Annali di Matematica pura ed applicata
(IV), Vol. CLXIX (1995), pp. 233-250

Critical p-Laplacian Problems in R" (*).

CHARLES A. SWANSON (**) . Lao SEN YU (**)

Summary. — The main theorem establishes the existence of o positive decaying solution
u e D P (R¥) of a quasilinear elliptic problem involving the p-Laplacian operator and the
eritical Sobolev exponent pN/(N — p), 1 < p < N. The conclusion depends on the existence
of a lowest eigenvalue of a related quasilinear eigenvalue problem. A preliminary result
yields a Palais-Smale compactness condition for an associated functional via concentra-
tion-compactness methods of P. L. Lions.

1. - Introduction.

Our objective is to prove the existence of a positive solution u(x) of the quasilinear
elliptic problem
—d,u = ra@)u” "+ fw)w?” "+ gm)u?, weRY

we Dy'? (RY) N Cig” (RY), l lllm u(x) =0

(11)

for all 2 in some interval [0, A). In (1.1) 4, = div(|Va|? ~?Vu) is the p-Laplacian and
p*=pN/(N —p) denotes the critical Sobolev exponent, 1 <p < N. As usual,
D ?(R") denotes the completion of C;° (RY) in the norm |Vau|,, where |- |, is the
standard L? (RY)-norm.

Hypotheses for (1.1).

p—1<q<p*—1and q,f g are nontrivial nonnegative bounded functions in RY
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such that

12 aeL“P(RY), feCh((RY), geL%R"Y)
for @ = pN[pN — (¢ + 1)(N — p)]};

(1.3) f(0) = sup f(@) = |fll;
xeRY
and
(14) flx) =f0) +o(|x]|®), gx)=gy>0

in some neighborhood of x = 0, where

N . plg+1)
B if Nz ——=—,
5o Q g—p+2
NQ-1) . plg+1)
Q(p-1) q-p+2°

THEOREM 1.1. — Under these conditions, there exists Ay > 0 such that problem (1.1)
has a positive solution wu, for all A in 0 < A < A,.

The proof will be given in § 4 on the basis of the compactness result in Theorem
3.1, where 2, is defined to be the lowest eigenvalue of the problem

- Ayu = a(x)uP ", zeRY,
(1.5)

u e D§P(RY) N Cie*(RY), Jim_ (@) = 0.

The existence of A, and an associated weak positive solution of (1.5) will be estab-
lished in Theorem 2.1 via the constrained variational problem

(1.6) do = inf{”Vqu: ||u||p,a =1, ue D&”’(RN)},
where

lulz o= j lu(e) | o) ds .
RY

The necessity of the condition X < 2, in Theorem 1.1 can be shown from an adapta-
tion of Egnell’s proof [7, Theorem 8], given for a case of (1.1) in a bounded domain Q.
If g(x) = 0, positive solutions of (1.1) do not exist in general for A < 0 by PohoZaev-
type identities, e.g., no positive solution exists for A = 0 if g(x) = 0, f(x) is noncon-
stant, and «- (Vf)(x) is either nonnegative or nonpositive throughout RY. However, a
positive solution can exist for A < 0 if g(¢) = 0 and f(x) is a constant, as demonstrated
by BENCI and CERAMI [3] in the case p =2, A= — 1, f(x) = 1, and ||a|x/» sufficiently
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small. It is well known that the equation —4,% = uP" "1, with A = 0 and f(x) = 1, has
solutions

/-1 (N-p)fp

(1.7 u. (x) =K , xeRY

cP/p-1 4 Iwiﬂ/(p—l)

for any ¢ > 0 and a suitable normalization constant K > 0, as well as all translations of
u, (&), This fact is crucial in the theory of critical p-Laplacian problems.

Problems of type (1.1), usually with g(x) =0, in bounded domains have been
studied in depth by AzorRERO and ALoONSO (1], BENCI and CERraMI|3], BREZIS and
NIRENBERG [5], EGNELL [7], GUEDDA and VERON [8], and KNaAP and PELETIER [10].
Surprisingly the requirement N = p? for these results is not needed here. As far as
we are aware, only NI and SERRIN [14], NOUSSAIR ¢t al. [15], and ZHU and YANG [20]
considered p-Laplacian equations in unbounded domains; however, the nonlinear
structure, objectives, and/or methods differ from those presented here.

