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Critical p-Laplacian Problems in RN(*). 

CHARLES A. SWANSON (**) - LA0 SEN Yu(**) 

Summary. - The main theorem establishes the existence of a positive decaying solution 
u ~ D~, p (R N) of a quasilinear elliptic problem involving the p-Laplacian operator and the 
critical Sobolev exponent pN/(N - p), 1 < p < N. The conclusion depends on the existence 
of a lowest eigenvalue of a related quasilinear eigenvalue problem. A preliminary result 
yields a Palais-Smale compactness condition for an associated functional via concentra- 
tion-compactness methods of P. L. Lions. 

1 .  - I n t r o d u c t i o n .  

Our objective is to prove the existence of a positive solution u(x) of the quasilinear 
elliptic problem 

(1.1) 
__ / I p U  = ~.C~(X) U p - 1 _~ f ( x ) u P *  - 1 + g ( x ) u  q ' 

u ~ D~' P (R N) A Qlo'c~ (R N) lim u(x) = 0 
' [xl  - ~  

x e R  N 

for all ~ in some interval [0, 2o). In (1.1)/~p = div(IVulP-2Vu) is the p-Laplacian and 
p * = p N / ( N - p )  denotes the critical Sobolev exponent, 1 < p  < N .  As usual, 
D~,P(R N) denotes the completion of C~ (R N) in the norm IIVul[p, where II" lip is the 
standard LP (RN)-norm. 

Hypotheses for (1.1). 

p - 1 < q < p * - 1 and a, f, g are nontrivial nonnegative bounded functions in R N 
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such that 

(1.2) a e L N/p (RN), 

(1.3) 

f e C~ (RN), g e L Q (R N) 

for Q = pN[pN  - (q + 1)(N - p)]- i  ; 

f (0)  = sup f (x)  -I l f l l  | ; 
xeR y 

and 

(1.4) f (x)  =f(O) + o(Ixl~), g(x) >I go > 0 

in some neighborhood of x = 0, where 

N 8=  Q i f N ~  > p(q + 1) 
q - p + 2  ' 

Y ( q  - 1) if  N < p (q  + 1) 
Q-~  1) q - p + 2 "  

THEOREM 1.1. - Under these conditions, there exists ~o > 0 such that problem (1.1) 

has a positive solution u~ for all ~ in 0 <~ ~ < ~ o. 

The proof will be given in w 4 on the basis of the compactness result in Theorem 
3.1, where ~o is defined to be the lowest eigenvalue of the problem 

(1.5) 
{ - / l p U = 2 a ( x ) u  p - l ,  x e R  N, 

1, a N lim u(x) = O. ueD~ 'B(R~)NQoc  (R ), I ~ l ~  

The existence of ~0 and an associated weak positive solution of (1.5) will be estab- 
lished in Theorem 2.1 via the constrained variational problem 

(1.6) ~o = inf {lIVull~: IlUllp, a = 1, u ~ DI'p(RN)}, 

where 

IluIIP'a= I lu (x ) lPa(x )dx"  
ir 

The necessity of the condition ~ < ~o in Theorem 1.1 can be shown from an adapta- 
tion of Egnell's proof [7, Theorem 8], given for a case of (1.1) in a bounded domain ~9. 
If g(x) - 0, positive solutions of (1.1) do not exist in general for ~ ~< 0 by Poho~aev- 
type identities, e.g., no positive solution exists for ~ = 0 if g ( x ) -  0, f(x) is noncon- 
stant, and x ' (Vf)(x)  is either nonnegative or nonpositive throughout R N. However, a 
positive solution can exist for ~ ~< 0 if g(x) = 0 and f(x) is a constant, as demonstrated 
by 'BENCI and CERAMI [3] in the case p = 2, ~ = - 1, f (x)  = 1, a n d  IlallN/2 sufficiently 
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small. It is well known that the equation - / Ipu  = u p*- 1, with ~ = 0 andf(x)  = 1, has 
solutions 

(1.7) u~(x)=K ~pl(p-1)+ ixtPl(p-1) ' x e R N  

for any s > 0 and a suitable normalization constant K > 0, as well as all translations of 
us(x). This fact is crucial in the theory of critical p-Laplacian problems. 

