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Classifying Spectra for Generalized Homology Theories (*). 

FRIEDRICH W. BAUER 

Abstrac t .  - The well-known fact that each generalized homology theory h, on the category of CW 
spaces has a classifying spectrum E which is unique up to an isomorphism in the Boardman 
(homotopy) category is proved by using the fact that each such h, comes from a chain functor 
(cf. [1] or w 9). The proof does not use S-duality nor E. H. Brown's representation 
theorem. 

O. - I n t r o d u c t i o n .  

The classical existence proof of a classisying spectrum E for a generalized homolo- 
gy theory h ,  (defined on the category of CW spaces) involves S-duality and E. H. 
Brown's representation theorem [8], [9], [10]. Simultaneously with the discovery of 
this important result the question came up quite naturally whether there exists a di- 
rect proof, which eventually provides us with a canonical construction of a classifying 
spectrum. The proof of Theorem 1.1 settles this question in the affirmative. The basic 
t o o l  which has to be involved is the existence of a chain functor C ,  (), related to the 
given homology theory (cf. [1] resp. w 9 of the present paper). We get E almost imme- 
diately from the existence of a chain functor C , ,  determining the given homology 
theory h,  (which is guaranteed by Theorem 9.4). The present paper can in fact be re- 
garded as a biproduct of this existence theorem for C ,  (being originally designed for 
the purpose of establishing a strong homology theory on a strong shape category). 

In w 3, w 4 we establish a natural isomorphism between E ,  and the given homolo- 
gy theory h,, while w 5 is devoted to a verification of the fact that a homology theory 
E ,  (which is already given by means of a spectrum E) is associated with a spectrum 

(using the construction displayed in w 2) which is in the Boardman hom0topy cate- 
gory isomorphic to E. In w 6 we complete the proof of the main Theorem 1.1. The en- 
suing Sections w 7, w 8 contain a series of assertion which are needed in the previous 
parts of the paper, in particular Theorem 8.1, asserting that the spectrum E con- 
structed in w 2 is a Kan spectrum. The final Section w 9 gathers together some facts 

(*) Entrata in Redazione il 22 marzo 1991. 
Indirizzo dell'A.: Kurhessenstrasse 65, 6 Frankfurt a.M. 50, Germany. 
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about chain functors (without proofs). Lemmas 9.7, 9.8 are immediate consequences 
of the explicit construction of a chain functor C ,  given in [1]. A detailed account of 
this material can be found in [1]. In w 1 we state the main theorem and discuss some of 
its consequences, some remarks about different categories of spectra are includ- 
ed. 

The general reference for simplicial sets is [3], [7], while the theory of simplicial 
spectra is sufficiently well treated in [4]-[6]. 

1. - The f o r m u l a t i o n  o f  the  m a i n  t h e o r e m .  

Let CWog be the homotopy category of based CW spaces. A (reduced) homology 
theory h ,  : CWo~ ~ AB z is 1) a sequence of functors hn : CWoh ---> AB, n ~ Z, 2) a se- 
quence of natural isomorphisms y = ~,~ : h~(X) --~ hn+x (~X) (~ = reduced suspension), 
satisfying an exactness axiom and an axiom of compact carrier, expressing the fact, 
that the natural transformation 

li_m h,~ (K) ~ hn (X) , 
K c X  

K being compact, is an isomorphism. We have the concept of a natural transforma- 
tion ~: h ,  --, h', between such homology theories and therefore that of a category ~ ,  
of homology theories on CWoh. 

There is a well-known functor (being essentially due to G. W. WHITHE- 
HEAD [9]) 

W: ~h ~ ~ , ,  

assigning to each object in the Boardman category (i.e. to a spectrum or prespectrum 
E = {Ek}, cf.[2] for further references) a homology theory E , ( ) e ~ , ,  defined 
by 

E~(X) = 7:n(X A E) .  

The spectrum E is called the classifying spectrum of this homology theory 
W(E) ,  = E ,. 

On the other hand we take over from [1] the concept of a chain functor C,  : K ~ ch 
(= category of chain complexes), Definition 9.3, which can be defined on any category 
of topological spaces, in particular on CW, the category of (unbased) CW spaces. 
There is an obvious functor (cf. Proposition 9.2): 

H , :  ~ ,  --~ ~ ,  

from the category of chain functors into the category ~ , ,  which is simply defined by 
forming the homology theory related to C ,  e ~ ,  i.e. one considers H , ( C , ) ( )  (and 
then going over to reduced homology by a well-known procedure). The morphisms of 
~ ,  are transformations of chain functors, (cf. Definition 9.5) i.e. natural transforma- 
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tions being compatible with the additional structure of a chain functor, cs Definition 
9.3. Moreover we assume (unlike to the situation in [1]) that all chain functors in ~ ,  
have compact carriers (which is motivated by the fact that all homology theories are 
supposed to have this property). For the convenience of the reader this material on 
chain functors is briefly recorded in w 9. The main objective of the present paper is 
embodied in the proof of the existence of a functor (now for K = CW) 

(1) Cl: ~ ,  ~ ~h 

which behaves as it is expected: 

1.1. THEOREM. - There exists 1) a functor (1), 2) a natural isomorphism 

~: W'CI ~ H ,  

and 3) to each E e ~h and each C ,  e ~ satisfying H ,  (C , )( ) ~ E ,  ( ) an equivalence 
in ~h 

,3: CI(C. ) ~ E .  

This theorem will be proved in the course of this paper. A stronger statement, as- 
setting that W is in fact an equivalence of categories is well-known to be false. It oc- 
curs that different mappings in 23h give rise to the same natural transformation be- 
tween homology theories in g~, (cf. [8] Theorem 17, p. 63). More precisely the catego- 
ry ~9, turns out to be equivalent to the category 2~h/ph, where homotopy is replaced 
by weak homotopy (or alternatively: by taking classes of mappings in ~ ,  modulo 
some kind of phantom maps), cf. [8] Proposition 14, p. 75 for the details. 

Theorem 1.1 implies immediately: 

COROLLARY 1.2. - Every homology theory h ,  e �9  admits a classifying spectrum 
E, i.e. one has h ,  --~ E , . Moreover this spectrum is uniquely determined by h ,  up to 
isomorphisms in ~h. 

So Theorem 1.1 appears as a reasonable way of providing us with classifying spec- 
tra in a functorial way. The functor H ,  does again not admit an inverse. The quite 
complicated relationship between chain functors C , ,  C, ,  giving rise to isomorphic 
homology theories H ,  (C,)(  ) -~ H ,  (C,)( ) involves the concept of an ~-functor and 
is not needed in the present paper. 

In order to deduce Corollary 1.2 from Theorem 1.1 we have to apply Theorem 8.1 
in [1] (or Theorem 9.4 in this paper) ensuring the existence of a chain functor for a 
given homology theory h,.  This result in conjunction with Theorem 1.1, guarantees, 
that every homology thet)ry admits a classifying spectrum E, which, according to 
Theorem 1.1. 3) is unique (within ~h). 

Neither the existence nor the uniqueness of a classifying spectrum for a given ho- 
mology theory are new (cf. [9] Theorem 14.35, p. 329; [8], chapter 5). Therefore full 
emphasis is laid upon the method of construction of CI (C,  ()) -- E, resp. of the map- 
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ping ~ in w 5 which do not involve S-duality nor E. Brown's representation theorem 
for cohomology theories. The detection of such an independent, direct proof of the ex- 
istence and uniqueness of a classifying spectrum has been an open question. 

The proof of Theorem 1.1 uses at different occasions different descriptions of 
stable categories which are (at least on the homotopy level) all equivalent. In particu- 
lar the category Sp of simplicial spectra ([4] Definition 4.1) is crucial four our purpos- 
es. There is a functor F: Sp ~ Spa into the category of group spectra (by forming the 
free groups, generated by the simplexes of a given E e Sp). Since G e Spa (in particu- 
lar F(E), for any E ~ Sp) is a Kan spectrum, admitting the concept of a homotopy, we 
define as usual homotopy groups in Sp by 

~n (E)  --~ 7~ n ( F ( E ) ) .  

So in many questions concerning homotopies we agree to work in SPG rather than in 
Sp (implying that we consider F(E) instead of E). The natural mapping (E--~ 
--~F(E)) ~ Sp turns out to be a weak homotopy equivalence. 

There are other descriptions of a stable category by means of so-called prespectra 
(cf. [2], [4], [5]) which can be defined topologically (leading to the Boardman category 

resp. to its homotopy category ~h) or simplicially: A prespectrum E = 
= {Ek, Ok: ZEk--)Ek+I, k ~ •} is a family of based simplicial sets a with simplicial 
mappings 0 = Ok. Concerning morphisms between prespectra we refer to w 5. Be- 
cause all these categories are equivalent on the homotopy level, it turns out to be a 
mere matter ff convenience, which category one is using in dealing with a particular 
problem. In our case, the functor C1 is constructed in w 2 simplicially, while the natu- 
ral transformation a will be established for simplicial prespectra. 