§ 2 contains notation, definitions, and an existence theorem for (1.5). A Palais-
Smale compactness condition is proved in § 3, as required for the proof of the main
Theorem 1.1 in §4.

2. — Preliminaries.

Let B,(x)={yeR": |y —=x| <p}, B,=B,(0), and B, =R"\B, for >0,
x e RY. The standard norm in the weighted Lebesgue space L°((, a) will be denoted
by

1/c
Ilulla,a,g=[flu(x)l%(w)dx]/ ., o=1, QcRY,
0

and we set [u, o = %l o &¥, [|%]. = l|]l,, 1. The space E = Dg'?(R") is the comple-
tion of Cg°(R") in the norm [|Vu|,. The norm in E is sometimes denoted by

lullz-

THEOREM 2.1. — The infimum A, > 0 in (1.6) is attained by a positive weak sol-
ution uy of (1.5).

Proor. - Clearly 2, > 0 since
@.1) lull3 o < Cllallws IVul
for all € E by Holder’s inequality and the continuity of the embedding E — L?*(RY),
where C is the embedding constant. The boundedness of a minimizing sequence {u,}

for (1.6) implies that {u,} has a weakly convergent subsequence (also denoted by
{u,}) with weak limit u, € E. The procedure for (2.1) yields the estimate

@2 lun = ullf, o < llallw llun = uolf, 1, 5 + Clallngp, 1, 5 AVRRlZ + [V [2) -
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Since a € L¥?(R") by (1.2), ||a|n/p, 1,5, — 0 as k— o, and hence the compactness of
the embedding W' ?(B,) < L”(B,) implies that {u,} has a subsequence, denoted the
same way, such that [[u,l|, o — l[ull,, o, as n — ©. Therefore [lugll,, o = 1, | Va5 = 2o,
ie., %y attains the infimum in (1.6), and consequently u; is a weak solution of (1.5) by
the Euler-Lagrange principle. Since |u,| also attains the infimum in (1.6), it can be
assumed that %, = 0. The positivity of u, then follows from a Harnack-type inequality
of SERRIN[16, Theorem 5]; see also[7, Proposition A3].

REMARK 2.2. ~ The method in [6] shows that 4, is a principal eigenvalue of (1.5),
even if a(x) changes sign in RY.

Solutions of (1.1) will be obtained as critical points of the functional J defined
by

@23)  Jw) = f[%qul”— 20 ,p -ﬁf;ug*— F“z—l

+1
m wi*tlde, wuek,
RN

where %, (x) = max{u(x), 0}. On account of the continuity of the embedding
E < LP"(RY) and estimates of type (2.2), standard procedure from the Calculus of
Variations shows that J(u) is well-defined on E and has a continuous Fréchet deriva-
tive given by

24) J’(u)v=I[]Vu|p”2Vu-Vv—mu£‘1v—u’i*‘lv—-gu‘iv]doc, u,vek.
RN

Furthermore, any critical point % of the variational problem in § 4 for J(u) satisfies
J'(w) =0 in E*, meaning that » is a weak solution of the equation

(2,5) -Vou=2oul "t +ful " t+gul, wuek.

We use the notation S = C,, 7, where C, is the best (= minimum possible) constant
for the Sobolev inequality

lullps < CpllVull,, ueE.
It is known[12] that C, is attained by the function %, in (1.7), ie,
@6) S =1V g e = i CI¥ulg flulze].

Since u, solves —4,u, = uP* 1, as already mentioned, integration by parts yields
|V, |2 = lu.|[5« implying in view of (2.6) that

27 s=[ [ u5*<x)dx]pm.

RN
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3. — The palais-smale compactness condition.

The functional J on F is said to satisfy the (PS),-condition if and only if every se-
quence {u,} in E for which J(u,) — ¢ and J'(u,) — 0 in E*, as n — », has a conver-
gent subsequence in the E-norm.