Problems of type (1.1), usually with g ( x ) -  O, in bounded domains have been 
studied in depth by AZORERO and ALONSO [1], BENCI and CERAMI [3], BREZIS and 
NIRENBERG [5], EGNELL [7], GUEDDA and VERON [8], and KNAAP and PELETIER [10]. 
Surprisingly the requirement N 1> p2 for these results is not needed here. As far as 
we are aware, only NI and SERRIN [14], NOUSSAIR et al. [15], and ZHU and YANG [20] 
considered p-Laplacian equations in unbounded domains; however, the nonlinear 
structure, objectives, and/or methods differ from those presented here. 

w 2 contains notation, definitions, and an existence theorem for (1.5). A Palais- 
Smale compactness condition is proved in w 3, as required for the proof of the main 
Theorem 1.1 in w 4. 

2. - P r e l i m i n a r i e s .  

Let B~(x )={yeRN:  ly-xl <z}, B~=B~(O), and B / = R N \ B ~  for ~ > 0 ,  
x e R N. The standard norm in the weighted Lebesgue space L:(~9, a) will be denoted 
by 

Ilullo, o , ,  = lu(x) l :a(x)ax , ~>~ 1, ~ c R  N, 

and we set Iluil:,a = liUlI:,a, RN, IlUII: =NU[I:, 1. The space E = D~'P(R N) is the comple- 
tion of Co ~ (R N) in the norm IlVulip. The norm in E is sometimes denoted by 

NullE. 

THEOREM 2.1. - The infimum ~o > 0 in (1.6) is attained by a positive weak sol- 
ution Uo of (1.5). 

PROOF. - Clearly ~o > 0 since 

(2 .1)  Ilull;, ~ ~ cllallN/~ Ilvull~ 

for all u e E by HSlder's inequality and the continuity of the embedding E r p* (RN), 
where C is the embedding constant. The boundedness of a minimizing sequence {us} 
for (1.6) implies that {u,} has a weakly convergent subsequence (also denoted by 
{Un}) with weak limit Uo ~ E. The procedure for (2.1) yields the estimate 

(2.2) I lu. - uoll~,o ~ I lal l :  Ilu~ - uoll~,, , .~ + Cl la l l . / , , , , ,~ ( l lVu~l l~  + I lVuoll~).  
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Since a e LN/p(R N) by (1.2), IlallN/ , -~ 0 as k --) oo, and hence the compactness of 
the embedding W ~' p ( B k ) ~ L  p (Bk) implies that {u~} has a subsequence, denoted the 
same way, such that ][u~ lip, ~ ---)[lUo lip, ~, as n --) 00. Therefore [lUo lip, ~ = 1, [[VUo lip; = s 
i.e., Uo attains the infimum in (1.6), and consequently u0 is a weak solution of (1.5) by 
the Euler-Lagrange principle. Since l uol also attains the infimum in (1.6), it can be 
assumed that Uo >->- 0. The positivity of uo then follows from a Harnack-type inequality 
of SERRIN [16, Theorem 5]; see also [7, Proposition A3]. 

REMARK 2.2. - The method in [6] shows that ;~o is a principal eigenvalue of (1.5), 
even ff a(x) changes sign in R N. 

Solutions of (1.1) will be obtained as critical points of the functional J defined 
by 

= --P p* + q+ 1 ' ' 

where u+(x )=  max{u(x), 0}. On account of the continuity of the embedding 
E ~ L P * ( R  N) and estimates of type (2.2), standard procedure from the Calculus of 
Variations shows that J(u) is well-defined on E and has a continuous Fr~chet deriva- 
tive given by 

(2.4) J ' ( u ) v =  ~ [ I V u l P - 2 V u . V v - ~ a u p - l v - f u P + * - l v - g u q + v ] d x ,  u, v e E .  
. t  

RN 

Furthermore, any critical point u of the variational problem in w 4 for J(u) satisfies 
J'(u) = 0 in E*, meaning that u is a weak solution of the equation 

(2.5) - V ~ u  = 2au p-1 +fuP+ *-1 +gu~ , u e E .  