The definition of a homotopy group =~ (E) of a Kan spectrum E can be expressed 
in terms of the associated prespectrum {Ek} by 

. ~ ( E )  = lira 7:~+~(Ek). 
k 

2. - The functor  Cl. 

We consider p-simplexes AP = (ao, ..., ap), a~ e N, ao ~< ... ~< ap and define 

aiA p = (ao, ..., al, ..., ap), 0 ~< i ~< p,  

s~AP = (ao . . . .  ,ai, ai... ,ap), O<~i<<-p. 

The set of all these simplexes is denoted by A. With each non-degenerate simplex 
~IP e A we associate a geometrical p-simplex, again denoted by AP. Let C .  e ~ .  be a 
chain functor (cf. w 9) and A p e A non-degenerate, then we have Zn (A p) (cf. w 7) and de- 
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fine for each ~ = ~eZ~(A p) the element ai~eZn_~(A p-I) by: 

(1) (O~)(Aq) = IO ..., i > p.  

Let again /Ip be non-degenerate, ~ e Z .  (A p), then we define formally a si ~ being de- 
fined on the degenerate siAP e A as follows: 

(2) si~(/lq)={~O(/~q)'"Aqc~isiAP--AP"-:~i+lSiAP'.., o t h e r w i s e .  
O<~i<<.p 

In particular we have always si ~ = 0 and s~ ~ = 0 whenever i > p. Now we define 
Z~+ 1 (si/I p) = {si ~1 ~ e Z~ (AP)}. This procedure can be iterated providing us with ar- 
bitrary degeneracies Zn (s~... sift p). Moreover the definition of boundaries (1) can be 
t ransferred to these new degeneracies. 

As a result  we obtain boundaries ~i and degeneracies si for each ~ ~ Z~ (/Ip) (where 
now A p ~ / i  is arbitrary) being defined for all i E N. 

Let  n ~ Z be an integer, then we define 

E(~) = jUaZn (A p ) / -  

where the - - re la t ion  is generated by the following identifications: 

E l )  All zero elements 0eZn((AP))  (APe/i)  are identified to one single ele- 
ment *, the basepoint of E(~). 

Let  v: A p = (ao, ..., ap) c A p+I = (ao, ..., ap, ap+l) be the inclusion of standard sim- 
plexes, then we have for each ~ e Z~ (p) (AP), an induced v# ~ e Z~ (A p§ (cf. Lemma 7.8) 
and require: 

E2) We identify ~ e Z~(AP) with v# ~ e Z~ (/IP+~). By an abuse of notation we still 
write ~ = ~ e E(~) instead of [~n]. 

The formation of boundaries and degeneracies is compatible with these equiva- 
lence relations: El) ,  E2): ~ - ~ i ~ ,  s i~ - s i~ .  So we are allowed to formulate: 

2.1. PROPOSITION. - E = {E(n), 3~, si } is a simplicial spectrum (in the sense of[5] 
Definition 2.1, p. 240). 

PROOF. - By the preceding remark we have 

3i : E(n) -'-'> E(n- 1), 

si : E(n) ~ E(n+i), 
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with ~ ~ = * for sufficiently large i. More precisely: [ e Z~(A ~) implies 5~ ~ = 0 for 
i > p. The well-known relations between compositions of different ~ ' s  and sj's are eas- 
ily verified. [] 

2.2. DEFINITION. - We define E = Cl (C,) e ~ as the classifying spectrum associ- 
ated with the chain functor C ,  e ~. 

REMARKS. - 1 )  Let  APe A be non-degenerate, then the element ~ = 
= ~(A p ) e Z~ (,~P, bd AP) does neither determine the element ~ e Z~ (~IP) nor the simplex 

e E(~): Let  ~ ~ 0, ~ e h~_l (A p-2) be a non-trivial element, b e Z~_I (~ p-~, bd~ p-2) be 
= -~ c "  is the projection, cf. w 9 concerning the terminolo- such that ~p , [b]  fi (p: C, _ ,  

gy). Then we might s tar t  in establishing a ~ e Zn(A p) by setting ~(A ~) = 0, 

~n @A p) = ... elsewhere,  

and continuing with any partition of b. 

2) Let  h ,  ( ) = H ,  ( ; G) be an ordinary homology theory with coefficients in an 
abelian group G, C ,  the ordinary simplicial chain complex associated with h ,  (being 
defined e.g. on a category of triangulated polyhedra). We can use C,(X) as C~ (X, A) 
observing that 9, • are becoming natural isomorphisms. So we have Z" (A p, bd/~ p) = 
: Z n (~P, bd/Ip) = {c e C~ (~IP) I dc e im (C~_ 1 (bd ]P) ~ C~_ 1 (AP))} in the classical sense. 
The relative cycles c e Zn(/l ' ,  b d d  p) carry automatically the structure of elements of 

P 

Z~(AP): We can easily decompose dc = ~ ( -1 ) i c i ,  ci e Z~_I@A' ,  bdai/I  p) and so on, 
i=O 

endowing c with the structure of an element of Z~(/lP). On the other hand, any 
~ ~ Z~ (~P),/~P e A non-degenerate, can easily be associated with such a particular c in 
such a way that the related subspectrum of these c's turns out be homotopy equiva- 
lent to the original E.  

Let  ~: C ,  ~ C ,  be a natural transformation of chain functors (cf. w 9) and E = 
= C1 (C , ) , /~  = C1 (C ,)  the spectra corresponding to C ,  resp. (~,. The transformation 
induces a )~: Z~(A') -~2~(AP).  Since ~ respects the equivalence relations E 1), E 2), 
we have a 

)~ = )~#(n) : E(n) --~ E(n). 

Obviously ~ commutes with at and si, and one has A~ ( * ) =  *, hence 

C1 (~) = )~ : E ~ / ~  

is a mapping of spectra. This asignment is clearly functorial so that we are able so 
summarize. 
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2 . 3 .  P R O P O S I T I O N .  - The assignment 

CI: ~ ,  ---) ~h 

(~h being the homotopy category of simplicial spectra) is a functor. 

For many applications it turns out to be more convenient to deal with simplicial 
prespectra {Ek, 0k: 2:Ek ~ Ek+l} (Ek being a simplicial set) rather than with the spec- 
trum C I ( C . ) =  E. Following[5] Definition 2.4, p. 241, a q-simple ~q~ (Ek)q is a 
~n ~ E(n) (hence a ~n e Z n (AP) for suitable p) such that 

n = q - k ,  

OjG =* . . . j > q ,  

Oo...8qG= * 

holds. This implies in particular that if AP = (ao, ..., ap) and p/> q, then ai ~.~n = * for 
i > p .  

REMARK. - In the special case of an ordinary homology theory with coefficients in 
an abelian group G one has an Eilenberg-MacLane spectrum K(G) with spaces 
K(G, k) = K(G)k, which can be described simplicially (cf. [7], p. 101) as 

(K(G)k)q = K(G, k)q = Zk(Aq; G), 

with Z*(...) denoting reduced cochains. Although Corollary 1.2 implies immediately 
that K(G) and ~7 = C1 (C.) ,  C .  = a chain functor related to simplicial homology with 
coefficients in G, are of the same homotopy type, it might be valuable to indicate ex- 
plicitely the existence of a homotopy equivalence f :  E ~ K(G), based on the construc- 
tion of /~  resp. of K(G): 

1) Let to this end C ,  be the simplicial chain functor with coeficients in G on the 
category of polyhedra. In view of Remark 2) following 2.2, we can set C~ (X, A ) =  
= C,  (X), 9, K becoming isomorphisms and Zn (X, A) = Zn (X, A) = {c e C, (X) ldc e 
e im (Cn_ 1 (A) - o  Cn_ 1 (X))}. Moreover Z~ (/Ip, bdAP) carries in a natural way the struc- 
ture of Zn (~P). So we simply identify (Ek)q with Zn (Aq, bd Aq) (which is possible up to a 
homotopy equivalence). 

2) There is (for n > 0) a well-known isomorphism ~: Zn_l(bdA q) ~Zk(~q), 
n = q - k: With each simplex A n-1 = (aio, ..., ai~_ 1) r Aq = (ao, ..., aq) we associate the 
complementary gk = (ajo , . . . ,  aj~) (having the remaining aj ~ %, ..., ai,_~ as vertices). 
The assignment gA~-i ~ ~gAk, ~ = _+ 1 a suitable sign, g e G, establishes the isomor- 
phism ~ for n > 0. In order to have ~ also available for n = 0 we set formally 
Z_I (bd,~ q) = G. 
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3) The boundary d: Zn(A q, bdA q) --* Zn_~(bd~ ~) (with d(gA ~ = g e Z _ I  (bdA ~ for 
n = 0) is only an epimorphism. However two Zl, ze e Z,~ (Aq) with dz~ = dz~ are always 
homologous in C. (Aq, bd~lq). Hence, in terms of simplexes in E, there exists a cell 
~q+l e (~]k)q+l satisfying ~0~ = z~, ~ = ze, Oi~ = *, i > 1. 