THEOREM 3.1. — Let Aq, S be the numbers in (1.6), (2.6), respectively. If 0 < X < Xq,
then J = J, satisfies the (PS),-condition for every c in the interval

3.1) 0<c¢<NIS¥r|f|@-ir

ProoF. - Let {u,} be a sequence in E such that J(u,) — ¢ and J'(u,) — 0 in E*. By
(2.3) and (2.4) this means that

1 p_M_p__)f_ pr _ 9 g+l =
3.2) J[p [V, | o Ui e ul’ T+1 uitllde =c+o(1)
RY
and
(33) [ U1Vun|? ~ 2aub. ~fuls — gui '] do = oDl s
RN

as n — o, implying

-5

[ futtvdo + (1 - —i—) [ quitide = cp + o(1) + o8y,
RY E

g+1 J

where 8, = ||u,|g. Since p < g+ 1 < p* it follows that

3.4) j ful” de = 0(1) + o(8,)
RN
and
(3.5) [ guaide =000 + (8.
RN

Combining (3.3)-(3.5) we obtain
BE = Mg+ 15,0 = 0(1) + 0(8y).
Then the definition of A, in (1.6) yields

0<(1— J—)ﬂzsouno(ﬂn),
o

implying that {3,} is a bounded sequence. It follows that {u,} has a subsequence,
also denoted by {u,}, which converges weakly in E to a weak limit % € E. Also the se-
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quence of norms {||Vun||p} has a convergent subsequence (denoted the same way)
whose limit must be positive as a simple consequence of (3.2):

3.6) L= lim || Vu,|z>0.

The weak lower semicontinuity of the functionals, as described in §2, implies
that

3.7 Tim J (au?, + guitVde = j(mug +gul*Yde.
RN RV
We now verify that
3.8) H= j Oau? + gui*de > 0.
. RN
If H =0, (3.3) would imply
3.9 j |Vas, |2 de = j Ful’ de + o(1) + o(Dfes, |1
RY RY

as n—> o, In view of (3.6), it follows from (3.9) in the limit » — © that

(3.10) L= lim j ful’ dw >0,
RN
and consequently (3.2) yields
p p* N’
ie, by (3.1),
(3.11) L = Nc < S¥P|f|-rr

However, by the definition of S in (2.6),

L= lim [Vu, 3> S lim o - > Sllfllﬁ-é"N>/anignw[ [ ug’. d

W-p/N
RN
= Sllplgwm Lo,

equivalent to L = SYP|f||¢ -/, contradicting (3.11). This completes the proof of
(8.8). On account of (3.8), it cannot be that
(8.12) Jim  sup (raul,. + guliHde =0

N
veR galy)

for all Re(0, ), ie., «vanishing» of the sequence {iauf, + guli'} cannot oc-



C. A. SwANSON - Lao SEN Yu: Critical p-laplacian, elc. 239

cur[11, p. 115]. We next show that the sequence {z,} defined by
(3.13) 2y = |Vt |P + |, |P°+ daul, + gudt!
is «tight», as defined by Lions[11, p. 115]. Note first from (3.6) that
(3.14) Ly= lim f 2, (x)de > 0,

BY

passing to a subsequence if necessary. Since «vanishing» of {z,} cannot ocecur, it fol-
lows from the proof of LioNs[11, pp. 116-117] that {z,} is tight unless, for arbitrary
¢ > 0, there exist R >0, A € (0, L,) and sequences R, T + «, 5, e RY such that

-

2. {e)de — A ' <e,

Bp(yn)

(3.15) T | zn(w)dx—L0+A‘ <e,

By, (yn)

2, (@) dx

<eg,

L Bp, (42)\Bg (y)

for all n = ny(R). We introduce functions ¢’ C;° (RY) such that 0 < ¢'(x) <1, i =
=1, 2, and

<1 0 if || <1,
>3, 1 if |x] =2,

1 if ||
l

¢1<x>={0 il oo ¢2<x>={

and we define u!=¢Lu,, i=1,2, n=1,2, .., where ¢.(x)=¢'((x - y,)/R),
¢2(x) = $2((x — Y»)/R,). Then suppu,. and suppu? are disjoint sets for every n =
=1,2,.... Use of (3.15) in (3.2) and (2.4) (taking v = u}), respectively, gives

g
q+

2 1 i A o L e i g+l _
(8.16) Elkﬂpl‘%l” p (sl p*(un+)’” T (Un ) }dx-

=c+o,(1)+0.(1)

and

3.17) J [IVai|? = 2a(u} P — flud P = glut )11 dee = 0, (D], || + 0.(1),

RN

where 0,(1)—0 as ¢—>0+.
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As in (3.6), passing to subsequences if necessary, there exist nonnegative limits
aq, Bi, t =1, 2, defined by

