the existence of a constant C, independent of u, such that

$$
J(u) \geqslant \frac{c}{p}\|u\|_{E}^{p}-C\left(\|u\|_{E}^{p^{*}}+\|u\|_{E}^{q+1}\right), \quad u \in E .
$$

Since $p-1<q<p^{*}-1$ by assumption, a sufficiently small positive number p can be found for which

$$
\begin{equation*}
J(u) \geqslant \frac{c_{\rho} p}{2 p} \equiv c_{0} \quad \text { for all } u \text { with }\|u\|_{E}=\rho \tag{4.3}
\end{equation*}
$$

With u_{ε} as in (1.7), $\varepsilon>0$, it is clear from (2.3) that $\lim _{t \rightarrow \infty} J\left(t u_{\varepsilon}\right)=-\infty$ for all $\varepsilon>0$, and hence $\sup _{t \geqslant 0} J\left(t u_{\varepsilon}\right)$ is attained at some number $t_{\varepsilon}\left(t_{\varepsilon}>0\right.$ by an estimate of type (4.3)). It is an easy consequence of $J^{\prime}\left(t_{\varepsilon} u_{\varepsilon}\right)=0$ and (2.4) (with $u=t_{\varepsilon} u_{\varepsilon}, v=u_{\varepsilon}$) that

$$
\begin{equation*}
t_{\varepsilon} \leqslant\left[\int_{R^{N}}\left|\nabla u_{\varepsilon}\right|^{p} d x \mid \int_{R^{N}} f(x) u_{\varepsilon}^{p^{*}} d x\right]^{\left[(N-p) / p^{2}\right.} . \tag{4.4}
\end{equation*}
$$

By the change of variable $x=\varepsilon y$ it is a consequence of (1.7) that

$$
\int_{R^{N}}\left|\nabla u_{\mathfrak{\varepsilon}}(x)\right|^{p} d x=\int_{R^{N}}\left|\nabla u_{1}(y)\right|^{p} d y
$$

and

$$
\int_{R^{N}} f(x) u_{\varepsilon}^{p^{*}}(x) d x=\int_{R^{N}} f(\xi y) u_{1}^{p^{*}}(y) d y .
$$

The continuity of f at 0 together with (1.3) and (4.4) show that there exists $R>0$ such
that

$$
\begin{equation*}
t_{\mathrm{s}} \leqslant\left[2 \int_{R^{N}}\left|\nabla u_{1}\right|^{p} d y / f(0) \int_{B_{R}} u_{1}^{p^{*}} d y\right]^{(N-p) / p^{2}} \tag{4.5}
\end{equation*}
$$

On account of the definition of t_{ε}, it follows from (2.3) that

$$
\begin{equation*}
\sup _{t \geqslant 0} J\left(t u_{\varepsilon}\right)=J\left(t_{\varepsilon} u_{\varepsilon}\right)=F_{1}(\varepsilon)-F_{2}(\varepsilon)+F_{3}(\varepsilon), \tag{4.6}
\end{equation*}
$$

where

$$
\begin{aligned}
& F_{1}(\varepsilon)=\frac{1}{p} t_{\varepsilon}^{p} \int_{R^{N}}\left|\nabla u_{1}\right|^{p} d x-\frac{1}{p^{*}} t_{\varepsilon}^{p^{*}} f(0) \int u_{R^{N}}^{p^{*}} d x \\
& F_{2}(\varepsilon)=\int_{R^{N}}\left[\frac{\lambda}{p} t_{\varepsilon}^{p} a u_{\varepsilon}^{p}+\frac{1}{q+1} t_{\varepsilon}^{q+1} g u_{\varepsilon}^{q+1}\right] d x \\
& F_{3}(\varepsilon)=\frac{1}{p^{*}} t_{\varepsilon}^{p^{*}} \int_{R^{N}}[f(0)-f(\varepsilon y)] u_{1}^{p^{*}}(y) d y
\end{aligned}
$$