4) Composing ~ and d provides us with a mapping 

fq : (/~k)q -~ (K(G)~)q = Z k (,Jq ; G) , 

which is easily seen to be simplicial (due to the definition of boundaries and degenera- 
cies in E as well as in K(G)). 

Moreover fq turns out to be compatible with suspensions, yielding a mapping 
f :  F, ---) K(G) of spectra. 

5) Finally, the fact that f is in fact a homotopy equivalence follows from 
3). �9 

3. - A na tura l  t r a n s f o r m a t i o n  ~: W C1--) h , .  

Let C ,  e ~ be a given chain functor, h ,  = H ,  (C , )  the related homology theory 
and E = C1 (C , )  the spectrum of w 2 (we are now considering the related prespectrum 
{Ek })). We are going to construct a transformation of homology theories: 

= ~c,: E , ( ) - *  h , ( ) ,  

which in the next section turns out to be an isomorphism. 
Instead of the space X we deal with its singular complex S(X), determining the 

prespectrum {S(X)AEk} = {E(X)k} with A-product as in [4]. Hence a q-simplex 
~qA ~q e (E(X)k)q consists of a pair with ~qe S(X)q, ~q e Z~(/IP) r (Ek)q subject to the 
identification 

~q A 0 q = * , ~q e S(X) , 

0 q e Z~ (ap) being the zero element, serving as basepoint of Ek. Boundaries and degen- 
eracies are defined for each factor separately. 

We have En (X) = lim ~.+k (S(X)) A Ek) = lira =~+k (E(X)k) = ~ (E(X)). Suppose 
k k 

we have a q-sphere a = d A ~q e (E(X)k)q, ~qezn(AP), then we consider three 
cases: 

1) p < q: We have the inclusion v: JP = (ao . . . .  , ap) c Aq = (bo . . . . .  bq) (= stan- 
dard q-simplex), v(ai) = bi, i = 0 .... ,p and set ~ = ~q A v ~ U ,  v ~  q eZ~(A q) (cf. Lem- 
ma 7.8 and E2) in the definition of E). 

2) q < p: We form ~P= sp_~ ... sqz q, consider U EZn(A p) now as an element of 
(Ek+p-q)~ (calling it ~P, which amounts to applying the (p -q)-fold bonding map in 
the prespectrum {E~} to U) and come to ~ = 5P A~PE (E(X)k+p_q)p. 
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3) p = q :  We set 5 = a .  

We have: 

3.1. LEMMA. - In  all three cases a and ~ are stably homotopic, hence they deter- 
mine the same element {a} = {5} ~ E~(X). 

The proof is standard. �9 

As a result we can assume that (up to stable homotopy) p = q and define 

(1) ~(a) = z~ ~# ~q, 

where zq: I q -+ (X, * ) denotes the related continuous mapping and 
?~: C~ (l q, bdAq)-+ Cn (A q) is the (non-natural) transformation coming together with 
the chain functor C.  (cf. w 9). This assignment ~ has several properties: 

1) We have for E = C1 (C, )  with the corresponding notions of suspension 7, Z ,  
(to be recalled below) the diagram 

(2) 

E~(X) ) h~(X) 

' l  ,l 2 .  

E~§ > h~+I(ZX) 

(~({a}) = {~ (a)}) which turns out to be commutative. 
We have (cf. Lemma 7.4) 

r ,  {~(a)} = r ,  { ~  ~ (~q)} = { (z :% ~ } .  

Let on the other hand a = zq A [q e (E(X)k)q be a sphere, 7(~ q A ~q) = vq+l A vq+l a 
representative in the suspended {a}, then according to Lemma 8.3 we can take 1) for 
v q+l the simplex which is formed by applying the Kan-construction (of adding sim- 
plexes in a Kan complex) to two copies C• zq of the cone over z q, establishing one sin- 
gle simplex vq+l; 2) for vq+l the corresponding addition of two copies C• ~q of C~ q (cf. 
w 7, w 8 (3)), yielding Z~ q. As a result we have: 

~{y(~q A ;q)} = {~yl e ~ q }  = {(2~q)~ ~ 2 ~ }  -- 2 ,  {~(a)}. 

2) Let b e (E(X)k)q+l be a q + 1 simplex satisfying 

ia . . . i = O ,  
9ib = t a ' . . . i  = 1, 

! 
~* . . . i >  1, 
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a, a', being spheres in (E(X)k) q. Then we define ~(b) as in (1) and conclude 

d~(b) = ~(a) - ~(a'). 

Hence we are allowed to talk about a[a] = {a(a)} and, due to 1), about a{a} = {~(a)}, 
denoting by [a] ~ 7:q (E(X)k) (resp. {a} ~ En (X)) the (stable) homotopy class of a. By 
{~(a)} ~ h ~ ( X ) =  H n ( C , ) ( X )  we denote the homology class of a(a). 

3) Suppose b E (E(X)k)q§ is a simplex satisfying 

{ . . . i = l ,  
Oib = ' . . . i = 2 ,  

. . . i > 2 ,  

a, a'  (and therefore also c) being spheres, then we have 

~([a] + [a']) = ~[c] -- [~(c)], 

d~(b) = ~(a) + ~(a') - ~(c). 

This works for q I> 2, hence (because q = n + k) for all n and sufficiently large k. So 
defines an additive, natural, transformation 

~: W C I . ( ) ~ h , ( )  

between homology theories. 

4. - T h e  t r a n s f o r m a t i o n  ~ is  a n  i s o m o r p h i s m .  

We will in several steps establish some kind of inverse 5 of the transforma- 
tion ~: 

1) Suppose at first that  zq ~ S(X)q is a regular simplex (i.e. the mapping 
zq: Aq --~ zq(A q) is a homeomorphism): 

la) Suppose furthermore that z ~ co e h~ (X, �9 ), z e Zn (C , (X, * )) is a cycle 
l y i n g  in the image of ~ :  Z n ( C , ( a q ) ) ~ Z , ~ ( C , ( X ,  * )), z ~ z ' =  z. Then we associate 
with z' the element ~q e Zn (Aq) satisfying ~q = K# z'(K# : C~ (zq) --~ C~ (zq, bd zq)) resp. 
ai ~q = *, i >i 0 (cf. Lemma 7.7). 

We set 

~(z) = ~q A r ~ (E(X)~)q 
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and deduce immediately 

~ (z )  = ~ ~ z ' -  ~ z '  = z, 

taking into account the chain homotopy ~ -- 1 (cf. w 9, D1)). 

lb) Suppose zeo~ is lying in i m ( z ~ : Z n ( C . ( z  q, * ) ) - ->Z~(C . (X ,  *))), 
' " ' ' q C~ (zq)) and this chain ho- zq~Zl = z, then we find (because ~# ~ = i#,  ~ : Cg (~ , * ) 

motopy is for cycles C,( * ) already lying in im (C.  ( * ) -~ C .  (zq)) (cf. w 9 Remark 3 
following D3)) a c ~ im (C.  ( * ) ---) C ,  (zq)) such that 

~Z ~ d~# ~ dc + i#dze, 

ze e Z~ (zq, * ) being a relative cycle such that z e -  z~ (cf. Lemma 7.1). 
We define z ' =  ~ ' ~ z e - c  e C~(zq), observing that ~ z ' e Z "  (aq, bdzq). Now we 

proceed as before, establishing a ~q e Z .  (Aq) (3q ~ zq) by setting ~q = ~# z ', ~i ~q = *, 
i > 0, 3i ~ = d ~  z '. Defining again 5(z )=  z q A [q, we obtain 

f Z - -  t - -  ~(z )  = : ~ # ( ~  ~ c ) -  : ~ ( ~ z ~  c) 

but because ~ ? ~  factorizes over l ' :  Z~(z q, *)---)C~(z q, *), and j ( ~ ( ~ ' ~ z 2 - c ) -  
- j ~ z ' ~ z 2  - Zl, j ' :  C.(crq)----)C.(crq, * ), we deduce again 

(1) ~ ( z ) - z .  

Suppose now that zqe  S(X)q is any singular simplex, c: 3q-o I zql c IS(X)] the 
characteristic map and that z ~ oJ ~ h~ (X, �9 ) is as in case la). We take a concentric 
simplex /l'q C/Iq and find according to Lemma 7.5 a partition of K~ z '  (formed as in 

the fwst case) {5, zl}, z �9 Z~(3 'q, bdA'q)zt e Z" (~q(R), bdzq(R)), R = 3 q \ A ' q  with 
d~ = - dzl .  By employing Lemma 7.7 we detect a uq ~ Z~ (3 'q) with ~q ~-- Z. Let  A rq = 

! 