3.18) 2= lim [Da(ud ¥+ gtuy )" de,
RN
(3.19) 8i= lim jf(u;;gp* de, i=1,2.
RN

It follows from (3.17) that

(3.20) [ 19017 = a; + B+ 00 (Dl + 0.(1).
RY

Since g + 1 > p by hypothesis, substitution of (3.18)-(3.20) into (3.16) leads to

a;+ B B %
P IR AU T
) e AT
equivalent to
+
(8.21) ¢ —ﬁ—l—ﬁ& +0,(1).

It can be verified easily from (3.15), similarly to (8.16) and (8.17), that either

(3:22) Jim [[aud, P + gl ¥ ldo =0
RN

or

(3.28) Jim [ [a(uls ) + gl Ndo =0
RY

according as {¥,} is bounded or |y, | — «, respectively. In the case (3.22), let n — o
in (3.17) to obtain, in view of (2.6) and (3.19),

Bat+ o (V)= lim |[Vu7|p =S lim [lug. [ = S|Vl P
By (3.21) this implies that
Ne = 8y +0.(1) 2 SN 127 + 0,(1),

contrary to hypothesis (3.1) since ¢ is arbitrary. Virtually the same procedure also
leads to a contradiction in the case (8.23). Accordingly, (3.15) is impossible and hence
the sequence {z,} in (3.13) is tight, i.e., there exists a sequence {,} in RY such that,
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for arbitrary ¢ > 0 there exists R e (0, «) with

(3.24) f 2, () d < <.
Bh(yn)

It must be that {y,} is bounded, for otherwise (3.24) would imply, in the limit

n-—> ®,

I(Aau’; +gui*)de < Ce?
RN

for some positive constants b and C, independent of ¢, contrary to (3.8). Thus we can
replace y, by 0 in (3.24) to obtain

[ lu @l de < [ z,@)de <,
, B
showing that {|u,. |?"} is tight.

It follows from the foregoing that there exist bounded nonnegative measures g, v
on RY such that |Vu, | — ¢ weakly and |u,|P" — v tightly as » — » [12, p. 158], and
likewise |Vu,, |?P—>u, weakly, |u,.|P"—v, tightly. Lemma 1.1 of LioNs[12]
states that sequences {x;} cRY, {u;}, {v;}c(0, ®) exist such that u;=> SvP/*"
and

o Zz Ivuip + _Zlf‘jaxj’
JE
(3.25) v a4 2 ey,
je

= ,u+,p*+ 2 Vj+a:cj’
Jjels

where &,, denotes a Dirac measure, j e I, I, ¢ 1. In the limit n — o, (3.2) and (3.3) then
yield, respectively,

l = 2D _L P _l_ ) . g g+1
(326) fdy. C+I[pu o ++p*j§+v]+f(xj)+q+1u+ dx,
RY EY
3.27) fd#— f[/\au” + ful + E v]+f(x])+guq”}dx
RY RY

Since 1 —~ p/p* = p/N and ¢ + 1 > p, multiplication of (3.26) by p and subtraction of
the result from (3.27) gives

jely

(3.28) ¢ —117 l [fu” + 3, f(x,]
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For nonnegative ¢e Cy° (RY), it follows as in GUEDDA and VERON[8, p. 898]
that

qudys j;sv-vudm j¢fdv+,
RY RY RY

where Ve L? (RV)V is the weak limit of |Vu,|?P ~2Vu,. If ¢ is concentrated on the se-
quence {;}, j € I, , this reduces to ; < v, f(x;). Since also Sv}’/”* < p; from (3.25), it
follows that

vie = SVPLfa)
If I, is nonempty, (3.28) would imply that

c= =8Py [f(xj)](p~N)/p > _1]\7 SN £l -,

1
N jel,

contrary to (3.1). Therefore I, is empty, and (3.25) shows that |lu, . [, — |4+
n— . By a lemma of BrEZIS and LIEB[4], u,, —> %, in the norm [ - [|,.
In conjunction with (2.4), we use the notation

p* as

Jo(w)v = J[Aauﬁ‘lv + ful v+ gulvlde
RN

for u, ve E. An inequality of THELIN [17] (see also KICHENASSAMY and VERON [9])
yields