For positive numbers A and B, the maximum of $\phi(t)=A p^{-1} t^{p}-B\left(p^{*}\right)^{-1} t^{p^{*}}$ for $t \geqslant 0$ is attained at $t=(A / B)^{(N-p) / p^{2}}$ from which (2.6) gives

$$
\begin{equation*}
F_{1}(\varepsilon) \leqslant\left(\frac{1}{p}-\frac{1}{p^{*}}\right)[f(0)]^{(p-N) / p}\left\|\nabla u_{1}\right\|_{p}^{N}\left\|u_{1}\right\|_{p^{*}}^{-N}=\frac{1}{N} S^{N / p}\|f\|_{\infty}^{(p-N) / p} \tag{4.7}
\end{equation*}
$$

It can be assumed without loss of generality that there exists a positive constant \bar{t}, independent of ε, such that $t_{s} \geqslant \bar{t}$ for all ε in an interval $0<\varepsilon \leqslant \varepsilon_{0}$, for otherwise there would be nothing to prove. In fact, if there exists a sequence $\left\{\varepsilon_{n}\right\}$ such that $t_{\varepsilon_{n}} \downarrow 0$, then by $\left\|\nabla u_{\varepsilon}\right\|_{p}^{p}=S^{N / p}$ for all $\varepsilon>0$ from (2.6) and (2.7), it would follow that

$$
\sup _{t \geqslant 0} J\left(t u_{\varepsilon}\right) \leqslant \frac{1}{p} t_{\varepsilon}^{p}\left\|\nabla u_{\varepsilon}\right\|_{p}^{p}<\frac{1}{N} S^{N / p}\|f\|_{\infty}^{(p-N) / p}
$$

by a choice of $\varepsilon=\varepsilon_{n}$ for which

$$
t_{\varepsilon}^{p}<\frac{p}{N}\|f\|_{\infty}^{(p-N) / p} .
$$

Calculations using (1.7) show that there exists a positive constant C, independent of
ε, such that

$$
\begin{cases}F_{2}(\varepsilon) \geqslant C \varepsilon^{\delta} & \text { if } N \neq \frac{p(q+1)}{q-p+2}, \tag{4.8}\\ F_{2}(\varepsilon) \geqslant C \varepsilon^{\delta} \log \frac{1}{\varepsilon} & \text { if } N=\frac{p(q+1)}{q-p+2}, \\ F_{3}(\varepsilon) \leqslant \frac{C}{2} \varepsilon^{\delta} & \text { if } N \neq \frac{p(q+1)}{q-p+2}, \\ F_{3}(\varepsilon) \leqslant \frac{C}{2} \varepsilon^{\delta} \log \frac{1}{\varepsilon} & \text { if } N=\frac{p(q+1)}{q-p+2},\end{cases}
$$

in some interval $0<\varepsilon \leqslant \varepsilon_{0}<1$ where δ is as in (1.4).
To verify the first two inequalities (4.8), we use the abbreviations

$$
\gamma=\frac{(N-p)(q+1)}{p}, \quad \zeta=N-1-\frac{p \gamma}{p-1} .
$$

The definitions of Q and δ in (1.2) and (1.4) show that $N(Q-1) / Q=\gamma$ and

$$
\begin{cases}\delta=N-\gamma & \text { if } N \geqslant \frac{p(q+1)}{q-p+2} \\ \delta=N-\gamma-\zeta-1 & \text { if } N<\frac{p(q+1)}{q-p+2}\end{cases}
$$

equivalent to

$$
\delta= \begin{cases}N-\gamma & \text { if } \zeta \leqslant-1 \\ N-\gamma-\zeta-1 & \text { if } \zeta>-1\end{cases}
$$

By assumption (1.4), $g(x) \geqslant g_{0}>0$ in some ball $B_{f}(0), \rho>0$. The definition (1.7) of $u_{\varepsilon}(x)$ shows that there exists a constant $K>0$, independent of ε, such that

$$
F_{2}(\varepsilon) \geqslant K \int_{0}^{p}\left(\frac{\varepsilon^{1 /(p-1)}}{\varepsilon^{p /(p-1)}+r^{p /(p-1)}}\right)^{r} r^{N-1} d r,
$$

where $r=|x|$. For $\varepsilon>0$ small enough that $\rho / \varepsilon>1$, and $s=r / \varepsilon$, this implies

$$
F_{2}(\varepsilon) \geqslant K 2^{-\gamma} \varepsilon^{N-\gamma} \int_{1}^{\rho / \varepsilon} s^{\zeta} d s
$$