We use the notation S = Cp p , where Cp is the best (= minimum possible) constant 
for the Sobotev inequality 

Hullp. ~< CpHVUHp , u e E .  

It is known [12] that C~ is attained by the function u~ in (1.7), i.e., 

(2.6) s=llVu<ll lllu<ll ,= inf [llv ll /llull ,]. 
0 ~ u ~ E  

p* 1 Since u~ solves -Apu~ = u~ , as already mentioned, integration by parts yields 
llvu ll  = Ilu ll : implying in view of (2.6) that 
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3. - The  pa la i s - smale  c o m p a c t n e s s  condi t ion .  

The functional J on E is said to satisfy the (PS)~-condition if and only if every se- 
quence {us} in E for which J(un)-~ c and J'(u~)---> 0 in E*, as n--) ~ ,  has a conver- 
gent subsequence in the E-norm. 

THEOREM 3.1. - L e t  ~o, S be the numbers in (1.6), (2.6), respectively. IfO <~ 2 < ~o, 
then J = J~ satisfies the (PS)~-condition for every c in the interval 

(3.1) 0 < c < N-1SN/Pllf[[~-N)/P 

PROOF. - Let {u,~} be a sequence in E such that J(us) --~ c and J'(u~) --. 0 in E*. By 
(2.3) and (2.4) this means that 

and 

(3.3) I [ IVUnlP-~auP+ -fuP$+ - q+l]  : gus+ dx o(1)Hu~l]E, 
R N 

as n --. 2 ,  implying 

( 1 -  P-~_/ ( ~,P* d x + ( 1  P 1 !  , ' . J ~ +  guq+ldx 
p ]R ~ q + l  R 

where fl~ = Ilu,~llE. Since p < q + 1 <p* it follows that 

p* 
(3.4) I fu~+ dx = 0(1) + o(fl,~) 

R N 

and 

(3.5) 

= cp + o(1) + o(fln), 

f q+ gus+ldx = 0(1) + o(/~s). 
R N 

Combining (3.3)-(3.5) we obtain 

~ - z l [ u n  § It~,o = o ( 1 )  + o ( ~ s ) .  

Then the definition of ~o in (1.6) yields 

0 < (1 - ~o ) / ~  ~< 0(1) + o(/~s), 

implying that {fls} is a bounded sequence. It follows that {us} has a subsequence, 
also denoted by {us}, which converges weakly in E to a weak limit u e E. Also the se- 
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quence of norms {llVun/~} has a convergent subsequence (denoted the same way) 
whose limit must  be positive as a simple consequence of (3.2): 

(3.6) L - tim liVu~ll~ > 0.  

The weak lower semicontinuity of the functionals, as described in w 2, implies 
that  

(37) f f +gUn+ )dx = ()~auP+ +guq++a)dx. 
R N R N 

We now verify that  

(3.8) H = f()~auP+ +guq+l)dx  > O. 
R N  

If  H = 0, (3.3) would imply 

(3.9) I tV~"lPdx = I fu~+ dx + o(1) + o(1)tu~ii= 
R N R N 

as n - ~  :~. In view of (3.6), it follows from (3.9) in the limit n- - )  ~ that  

f f u  p* (3.10) L = lira ~ + dx > O, 
R N 

and consequently (3.2) yields 

i.e., by (3.1), 

(3.11) 

L L L 
C - -  

P p* N '  

L = N c  < sNIPlIflIW-N)Ip 
However, by the definition of S in (2.6), 

IR = I 
= S l i f lW-  NUNL (N-,)/N 

equivalent to L >i SN/plIflI~ -N)/p, contradicting (3.11). This completes the proof of 
(3.8). On account of (3.8), it cannot be that  

(3.12) lim sup f ()~au~+ + gu~$1)dx = 0 
n---~ ~ y E R N B R ~ y  ) 

for all R e (0, ~ ), i.e., <<vanishing>> of the sequence {)~au~ + + gu q ++ 1 } cannot oc- 
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cur [11, p. 115]. We next show that  the sequence (z~} defined by 

