Annali di Matematica pura ed applicata (IV), Vol. CLXIX (1995), pp. 233-250

Critical *p*-Laplacian Problems in $\mathbb{R}^{N}(*)$.

CHARLES A. SWANSON (**) - LAO SEN YU (**)

Summary. – The main theorem establishes the existence of a positive decaying solution $u \in D_0^{1, p}(\mathbf{R}^N)$ of a quasilinear elliptic problem involving the p-Laplacian operator and the critical Sobolev exponent pN/(N-p), 1 . The conclusion depends on the existence of a lowest eigenvalue of a related quasilinear eigenvalue problem. A preliminary result yields a Palais-Smale compactness condition for an associated functional via concentration-compactness methods of P. L. Lions.

1. - Introduction.

Our objective is to prove the existence of a positive solution u(x) of the quasilinear elliptic problem

(1.1)
$$\begin{cases} -\Delta_p u = \lambda a(x) u^{p-1} + f(x) u^{p^*-1} + g(x) u^q, & x \in \mathbb{R}^N \\ u \in D_0^{1, p}(\mathbb{R}^N) \cap C_{\text{loc}}^{1, \alpha}(\mathbb{R}^N), & \lim_{|x| \to \infty} u(x) = 0 \end{cases}$$

for all λ in some interval $[0, \lambda_0)$. In (1.1) $\Delta_p = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ is the *p*-Laplacian and $p^* = pN/(N-p)$ denotes the critical Sobolev exponent, $1 . As usual, <math>D_0^{1, p}(\mathbf{R}^N)$ denotes the completion of $C_0^{\infty}(\mathbf{R}^N)$ in the norm $\|\nabla u\|_p$, where $\|\cdot\|_p$ is the standard $L^p(\mathbf{R}^N)$ -norm.

Hypotheses for (1.1).

 $p-1 < q < p^*-1$ and a, f, g are nontrivial nonnegative bounded functions in \mathbb{R}^N

^(*) Entrata in Redazione il 24 ottobre 1993 e, in versione riveduta, il 25 febbraio 1994.

Indirizzo degli AA.: C. A. SWANSON: Department of Mathematics, The University of British Columbia, #21-1984 Mathematics Road, Vancouver, B.C. Canada V6T 1Z2; LAO SEN YU: Bell-Northern Research 1B26 M182, P.O. Box 3511, Station C, Ottawa, Ontario K1Y 4H7, Canada.

^(**) Supported by NSERC (Canada) under Grant OGP0003105.

such that

(1.2)
$$a \in L^{N/p}(\mathbf{R}^{N}), \quad f \in C_{loc}^{0}(\mathbf{R}^{N}), \quad g \in L^{Q}(\mathbf{R}^{N})$$

for $Q = pN[pN - (q+1)(N-p)]^{-1};$
(1.3) $f(0) = \sup_{x \in \mathbf{R}^{N}} f(x) \equiv ||f||_{\infty};$

and

(1.4)
$$f(x) = f(0) + o(|x|^{\delta}), \quad g(x) \ge g_0 > 0$$

in some neighborhood of x = 0, where

$$\delta = \begin{cases} \frac{N}{Q} & \text{if } N \ge \frac{p(q+1)}{q-p+2} \\ \frac{N(Q-1)}{Q(p-1)} & \text{if } N < \frac{p(q+1)}{q-p+2} \end{cases}.$$

THEOREM 1.1. – Under these conditions, there exists $\lambda_0 > 0$ such that problem (1.1) has a positive solution u_{λ} for all λ in $0 \leq \lambda < \lambda_0$.

The proof will be given in §4 on the basis of the compactness result in Theorem 3.1, where λ_0 is defined to be the lowest eigenvalue of the problem

(1.5)
$$\begin{cases} -\Delta_p u = \lambda a(x) u^{p-1}, & x \in \mathbb{R}^N, \\ u \in D_0^{1, p}(\mathbb{R}^N) \cap C_{\text{loc}}^{1, \alpha}(\mathbb{R}^N), & \lim_{|x| \to \infty} u(x) = 0. \end{cases}$$

The existence of λ_0 and an associated weak positive solution of (1.5) will be established in Theorem 2.1 via the constrained variational problem

(1.6)
$$\lambda_0 = \inf \left\{ \|\nabla u\|_p^p \colon \|u\|_{p, a} = 1, \ u \in D_0^{1, p}(\mathbf{R}^N) \right\},$$

where

$$||u||_{p,a}^p = \int_{\mathbf{R}^N} |u(x)|^p a(x) \, dx$$

The necessity of the condition $\lambda < \lambda_0$ in Theorem 1.1 can be shown from an adaptation of Egnell's proof [7, Theorem 8], given for a case of (1.1) in a bounded domain Ω . If $g(x) \equiv 0$, positive solutions of (1.1) do not exist in general for $\lambda \leq 0$ by Pohožaev-type identities, e.g., no positive solution exists for $\lambda = 0$ if $g(x) \equiv 0$, f(x) is nonconstant, and $x \cdot (\nabla f)(x)$ is either nonnegative or nonpositive throughout \mathbb{R}^N . However, a positive solution can exist for $\lambda \leq 0$ if $g(x) \equiv 0$ and f(x) is a constant, as demonstrated by BENCI and CERAMI [3] in the case p = 2, $\lambda = -1$, $f(x) \equiv 1$, and $\|a\|_{N/2}$ sufficiently

small. It is well known that the equation $-\Delta_p u = u^{p^*-1}$, with $\lambda = 0$ and $f(x) \equiv 1$, has solutions

(1.7)
$$u_{\varepsilon}(x) = K\left(\frac{\varepsilon^{1/(p-1)}}{\varepsilon^{p/(p-1)} + |x|^{p/(p-1)}}\right)^{(N-p)/p}, \quad x \in \mathbb{R}^{N}$$

for any $\varepsilon > 0$ and a suitable normalization constant K > 0, as well as all translations of $u_{\varepsilon}(x)$. This fact is crucial in the theory of critical *p*-Laplacian problems.

Problems of type (1.1), usually with $g(x) \equiv 0$, in bounded domains have been studied in depth by AZORERO and ALONSO [1], BENCI and CERAMI [3], BREZIS and NIRENBERG [5], EGNELL [7], GUEDDA and VERON [8], and KNAAP and PELETIER [10]. Surprisingly the requirement $N \ge p^2$ for these results is not needed here. As far as we are aware, only NI and SERRIN [14], NOUSSAIR *et al.* [15], and ZHU and YANG [20] considered *p*-Laplacian equations in unbounded domains; however, the nonlinear structure, objectives, and/or methods differ from those presented here.

\$2 contains notation, definitions, and an existence theorem for (1.5). A Palais-Smale compactness condition is proved in \$3, as required for the proof of the main Theorem 1.1 in \$4.