= (ag, ..., aq), /Iq = (ao, ..., aq) be the two q-simplexes, then we have the projection 
p:(3q',bd3q')-->(Aq, bdAq), p ( a ( ) = a i ,  i=O, . . . ,q .  We obtain the q-simplex z 'q=  
= zqp e S ( X ) q  satisfying 3iz  'q = ~i ~q, i ~ O, and find a chain 

d c e i m ( C ~ _ l ( * ) ~ C ~ _ l ( X ,  *)). So we obtain a cycle z " e Z n ( X ,  *)  with z " = c + s ,  
s e G ( * ,  *), d s =  - d c ,  z " - z .  

The simplex z 'q A ~q is not a sphere. In order to repair this, we need a (q + 1)-sire- 
! 

plex jq+l = (ag, ..., aq , bq+l, . . . ,  b q + l )  such that I zql = z'q(R) U A'q can be embedded 
in A q+l, V: [~'q[ CA q+l in such a way that v ( a i ' )  = a i' and cq(R) A bdA q+~ = bd3  q. We 
obtain by Lemma 7.7 a Cq e Z~ (A q+l) by setting ~q = v~ K# z '  (which is now a cycle) and 
~i~ q=  *, i~>0. 

Calculation of ~(z'q A ~q) (as defined in w 3) leads to a cycle 5 E Z~ (X, * ) which is 
homologous to the previous z', hence to the original z. Moreover a simple cylinder ar- 
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gument assures us that  z'q A ~ . q - - ~  A [q in E(X)~.  So we are enabled to define 

~(z) = ~q A ~ .  

such that  again (1) holds. 
The case in which z e ~ behaves as in case lb) is treated analogously. This allows 

us to define in any case where z ~ ~ ~ hn (X, * ) is a cycle lying on a single singular 
simplex ~q a sphere ~(z)e (E(X)~)  e satisfying (1). 

Suppose on the other hand that  a = ~re A ~q e (E(X)~)q is a sphere, then we can as- 
sume without loss of generality (using simple mapping cyclinder techniques) that  
case la), b) prevails. 

We have 

(2) 

with n e w  ~'qe Zn(4q) which is defined by 

~ 'q = K # ~ # ~ q ,  

~ ' q  = * , i >I 0. 

Since l-~ q - I ~  'q in C ,  (Aq, bdA q) we detect due to w D3), chains x e Cn+,(A ~, bdAq), 
c e C~ (bd A q) such that  

dx  = i'(c) + ~q - -~'~ 

holds.  We embed ,,lq into A q+~ (=  cone over A q with top vertex * ) and inclusion 
w : A q c J  q+~. According to 7.3 there exists a y e C ' + ~ ( A  q§ *) such that  d y =  

= w ~ i '  (c) - s, s e C~ ( * ). We set ~q+l = w ~ x  - y and calculate (omitting inclusions 
from our notation) 

d~q+l .~_ ~q _ ~tq.~_ 8. 

Since s is bounding in C,( *, * ), we can assume without loss of generality (by even- 
tually changing ~q+l) that  s = 0, allowing us to define ~q+l eZ~+l(Aq+l) (cf. Lemma 
7.7) by a0~ q+l = ~q, ~1~. q+l = ~'q, a ~  q§ = *, i > 1. So we deduce 

(3) 5~(a) = zq A ~'q -- ~q A ~q = a .  

2) Suppose we have z ~ co ~ hn (X, * ), z e Zn (X', * ), where X'  = ~ U ~ ,  ao ~ = 
= 31 z~, then we apply Lemma 7.5 obtaining a partition {z~ e Z~ (~,  b d  ~),  i = 1, 2} of z, 
dzl = -  dz2 and establish ~ eZ~(A q) by s e t t i n g - ~ = z i ,  ~o ~ = - O ~ = d z l  = - d z 2 ,  
~i~1 q= * , i > 0  and a t ~ =  * , i ~ l .  All q ~ (A),  m < n - 1 are trivial. 

According to Theorem 8.1 E is a Kan spectrum; therefore E ( X ) k  = S ( X )  A Ek is 
also a Kan complex for all k. So we apply the Kan extension property to the effect 
that  a, = ~ A ~ ,  a2 = z~ A ~ are replaced by one single ~q A ~.q = a (establishing a 
z q+l A ~  +1 with appropriate faces al ,  a2, a) where a E (E(X)~)q is a sphere. 
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We define 5(z) by ~(~q) = a. Since z -  ~q we observe 

(1) ~(z)  - z. 

3) Suppose that X'  = [J z~ and assume that z~ has a boundary (say 8o z~) in com- 
m i = 1  

mon with U Zl q. Then we proceed inductively: Assume that we have a partition 
i = 2  

{z~ E Z~ (z~, b d ~ ) l i  = 2, ..., m} which has been employed to obtain a ~q A ~q = ~, 

81 ~q = 80 z~, {~q, zi } being a partition of z, then we apply 2) in order to define ~(z) sat- 
isfying (1). 

4) Suppose that X ' =  ~ t2 ~ as in the second case, but that ~ ,  ~ have now a 
lower dimensional simplex yP in common. Take a partition {zl, z~} of z and turn zl, z2 
into elements ~ e Z~ (~) (i.e. one has ~ = z~)) in such a way that some iterated bound- 
ary of ~ A ~1 rq (resp. of ~ A ~)  is of the form ~,PA VP (for some ~P E Zn_q+p(AP) ). 

Now we apply 2) to two adjacent (p + 1)-simplexes which have yP A VP in common 
and which are subsimplexes of ~ A [~ resp. ~ A ~q ~e. By this procedure we are able to 
raise the dimension p by one to p + 1. This can be done until we reach the situation of 
case 3). 

If there is no such ],P, then we go over to S X  observing, that now 
{Z. z} e h~+l (ZX) is lying on simplexes which have at least a 0-dimensional simplex in 
common. This establishes ~ for Z X  in this case. 

5) Suppose that X ' =  ~ IU z~ ~ with eventually different ql, q2. Assume that 
qi < q2 and take instead of ~ a suitable degeneracy, yielding finally new simplexes 
~1, z2 satisfying the assumptions of the previous case. 

6) Since each z e Z~ (C,  (X, * )) comes already from a z '  ~ Zn (C,  (X' ,  * )), X '  = 
m 

= [J ~' being compact, the general case can now be settled inductively using 1)-5), 
i=1 

however not necessarily for X but for some suspension of X. 
In other words we establish to any z e Z ~ ( C , ( X ,  , ) )  a sphere ~(Ztz) = 

= a e (E(ZtX)k)q,  8ia = *, i t> 0 such that 

(4) ~(2: t z) - Z t z 

holds. 
In order to be able to establish an inverse to ~, we still need: 

a) Suppose that z - 0 in C,(X, * ), then we have 5(Xtz) ~ * for a sufficiently 
high suspension. 

b) Suppose that z = 0, the zero cycle, then ~(0)= *. 

PROOF.- Ad  a): Suppose dx = z, x ~ Cn+I(X', * ) then Lemma 7.1 and w 9 D3) 
provide us with a x ' e  C~+I(X', * ), z ' e Z ( ~ ( X '  *), s e C~( * ), for suitable compact 
X ' c X  (because C ,  has compact carrier) such that d x ' = z ' + s ,  { z ' } =  
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= { z } e h ~ ( X ' ,  *). Replacing z' by z ' + s e Z n ( C ~ ( X ,  *)) we can assume that  
dx '  = z' .  

Now we repeat the six steps of the construction of ~(z), this time replacing the cy- 
cle z the chain x'. The necessary adaptations are easily accomplished: 

1) Let  z be as in case 1) and suppose that  x ' e  Cn+l(~ q) with dx' = z'. Then we 
embed v: ~q r Aq +1 and define ~q +1 by ~q + 1 = v# x '  e Z~+ 1 (Aq + 1, bd Aq + 1), ~0 ~ = ~ (with 

= z, ~ ~ = *, i I> 0), ai ~ = *, i > 0. This settles case la). The remaining cases are 
treated analogously. 

2) Concerning case 2) above, we take a partition {Xl, x2} of x' with dxl + dx2 = 
' = = - and define ~1 , ~2 by = z ,dxi dYi + zi ,dyl  dy2, {Zl, z2} b e i n g a p a r t i t i o n o f z '  q+l q+l 

~q+l ~ _q+l ~q+l ~ ~q+l ~:q+l ~i =xi ,~o~l = -~1~2 = d y l - -  - d y 2 , ~ 2 ~  =zi(hence~2~i = ~ / a s i n 2 ) ) a n d  
correspondingly for the q - 1 dimensional faces. Now the argument  proceeds as in 
2). 