(3.13) zn = IVunl p + lull  p~ + )~auP+ + gu q+l 

is ,,tight,, as defined by LIONS [11, p. 115]. Note first from (3.6) that 

(3.14) Lo =- l i ra  ~ z~(x)dx  > O, 
R N 

passing to a subsequence if necessary. Since ,,vanishing, of {z~} cannot occur, it fol- 
lows from the proof of LIONS [11, pp. 116-117] that {z~} is tight unless, for arbi t rary 

> 0, there exist R > 0, A e (0, L0) and sequences R~ ~ + ~ ,  y~ �9 R N such that  

(3.15) 

] ,,(y() z~(x)dx - A < ~, 

Bk~(y~) zn (X) dx - L o + A < ~, 

for all n >i no(R). We introduce functions r e Co ~ (R g) such that 0 ~< r  -< 1, i = 
= 1, 2, and 

1 ff Ix I <1,  r ) = { 0  ff Ix[ <1 ,  
r  0 ff [x I ~ 2 ,  1 ff Ixl ~ 2 ,  

i and we define u~ = Cnu~, i = 1, 2, n = 1, 2, ..., where r = r  - y~)/R),  
r = r  y~)/Rn). Then suppu~ and suppUn 2 are disjoint sets for every n = 
= 1, 2, .. . .  Use of (3.15) in (3.2) and (2.4) (taking v = ui), respectively, gives 

(3.16) Z rVu l p r i �9 __  __ ( U n + )  p - -  _ _  

i = 1 R N  

g (Uin+)q+l]dx-_ 
q + l  

= c + o~(1) + o~(1) 

and 

(3.17) ] [IVu~ Ip - )~a(u~+)P - f (u~+)P*  - g(u~+)q+l ]  dx = O~(1)IlUn]IE + or(l), 
R N 

where o~ (1) --> 0 as s --* 0 +.  



240 C. A. SWANSON - LA0 SEN YU: C r i t i c a l  p-laplacian, etc. 

As in (3.6), passing to subsequences if necessary, there exist nonnegative limits 
~ ,  ~s, i = 1, 2, defined by 

(3.1S) 

(3.19) ~ -- ~@~ I f(u~ + ) r  d~, i -- 1, 2. 
R N 

It  follows from (3.17) that 

(3.20) I I Vu~ I ~ d~ 
RN 

= ~ +fl~ + O~(1)IlU~IIE + 0~(1). 

Since q + 1 > p by hypothesis, substitution of (3.18)-(3.20) into (3.16) leads to 

i~1 P p ,  p + o~(1), 

equivalent to 

(3.21) c~> ~ +o~(1).  

It  can be verified easily from (3.15), similarly to (3.16) and (3.17), that either 

(3.22) n~lim f 
R N 

[~a(u~+? + g( u~ + )q § 1] dx = 0 

o r  

(3.23) n~lim ] [)~a(u~ + )P + g ( u  I + )q + 1] dx  = O 

according as {y,~} is bounded or lYn I -* ~ ,  respectively. In the case (3.22), let n - ~  
in (3.17) to obtain, in view of (2.6) and (3.19), 

n ----) ~ ~ H2 �9 

By (3.21) this implies that 

Nc >. ;h + o~ (1) >t s N/, Ilfll~-N)/~ + 0~(1), 

contrary to hypothesis (3.1) since z is arbitrary. Virtually the same procedure also 
leads to a contradiction in the case (3.23). Accordingly, (3.15) is impossible and hence 
the sequence {zn} in (3.13) is tight, i.e., there exists a sequence { y~} in R N such that, 
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for arbitrary s > 0 there exists R e (0, ~ ) with 

(3.24) f zn (x) dx < 

It must be that {y~} is bounded, for otherwise (3.24) would imply, in the limit 
n ----) ~ ,  

f (2au~ + guq+l)dx <~ Cs b 
R N 

for some positive constants b and C, independent of s, contrary to (3.8). Thus we can 
replace y~ by 0 in (3.24) to obtain 

f lUn(X)lP*dx <~ f z~(x)dx < ~, 
Bk Bh 

showing that { l + I is tight. 
It follows from the foregoing that there exist bounded nonnegative measures t~, v 

o n R  N such that ]Vun IP--)t~ weakly and JunlP*-~ v tightly as n--) ~ [12, p. 158], and 
likewise ]Vu~+]P--~tL+ weakly, lu~+lP*-ov+ tightly. Lemma 1.1 of LIONS[12] 
states that sequences {xj} cR N, {t~j}, {vj} c(0,  ~ )  exist such that t~j >i Sv~/p* 
and 