2. - Preliminaries.

Let $B_{\rho}(x) = \{ y \in \mathbb{R}^N : |y - x| < \rho \}$, $B_{\rho} = B_{\rho}(0)$, and $B'_{\rho} = \mathbb{R}^N \setminus B_{\rho}$ for $\rho > 0$, $x \in \mathbb{R}^N$. The standard norm in the weighted Lebesgue space $L^{\sigma}(\Omega, a)$ will be denoted by

$$\|u\|_{\sigma, a, \Omega} = \left[\int_{\Omega} |u(x)|^{\sigma} a(x) dx\right]^{1/\sigma}, \quad \sigma \ge 1, \ \Omega \subseteq \mathbf{R}^{N},$$

and we set $\|u\|_{\sigma, a} = \|u\|_{\sigma, a, \mathbb{R}^N}$, $\|u\|_{\sigma} = \|u\|_{\sigma, 1}$. The space $E = D_0^{1, p}(\mathbb{R}^N)$ is the completion of $C_0^{\infty}(\mathbb{R}^N)$ in the norm $\|\nabla u\|_p$. The norm in E is sometimes denoted by $\|u\|_E$.

THEOREM 2.1. – The infimum $\lambda_0 > 0$ in (1.6) is attained by a positive weak solution u_0 of (1.5).

PROOF. – Clearly $\lambda_0 > 0$ since

(2.1)
$$\|u\|_{p,a}^{p} \leq C \|a\|_{N/p} \|\nabla u\|_{p}^{p}$$

for all $u \in E$ by Hölder's inequality and the continuity of the embedding $E \hookrightarrow L^{p^*}(\mathbb{R}^N)$, where C is the embedding constant. The boundedness of a minimizing sequence $\{u_n\}$ for (1.6) implies that $\{u_n\}$ has a weakly convergent subsequence (also denoted by $\{u_n\}$) with weak limit $u_0 \in E$. The procedure for (2.1) yields the estimate

$$(2.2) \|u_n - u_0\|_{p,a}^p \leq \|a\|_{\infty} \|u_n - u_0\|_{p,1,B_k}^p + C\|a\|_{N/p,1,B_k} (\|\nabla u_n\|_p^p + \|\nabla u_0\|_p^p).$$

Since $a \in L^{N/p}(\mathbb{R}^N)$ by (1.2), $||a||_{N/p, 1, B_k} \to 0$ as $k \to \infty$, and hence the compactness of the embedding $W^{1, p}(B_k) \hookrightarrow L^p(B_k)$ implies that $\{u_n\}$ has a subsequence, denoted the same way, such that $||u_n||_{p, a} \to ||u_0||_{p, a}$, as $n \to \infty$. Therefore $||u_0||_{p, a} = 1$, $||\nabla u_0||_p^p = \lambda_0$, i.e., u_0 attains the infimum in (1.6), and consequently u_0 is a weak solution of (1.5) by the Euler-Lagrange principle. Since $||u_0||$ also attains the infimum in (1.6), it can be assumed that $u_0 \ge 0$. The positivity of u_0 then follows from a Harnack-type inequality of SERRIN [16, Theorem 5]; see also [7, Proposition A3].

REMARK 2.2. – The method in [6] shows that λ_0 is a principal eigenvalue of (1.5), even if a(x) changes sign in \mathbb{R}^N .

Solutions of (1.1) will be obtained as critical points of the functional J defined by

(2.3)
$$J(u) = \iint_{\mathbf{R}^{N}} \left[\frac{1}{p} |\nabla u|^{p} - \frac{\lambda a}{p} u_{+}^{p} - \frac{f}{p^{*}} u_{+}^{p^{*}} - \frac{g}{q+1} u_{+}^{q+1} \right] dx, \quad u \in E,$$

where $u_+(x) = \max\{u(x), 0\}$. On account of the continuity of the embedding $E \hookrightarrow L^{p^*}(\mathbf{R}^N)$ and estimates of type (2.2), standard procedure from the Calculus of Variations shows that J(u) is well-defined on E and has a continuous Fréchet derivative given by

(2.4)
$$J'(u)v = \int_{\mathbf{R}^N} \left[|\nabla u|^{p-2} \nabla u \cdot \nabla v - \lambda a u_+^{p-1} v - f u_+^{p^*-1} v - g u_+^q v \right] dx, \quad u, v \in E.$$

Furthermore, any critical point u of the variational problem in §4 for J(u) satisfies J'(u) = 0 in E^* , meaning that u is a weak solution of the equation

(2.5)
$$-\nabla_p u = \lambda a u_+^{p-1} + f u_+^{p^*-1} + g u_+^q, \quad u \in E.$$

We use the notation $S = C_p^{-p}$, where C_p is the best (= minimum possible) constant for the Sobolev inequality

$$||u||_{p^*} \leq C_p ||\nabla u||_p, \qquad u \in E.$$

It is known [12] that C_p is attained by the function u_{ε} in (1.7), i.e.,

(2.6)
$$S = \|\nabla u_{\varepsilon}\|_{p}^{p} / \|u_{\varepsilon}\|_{p^{*}}^{p} = \inf_{0 \neq u \in E} \left[\|\nabla u\|_{p}^{p} / \|u\|_{p^{*}}^{p} \right].$$

Since u_{ε} solves $-\Delta_p u_{\varepsilon} = u_{\varepsilon}^{p^*-1}$, as already mentioned, integration by parts yields $\|\nabla u_{\varepsilon}\|_{p}^{p} = \|u_{\varepsilon}\|_{p^*}^{p^*}$ implying in view of (2.6) that

(2.7)
$$S = \left[\int_{\mathbf{R}^N} u_{\varepsilon}^{p^*}(x) dx\right]^{p/N}.$$

3. – The palais-smale compactness condition.

The functional J on E is said to satisfy the $(PS)_c$ -condition if and only if every sequence $\{u_n\}$ in E for which $J(u_n) \to c$ and $J'(u_n) \to 0$ in E^* , as $n \to \infty$, has a convergent subsequence in the E-norm.