3-6) The remaining cases are treated as for a cycle z in 3)-6). This furnishes us 
with a ~(x') satisfying ao~(X') = ~(2;~z), ~ ( x ' )  = *, i > 0, for an appropriate suspen- 
sion level t. So we confirm ~ ( S t z ) ~  *. 

Ad b): This is a trivial. 

One main part  of Theorem 1.1 is embodied in 

4.1. THEOREM. - The transformation of homology theories 

~: WCI ,  () - - ~ h , ( )  

is an isomorphism of homology theories. 

We deduce the theorem from the following: 

4 . 2 .  L E M M A .  - I) Let {a} e WCI~(X, * ) be such that ~({a})) = { * }, then there 

exists a suspension level t such that (y)t {a} = 0. 

II) Let a e h~(X, * ) be any element, then there exists a suspension Y, tX  such 
that st.o~ has a counterimage {a} e WCI~+t(ztX, * ): 

PROOF OF LEMMA 4.2. - Suppose that  ~{a} = { * }, then we infer from (3), a) b) and 
w 3 (2) 

- -  {a}) 

for all t and on the other hand for suitable t: 0 = { * } = ~(Zt,~{a}). This con- 
firms I). " 

Suppose that  z e ~o e hn (X, * ), then we find according to (5) a suspension level t 
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such that 

= 

This confirms II) and completes the proof of the lemma. " 

PROOF OF THEOREM 4.1. - The theorem is a consequence of Lemma 4.2 in view of 
the fact that y and Z .  are isomorphisms, commuting with ~ (cf. w 3 (2)). 

5. - A mapping between two classifying spectra. 

Let E ~ ~ be any spectrum, C ,  any chain functor related to W(E). = E ,  (i.e. 
there exists an isomorphism of homology theories E ,  - - H .  (C.)()) .  Then we are go- 
ing to establish a homotopy equivalence in ~h 

S: C1 (C, )  -~ E .  

In the present section we are constructing 8, in the next one, we prove that 7~,(/3) is an 
isomorphism. 

The category which turns out to be most convenient for our purpose is in this case 
the (simplicial) Boardman category of prespectra E = {Ek, 0: ZEk --) Ek+l, k ~ ~}, Ek 
being a based simplicial set. A function between prespectra f: E---) E '  is a family of 
simplicial mappings f i :  Ek---> E;  being compatible with the resp. bonding maps 0. We 
encounter in particular the full embeddings or cofinal subspectra i: A r B which are 
characterized by the following property: 

Let K c Bk be a finite subcomplex, then there exists a natural number m and a 
L cAm+k such that im+k(L)=Z~K. 

In other words: i itself needs not to be an equivalence but every finite subcomplex 
K c Bk can be retained in A after suspending sufficiently long. Denoting by ~ the cate- 
gory of prespectra with functions as morphisms, then the Boardman category 

= ~ / { i }  is a quotient category where {i} denotes the class of all fu!l embeddings 
(i.e. all full embeddings are forced to become isomorphisms in ~, cf. [2] for further 
references). The related homotopy category ~h is well-known to be equivalent to the 
ordinary (i.e. topological) Boardman category as well as the homotopjT c~tegory of 
simplicial Kan spectra SPEh. 

In this section it turns out to be more convenient to deal with this ~odel of a 
Boardman category, resp. its homotopy analogue ~h. The required mapping /~ = 
= [rgi-1] is a homotopy class of a mapping in ~, where g: A--)F(E) is a function of 
spectra (which will be constructed below), i: A c C I ( C . ) =  E a suitable full embed- 
cling and r: F(E)-~ E the well-known, classical homotopy equivalence in !~ between 
the free group spectrum F(E) and E itself. We could replaced F(E) by any Kan spec- 
trum which is equivalent to E in ~h resp. assume that we are dealing with a Kan spec- 
trum E from the beginning. 
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The homology groups En(d p, bdd p) are stable homotopy classes of simplexes 
b q e (S(A p) A F(E)~)q with aib q e (S(bdA p) A F(E)k)q-1, 0 < i <. q. Let us denote all 
these b q by (S(A p, bd/Ip) A F(E)k)q. 

As customary, we are using the previously mentioned equivalences of stable cate- 
gories quite freely, denoting by E sometimes a spectrum in Sp, sometimes its related 
analogue in ~ or in ~ .  

We have the mapping V~ which is deduced from the diagram 

En_l(bdd p) > En_l(bddP, jUiOjAP ) 

En_l((~id p, bd 0idP) 

and after composing with the boundary a: E~(.iP, bd,l p) -~ En_~(bdA p) a mapping 

Vi a: E~ (AP, bdA p) - +  E n _  1 (~i Ap, bd aiAP). 

On the other hand we have for each ~qe (/~k)q, ~qe Z~(A~), the class 

~" (~i ~q) e En_ 1 (~i Ap, bd ~A~), 

resp. ~((q) e E~(A ~, bdA ~) 

being determined by ~ ~q resp. ~q by means of Lemma 7.1. 

5.1. LEMMA. - One has 

The proof is in view of the construction of ai (in w 2) resp. of partitions in 7.5 
immediate. �9 

Now we construct a subspectrum A =. {Ak} c/~ being determined by the following 
conditions: 

The q-skeleton (Ak)q r (~Tk)q consists of all those ~qe Z~(A p) satisfying: 

A1) p < q. 

A2) To each subsimplex Am c d p there exists a 

a(A m) = ~q-P+m A ~q-p.m e (S(A ~, bdA ~) A F(E)k)q-p+m 

with {a(A~)} = ~,( ~q (/I ~) ) ~ E~_p+,~ (A ~, bd A m) satisfying 

f a~ a(A ~) = a(~ Am), (1) . {a~ a(Jm)} = ~ a{a(Am)}.  

Since each Ak r Ek is easily recognized as a simplicial set, we have the subspectrum 
A = {Ak} r = {Ek} and claim: 
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5.2. LEMMA. - The inclusion i: A c E is a ful l  embedding. 

PROOF. - Observe that  a ~q �9 Zn (~IP) can be considered as a ~q e (/~k)q as well as a 
~q+~ e (Ek+~)q+r, r >I 0 because n = q - k = (q + r) - (k + r). So we can assume, by go- 
ing over to a sufficiently high/r (i.e. by eventually suspending), that  p ~< q. We have a 
with ~q and A ~ cap associated 

such that  

a(A "~) = z q(m) A zq(m) e ((S( lira, bd .V) A F(E))l(m))q(~n) 

{a(/lm)} = y(~q (Am)) e En_p+m (A m, bdA ~) 

n -  p + m = q(m) - l(m), m = 0, .. . ,  p 

and that  

i = 0  . . . .  , m .  

Without loss of generality (by suspending a sufficient number of times) we find a uni- 
versal 1 such that  1) l(m) = 1 and therefore q(m) = n - p + m + 1 and 2) k ~< 1. By sus- 
pending ~q (i.e. by regarding ~q as a simplex of/~t) we obtain a new ~q+r E (Et)q+r (be- 
ing equal to the original ~q as an element of Zn (AP)) which determines a function a( ) 
which satisfies (1) up to a stable homotopy. However by again suspending a sufficient 
numbler of times we convert this stable homotopy into an ordinary one. Let  a~ a(A TM) 
be inductively defined such that  (1) holds for all dimensions ~< m and 0 ~< i ~< m, then 
we can add this homotopy to the given a(~i m) (in a welt-known manner) in such a way 
that  (1) holds (now strictly). So A2) is satisfied. As a result we find to each [q an s 1> 0 
such that  Z~q~Ak+~.  Hence the inclusion i: A c E  reveals itself as a full embed- 
ding. " 

We come now to the construction of a function g: = {gk:Ak-->F(Ek)}: Let  
~qe (Ak)q be a given, then we have 

and set 

a(AP) = zq A zq e (S(A p, bdJ  p) A F(E)k)q 

gq(rq~ ~q 

Condition A2) guarantees that  gk is a simplicial map. Moreover we have a commuta- 
tive square 

ZAk ----> Ak+l 

Zgk i I gk+l 

ZF(E)k ) -  F ( E ) k  + i . 
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Together with the well-known homotopy equivalence r: F(E)--> E we otain the de- 
sired ~E = [rgi -1] ~ ~h(Cl (C,) ,  E). [] 

6. - P r o o f  o f  T h e o r e m  1.1. 

What remains to verify in order to complete the proof of Theorem 1.1 is the fact 
that the morphism /~E (established in w 5) is an equivalence in ~h. 

To this end it suffices to observe that by construction fie induces an isomorphism 
of homology groups 

7:, (S '  A ,2E): 7:, (S p A E) --) 7:, (S p A E) 

for all p-spheres (because 7:, (S p A E) = E ,  (A p, bd AP), 7:, (S p A E) = E ,  (~', bd A p) 
and g induces isomorphisms of these relative groups). 