Hence there exist positive constants K_{1}, K_{2}, K_{3}, independent of ε, such that

$$
F_{2}(\varepsilon) \geqslant \begin{cases}K_{1} \varepsilon^{N-\gamma} & \text { if } \zeta<-1, \\ K_{2} \varepsilon^{N-\gamma} \log \frac{1}{\varepsilon} & \text { if } \zeta=-1, \\ K_{3} \varepsilon^{N-\gamma-\zeta-1} & \text { if } \zeta>-1,\end{cases}
$$

in some interval $0<\varepsilon \leqslant \varepsilon_{1}<1$, proving the first two inequalities (4.8). The other inequalities (4.8) are established similarly. The conclusion of Lemma 4.1 then follows from (4.6)-(4.8).

We can now prove the following weak version of Theorem 1.1.
Theorem 4.2. - The differential equation in (1.1) has a nontrivial nonnegative weak solution $u \in E$.

Proof. - First note that ρ in (4.3) can be selected small enough that $\rho<\left\|t_{0} u_{s}\right\|_{E}$ as well as $J(\phi) \geqslant c_{0}>0$ for all $\phi \in E$ with $\|\phi\|_{E}=\rho$, where $J\left(t_{0} u_{\varepsilon}\right)<0$ and ε, t_{0} are as in Lemma 4.1. We define

$$
c=\inf _{\psi \in \Gamma} \max _{0 \leqslant t \leqslant 1} J(\psi(t)),
$$

where Γ denotes the class of all continuous paths ψ in E joining \boldsymbol{O} to $t_{0} u_{\varepsilon}$. Lemma 4.1 implies that

$$
0<c<N^{-1} S^{N / p}\|f\|_{\infty}^{(p-N) / p}
$$

and hence J satisfies the (PS) ${ }_{c}$-condition by Theorem 3.1. Consequently the mountain pass theorem [1] can be applied to conclude that J has a critical point u with corresponding critical value c. As mentioned in $\S 2, u$ is a weak solution of equation (2.5), i.e., $J^{\prime}(u)=0$ in E^{*}. The choice $v=u_{-}$in (2.4) shows that $u \geqslant 0$ a.e. in \boldsymbol{R}^{N}. Furthermore, u is nontrivial since $J(u)=c>0$, completing the proof of Theorem 4.2.

To obtain the strict positivity, regularity, and asymptotic decay of this weak solution, we require the next lemma.

Lemma 4.3. - Let u be the weak solution in Theorem 4.2. Then $u \in L^{t}\left(\boldsymbol{R}^{N}\right)$ for all $t \geqslant p^{*}$ 。

Proof. - In view of (2.4), the equation $J^{\prime}(u)=0$ in E^{*} can be rewritten in the form

$$
\begin{equation*}
\int_{R^{N}}|\nabla u|^{p-2} \nabla u \cdot \nabla v d x=\int_{R^{N}} w u^{p-1} v d x, \tag{4.9}
\end{equation*}
$$

for all $v \in E$, where

$$
w=\lambda a+f u^{p^{*}-p}+g u^{q+1-p} .
$$

Assumption (1.2) implies that $w \in L^{N / p}\left(\boldsymbol{R}^{N}\right)$; in fact,

$$
\int_{R^{N}}\left(f u^{p^{*}-p}\right)^{N / p} d x \leqslant\|f\|_{\infty}^{N / p}\|u\|_{p^{*}}^{p^{*}}
$$

and by Hölder's inequality

$$
\int_{\boldsymbol{R}^{N}}\left(g u^{q+1-p}\right)^{N / p} d x \leqslant\|g\|_{Q^{N} / p}^{N}\|u\|_{p^{*}}^{N(q+1-p) / p} .
$$