THEOREM 3.1. – Let λ_0 , S be the numbers in (1.6), (2.6), respectively. If $0 \le \lambda < \lambda_0$, then $J = J_{\lambda}$ satisfies the (PS)_c-condition for every c in the interval

(3.1)
$$0 < c < N^{-1} S^{N/p} \|f\|_{\infty}^{(p-N)/p}.$$

PROOF. – Let $\{u_n\}$ be a sequence in E such that $J(u_n) \to c$ and $J'(u_n) \to 0$ in E^* . By (2.3) and (2.4) this means that

(3.2)
$$\int_{\mathbf{R}^{N}} \left[\frac{1}{p} \left| \nabla u_{n} \right|^{p} - \frac{\lambda a}{p} u_{n+}^{p} - \frac{f}{p^{*}} u_{n+}^{p^{*}} - \frac{g}{q+1} u_{n+}^{q+1} \right] dx = c + o(1)$$

and

(3.3)
$$\int_{\mathbf{R}^N} \left[\left\| \nabla u_n \right\|^p - \lambda a u_{n+}^p - f u_{n+}^{p*} - g u_{n+}^{q+1} \right] dx = o(1) \| u_n \|_E,$$

as $n \to \infty$, implying

$$\left(1-\frac{p}{p^*}\right)_{\mathbf{R}^N}\int u_{n+}^{p^*}dx + \left(1-\frac{p}{q+1}\right)_{\mathbf{R}^N}\int u_{n+}^{q+1}dx = cp + o(1) + o(\beta_n),$$

where $\beta_n = ||u_n||_E$. Since $p < q + 1 < p^*$ it follows that

(3.4)
$$\int_{\mathbf{R}^{N}} f u_{n+}^{p*} dx = 0(1) + o(\beta_{n})$$

and

(3.5)
$$\int_{\mathbf{R}^N} g u_{n+1}^{q+1} dx = 0(1) + o(\beta_n).$$

Combining (3.3)-(3.5) we obtain

$$\beta_n^p - \lambda \| u_{n+} \|_{p,a}^p = 0(1) + o(\beta_n)$$

Then the definition of λ_0 in (1.6) yields

$$0 < \left(1 - \frac{\lambda}{\lambda_0}\right) \beta_n^p \le 0(1) + o(\beta_n),$$

implying that $\{\beta_n\}$ is a bounded sequence. It follows that $\{u_n\}$ has a subsequence, also denoted by $\{u_n\}$, which converges weakly in E to a weak limit $u \in E$. Also the se-

quence of norms $\{\|\nabla u_n\|_p\}$ has a convergent subsequence (denoted the same way) whose limit must be positive as a simple consequence of (3.2):

(3.6)
$$L \equiv \lim_{n \to \infty} \|\nabla u_n\|_p^p > 0.$$

The weak lower semicontinuity of the functionals, as described in §2, implies that

(3.7)
$$\lim_{n \to \infty} \int_{\mathbf{R}^N} (\lambda a u_{n+}^p + g u_{n+}^{q+1}) \, dx = \int_{\mathbf{R}^N} (\lambda a u_{+}^p + g u_{+}^{q+1}) \, dx \, .$$

We now verify that

(3.8)
$$H \equiv \int_{\mathbf{R}^{N}} (\lambda a u_{+}^{p} + g u_{+}^{q+1}) dx > 0$$

If H = 0, (3.3) would imply

(3.9)
$$\int_{\mathbf{R}^N} |\nabla u_n|^p dx = \int_{\mathbf{R}^N} f u_{n+}^{p*} dx + o(1) + o(1) ||u_n||_E$$

as $n \to \infty$. In view of (3.6), it follows from (3.9) in the limit $n \to \infty$ that

(3.10)
$$L = \lim_{n \to \infty} \int_{\mathbf{R}^N} f u_{n+}^{p^*} dx > 0,$$

and consequently (3.2) yields

$$c=\frac{L}{p}-\frac{L}{p^*}=\frac{L}{N},$$

i.e., by (3.1),

(3.11)
$$L = Nc < S^{N/p} ||f||_{\infty}^{(p-N)/p}$$

However, by the definition of S in (2.6),

$$L = \lim_{n \to \infty} \|\nabla u_n\|_p^p \ge S \lim_{n \to \infty} \|u_n\|_{p^*}^p \ge S \|f\|_{\infty}^{(p-N)/N} \lim_{n \to \infty} \left[\int_{\mathbb{R}^N} f u_{n^+}^{p^*} dx \right]^{(N-p)/N} = \\ = S \|f\|_{\infty}^{(p-N)/N} L^{(N-p)/N} ,$$

equivalent to $L \ge S^{N/p} ||f||_{\infty}^{(p-N)/p}$, contradicting (3.11). This completes the proof of (3.8). On account of (3.8), it cannot be that

(3.12)
$$\lim_{n \to \infty} \sup_{y \in \mathbb{R}^{N} B_{R}(y)} \int (\lambda a u_{n+}^{p} + g u_{n+}^{q+1}) dx = 0$$

for all $R \in (0, \infty)$, i.e., «vanishing» of the sequence $\{\lambda a u_{n+1}^p + g u_{n+1}^{q+1}\}$ cannot oc-

cur [11, p. 115]. We next show that the sequence $\{z_n\}$ defined by

(3.13)
$$z_n = |\nabla u_n|^p + |u_n|^{p^*} + \lambda a u_{n+}^p + g u_{n+}^{q+1}$$

is «tight», as defined by LIONS [11, p. 115]. Note first from (3.6) that

(3.14)
$$L_0 \equiv \lim_{n \to \infty} \int_{\mathbb{R}^N} z_n(x) \, dx > 0 \, ,$$

passing to a subsequence if necessary. Since «vanishing» of $\{z_n\}$ cannot occur, it follows from the proof of LIONS [11, pp. 116-117] that $\{z_n\}$ is tight unless, for arbitrary $\varepsilon > 0$, there exist R > 0, $\Lambda \in (0, L_0)$ and sequences $R_n \uparrow + \infty$, $y_n \in \mathbb{R}^N$ such that

(3.15)
$$\begin{cases} \left| \int\limits_{B_{R}(y_{n})} z_{n}(x) dx - \Lambda \right| < \varepsilon, \\ \left| \int\limits_{B_{k_{n}}(y_{n})} z_{n}(x) dx - L_{0} + \Lambda \right| < \varepsilon \\ \left| \int\limits_{B_{k_{n}}(y_{n}) \smallsetminus B_{k}(y_{n})} z_{n}(x) dx \right| < \varepsilon, \end{cases}$$

for all $n \ge n_0(R)$. We introduce functions $\phi^i \in C_0^{\infty}(\mathbb{R}^N)$ such that $0 \le \phi^i(x) \le 1$, i = 1, 2, and

$$\phi^1(x) = egin{cases} 1 & ext{if } |x| \leqslant 1, \ 0 & ext{if } |x| \geqslant 2, \end{cases} \quad \phi^2(x) = egin{cases} 0 & ext{if } |x| \leqslant 1, \ 1 & ext{if } |x| \geqslant 2, \end{cases}$$