So we conclude that 

7:, (fiE): 7:, (/~) = 7:, (E) 

is an isomorphism. 
In view of the Whitehead theorem in ~h, fiE turns out to be a homotopy 

equivalence. 
Since the other parts of Theorem 1.1 have already been settled by verifying 4.1 

the proof of Theorem 1.1 is complete. [] 

7. - The ((relative cycles-. 

In this and in the following section we are establishing some results which are 
needed in the proof of the main Theorem 1.1. 

Let C , :  K---) ch be any functor on a category of topological spaces into the catego- 
ry of chain complexes, such that inclusions induce monomorphisms and suppose 
(X,A) e K  2 is a pair, then a relative cycle z e C ~ ( X )  is a chain such that 
dz e im (C~_1 (A) --~ C~_I(X)). 

In case of a chain functor C ,  carrying the additional structure displayed in w 9 the 
situation is a little more subtle. We define 

Z~'~ (X, A)  = {z e C~ (X, A)]dz  e im ( i ' :  C~-1 (A) --) C~_ 1 (X, A))}. 

The following properties of Z" (X, A) ensure that the terminology relative cycle for a 
z e Z" (X, A) is justified. 

7.1. LEMMA. - 1 )  Let z e Zn (C , (X, A)) be a cycle, then there exists a z ' e Z(~ (X, A) 
as well as a a e Cn(A, A)  satisfying z ~ lz'  + q~ (a) in  C,(X, A). 
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2) Suppose that lz( + % ( a l ) - l z ~  + % ( a ~ )  in C.(X,A) ,  then we have 
i ' - l d z l  ~ i '  - ldz2 in C.(A). 

- H (r',, (X A))  ~ H ,  (C ,  (X, A))  is epic. PROOF. A d  1): Follows because ~: , ~ ,  ~ , 

Ad2): We have [zl' - z2]  e ker~, hence [d(z; - z ~ ) ]  �9 ker~, (cf. w 9, D3) whence 
[ i ' - idz l]  = [i '-ldz2] � 9  follows. �9 

7.2. LEMMA. - Let (Xi, Ai), i = 1, 2, Ai = Bi U A, Xi A X2 = A be a pairs and spaces 
in K, z~ �9 Z~ (Xi, Ai), satisfying i ' - l  dzi = bi + a. bi �9 C~-1 (Bi), a �9 C~-1 (A), then we 
have 

[lzl - lz2] �9 im (H~ (C . (X1 U X2, B~ U B2)) -> Hn (C . (X~ U X2, AI U A2))) . 

PROOF. - Assume B 1 - - B  2 = 0 ,  A =A1 =A2, then we have d ( z l -  z2)= 0, 
j ,  ~([zl - z2]) = l ,  [z~ - z2] = [lzl - lz2], j ,  : H ~ ( C ,  (X 1UX2) ) --->Hn(C , (X 1UX2, A)). 
The general case follows similarly. 

REMARKS. - 1) The preceding assertion represents a kind of ,<Mayer-Vietoris 
property,  for chain functors. Because the boundary a: H~ (C.  (X, A))--~ Hn-~ (C,  (A)) 
is established by means of the short exact sequence (2) in w 9, i.e. by employing C' 
other than C,, we are dealing with Z g (instead of e.g. Z~ (C.  (X, A)) as in the case of 
ordinary homology theories). 

2) Let z �9 Z~ (X, A) be a relative cycle, then Lemma 7.1 asserts the existence of 
an element [l(z) + q# (a)] �9 Hn (C .  (X, A))  which depends solely on z (but not on a). By 
an abuse of notation we will sometimes write [z] �9 Hn (C ,  (X, A))  instead of [l(z) + 
+ q(a)] �9 H n ( C ,  (X, A)). 

7.3. LEMMA. - Let  H: fo ~--fl : (X, A)  --) (Y, B) be a homotopy satisfying the as- 
sumpt ions  of  L e m m a  9.8 and z �9 Z(~ (X, A)  such that fi# (z) � 9  (Cn (B, B) --~ Cn (Y, B)), 
then there exists a D ' ( z )  �9  B), satisfying dD' (z )  = dD(z) and D(z) - 

- l D  ' ( z )  - 0 i n  C , ( Y ,  B ) .  

PROOF. - We have dD(z) +D(dz )  = f o ~ ( z ) - f l ~ ( z )  and notice that 
dz �9 im ( i '  : Cn- 1 (A) ~ C~_ 1 (X, A))  implies D(dz) � 9  (i '  : Cn (B) --> C~ (Y, B)). By as- 
sumption ~ (z) �9 im (C~ (B, B) -~ C~ (Y, B)) so that dD(z) �9 im (C~ (B, B) ~ C~ (Y, B)), 
where it bounds because C~(B, B) is acyclic: dD(z) = - dq# (b), b �9 Cn+l (B, B). Due to 
Lemma 7.1 we have 1) a z ' � 9  2) a b ' e C n + I ( B , B )  such that l ( z ' )+ 
+ q ~ ( b ' ) -  D ( z ) +  q#(b) in C,(Y,B) .  As a result we obtain a chain y �9 C~+2(Y, B) 
satisfying 

dy = l(z') + q# (b' - b) - D(z) .  

Suppose y = x + Yl , x e Cn+2(Y, B) - Cn+2(B, B), Yl �9 Cn+2( B, B ) ,  then Lemma 9.8 
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ensures that D(z) e C~+1 (Y, B) and we detect x2 = b ' - b - dyl e C~+1 (B, B) such that 
dx = l(z') - D ( z )  + q(x2), -dx2  = l d z ' -  dD(z) in C.(B, B). 

According to Lemma 9.7 1) we have dxeCn+~(Y ,B) .  Since l ( z ' ) -  
- D ( z )  e Cn+I(Y, B) we deduce q#(x2) e C~+I(Y, B). Therefore the element x2 (inclu- 
sions are not written down) can be expressed as x2 = el + c2, c le  C'+I(Y, B), 
c2 e Cn+I(Y, B) - C~+~(B, B). On the other hand Lemma 9.7 3) implies cl = c{ + c~', 
c; e ( C~ + I (Y, B) - C~ + I (B, B) ) N C'+I(Y, B) = C~ + I (B) (due to Lemma 9.7 2) or[l],  
Lemma 5.4). We infer that 

c; + c2 = x2 - c{' e (C~+I (Y, B) - Cn+I (B, B)) N Cn+I(B, B) = {0}. 

This implies x2 e i m ( C n + l ( B ) - - - - ~ C n + l ( B  , B)), allowing us to set 

D'(z)  = z '  + x2 E Z~+I (Y, B). 

As a result we have dD'(z) = dD(z) and 

(1) D(z) - l D ' ( z ) -  0 in C . ( Y ,  B), 

completing the proof of Lemma 7.3. �9 

Our main application consists in the case where ( Y , B ) =  C(X,A), the reduced 
cone over (X, A) with top vertex * e A, while f0: (X, A) c C(X, A), fl = 0, 0(x) -- *, are 
the inclusion resp. the projection. 

We obtain 

dD'(z) + D'(dz) = i~ (z) - O# (z), 

0#(z) e C~ ( *, * ). With each 5 e Z~(C.  (X, A)) there is associated 1) a z e Z~ (X, A), 2) 
an a eC~(A ,A) ,  satisfying 5 - l ( z ) +  q#(a) (cf. Lemma 7.1). Let Z ( X , A ) =  
= C+ (X, A) [9 C_ (X, A), C+ N C_ = (X, A) be the reduced suspension, then we have 
0~ (z)= 0~ (z) and according to Lemma 7.2 

2z  = D~ (z) - D'_ (z) e Z~+I(2X, ZA) ,  

moreover 

Lemma 7.1 yields 
that 

Z dz = d2z e im (Cn (ZA) --> C~ (ZX, ZA)) .  

a cycle IZz + q~(-g) e Z ~ ( C . ( X X ,  ZA)), -deC~+I(ZA, 2A)  such 

(2) [~z + % (~)] = 2 .  [5] e gn+ 1 (C,)(2X, ~, A), 

where Z . :  H ~ ( C , )  (X, A) ---->gn+l(C,) (ZX, ZA) is the suspension homomorphism on 
the homology level. 



F. W. BAUER: Classifying spectra for generalized homology theories 385 

Let again 5 �9 Z~(C ,  (X, A)) be a cycle, then we can repeat this construction with 
D(z) resp. Dr  (z), D_ (z) �9 C~+102X, ZA) (now using the homotopy axiom Definition 
9.3 C, 2) for C ,  itself, instead of 7.3.) obtaining Z5 �9 Z,+I (C,  (ZX, 2.4)). We have 
again 

We summarize: 

r ,  [5] = [ ~ ] .  