(3.25) 

jeI+ 

where ~; denotes a Dirac measure, j e I, I+ c_ I. In the limit n --) ~,  (3.2) and (3.3) then 
yield, respectively, 

(3.26) 1; s ' ] -~ dlz=c uP+ + f-~ P* + .~+v j+ f (x j )+  -~---~.~uq+ +1 dx p ,  u+ 

(3.27) ~ f d/z ----R! [2auP +fuP+* + j~l+ ~ vj+ f(xj)+guq+ + 1]dx. 

Since 1 - p/p* = p i n  and q + 1 > p, multiplication of (3.26) by p and subtraction of 
the result from (3.27) gives 

(3.28) 
R 
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For nonnegative 
that 

r ~ C0~(RN), it follows as in GUEDDA and VERON[8, p. 898] 

I Cd~<<. I C V ' V u d x +  I Cfdv+ , 
R y R N R N 

v&ere V e L p' (RN) ~ is the weak limit of I Vu~ I , -  ~ Vus. If r is concentrated on the se- 
quence {xj}, j e I+,  this reduces to ~j < vj+f(xj). Since also S~,~/p* <~ ~j from (3.25), it 
follows that 

vj § >I S N/~ [f(xj)]-N/P. 

If I+ is nonempty, (3.28) would imply that 

c ~  N S~/',. ~§ - N)/, ~ 1  S~/~ Ilfll ~ - N)/, , 

contrary to (3.1). Therefore I+ is empty, and (3.25) shows that Ilu~+ lip*--~ Ilu+ lip* as 
n ~ ~.  By a lemma of BREZIS and LIEB [4], Us + "--> U+ in the norm II �9 lip*. 

In conjunction with (2.4), we use the notation 

J g ( u ) v  = I [ )~aup+- lv  + f u P * - l v  + guq+ v]dx 

R N 

for u,  v e E .  An inequality of THELIN [17] (see also KICHENASSAMY and VERON [9]) 

yields 

(3.29) 

and 

(8.30) 

]rum - Vu~] p -< ( IVu~ip-2Vu~  - IVu~i~-2Vus)(Vu~ - Vu~), 

p~>2, re, n = 1 , 2 , . . .  

IVum - Vus ] ~ <~ [ (1rum ] p - 2 v u ~  - IVus ] p- 2 Vus)" (Vu~ - Vus)]p/2. 

�9 [ ]Vu~lP+ IVUnlP](~-P)n, 1 < p ~ < 2 ,  re, n = 1 , 2  . . . . .  

In the case p >~ 2, it follows from (3.29) that 

I[u,~ - usN~ <- IJ'(u,~)(u,~ - us)l + IJ'(u~)(um - u~)l + 

+ IJ~ (u~)(u,~ - Un) -- Jg (u~)(um - us) l. 

This together with the convergence of {us + } in L p* (R N) implies the convergence of 
{u~} in the E-norm. The argument via (3.30) in the case 1 < p <~ 2 is virtually the 
same, completing the proof of Theorem 3.1. 
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4. - P r o o f  of  Theorem 1.1. 

In order to apply the mountain pass theorem [1] to the functional J in (2.3), we 
first show there exists a function u~ e E of type (1.7) such that  J(tou~) < 0 for suffi- 
ciently large to > 0 and sufficiently small ~ > 0, and furthermore sup J(tu~) = c is in 
the interval (3.1). t ~> o 

LEMMA 4.1. - Under the stated conditions for  (1.1), there exist positive numbers  
and to such that J(tou~) < 0 and 

(4.1) 0 < sup J(tu~) < 1 sN/P Ilfll ~ - N)/p 
t>~O 2 "r 

PROOF. - For  0 < 2 < 20, Theorem 2.1 shows that  

(4 ,2)  I]VUll p -- 21]uHP, a >1 Cl]VU[[ p , U E E 

for some c > O, independent of u.. On account of (1.2), (2.3), and (4.1), an estimate of 
type (2.1) for I]Ullqq+ +11,g and the continuity of the embedding E r N) imply the 
existence of a constant C, independent of u, such that  

C p* 1) 
J(u)  ~ -~ Ilu]IPE -- C(I[UIIE +]lull} + , u e E .  