and we define $u_n^i = \phi_n^i u_n$, i = 1, 2, n = 1, 2, ..., where $\phi_n^1(x) = \phi^1((x - y_n)/R)$, $\phi_n^2(x) = \phi^2((x - y_n)/R_n)$. Then $\operatorname{supp} u_n^1$ and $\operatorname{supp} u_n^2$ are disjoint sets for every $n = 1, 2, \ldots$. Use of (3.15) in (3.2) and (2.4) (taking $v = u_n^i$), respectively, gives

$$(3.16) \qquad \sum_{i=1}^{2} \int_{\mathbf{R}^{N}} \left[\frac{1}{p} \left| \nabla u_{n}^{i} \right|^{p} - \frac{\lambda a}{p} (u_{n+}^{i})^{p} - \frac{f}{p^{*}} (u_{n+}^{i})^{p^{*}} - \frac{g}{q+1} (u_{n+}^{i})^{q+1} \right] dx = \\ = c + o_{n}(1) + o_{\varepsilon}(1)$$

and

(3.17)
$$\int_{\mathbf{R}^{N}} \left[\left\| \nabla u_{n}^{i} \right\|^{p} - \lambda a (u_{n+}^{i})^{p} - f(u_{n+}^{i})^{p^{*}} - g(u_{n+}^{i})^{q+1} \right] dx = o_{n}(1) \left\| u_{n} \right\|_{E} + o_{\varepsilon}(1),$$

where $o_{\varepsilon}(1) \rightarrow 0$ as $\varepsilon \rightarrow 0 +$.

As in (3.6), passing to subsequences if necessary, there exist nonnegative limits α_i , β_i , i = 1, 2, defined by

(3.18)
$$\alpha_{i} = \lim_{n \to \infty} \int_{\mathbf{R}^{N}} [\lambda a(u_{n+}^{i})^{p} + g(u_{n+}^{i})^{q+1}] dx,$$

(3.19)
$$\beta_i = \lim_{n \to \infty} \int_{\mathbb{R}^N} f(u_{n+}^i)^{p^*} dx, \quad i = 1, 2.$$

It follows from (3.17) that

(3.20)
$$\int_{\mathbf{R}^N} |\nabla u_n^i|^p dx = \alpha_i + \beta_i + o_n(1) ||u_n||_E + o_{\varepsilon}(1).$$

Since q + 1 > p by hypothesis, substitution of (3.18)-(3.20) into (3.16) leads to

$$c \geq \sum_{i=1}^{2} \left(\frac{\alpha_{i} + \beta_{i}}{p} - \frac{\beta_{i}}{p^{*}} - \frac{\alpha_{i}}{p} \right) + o_{\varepsilon}(1),$$

equivalent to

(3.21)
$$c \ge \frac{\beta_1 + \beta_2}{N} + o_{\varepsilon}(1).$$

It can be verified easily from (3.15), similarly to (3.16) and (3.17), that either

(3.22)
$$\lim_{n \to \infty} \int_{\mathcal{R}^N} [\lambda a (u_{n+1}^2)^p + g (u_{n+1}^2)^{q+1}] dx = 0$$

or

(3.23)
$$\lim_{n \to \infty} \int_{\mathbf{R}^N} [\lambda a(u_{n+1}^1)^p + g(u_{n+1}^1)^{q+1}] dx = 0$$

according as $\{y_n\}$ is bounded or $|y_n| \to \infty$, respectively. In the case (3.22), let $n \to \infty$ in (3.17) to obtain, in view of (2.6) and (3.19),

$$\beta_{2} + o_{\varepsilon}(1) = \lim_{n \to \infty} \|\nabla u_{n}^{2}\|_{p}^{p} \ge S \lim_{n \to \infty} \|u_{n+}^{2}\|_{p}^{p} \ge S \|f\|_{\infty}^{(p-N)/N} \beta_{2}^{(N-p)/N}$$

By (3.21) this implies that

$$Nc \geq \beta_2 + o_{\varepsilon}(1) \geq S^{N/p} \|f\|_{\infty}^{(p-N)/p} + o_{\varepsilon}(1),$$

contrary to hypothesis (3.1) since ε is arbitrary. Virtually the same procedure also leads to a contradiction in the case (3.23). Accordingly, (3.15) is impossible and hence the sequence $\{z_n\}$ in (3.13) is tight, i.e., there exists a sequence $\{y_n\}$ in \mathbb{R}^N such that,

for arbitrary $\varepsilon > 0$ there exists $R \in (0, \infty)$ with

$$(3.24) \qquad \qquad \int\limits_{B_{k}(y_{n})} z_{n}(x) \, dx < \varepsilon$$

It must be that $\{y_n\}$ is bounded, for otherwise (3.24) would imply, in the limit $n \to \infty$,

$$\int_{\mathbf{R}^N} (\lambda a u_+^p + g u_+^{q+1}) \, dx \leq C \varepsilon^b$$

for some positive constants b and C, independent of ε , contrary to (3.8). Thus we can replace y_n by 0 in (3.24) to obtain

$$\int_{B_{k}^{k}} |u_{n}(x)|^{p^{*}} dx \leq \int_{B_{k}^{k}} z_{n}(x) dx < \varepsilon,$$

showing that $\{|u_{n+}|^{p^*}\}$ is tight.

It follows from the foregoing that there exist bounded nonnegative measures μ , ν on \mathbb{R}^N such that $|\nabla u_n|^p \to \mu$ weakly and $|u_n|^{p^*} \to \nu$ tightly as $n \to \infty$ [12, p. 158], and likewise $|\nabla u_{n+}|^p \to \mu_+$ weakly, $|u_{n+}|^{p^*} \to \nu_+$ tightly. Lemma I.1 of LIONS [12] states that sequences $\{x_j\} \in \mathbb{R}^N$, $\{\mu_j\}$, $\{\nu_j\} \in (0, \infty)$ exist such that $\mu_j \ge S \nu_j^{p/p^*}$ and

(3.25)
$$\begin{cases} \mu \ge |\nabla u|^p + \sum_{j \in I} \mu_j \delta_{x_j}, \\ \nu = |u|^{p^*} + \sum_{j \in I} \nu_j \delta_{x_j}, \\ \nu_+ = |u_+|^{p^*} + \sum_{j \in I_+} \nu_{j+1} \delta_{x_j}, \end{cases}$$

where δ_{x_j} denotes a Dirac measure, $j \in I$, $I_+ \subseteq I$. In the limit $n \to \infty$, (3.2) and (3.3) then yield, respectively,

$$(3.26) \qquad \frac{1}{p} \int_{\mathbf{R}^{N}} d\mu = c + \int_{\mathbf{R}^{N}} \left[\frac{\lambda a}{p} u_{+}^{p} + \frac{f}{p^{*}} u_{+}^{p^{*}} + \frac{1}{p^{*}} \sum_{j \in I_{+}} v_{j+} f(x_{j}) + \frac{g}{q+1} u_{+}^{q+1} \right] dx,$$

$$(3.27) \qquad \int_{\mathbf{R}^{N}} d\mu = \int_{\mathbf{R}^{N}} \left[\lambda a u_{+}^{p} + f u_{+}^{p^{*}} + \sum_{j \in I_{+}} v_{j+} f(x_{j}) + g u_{+}^{q+1} \right] dx.$$