(3.29) | Vtbyy = Vb |P < (| YVt |P 72Vt — | Vit |P~2Vu,) - (Vit, — Vi),

p=2, mn=12,..
and
3.30) |V, — Vit |? < [(| Vit |P "2V, — |V, [P~ 2Va0,) - (Vi — Vi) P12
[Vt |P + |V, |P1E P2 1<p<2, mn=12, ...
In the case p = 2, it follows from (3.29) that
|t — wnllz < | Q) 0, — )| + | ) U, — w,) | +
15 ) (U, — U) = Tg () (U, — %) | -

This together with the convergence of {u, .} in L?*(R") implies the convergence of
{u,} in the E-norm. The argument via (3.30) in the case 1 <p <2 is virtually the
same, completing the proof of Theorem 3.1.
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4. — Proof of Theorem 1.1.

In order to apply the mountain pass theorem[1] to the functional J in (2.3), we
first show there exists a function . € £ of type (1.7) such that J{{,u,) < 0 for suffi-
ciently large t, > 0 and sufficiently small ¢ > 0, and furthermore sup J(f%,) = ¢ is in
the interval (3.1). t20

LEMMA 4.1. — Under the stated conditions for (1.1), there ewist positive numbers ¢
and t, such that J(tyu.) <0 and

@y 0 < sup J(tu,) < % SN 2=
tz0

PROOF. — For 0 < 4 < Xy, Theorem 2.1 shows that
(4.2) IVallp = Auls o Z cl|Vullp, weE

for some ¢ > 0, independent of %. On account of (1.2), (2.3), and (4.1), an estimate of
type (2.1) for ||u[i] , and the continuity of the embedding E < LP"(RY) imply the
existence of a constant C, independent of %, such that

Jm>agwﬂ%—cmM%+MM%“x uek.

Since p — 1 < g < p* — 1 by assumption, a sufficiently small positive number ¢ can be
found for which

p
(4.3) J(u) = Czp_p =¢, for all u with |ulz=5.

With «, as in (1.7), ¢ > 0, it is clear from (2.3) that tlim J(tu,) = — o for all ¢ > 0, and

hence sup J(tu.) is attained at some number ¢, (¢, > 0 by an estimate of type (4.3)). It
t20
is an easy consequence of J'(f,u.) =0 and (24) (with % =¢t.u,, v =u,) that

(N - p)/p?
(4.4) tss[ ] |V, |Pdz / f f(x)uﬁ"dx} .
RY RY

By the change of variable ¥ = ¢y it is a consequence of (1.7) that

JquE(.x)(pdx= J | Vay () |P dy
RY

RN

and

[ f@)ur @de = [ feapul’ py.
RY By

The continuity of f at 0 together with (1.8) and (4.4) show that there exists R > 0 such
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that

. W=t
4.5) . < [2 f | Vi |7 dy /f(O) J‘uf d’y} .

RY Bg
On account of the definition of ¢, it follows from (2.3) that

46 sup J(tu,) = J(t.u) = Fi(e) = Fp(e) + F3(e),

t=0

where

Fi(e) = 5if [ |Val?de = -1 f(0) [ uf"do,

BY RY
A 1
Fy(e) = [——tfau5+ ———tﬁ“guf“]dx,
Rl » g+1
Fye) = —t?" [ LA - flephud” () dy
RV

For positive numbers A and B, the maximum of ¢(t) = Ap ~*t? — B(p*)™'t?" for t = 0
is attained at t = (4/B)YN ~P/?" from which (2.6) gives

4D RO (G - o |0 IT 2 = L8P

1t can be assumed without loss of generality that there exists a positive constant t
independent of ¢, such that ¢, = t for all ¢ in an interval 0 < ¢ < ¢, for otherwise there
would be nothing to prove. In fact, if there exists a sequence {¢,} such that ¢, }0,
then by [|Vu,[|2 = SV for all ¢ >0 from (2.6) and (2.7), it would follow that

sup J(tu,) < =12 [Va | < % S| f g e
120 p N
by a choice of ¢ = ¢, for which
D el -wy
P p - N)/p
tE < N Hf“m .