Following the procedure of Guedda and Veron [8, p. 882] we introduce a test function $v=\phi_{k}(u)$ in (4.9) defined for $k>0, t \geqslant p^{*}$ by

$$
\phi_{k}(u)=\int_{0}^{u}\left[\eta_{k}^{\prime}(s)\right]^{p} d s,
$$

where

$$
\eta_{k}(s)= \begin{cases}s^{t / p} & \text { if } 0 \leqslant s \leqslant k \\ k^{t / p}+\frac{t}{p} k^{(t-p) / p}(s-k) & \text { if } s \geqslant k\end{cases}
$$

It can be verified easily that

$$
\left\{\begin{array}{l}
0 \leqslant u^{p-1} \phi_{k}(u) \leqslant C_{t}\left[\eta_{k}(u)\right]^{p}, \tag{4.10}\\
0 \leqslant \phi_{k}(u) \leqslant C_{t}\left[\eta_{k}(u)\right]^{p(t+1-p) / t},
\end{array}\right.
$$

for a constant C_{t} independent of k, and $\eta_{k}(u), \phi_{k}(u) \in E=D_{0}^{1, p}\left(\boldsymbol{R}^{N}\right)$ for all $k>0$. Substituting $v=\phi_{k}(u)$ in (4.9) we obtain

$$
\begin{equation*}
\int_{\boldsymbol{R}^{N}}|\nabla u|^{p}\left[\eta_{k}^{\prime}(u)\right]^{p} d x=\int_{\boldsymbol{R}^{N}} w u^{p-1} \phi_{k}(u) d x . \tag{4.11}
\end{equation*}
$$

Define

$$
\Omega_{m}=\left\{x \in \boldsymbol{R}^{N}: w(x)>m\right\}, \quad m>0 .
$$

Then (4.10) and Hölder's inequality yield the estimate

$$
\begin{align*}
& \int_{\boldsymbol{R}^{N}} w u^{p-1} \phi_{k}(u) d x \leqslant m \int_{\Omega_{m}^{\prime}} u^{p-1} \phi_{k}(u) d x+\int_{\Omega_{m}} w u^{p-1} \phi_{k}(u) d x \leqslant \tag{4.12}\\
& \leqslant m C_{t}\left\|\eta_{\gamma_{k}}(u)\right\|_{p}^{p}+C_{t}\|w\|_{N / p, \Omega_{m}}\left\|\eta_{k}(u)\right\|_{p^{*}}^{p}
\end{align*}
$$

However, the definition of S in (2.6) means that

$$
\begin{equation*}
\int_{R^{N}}|\nabla u|^{p}\left[\eta_{k}^{\prime}(u)\right]^{p} d x=\left\|\nabla \eta_{k}(u)\right\|_{p}^{p} \geqslant S\left\|_{\eta_{k}}(u)\right\|_{p^{*}}^{p} \tag{4.13}
\end{equation*}
$$

Substitution of (4.12) and (4.13) into (4.11) yields

$$
\left(S-C_{t}\|w\|_{N / p, a_{m}}\right)\left\|\eta_{k}(u)\right\|_{p^{*}}^{p} \leqslant m C_{t}\left\|\eta_{k}(u)\right\|_{p}^{p} .
$$

For fixed m large enough that $\|w\|_{N / p, a_{m}} \leqslant S / 2 C_{t}$, it follows that

$$
\begin{equation*}
\left\|\eta_{k}(u)\right\|_{p^{*}}^{p} \leqslant \frac{2 m}{S} C_{t}\left\|_{\eta_{k}}(u)\right\|_{p}^{p}, \quad k>0 . \tag{4.14}
\end{equation*}
$$

By the definition of $\eta_{k}(s)$, there exists a constant C, independent of k, such that $\eta_{k}(s) \leqslant C s^{t / p}$ for all $k \geqslant 0, s \geqslant 0$, and furthermore $\lim _{k \rightarrow \infty} \eta_{k}(s)=s^{t / p}$. Now choose $t=$ $=p^{*}$ and apply Fatou's lemma to obtain

$$
\liminf _{k \rightarrow \infty}\left\|\eta_{k}(u)\right\|_{p^{*}}^{p^{*}} \geqslant\|u\|_{\left.p^{*}\right)^{2} / p}^{p^{*}}
$$