Since $1 - p/p^* = p/N$ and q + 1 > p, multiplication of (3.26) by p and subtraction of the result from (3.27) gives

(3.28)
$$c \ge \frac{1}{N} \iint_{\mathbf{R}^{N}} \left[f u_{+}^{p^{*}} + \sum_{j \in I_{+}} v_{j+} f(x_{j}) \right] dx.$$

For nonnegative $\phi \in C_0^{\infty}(\mathbb{R}^N)$, it follows as in GUEDDA and VERON [8, p. 898] that

$$\int_{\mathbf{R}^N} \phi \, d\mu \leq \int_{\mathbf{R}^N} \phi V \cdot \nabla u \, dx + \int_{\mathbf{R}^N} \phi f \, d\nu_+ \, ,$$

where $V \in L^{p'}(\mathbf{R}^N)^N$ is the weak limit of $|\nabla u_n|^{p-2} \nabla u_n$. If ϕ is concentrated on the sequence $\{x_i\}, j \in I_+$, this reduces to $\mu_j \leq \nu_{j+1} f(x_j)$. Since also $S\nu_j^{p/p^*} \leq \mu_j$ from (3.25), it follows that

$$v_{j+} \geq S^{N/p} [f(x_j)]^{-N/p}$$

If I_+ is nonempty, (3.28) would imply that

$$c \ge \frac{1}{N} S^{N/p} \sum_{j \in I_+} [f(x_j)]^{(p-N)/p} \ge \frac{1}{N} S^{N/p} ||f||_{\infty}^{(p-N)/p},$$

contrary to (3.1). Therefore I_+ is empty, and (3.25) shows that $||u_{n+1}||_{p^*} \rightarrow ||u_+||_{p^*}$ as $n \to \infty$. By a lemma of BREZIS and LIEB [4], $u_{n+} \to u_+$ in the norm $\|\cdot\|_{p^*}$.

In conjunction with (2.4), we use the notation

$$J_0'(u)v = \int_{\mathbf{R}^N} [\lambda a u_+^{p-1}v + f u_+^{p^*-1}v + g u_+^q v] dx$$

for $u, v \in E$. An inequality of THELIN [17] (see also KICHENASSAMY and VERON [9]) yields

$$(3.29) \qquad |\nabla u_m - \nabla u_n|^p \leq (|\nabla u_m|^{p-2} \nabla u_m - |\nabla u_n|^{p-2} \nabla u_n) \cdot (\nabla u_m - \nabla u_n),$$
$$p \geq 2, \quad m, n = 1, 2, \dots$$

and

$$(3.30) \quad |\nabla u_m - \nabla u_n|^p \le [(|\nabla u_m|^{p-2} \nabla u_m - |\nabla u_n|^{p-2} \nabla u_n) \cdot (\nabla u_m - \nabla u_n)]^{p/2} \cdot \\ \cdot [|\nabla u_m|^p + |\nabla u_n|^p]^{(2-p)/2}, \qquad 1$$

In the case $p \ge 2$, it follows from (3.29) that

$$\begin{aligned} \|u_m - u_n\|_E &\leq |J'(u_m)(u_m - u_n)| + |J'(u_n)(u_m - u_n)| + \\ &+ |J'_0(u_m)(u_m - u_n) - J'_0(u_n)(u_m - u_n)| \,. \end{aligned}$$

This together with the convergence of $\{u_{n+1}\}$ in $L^{p^*}(\mathbf{R}^N)$ implies the convergence of $\{u_n\}$ in the *E*-norm. The argument via (3.30) in the case 1 is virtually thesame, completing the proof of Theorem 3.1.

4. – Proof of Theorem 1.1.

In order to apply the mountain pass theorem [1] to the functional J in (2.3), we first show there exists a function $u_{\varepsilon} \in E$ of type (1.7) such that $J(t_0 u_{\varepsilon}) < 0$ for sufficiently large $t_0 > 0$ and sufficiently small $\varepsilon > 0$, and furthermore $\sup_{t \ge 0} J(tu_{\varepsilon}) = c$ is in the interval (3.1).

LEMMA 4.1. – Under the stated conditions for (1.1), there exist positive numbers ε and t_0 such that $J(t_0 u_{\varepsilon}) < 0$ and

(4.1)
$$0 < \sup_{t \ge 0} J(tu_{\varepsilon}) < \frac{1}{N} S^{N/p} ||f||_{\infty}^{(p-N)/p}$$

PROOF. – For $0 < \lambda < \lambda_0$, Theorem 2.1 shows that

(4.2)
$$\|\nabla u\|_p^p - \lambda \|u\|_{p,a}^p \ge c \|\nabla u\|_p^p, \quad u \in E$$

for some c > 0, independent of u. On account of (1.2), (2.3), and (4.1), an estimate of type (2.1) for $||u||_{q+1,g}^{q+1}$ and the continuity of the embedding $E \hookrightarrow L^{p^*}(\mathbf{R}^N)$ imply the existence of a constant C, independent of u, such that

$$J(u) \geq \frac{c}{p} \|u\|_{E}^{p} - C(\|u\|_{E}^{p^{*}} + \|u\|_{E}^{q+1}), \quad u \in E.$$

Since $p - 1 < q < p^* - 1$ by assumption, a sufficiently small positive number ρ can be found for which

(4.3)
$$J(u) \ge \frac{c\rho^p}{2p} \equiv c_0 \quad \text{for all } u \text{ with } \|u\|_E = \rho.$$

With u_{ε} as in (1.7), $\varepsilon > 0$, it is clear from (2.3) that $\lim_{t \to \infty} J(tu_{\varepsilon}) = -\infty$ for all $\varepsilon > 0$, and hence $\sup_{t \ge 0} J(tu_{\varepsilon})$ is attained at some number t_{ε} ($t_{\varepsilon} > 0$ by an estimate of type (4.3)). It is an easy consequence of $J'(t_{\varepsilon}u_{\varepsilon}) = 0$ and (2.4) (with $u = t_{\varepsilon}u_{\varepsilon}$, $v = u_{\varepsilon}$) that

(4.4)
$$t_{\varepsilon} \leq \left[\int_{\mathbf{R}^{N}} |\nabla u_{\varepsilon}|^{p} dx / \int_{\mathbf{R}^{N}} f(x) u_{\varepsilon}^{p^{*}} dx \right]^{(N-p)/p^{*}}$$