7.4. LEMMA. - The suspension (2) yields a homomorphism 

(3) S: Z~ (X, A) -~ Z,'~+l (ZX, ZA) 

inducing the homology suspension Z,  : H ,  (C,)(  ) -+ H ,+I  (C,)(Z ). This suspension 
can be chosen in such a way that ]'or any relative cycle z e Z" (X, A), l(z) + 
+ q#(b) e Z n ( C , ( X , A ) )  (cf. L e m m a  7.1) one has 

{~#Zz + i# (2:5)} = Z ,  {re z + i# b}. 

In  other words: Z commutes with ~ as long as this makes sense. 

P R O O F .  - 0nly the last assertion needs proof. We have homologies 

Slz + Sq~ (b) - ~ z  + Zq# (b), 

j#Z~# z + j# i#Eb - j#  ~?#Ez + j~ i#Eb,  

in C ,  (ZX, 2A).  

Hence there exist y �9 C~+I(SX), a �9  such that 

dy = :~ Zz - Z~ z + a. 

On the other hand a is easily recognized as a cycle a �9 Z~(C . (ZA) )  (observe that 
d ~ , Z z  = dZ~,  z). 

We replace Sz by Z' z = Zz + K, a to the effect that 

~#Z' z - Z?~z  = ~#Zz - Z~#z  + a + ?#~#a  - a = 

= dy + ?#K#a - a = dy + dy '  = dy",  y " � 9  C.+:(ZX) 

with y ' ~  C.+I(ZX) originating from the chain homotopy ~#K# = 1. 
This conf'rcms on one hand 

in C,(SX, ZA) and 

on the other. �9 

IZz + q# (b) - IZ' z + q# (b) 

{~#Z'  z + i#(b)} = {Zv#z  + i#(b)} 
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Figure 1. 

B 

A 

B 

REMARK. - This Z in (3) is the suspension on the chain-level. 
Let  the following spaces in K be given: Y = Y1 U Y2, Y~ (q I12 = A, X( c Xi c Yi, 

X1 A X2 = A, X{ A X~ = B c A, X '  = X~ U X~ (cf. fig. 1). Suppose that  we have a rela- 
tive cycle z �9 Z" (Y, X'), then two relative cycles zi �9 Z~'~ (Yi, Xi), i = 1, 2 are called a 
parti t ion of  z whenever we have: 

1) K;  ~O# (Z 1 + Z2) �9 Z n (Y, X') ,  

9# : C,'~ (Y, X )  ~ Cn (Y), Ke: " Cn (Y) -~ C" (Y, X'), inclusions omitted from the notation, 

and 

2) {~c~ 9# (zl + z2)} = {z} �9 hn (Y, X') 

for the associated homology classes. 
Suppose on the other hand that zi �9 Z,~ (Yi, X~), i = 1, 2 are two relative cycles 

such that 

d~ ,  (zl + z2) �9 im (C~ (X')) --~ C.~ (X)), 

zl + z2 e C~ (Y, X), then we have ~c~ ~ (zl + z2) �9 Z~ (Y, X') (cf. w 9 D1)) and we call 
z = K~9#(Zl + z2) the composite of {Zl, z2}. 

It  is immediately clear that  {z~, z2} is a partition of z. If  z admits a partition 
�9 {zl, z2}, then z is not necessarily the composite z' of Zl, z2 but z and z' determine the 
same homology class in h n (Y, X') .  S o ,  from this point of view, both processes can be 
considered as inverses to each other. 

7.5. LEMMA. - Each z �9 Z" (Y, X')  admits  a parti t ion {zl, z2}. 

PROOF. - 1) We start  with the absolute case: X '  = 0, z �9 Z ~ ( C ' .  (Y)), X = A, B = 0. 
Let  {z} = ~ �9 h~ (Y) be the homology class of z, then by taking inclusions resp. exci- 
sions, we obtain homology classes ~i e h~ (Y, Yj), i ~ j ,  ~ �9 h~ (Y~, A) and relative cy- 
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cles z( e Z~ (Y, A), z( �9 ~ .  The sum ~1 + ~2 is equal to ~ after application of the inclu- 
sion (Y, 0) r (Y, A). 

Therefore (omitting henceforth inclusions from our notation) z{ + z d -  
- z �9 Zn (Y, A) is a bounding relative cycle in C.(Y,  A). Due to w 9, Da) ~(Zl' + z~ - 
- z )  �9 Cn-1 (A) is bounding, delivering a b �9 Cn (A) satisfying 

db = dz{ + dz~ - dz .  

We set z~' = z~ - b �9 Z" (Yi A), z~' = zd so that  z~' + z . . . .  , 2 - z �9 Z" (Y, A) satisfies dZl + 
+ dz~ = dz. Hence dz;' + dz~' = dz = 0 and we conclude that  

~# ~# (zl + z~) �9 Z~ (Y), 

' '  Cn (Y)  --) Cn (Y, X'),  : C~ (Y, X )  ---> K#. Cn (Y). 

We consider the mappings (displayed already for the general case because of further 
need) 

~#:' Cn(Y,X' ) - - ->Cn(Y)  , l ' :  C n ( Y , X ' ) - - - ) C n ( Y , X ' ) ,  "2#'" Cn' (Y, B) ~ C~(Y),  

! V C 
j :  Y c ( Y , X ) ,  j : Y c ( Y , X ' ) ,  k : ( Y , X ) - - ) ( Y , X ) ,  k '  : ( Y , B ) c ( Y , X ' ) ,  j " :  Y c ( Y , B )  

(hence kj'  = j ,  k ' j "  = j '  in the general case and j '  = j "  = k '  = 1y, k = j in the special 
case). 

Since " ~! zi �9 ~ ,  we conclude that  

l(z;' + z~') - lj# z - j#  ~'# (K'# ~# (z;' + zi') - z) �9 C~ (Y, A)  

is bounding. Exactness of the homology sequence of the pair (Y, A) (in the general 
case: of the pair of pairs ( (Y ,X ' ) ,  (X ,X ' ) )  yields a - S e Z ' ( A )  such that  

(4) K'~ ~# (z~' + z~') + a - z - 0 in h n (Y) .  

We introduce a = K# ~$~ �9 C" (Y, A) (K#: C~(Y) ----) C(~ (Y, A)) ,  observe that  da = 
?? rv ; t  

= K# ~# d-d = O, so that  d(z;' + a) = dz;'. We define Zl = zl + a, ze = ze. There exists a 
chain homotopy ~# ~c# -- 1, therefore ~# a and ~ ~ are homologous in C.(Y). So we 
calculate 

(5) ~' K' " " ' # ~ # ( z ~ + z 2 ) - z =  # ~ # ( z ~ + z e ) + ~ # ~ # a - z ,  

and (formulated for the general case) 

j~  ~ = k# ~# ~# - k# 1 = l '  k# ,  

l" : C(~ (Y, B ) - ,  Cn (Y, B), so that  application of l' yields 

' ' - " " -  (6) 1 K # ~ # a - j ~ ? # a - 2 # ( d y  + ~#a) 
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in C,(Y).  As a result we infer from (4)-(6) 

{ ~  pe (z~ + z~)} = {z} in hn (Y). 

This settles the absolute case X' = 0. [] 

2) The general case is t reated like the absolute case by taking into account the 
following adaptations, which we are now going to display schematically: 

z( e ~,~ e h~(Y,~, X~), x(  e ~.~ e h~_~(X(, B) ~-" h~_~(Xi, A) ,  

a~ e ~ e h~_ ~ (A, B) ~ h~_ ~ (X~, Xi' ) 

(by excision) such that 

5 ~  = ~! + ~ in hn- l (Xi ,  B) 

Let t e Z" (X') be such that t - dz in C,(X'),  then {xl', x2' } can be choosen (because of 
1)) to be a partition of t; dx{ = - dxj  = dai~ Cn-2 (B). Obviously ~1 = - ~2 = ~, hence 

al = - a2 = a e Zn-1 (A, B). 
{xi', ( - 1 )  i+1 a} has a composite tr - dzr We find z~' - zl' such that dz~' is the com- 

posite of {x i ' , ( -1 ) i+ la} .  Hence dK'~#(z~ '+ z~') has a partition {xl', x2'} so that  

! ?? ~! ! K# ~# (zi + z2) e Z~ (Y, X') .  

We reach {~} e h~ (X, X') ~ hn (A, B) (by excision ~ e Z~ (A, B) now employing the ex- 
actness of the homology sequence of the pair of pairs ((Y,X'), (X,X'))  such that (4) 
(with hn (Y, X')  replacing hn (Y)) holds. 