Together with (4.14) this implies that

$$
\|u\|_{\left(p^{*}\right)^{2} / p}^{*} \leqslant \frac{2 m}{S} C_{t} C^{p}\|u\|_{p^{*}}^{p^{*}}
$$

Therefore $u \in L^{\left(p^{*}\right)^{2} / p}\left(\boldsymbol{R}^{N}\right)$ and consequently $u \in L^{t}\left(\boldsymbol{R}^{N}\right)$ for $p^{*} \leqslant t \leqslant\left(p^{*}\right)^{2} / p$ by a standard interpolation theorem. Continuing this iteration with $t_{i}=p^{*}\left(p^{*} / p\right)^{i}, i=$ $=1,2, \ldots$ we conclude that $u \in L^{t}\left(\boldsymbol{R}^{N}\right)$ for all $t \geqslant p^{*}$.

Proof of Theorem 1.1. - The nontrivial nonnegative function $u \in E$ in Theorem 4.2 is a weak solution of the equation $-\Delta_{p} u=F \geqslant 0$, where

$$
F(x)=\lambda a(x)[u(x)]^{p-1}+f(x)[u(x)]^{p^{*}-1}+g(x)[u(x)]^{q}, \quad x \in \boldsymbol{R}^{N} .
$$

Lemma 4.3 shows that $F \in L^{\sigma}\left(\boldsymbol{R}^{N}\right)$ for some $\sigma>N / p$. The uniform boundedness and asymptotic decay property $\lim _{|x| \rightarrow \infty} u(x)=0$ of the solution then follow from Serrin's a priori estimate [16, Theorem 1] for $-\Delta_{p} u=F$ in $B_{2}(x), x \in \boldsymbol{R}^{N}$:

$$
\|u\|_{\infty, B_{1}(x)} \leqslant \text { Constant }\left[\|u\|_{p^{*}, B_{2}(x)}+\|F\|_{\sigma, B_{2}(x)}\right] .
$$

The strict positivity of u is a consequence of a Harnack-type inequality of Serrin [16, Theorem 5] applied to an arbitrary ball in \boldsymbol{R}^{N}. Tolksdorf's theorem [18, Theorem 1] implies the local $C^{1, \alpha}$-regularity of the solution.

Remark 4.4. - An analogue of Theorem 1.1 can be proved for $0<\lambda<\lambda_{0}$ by essentially the same procedure in the case that $g(x) \equiv 0$ provided we adjoin the conditions $a(x) \geqslant a_{0}>0$ and $f(x) \leqslant f(0)$ in some ball centred at the origin. Condition (1.4) is then replaced by the same condition with $q=p-1$, i.e. $f(x)=f(0)+o\left(|x|^{*}\right)$, where

$$
\delta= \begin{cases}p & \text { if } N \geqslant p^{2}, \\ \frac{N-p}{p-1} & \text { if } N<p^{2} .\end{cases}
$$

If $N=p^{2}$, this can be weakened to $f(x)=f(0)+O\left(|x|^{p}\right)$.

Remark 4.5. - If $N \geqslant p^{2}$, our method extends to more general equations

$$
-\operatorname{div}\left[b(x)|\nabla u|^{p-2} \nabla u\right]=\lambda a(x) u^{p-1}+f(x) u^{p^{*}-1}+g(x) u^{q}, \quad x \in \boldsymbol{R}^{N}
$$

where $b(x)=b(0)+o\left(|x|^{N / Q}\right)$ in some neighborhood of the origin. Such an extension requires an additional estimate for the function u_{ε} in (1.7), of the form

$$
\int_{R^{N}}|b(\varepsilon x)-b(0)|\left|\nabla u_{\varepsilon}(x)\right|^{p} d x=o\left(\varepsilon^{N / Q}\right)
$$

as $\varepsilon \rightarrow 0$. The details will be deleted. Of course the conclusions apply to all $N \geqslant(p(q+$ $+1)) /(q-p+2), p-1<q<p^{*}-1$.