By the change of variable $x = \varepsilon y$ it is a consequence of (1.7) that

$$\int_{\mathbf{R}^N} |\nabla u_{\varepsilon}(x)|^p dx = \int_{\mathbf{R}^N} |\nabla u_1(y)|^p dy$$

and

$$\int_{\mathbf{R}^N} f(x) \, u_{\varepsilon}^{p^*}(x) \, dx = \int_{\mathbf{R}^N} f(\varepsilon y) \, u_1^{p^*}(y) \, dy \, .$$

The continuity of f at 0 together with (1.3) and (4.4) show that there exists R > 0 such

that

(4.5)
$$t_{\varepsilon} \leq \left[2\int\limits_{\mathbf{R}^{N}} |\nabla u_{1}|^{p} dy / f(0) \int\limits_{B_{R}} u_{1}^{p^{*}} dy\right]^{(N-p)/p^{2}}$$

On account of the definition of t_{ε} , it follows from (2.3) that

(4.6)
$$\sup_{t \ge 0} J(tu_{\varepsilon}) = J(t_{\varepsilon}u_{\varepsilon}) = F_1(\varepsilon) - F_2(\varepsilon) + F_3(\varepsilon),$$

where

$$\begin{split} F_1(\varepsilon) &= \frac{1}{p} t_{\varepsilon}^p \int\limits_{\mathbb{R}^N} |\nabla u_1|^p dx - \frac{1}{p^*} t_{\varepsilon}^{p^*} f(0) \int\limits_{\mathbb{R}^N} u_1^{p^*} dx \\ F_2(\varepsilon) &= \int\limits_{\mathbb{R}^N} \left[\frac{\lambda}{p} t_{\varepsilon}^p a u_{\varepsilon}^p + \frac{1}{q+1} t_{\varepsilon}^{q+1} g u_{\varepsilon}^{q+1} \right] dx , \\ F_3(\varepsilon) &= \frac{1}{p^*} t_{\varepsilon}^{p^*} \int\limits_{\mathbb{R}^N} [f(0) - f(\varepsilon y)] u_1^{p^*}(y) dy . \end{split}$$

For positive numbers A and B, the maximum of $\phi(t) = Ap^{-1}t^p - B(p^*)^{-1}t^{p^*}$ for $t \ge 0$ is attained at $t = (A/B)^{(N-p)/p^2}$ from which (2.6) gives

$$(4.7) F_1(\varepsilon) \le \left(\frac{1}{p} - \frac{1}{p^*}\right) [f(0)]^{(p-N)/p} \|\nabla u_1\|_p^N \|u_1\|_{p^*}^{-N} = \frac{1}{N} S^{N/p} \|f\|_{\infty}^{(p-N)/p}.$$

It can be assumed without loss of generality that there exists a positive constant \hat{t} , independent of ε , such that $t_{\varepsilon} \ge \hat{t}$ for all ε in an interval $0 < \varepsilon \le \varepsilon_0$, for otherwise there would be nothing to prove. In fact, if there exists a sequence $\{\varepsilon_n\}$ such that $t_{\varepsilon_n} \downarrow 0$, then by $\|\nabla u_{\varepsilon}\|_p^p = S^{N/p}$ for all $\varepsilon > 0$ from (2.6) and (2.7), it would follow that

$$\sup_{t \ge 0} J(tu_{\varepsilon}) \le \frac{1}{p} t_{\varepsilon}^{p} \|\nabla u_{\varepsilon}\|_{p}^{p} < \frac{1}{N} S^{N/p} \|f\|_{\infty}^{(p-N)/p}$$

by a choice of $\varepsilon = \varepsilon_n$ for which

$$t^p_{\varepsilon} < \frac{p}{N} \|f\|^{(p-N)/p}_{\infty}$$

Calculations using (1.7) show that there exists a positive constant C, independent of

 ε , such that

$$(4.8) \qquad \begin{cases} F_2(\varepsilon) \ge C\varepsilon^{\delta} & \text{if } N \neq \frac{p(q+1)}{q-p+2} ,\\ F_2(\varepsilon) \ge C\varepsilon^{\delta} \log \frac{1}{\varepsilon} & \text{if } N = \frac{p(q+1)}{q-p+2} ,\\ F_3(\varepsilon) \le \frac{C}{2}\varepsilon^{\delta} & \text{if } N \neq \frac{p(q+1)}{q-p+2} ,\\ F_3(\varepsilon) \le \frac{C}{2}\varepsilon^{\delta} \log \frac{1}{\varepsilon} & \text{if } N = \frac{p(q+1)}{q-p+2} , \end{cases}$$

in some interval $0 < \varepsilon \leq \varepsilon_0 < 1$ where δ is as in (1.4).

To verify the first two inequalities (4.8), we use the abbreviations

$$\gamma = \frac{(N-p)(q+1)}{p}, \qquad \zeta = N-1 - \frac{p\gamma}{p-1}.$$

The definitions of Q and δ in (1.2) and (1.4) show that $N(Q-1)/Q = \gamma$ and

$$\begin{cases} \delta = N - \gamma & \text{if } N \ge \frac{p(q+1)}{q-p+2} ,\\ \delta = N - \gamma - \zeta - 1 & \text{if } N < \frac{p(q+1)}{q-p+2} , \end{cases}$$

equivalent to

$$\delta = \left\{egin{array}{ll} N-\gamma & ext{if } \zeta \leqslant -1 \,, \ N-\gamma-\zeta-1 & ext{if } \zeta > -1 \,. \end{array}
ight.$$

By assumption (1.4), $g(x) \ge g_0 > 0$ in some ball $B_{\rho}(0)$, $\rho > 0$. The definition (1.7) of $u_{\varepsilon}(x)$ shows that there exists a constant K > 0, independent of ε , such that

$$F_2(\varepsilon) \ge K \int_0^{\rho} \left(\frac{\varepsilon^{1/(p-1)}}{\varepsilon^{p/(p-1)} + r^{p/(p-1)}} \right)^{\gamma} r^{N-1} dr,$$

where r = |x|. For $\varepsilon > 0$ small enough that $\rho/\varepsilon > 1$, and $s = r/\varepsilon$, this implies

$$F_2(\varepsilon) \ge K 2^{-\gamma} \varepsilon^{N-\gamma} \int_{1}^{\rho/\varepsilon} s^{\zeta} ds \, .$$

Hence there exist positive constants K_1 , K_2 , K_3 , independent of ε , such that

$$F_{2}(\varepsilon) \geq \begin{cases} K_{1} \varepsilon^{N-\gamma} & \text{if } \zeta < -1, \\ K_{2} \varepsilon^{N-\gamma} \log \frac{1}{\varepsilon} & \text{if } \zeta = -1, \\ K_{3} \varepsilon^{N-\gamma-\zeta-1} & \text{if } \zeta > -1, \end{cases}$$

in some interval $0 < \varepsilon \leq \varepsilon_1 < 1$, proving the first two inequalities (4.8). The other inequalities (4.8) are established similarly. The conclusion of Lemma 4.1 then follows from (4.6)-(4.8).