Since p - 1 < q < p * - 1 by assumption, a sufficiently small positive number p can be 
found for which 

(4.3) J(u)  >I c~ p 2p -Co for all u with IlUllE = p. 

With u~ as in (1.7), r > 0, it is clear from (2.3) that  lira J(tu~) = - ~ for all ~ > 0, and 
t---> ~ 

hence sup J(tu~) is attained at some number t~ (t~ > 0 by an estimate of type (4.3)). I t  
t~>0 

is an easy consequence of J'( t~u~)= 0 and (2.4) (with u = t~u~, v = u~) that  

R R N J 

By the change of var iable  x = ~y it is a consequence of (1.7) that  

CVu (x)i dx= IVul( )l dy 
R N R N 

and 

f f ( x )  u~* (x) dx f P* = f ( r  ( y ) d y .  
R ~ R • 

The continuity of f a t  0 together with (1.3) and (4.4) show that  there exists R > 0 such 
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that 

P* 1( N _ p)/p2 
(4.5) ~<~ 2! ,Vul,Pdy / f (O) !  ul dy} . 

On account of the definition of t~, it follows from (2.3) that  

(4.6) sup J(tu~) = J( t~ u~ ) = F1 ( ~ ) - F2 ( ~ ) + F8 (~), 
t>~o 

where 

- ul dx I t 'I(o) I 
R~r RAr 

![,<ou,+ , F2(E) = R =~ - ~ - ~  t ] dx , 

F,(~) = - ~  t~* I [f(O) - f(~y)]u~* (y )dy .  
RN 

For  positive numbers A and B, the maximum of r -- Ap - l t P -  B(p*) - l t  p* for t i> 0 
is attained at t = (A/B) (N-p)/p2 from which (2.6) gives 

(4.7) FI(r  ~< ( p  1- 1 sN/Plifl]~- N)/~ 1 [f(O)]<p-N>/PIIVUlIINpIIU~II~N= -~ p* 

It  can be assumed without loss of generality that there exists a positive constant t, 
independent of ~, such that  t~/> t-for all s in an interval 0 < ~ ~< to, for otherwise there 
would be nothing to prove. In fact, if there exists a sequence { ~ }  such that t~ $0, 
then by IlVu~l]~ = S N/p for all e > 0 from (2.6) and (2.7), it would follow that 

sup J(tu~) <<. 1 1 sN/Pllfll~-N>/p 

by a choice of r ---- r for which 

t~ < ~ p IIflI~-N)/P 

Calculations using (1.7) show that there exists a positive constant C, independent of 
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~, such that  

(4.8) 

Fz(s) >I CJ  if N ~ p(q + 1) 
q - p + 2  ' 

1 p(q + 1) 
Fz(~)>lCs~log-/ if N -  q - p + 2  ' 

C ~ F~(~) <<. ~ if N ~ p(q + 1) 
q - p + 2  ' 

C 1 p(q + 1) 
F 3(~)~< ~ l o g - /  if N -  q - p + 2  ' 

in some interval 0 < s ~< ~o < 1 where ~ is as in (1.4). 
To verify the first two inequalities (4.8), we use the abbreviations 

(N - p)(q + 1) p~, 
] ,=  P , ~ = N - 1  p -  

The definitions of Q and ~ in (1.2) and (1.4) show that  N(Q - 1)/Q = y and 

f~ 
= N - y  i f N ~  > p(q + 1) 

q - p + 2  

3 = N - ~ , - [ - 1  f i N <  p ( q + l )  
q - p + 2  

equivalent to 

N - I ,  f f [ ~ < - = l ,  

8=  N - ~ , - ~ - I  f f ~ >  - 1 .  