Remark 4.6. - The function $g(x) u^{q}$ in (1.1) could be replaced by a more general function $g(x, u)$ with upper and lower majorants of type $g_{1}(x) u^{q_{1}}, g_{2}(x) u^{q_{2}}$ satisfying appropriate technical conditions.

REFERENCES

[1] A. Ambrosetti - P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), pp. 349-381.
[2] J. P. G. Azorero - I. P. Alonso, Existence and nonexistence for the p-Laplacian nonlinear eigenvalues, Comm. PDE, 12 (1987), pp. 1389-1430.
[3] V. Benci - G. Cerami, Existence of positive solutions of the equation $-\Delta u+a(x) u=$ $=u^{(N+2) /(N-2)}$ in \boldsymbol{R}^{N}, J. Math. Anal. Appl., 88 (1990), pp. 90-117.
[4] H. Brezis - E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), pp. 486-490.
[5] H. Brezis - L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), pp. 437-477.
[6] K. J. Brown - C. Cosner - J. Fleckinger, Principal eigenvalues for problems with indefinite weight function on R^{N}, Proc. Amer. Math. Soc., 109 (1990), pp. 147-155.
[7] H. Egnell, Existence and nonexistence results for m-Laplace equations involving critical Sobolev exponents, Arch. Rational Mech. Anal., 104 (1988), pp. 57-77.
[8] M. Guedda - L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal., 13 (1989), pp. 879-902.
[9] S. Kichenassamy - L. Veron, Singular solutions of the p-Laplace equation, Math. Ann., 275 (1986), pp. 599-615.
[10] M. C. Knaap - L. A. Peletier, Quasilinear elliptic equations with nearly critical growth, Comm. PDE, 14 (1989), pp. 1351-1383.
[11] P. L. Lions, The concentration-compactness principle in the Calculus of Variations. The locally compact case, Parts 1 and 2, Ann. Inst. H. Poincaré: Anal. non linéaire, 1 (1984), pp. 109-145 and 223-283.
[12] P. L. Lions, The concentration-compactness principle in the Calculus of Variations. The limit case, Parts 1 and 2, Revista Math. Iberoamericana, 1 (1985), pp. 145-201 and 1 (2) (1985), pp. 45-120.
[13] W.-M. NI, On the elliptic equation $\Delta u+K(x) u^{(n+2) /(n-2)}=0$, its generalizations, and applications in geometry, Indiana Univ. Math. J., 31 (1982), pp. 493-529.
[14] W.-M. Ni - J. Serrin, Existence and nonexistence theorems for ground states of quasilinear partial differential equations. The anomalous case, Accad. Naz. Lincei, 77 (1986), pp. 231-257.
[15] E. S. Noussair - C. A. Swanson - Yang Jianfu, Quasilinear elliptic problems with critical exponents, J. Nonlinear Anal., 20 (1993), pp. 285-301.
[16] J. Serrin, Local behavior of solutions of quasilinear equations, Acta Math., 111 (1964), pp. 247-302.
[17] F. D. Thelin, Local regularity properties for the solutions of a nonlinear partial differential equation, Nonlinear Anal., 6 (1982), pp. 839-844.
[18] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), pp. 126-150.
[19] J. L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), pp. 191-202.
[20] Zhu Xifing - Yang Jianfu, The quasilinear elliptic equation on unbounded domain involving critical Sobolev exponent, J. Partial Differential Equations, 2 (1989), pp. 53-64.

[^0]: (*) Entrata in Redazione il 24 ottobre 1993 e, in versione riveduta, il 25 febbraio 1994.

 Indirizzo degli AA.: C. A. Swanson: Department of Mathematics, The University of British Columbia, \#21-1984 Mathematics Road, Vancouver, B.C. Canada V6T 1Z2; Lao Sen Yu: BellNorthern Research 1B26 M182, P.O. Box 3511, Station C, Ottawa, Ontario K1Y 4H7, Canada.
 ${ }^{(* *)}$ Supported by NSERC (Canada) under Grant OGP0003105.