We can now prove the following weak version of Theorem 1.1.

THEOREM 4.2. – The differential equation in (1.1) has a nontrivial nonnegative weak solution $u \in E$.

PROOF. – First note that ρ in (4.3) can be selected small enough that $\rho < ||t_0 u_{\varepsilon}||_E$ as well as $J(\phi) \ge c_0 > 0$ for all $\phi \in E$ with $||\phi||_E = \rho$, where $J(t_0 u_{\varepsilon}) < 0$ and ε , t_0 are as in Lemma 4.1. We define

$$c = \inf_{\psi \in \Gamma} \max_{0 \leq t \leq 1} J(\psi(t)) ,$$

where Γ denotes the class of all continuous paths ψ in E joining O to $t_0 u_{\varepsilon}$. Lemma 4.1 implies that

$$0 < c < N^{-1} S^{N/p} \|f\|_{\infty}^{(p-N)/p}$$

and hence J satisfies the $(PS)_c$ -condition by Theorem 3.1. Consequently the mountain pass theorem [1] can be applied to conclude that J has a critical point u with corresponding critical value c. As mentioned in § 2, u is a weak solution of equation (2.5), i.e., J'(u) = 0 in E^* . The choice $v = u_-$ in (2.4) shows that $u \ge 0$ a.e. in \mathbb{R}^N . Furthermore, u is nontrivial since J(u) = c > 0, completing the proof of Theorem 4.2.

To obtain the strict positivity, regularity, and asymptotic decay of this weak solution, we require the next lemma.

LEMMA 4.3. – Let u be the weak solution in Theorem 4.2. Then $u \in L^t(\mathbb{R}^N)$ for all $t \ge p^*$.

PROOF. – In view of (2.4), the equation J'(u) = 0 in E^* can be rewritten in the form

(4.9)
$$\int_{\mathbf{R}^N} |\nabla u|^{p-2} \nabla u \cdot \nabla v \, dx = \int_{\mathbf{R}^N} w u^{p-1} v \, dx \, ,$$

for all $v \in E$, where

$$w = \lambda a + f u^{p^* - p} + g u^{q+1-p}$$

Assumption (1.2) implies that $w \in L^{N/p}(\mathbb{R}^N)$; in fact,

$$\int_{\mathbf{R}^{N}} (f u^{p^{*}-p})^{N/p} dx \leq ||f||_{\infty}^{N/p} ||u||_{p^{*}}^{p^{*}}$$

and by Hölder's inequality

$$\int_{\mathbf{R}^{N}} (gu^{q+1-p})^{N/p} dx \leq \|g\|_{Q}^{N/p} \|u\|_{p^{*}}^{N(q+1-p)/p}.$$

Following the procedure of GUEDDA and VERON [8, p. 882] we introduce a test function $v = \phi_k(u)$ in (4.9) defined for k > 0, $t \ge p^*$ by

$$\phi_k(u) = \int_0^u [\eta'_k(s)]^p ds,$$

where

$$\gamma_k(s) = \left\{ egin{array}{cc} s^{t/p} & ext{if } 0 \leq s \leq k\,, \\ k^{t/p} + rac{t}{p}\,k^{(t-p)/p}(s-k) & ext{if } s \geq k\,. \end{array}
ight.$$

It can be verified easily that

(4.10)
$$\begin{cases} 0 \le u^{p-1} \phi_k(u) \le C_t [\eta_k(u)]^p, \\ 0 \le \phi_k(u) \le C_t [\eta_k(u)]^{p(t+1-p)/t}, \end{cases}$$

for a constant C_t independent of k, and $\eta_k(u)$, $\phi_k(u) \in E = D_0^{1, p}(\mathbb{R}^N)$ for all k > 0. Substituting $v = \phi_k(u)$ in (4.9) we obtain

(4.11)
$$\int_{\mathbf{R}^N} |\nabla u|^p [\eta'_k(u)]^p dx = \int_{\mathbf{R}^N} w u^{p-1} \phi_k(u) dx.$$

Define

$$\Omega_m = \left\{ x \in \mathbf{R}^N \colon w(x) > m \right\}, \qquad m > 0.$$

Then (4.10) and Hölder's inequality yield the estimate

(4.12)
$$\int_{\mathbf{R}^{N}} w u^{p-1} \phi_{k}(u) dx \leq m \int_{\Omega'_{m}} u^{p-1} \phi_{k}(u) dx + \int_{\Omega_{m}} w u^{p-1} \phi_{k}(u) dx \leq m C_{t} \|\eta_{k}(u)\|_{p}^{p} + C_{t} \|w\|_{N/p, \Omega_{m}} \|\eta_{k}(u)\|_{p}^{p},$$

However, the definition of S in (2.6) means that

(4.13)
$$\int_{\mathbf{R}^{N}} |\nabla u|^{p} [\eta'_{k}(u)]^{p} dx = \|\nabla \eta_{k}(u)\|_{p}^{p} \ge S \|\eta_{k}(u)\|_{p^{*}}^{p}.$$

Substitution of (4.12) and (4.13) into (4.11) yields

 $(S - C_t \|w\|_{N/p, \,\Omega_m}) \|\eta_k(u)\|_{p^*}^p \leq mC_t \|\eta_k(u)\|_p^p \,.$

For fixed *m* large enough that $||w||_{N/p, \Omega_m} \leq S/2C_t$, it follows that

(4.14)
$$\|\eta_k(u)\|_{p^*}^p \leq \frac{2m}{S} C_t \|\eta_k(u)\|_p^p, \quad k > 0.$$

By the definition of $\eta_k(s)$, there exists a constant *C*, independent of *k*, such that $\eta_k(s) \leq Cs^{t/p}$ for all $k \geq 0$, $s \geq 0$, and furthermore $\lim_{k \to \infty} \eta_k(s) = s^{t/p}$. Now choose $t = p^*$ and apply Fatou's lemma to obtain

$$\liminf_{k \to \infty} \|\eta_k(u)\|_{p^*}^p \ge \|u\|_{(p^*)^2/p}^p$$

Together with (4.14) this implies that

$$\|u\|_{(p^*)^2/p}^{p^*} \leq \frac{2m}{S} C_t C^p \|u\|_{p^*}^{p^*}.$$

Therefore $u \in L^{(p^*)^2/p}(\mathbf{R}^N)$ and consequently $u \in L^t(\mathbf{R}^N)$ for $p^* \leq t \leq (p^*)^2/p$ by a standard interpolation theorem. Continuing this iteration with $t_i = p^*(p^*/p)^i$, $i = 1, 2, \ldots$ we conclude that $u \in L^t(\mathbf{R}^N)$ for all $t \geq p^*$.