By assumption (1.4), g(x) I> go > 0 in some ball B~ (0), p > 0. The definition (1.7) of 
u~ (x) shows that  there exists a constant K > 0, independent of ~, such that  

F2(s)~ K f (  sl/(P-1) ) r rN- ldr ,  
e P/(P - 1) + rp/(p - 1) 

where r = I x l .  For  s > 0 small enough that  ~/~ > 1, and s = r/e, this implies 

F2(e) >I K2-r eN-r I s~ds" 
1 
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Hence there exist positive constants K1, K2, Ks, independent of s, such that 

t K 1 J - r  1 F2(~)/> K 2 J - r l o g  -/ 

i f ~ <  - 1 ,  

if ~ = - 1 ,  

if ~ > - 1 ,  

in some interval 0 < ~ <~ $1 <~ 1, proving the first two inequalities (4.8). The other in- 
equalities (4.8) are established similarly. The conclusion of Lemma 4.1 then follows 
from (4.6)-(4.8). 

We can now prove the following weak version of Theorem 1.1. 

THEOREM 4.2. - The differential equation in (1.1) has a nontrivial nonnegative 
weak solution u E E.  

PROOF. - First note that ~ in (4.3) can be selected small enough that p < [Itou~ lIE as 
well as J(r 1> Co > 0 for all r e E with IIr = P, where J(tou~) < 0 and ~, to are as in 
Lemma 4.1. We def'me 

c = inf max J(~(t)) ,  
~eF O<~t<~l 

where/~ denotes the class of all continuous paths ~ in E joining 0 to tout. Lemma 4.1 
implies that 

0 < c < Y -1SN/~IIflI(x 

and hence J satisfies the (PS)c-condition by Theorem 3.1. Consequently the mountain 
pass theorem [1] can be applied to conclude that J has a critical point u with corre- 
sponding critical value c. As mentioned in w 2, u is a weak solution of equation (2.5), 
i.e., J ' (u)  = 0 in E*. The choice v = u_ in (2.4) shows that u >t 0 a.e. in R N. Further- 
more, u is nontrivial since J(u)  = c > 0, completing the proof of Theorem 4.2. 

To obtain the strict positivity, regularity, and asymptotic decay of this weak sol- 
ution, we require the next lemma. 

LEMMA 4.3. - Let u be the weak solution in Theorem 4.2. Then u ~ L t (RN) for all 

t>~p * . 

PROOF. - In view of (2.4), the equation J ' (u)  = 0 in E* can be rewritten in the 
f o r m  

(4.9) 

for all v E E, where 

I I V u l p - 2 V u ' V v d x =  I wuP-lvdx'  
R N R N 

W --- )~a + f u  p*-p + gu q+l-p 
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Assumption (1.2) implies that w �9 ill fact, 

f (fuP*-P) N/pdx <<. lifti~/pilutt~: 
R N 

and by HSlder's inequality 

(gu~+,-~),<i.d~ ~ Ilgll~'/. Ilull~. (.§ ,-~>i.. 
R N 

Following the procedure of GUEDDA and VERON [8, p. 882] we introduce a test 
function v = (k(u)  in (4.9) defined for k > 0, t I> p* by 

u 

(u) =/ [V~ (s)] pds,  (k 
0 

where 

st/p ff 0 <~ s <~ k,  
~ k ( 8 )  t kt/p -~ - ~ k ( t - p ) l P ( 8  -- k )  i f  8 ~ k .  

It can be verified easily that 

0 ~< u ~ - l ( k ( u )  ~< Ct[~k(u)F, 
(4.10) 0 ~< (k (u) < Ct [Vk (u)] p(t + 1 - p)/t, 

for a constant Ct independent of k, and rlk (u) , (k(u)  �9 E = D~'P(R N) for all k > 0. Sub- 
stituting v = (k(u)  in (4.9) we obtain 

(4.11) IVuf.r  (u)j, x = I ' k(u)dx 
R N R N 

Define 

t ~  = { x � 9  N: w(x) > m} ,  m > O. 