Calculations using (1.7) show that there exists a positive constant C, independent of



C. A. SwansoN - Lao SEN Yu: Critical p-laplacian, etc.
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&, such that

2 (e) = Ce 1fN¢q‘p+2’

F : +1
2(8)?C&'°10gl ij:p_(q___)’

y g—p+2

(4.8) <F C plg+1)
<5 £ N 2OFD
() 26 ]fNyéq—p+2,

¢ 1 . plg +1)

F s - ’ = ———
\3(5) gclgy HN parnr

in some interval 0 < ¢ < g5 <1 where ¢ is as in (14).
To verify the first two inequalities (4.8), we use the abbreviations

_ N-pg+ 1) N+ DY
y=—"%—, (=N-1 o1

The definitions of @ and ¢ in (1.2) and (1.4) show that N(Q — 1)/Q = y and

+1
g—p+2
. plg+1)
§=N-y-{- N< —"—=
N Y G 1 If q_p+2,
equivalent to
5= N-vy if {< -1,
T IN-y-z-1 if¢>-1.

By assumption (14), g(x) = go > 0 in some ball B,(0), o > 0. The definition (1.7) of
u. () shows that there exists a constant K > 0, independent of ¢, such that

e
1/Mp-1) Y
> € N-1
F2(s)/Kj(ep/(p-1)+rp/<p—1)) v,
)

where r = |x|. For ¢ > 0 small enough that o/c > 1, and s = /e, this implies

efe
Fy(s) aKz—YgN-rjsids.
1
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Hence there exist positive constants K, K,, K;, independent of ¢, such that

KIEN_Y if ¢< -1,
Fi(e) 2 KZsN“Ylog%

KSEN—)'—L'—I 1f€>_1,

if {=-1,

in some interval 0 < ¢ < ¢; < 1, proving the first two inequalities (4.8). The other in-
equalities (4.8) are established similarly. The conclusion of Lemma 4.1 then follows
from (4.6)-(4.8).

We can now prove the following weak version of Theorem 1.1.

THEOREM 4.2. — The differential equation in (1.1) has o nontrivial nonnegative
weak solution u e E.

PROOF. — First note that o in (4.3) can be selected small enough that o < ||tyu, |5 as
well as J(8) = ¢, > 0 for all ¢ e E with ||¢]|z = p, where J({,u,) < 0 and ¢, {, are as in
Lemma 4.1. We define

€= }relfz.‘ orgtaé TG,

where I" denotes the class of all continuous paths ¢ in E joining O to tyu,. Lemma 4.1
implies that

0< o< N f]

and hence J satisfies the (PS)-condition by Theorem 3.1. Consequently the mountain
pass theorem [1] can be applied to conclude that J has a critical point % with corre-
sponding critical value c. As mentioned in § 2, » is a weak solution of equation (2.5),
ie., J'(u) =0 in E*. The choice v = u_ in (2.4) shows that » = 0 a.e. in RY . Further-
more, % is nontrivial since J(u) = ¢ > 0, completing the proof of Theorem 4.2.

To obtain the strict positivity, regularity, and asymptotic decay of this weak sol-
ution, we require the next lemma.

LEMMA 4.3. — Let u be the weak solution in Theorem 4.2. Then u e L*(RY) for all
t=p*.

ProOF. —~ In view of (2.4), the equation J'(u) =0 in E* can be rewritten in the
form

(4.9) j [Vu|P2Vu-Vode = qup‘lvdx,
RV RY
for all ve K, where

w=2a+fuf” P +gulttcr,
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Assumption (1.2) implies that w e LY?(RY); in fact,
f(fu”*‘?’)N/’”dx < [ F1EP|ullgs
RN
and by Hélder’s inequality
[Gur1=ryida < gyl -
RN
Following the procedure of GUEDDA and VERON [8, p. 882] we introduce a test

funetion v = ¢, (%) in (4.9) defined for k>0, ¢t = p* by

#1(w) = [Ini(s)P ds,

0

where

St/p ﬁosSSky
N (8) = { Kt + %ka—p)/p(s—k) ifszk.