PROOF OF THEOREM 1.1. – The nontrivial nonnegative function $u \in E$ in Theorem 4.2 is a weak solution of the equation $-\Delta_p u = F \ge 0$, where

$$F(x) = \lambda a(x) [u(x)]^{p-1} + f(x) [u(x)]^{p^*-1} + g(x) [u(x)]^q, \qquad x \in \mathbf{R}^N$$

Lemma 4.3 shows that $F \in L^{\sigma}(\mathbb{R}^N)$ for some $\sigma > N/p$. The uniform boundedness and asymptotic decay property $\lim_{|x|\to\infty} u(x) = 0$ of the solution then follow from Serrin's *a* priori estimate [16, Theorem 1] for $-\Delta_p u = F$ in $B_2(x), x \in \mathbb{R}^N$:

$$||u||_{\infty, B_1(x)} \leq \text{Constant} [||u||_{p^*, B_2(x)} + ||F||_{\sigma, B_2(x)}].$$

The strict positivity of u is a consequence of a Harnack-type inequality of SERRIN [16, Theorem 5] applied to an arbitrary ball in \mathbb{R}^N . Tolksdorf's theorem [18, Theorem 1] implies the local $C^{1, \alpha}$ -regularity of the solution.

REMARK 4.4. – An analogue of Theorem 1.1 can be proved for $0 < \lambda < \lambda_0$ by essentially the same procedure in the case that $g(x) \equiv 0$ provided we adjoin the conditions $a(x) \ge a_0 > 0$ and $f(x) \le f(0)$ in some ball centred at the origin. Condition (1.4) is then replaced by the same condition with q = p - 1, i.e. $f(x) = f(0) + o(|x|^{\delta})$, where

$$\delta = \begin{cases} p & \text{if } N \ge p^2, \\ \frac{N-p}{p-1} & \text{if } N < p^2. \end{cases}$$

If $N = p^2$, this can be weakened to $f(x) = f(0) + O(|x|^p)$.

REMARK 4.5. – If $N \ge p^2$, our method extends to more general equations

$$-\operatorname{div} \left[b(x) |\nabla u|^{p-2} \nabla u \right] = \lambda a(x) u^{p-1} + f(x) u^{p^*-1} + g(x) u^q, \qquad x \in \mathbb{R}^N$$

where $b(x) = b(0) + o(|x|^{N/Q})$ in some neighborhood of the origin. Such an extension requires an additional estimate for the function u_{ε} in (1.7), of the form

$$\int_{\mathbf{R}^N} |b(\varepsilon x) - b(0)| |\nabla u_{\varepsilon}(x)|^p dx = o(\varepsilon^{N/Q})$$

as $\varepsilon \to 0$. The details will be deleted. Of course the conclusions apply to all $N \ge (p(q + 1))/(q - p + 2)$, $p - 1 < q < p^* - 1$.

REMARK 4.6. – The function $g(x) u^q$ in (1.1) could be replaced by a more general function g(x, u) with upper and lower majorants of type $g_1(x) u^{q_1}$, $g_2(x) u^{q_2}$ satisfying appropriate technical conditions.

REFERENCES

- [1] A. AMBROSETTI P. H. RABINOWITZ, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), pp. 349-381.
- [2] J. P. G. AZORERO I. P. ALONSO, Existence and nonexistence for the p-Laplacian nonlinear eigenvalues, Comm. PDE, 12 (1987), pp. 1389-1430.
- [3] V. BENCI G. CERAMI, Existence of positive solutions of the equation $-\Delta u + a(x)u = u^{(N+2)/(N-2)}$ in \mathbb{R}^N , J. Math. Anal. Appl., 88 (1990), pp. 90-117.
- [4] H. BREZIS E. H. LIEB, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), pp. 486-490.
- [5] H. BREZIS L. NIRENBERG, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), pp. 437-477.
- [6] K. J. BROWN C. COSNER J. FLECKINGER, Principal eigenvalues for problems with indefinite weight function on R^N, Proc. Amer. Math. Soc., 109 (1990), pp. 147-155.
- [7] H. EGNELL, Existence and nonexistence results for m-Laplace equations involving critical Sobolev exponents, Arch. Rational Mech. Anal., 104 (1988), pp. 57-77.
- [8] M. GUEDDA L. VERON, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal., 13 (1989), pp. 879-902.
- [9] S. KICHENASSAMY L. VERON, Singular solutions of the p-Laplace equation, Math. Ann., 275 (1986), pp. 599-615.
- [10] M. C. KNAAP L. A. PELETIER, Quasilinear elliptic equations with nearly critical growth, Comm. PDE, 14 (1989), pp. 1351-1383.
- [11] P. L. LIONS, The concentration-compactness principle in the Calculus of Variations. The locally compact case, Parts 1 and 2, Ann. Inst. H. Poincaré: Anal. non linéaire, 1 (1984), pp. 109-145 and 223-283.
- [12] P. L. LIONS, The concentration-compactness principle in the Calculus of Variations. The limit case, Parts 1 and 2, Revista Math. Iberoamericana, 1 (1985), pp. 145-201 and 1 (2) (1985), pp. 45-120.

- [13] W.-M. NI, On the elliptic equation $\Delta u + K(x)u^{(n+2)/(n-2)} = 0$, its generalizations, and applications in geometry, Indiana Univ. Math. J., 31 (1982), pp. 493-529.
- [14] W.-M. NI J. SERRIN, Existence and nonexistence theorems for ground states of quasilinear partial differential equations. The anomalous case, Accad. Naz. Lincei, 77 (1986), pp. 231-257.
- [15] E. S. NOUSSAIR C. A. SWANSON YANG JIANFU, Quasilinear elliptic problems with critical exponents, J. Nonlinear Anal., 20 (1993), pp. 285-301.
- [16] J. SERRIN, Local behavior of solutions of quasilinear equations, Acta Math., 111 (1964), pp. 247-302.
- [17] F. D. THELIN, Local regularity properties for the solutions of a nonlinear partial differential equation, Nonlinear Anal., 6 (1982), pp. 839-844.
- [18] P. TOLKSDORF, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), pp. 126-150.
- [19] J. L. VAZQUEZ, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), pp. 191-202.
- [20] ZHU XIPING YANG JIANFU, The quasilinear elliptic equation on unbounded domain involving critical Sobolev exponent, J. Partial Differential Equations, 2 (1989), pp. 53-64.