Then (4.10) and HSlder's inequality yield the estimate 

(4.12) f wu'-l(k(u)dx<~m f up-l(k(u)dx § f w u P - l ( k ( u ) d x  <<. 
R N $2r ~m 

However, the definition of S in (2.6) means that 

( 4 . 1 3 )  ~ IVul'[~;,(u)l'dx = IIv~k(u)ll; >~ sll~k(u)ll;,. 
R~ 
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Substitution of (4.12) and (4.13) into (4.11) yields 

( s  - c<llwllN/,,. )ll  (u)llg. <- 

For fixed m large enough that IlwllN/ ,  -< 8/2c~, it follows that 

2m C (4.14) II~k(u)ll~* <~ - - ~  tll~k(u)ll~ k > 0. 

By the definition of Vk(s), there exists a constant C, independent of k, such that 
Vk(s) <<. Cs t/p for all k I> 0, s >~ 0, and furthermore lim ~k(s) = s @. Now choose t = 

k ---~ :r 
= p*  and apply Fatou's lemma to obtain 

liminf I]~?k(u)H~* >t ][u]l~p*) 2/,. 
k - - >  aa 

Together with (4.14) this implies that 

�9 2m 
<- c c llullV. 

Therefore u e L (P*)21p(R N) and consequently u �9 L t (R  N) for p* <~ t <<. (p . )2  /p  by a 
standard interpolation theorem. Continuing this iteration with ti = p* (p*/p)~,  i = 
-- 1, 2, ... we conclude that u �9 L t (R N) for all t ~> p*.  

PROOF O F  T H E O R E M  1 . 1 .  - The nontrivial nonnegative function u �9 E in Theorem 
4.2 is a weak solution of the equation - @ u  = F >i 0, where 

F(x)  = ~a(x)[u(x)] p - 1 + f(x)[u(x)]p* - 1 + g(x)[u(x)]q , x �9 R y . 

Lemma 4.3 shows that E �9 L~(R N) for some ~ > NiP.  The uniform boundedness and 
asymptotic decay property lira u(x) = 0 of the solution then follow from Serrin's a 

priori estimate [16, Theorem 1] for - z lpu  = F in B2(x), x � 9  

Ilull~,8,(~) ~< Constant [IluNp*,B2(~)+ IIFIk B2(~)] �9 

The strict positivity of u is a consequence of a Harnack-type inequality of SERRIN [16, 
Theorem 5] applied to an arbitrary ball in R N. Tolksdorfs theorem [18, Theorem 1] 
implies the local C 1' ~-regularity of the solution. 

REMARK 4.4. - An analogue of Theorem 1.1 can be proved for 0 < ~ < ~o by essen- 
tially the same procedure in the case that g(x) - 0 provided we adjoin the conditions 
a(x) >I ao > 0  andf(x)  ~<f(0) in some ball centred at the origin. Condition (1.4) is then 
replaced by the same condition with q = p - 1, i.e. f ( x )  =f(O) + o(Ixl~), where 

p if N>~p~,  

~= N - p  if N <p~ 
p ~ l  

If N = p2, this can be weakened to f ( x ) = f ( 0 ) +  O(IxlP). 
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REMARK 4.5. - I f  N I> p2, our method extends to more  general  equations 

- div [ b ( x ) l V u l P - 2 V u ]  = ~a(x )u  p-1 + f ( x ) u  p*-I  + g ( x ) u  q, x e R  N 

where b(x) = b(O) + o(Ix  I N/Q) in some neighborhood of the origin. Such an extension 

requires an additional est imate for the function u~ in (1.7), of the form 

I I b(~x) - b(O) I I Vu~ (x) l p dx = O(s N/Q) 
R N 

as ~ --. 0. The details will be deleted. Of course the conclusions apply to all N >t (p(q + 
+ 1 ) ) / ( q - p  + 2), p -  1 < q < p * -  1. 

REMARK 4.6. - The function g ( x ) u  q in (1.1) could be  replaced by a more  general  

function g(x, u) with upper  and lower majorants  of type gl ( x ) u  ql , g2 ( x ) u  q2 satisfying 

appropr ia te  technical conditions. 
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