It can be verified easily that

{ 0<uP ¢, (u) < Cly ()P,

4.10
(4.10) 0 < ¢, (u) < [y (w)Pe+1-p/t

for a constant C, independent of k, and n; (%), ¢, () € E = D P(RY) for all k > 0. Sub-
stituting v = ¢,(«) in (4.9) we obtain

@11 [ |Va|? [nh ()P doe = fwup-lqsk(u)dx.
RN RY
Define
Qn={xeR¥: wx)>m}, m>0.

Then (4.10) and Hélder’s inequality yield the estimate

4.12) fwu”‘lgbk(u)demfup‘1¢k(u)dx+ fwup—lgsk(u)dxs

BV O Qu

< mCy |lnk(u)ll?3 + Ct”w”N/p, 0,1 (w)

However, the definition of S in (2.6) means that

..

(4.13) f [Vae|? [ (w)P diw = || Vp () ||B = Sy ()35
RV
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Substitution of (4.12) and (4.13) into (4.11) yields

be < mCyfmi ()} -

S-¢ “'wHN/p, )17 (w0)
For fixed m large enough that |wl|ys, o, < S/2C,, it follows that

(4.14) Il < 22 Cllmely, k>0,

By the definition of 1, (s), there exists a constant C, independent of &, such that
n,(s) < Cs*? for all k = 0, s = 0, and furthermore klim ni(s) = s*P. Now choose t =
=p* and apply Fatou’s lemma to obtain -

liminf |, w5+ = ltperp -
Together with (4.14) this implies that

% 2 *®
Tosrsp ‘Sm C,C? Hullﬁ* .

|

Therefore % e L""*/?(RY) and consequently u e L'(RY) for p* <t < (p*?/p by a
standard interpolation theorem. Continuing this iteration with t; = p*(p* /p), i =
=1,2, ... we conclude that u e L*(R") for all t=p*.

Proor oF THEOREM 1.1. — The nontrivial nonnegative function # € E' in Theorem
4.2 is a weak solution of the equation —4,u = F = 0, where

F(x) = aral@)u@)F ~ + flo)u@)P 1+ glou@)]?, xzeRV.

Lemma 4.3 shows that F e L°(R") for some ¢ > N/p. The uniform boundedness and
asymptotic decay property l llim u(x) = 0 of the solution then follow from Serrin’s o

priori estimate [16, Theorem 1] for —4,u = F in By(x), x e R":

|4l w, B,y < Constant [ ||, 5y + [1F |, 5,01 -

The strict positivity of u is a consequence of a Harnack-type inequality of SERRIN [16,
Theorem 5] applied to an arbitrary ball in RY. Tolksdorfs theorem [18, Theorem 1]
implies the local C' *regularity of the solution.

REMARK 4.4. — An analogue of Theorem 1.1 can be proved for 0 < A < A, by essen-
tially the same procedure in the case that g(x) = 0 provided we adjoin the conditions
o(x) = ay > 0 and f(x) < f(0) in some ball centred at the origin. Condition (1.4) is then
replaced by the same condition with ¢ = p — 1, ie. f(x) = f(0) + o(|2|°), where

p if N2zp?,
&= —_
N—-lg if N<p?.

If N =p?, this can be weakened to f(x) = f(0) + O(|x|?).
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REMARK 4.5. — If N = p2, our method extends to more general equations
—div [b(x)|Vu|? "2Vu]l = da(x)u? '+ f@)uf" "1+ g(x)u?, xeRY

where b(z) = b(0) + o(|x|¥/?) in some neighborhood of the origin. Such an extension
requires an additional estimate for the function #, in (1.7), of the form

j |b(ex) — b(0)] |V, ()] da = o(V/?)
RN

as ¢ — 0. The details will be deleted. Of course the conclusions apply to all N = (p(q +
+1)/(g-p+2),p-1<g<p*-1L

REMARK 4.6. — The function g(x)«? in (1.1) could be replaced by a more general
function g(x, #) with upper and lower majorants of type g; (x) u%, g, (x) u % satisfying
appropriate technical conditions.
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