! 
We have again a = K# ? ~  e Cn (Y, X) and 

d ~  i '  d-d = c + i# d~, 

where according to Remark 3) following D3) in w 1, c e C~ ~ (B) stems from the chain 

homotopy ~# i '  -- i. 
So (i ! omitted from the notation) we get ?#da=d~#aeCn_l(B) .  On the other 

�9 ! h :  ~ !! hand, since K~i# = ~# (w 9, D1)) we infer da = ~ # - d  e Cn_l(B). As a result d(z{'+ 
+ a) e C~_ 1 (X1), allowing us to argue as in the absolute case. We obtain again (5) and (6) 
(replacing C~(Y) by C~(Y, X'))  so that 

{ ~  ~ (z~ + z~)} = {z} in h~ (Y, X') 

follows. 
This completes the proof of Lemma 7.5. " 

For  the sake of completeness we add: 

7.6. LEMMA.- 1) Suppose that zi ~ Zn (Y~, Xi), i = 1, 2, are two relative cycles, sat- 
isfying d~# (zl + z2) e im (C~ (X') ---) C~ (X)), then z = k~ ~ (zl + z2) ~ Z" (Y, X')  and 

{zl,  z2 } is a parti t ion of z. 
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2) Let on the other hand {zl, z2} be a partition of some z' �9 Z~ (Y, X'), z = 
= ~ ( z l  + ze) the composite ofz~, ze, then {z} = {z'} in hn(Y, X'). 

3) Let z �9 Z" (Y, X') and ~zi, z~}, {z{ , ze} be two partition of z; 
zi, z~' �9 Z~ (Y~, X~), ze �9 Z~ (Ye, X~), then we have lZl - lz{ - 0 in C.  (Y1, X1). 

While 1) and 2) follow immediately, we observe concerning 3) that  zl - z~' is a rela- 
tive cycle in Zn(Y~, X1) whose homology class is mapped under the inclusion 
(Y1,)(1) r (Y, Y2) into the class of z - z = 0. An excision argument  yields the result. 
This confirm 3). �9 

REMARKS. - 1) Observe that  {Zl, Z2} determines (unlike the pair {~,  ~}) the ele- 
ment ~ = {z} �9 h~ (Y, X') (rather than merely its image in h~ (Y, X)). 2) The process of 
partitioning can be iterated inductively from two to any finite number {zl, ..., z~} of 
relative cycles. The most  frequent example will be the following. Let  AP be a p-sim- 
plex, z �9 Z" (A p, bdAP) a relative cycle, { ( -  1)iai l a~ �9 Z~'~-I (aiA p, bd aiAP), i = 0, ..., p} 
a partition of dz�9 (more precisely: of some 5 �9  5 - d z  
in Cn_l(bdAP)) the sign ( - 1 )  i is introduced for convenience. We infer from Lem- 
ma 7.6.3): 

( * ) Let  {ai}, {a(} be two partitions of dz, ai = a(, i ~ j, then, we have aj - aj in 
C. (~jJP, bdajAP). 

( * * ) Let  {Zl, z~} be a partition of z as in Lemma 7.5, then there exists 1) a par- 
tition {bi �9 Z'_I(Xi' ,  B), i = 1, 2} of dz and 2) an element a �9 Z'_I(A,  B) such that 
{b~, ( -  1) i a} is a partition of dzi, i = 1, 2. 

PROOF. - W e  find bi, b2 as in Lemma 7.5 as well as a ieZn_ l (A ,B)  such that 
{bl, b2 } (resp. {bl, b2, a2, - a l  } is a partition of dz e Z~_I(X', B) (resp. of its image in 
Z'_I(X,  B)). Since on the other hand {bl, b2, 0} also has this property,  we infer from 
Lemma 7.6. 3) that a ~ - a 2 - 0  in C.(A,B) enabling us to set a = a 2 ,  a i = -  
- - a .  �9 

Of course ( * * ) is again some form of a Mayer-Vietoris proper ty  for chain com- 
plexes (cf. remark following Lemma 7.2). 

This process of partitioning of a relative cycle is used at many different 
occasions. 

Here  we need it for the introduction of the set Z(/_IP): 
Let  ~P=  (a0 . . . .  ap) be a non-degenerate p-simplex with boundaries ~j~P: 

= (ao, ..., aj, ..., ap), 0 ~< j ~< p. A simplex A m =ai l  ... aip_,~P, m < p is called a subsim- 
plex of A p. 

The elements of Zn (AP) are functions ~ = ~ ,  assigning to each subsimplex A m c AP 
1) a subsimplex Akc/~ m (v:'~kCA ~ being the inclusion) and 2) a ~(A~)E 
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e Zn_p+m(A k, bdA k) such tha t  

{ ( - 1)i vi~ ~(ai A "~ ) I vi : jk~ c a i A n } 

is a par t i t ion of dv# [(A~), v: Akc An. 
We call ~(A ~) the  e lement  v#~(s  "~, bdA~), v: A k c A  "~ being the  

inclusion. 
We define ai ~ e Zn-1 (aiA~), where  ~@A p) e Z~- i  (A ~, bdA~), by  

@ ~)(A m) = ~(.4"~), .4 ~ c ~ . ~  

observing tha t  this defines in fact  a ~i~ e Z ~ - l ( ~  A~) and tha t  we have 

~ ; =  ~j_~;  i <j~ 

degenerac ies  sj r are  t r ea t ed  in w 2. 

7.7. LElV[MA. - To each z eZ~(/IP,  bdAP) there exists a ~ e Z n ( A  p) such that 
= ; ( ~ P )  = z .  

PROOF. - We s ta r t  with a given par t i t ion { ( - 1 ) J a j  e Z~-I  (~A p, bd aNAP)} and pro- 
ceed with par t i t ions of each aj ( taking into account  r e m a r k  ( * * ) following L e m m a  
7.6) until  we have establ ished a ~ e Z~(AP) with ~ = z. �9 

Suppose  ~ e Zn(AP), then  we can use 7.3 to establish a C~ ~ Z~+i (/IP+I), A'§ = C~I p, 
the  cone over  A'. We define 

(C~)(Ap + ~) = D(~(AP)) , 

[D(~(A'~-I)) ... A "~ = CA m-l,  A m-1 c AP 
(c~)(~ m) 

[(~(/lm) ... ~m) CA p c ~ p * l  .~_ CAp. 

The  const ruct ion of D(~())  is t aken  f rom 7.3 using the  inclusions resp.  project ion 
APcCAP=AP+I(--AP in the  same way  as we a rgued  in the  proof  of 7.4. �9 

L e t  v: AP = (ao, . . . ,  ap) c/Iq = (bo, . . . ,  bq) be an inclusion, v(ai) = bi, 0 <<. i <~ p, 
e Z~(/lP), then  we call a subsimplex Am c A q fu l l  wheneve r  /I "~ has the  form 

A n = (v(aio), . . . ,  v (ai ) ,  bp+l . . . .  , bq), 

defining /i t = (b~o, . . . ,  bi~), 1 = m + p - q. 
We set  

I~( AZ) ... wheneve r  A m is full,  

(v~ ~)(/I m) = [0 . . .  o therwise .  
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7.8. LEMMA. - We have 1) V~ ~ E Z~ (LIq); 2) Vi# ai ~ = a~ V~ ~, where vi : ~i /lP c ~i /lq de- 
notes the restriction of v. I f  in particular ~ is a sphere (i.e. one has ai ~ = *, i >1 0), 
then v# ~ is also a sphere. 

The proof is immediate. �9 

8. - C1 (C, )  is  a K a n  s p e c t r u m .  

This section is devoted to a proof of the following: 

8.1. THEOREM. - The spectrum E = CI(C.)  is a Kan spectrum. 

Recall that a spectrum E is a Kan spectrum whenever all Ek are Kan complexes, 
where {Ek} is the associated prespectrum. So the contention of Theorem 8.1 is equiv- 
alent to the following. 

8.2. LEMMA. - Let ~ ~ (Ek)q, i = 0, ..., k - 1, k + 1, ..., q + 1 be q + 1 q-simplexes 
in Ek, satisfying 

(1) a~ ~q = aj_~ ~ ,  i < j, i, j ~ k, 

then there exists a ~q+l e (Ek)q+l such that ai~ q+l= ~q, i ~ k. 

We have ~q E Z~(/~/pi) and deal in a first step with the case that all Pi are equal 
to q. 

Suppose that we have the same situation as in Lemma 7.5: Y = Y1 (J Y2, Y1 A Y~ = 
=A,  X i ' c X i c Y i ,  X 1 A X e = A ,  X; ( ~X d= B ,  X = X ,  UXe, X ' = X ; U X d  (cf. w 
fig. 1). 

( . )  Let zieZ~_~(Xi, B), i =  1, 2, be relative cycles admitting a partition 
{zi', ( - 1)ia}, zi' e Z'_~ (Xi', B), a e Z~-I (A, B), then Zl' + z~ �9 Z~-I (X', B) 
is (in hn-1 (X, B)) homologous to zl + z2. 

PROOF. - Since z l + z 2 N ( z { - a ) + ( z ~ + a ) ,  the assertion follows (cf. also 
7.2). �9 

( * * )  Let y ieZ~(Y i ,X i ) ,  i = 1 , 2 ,  be relative cycles such that dyi = 
= zi e Z ' - I  (Xi, B) satisfies the assumptions of( * ), then there exists a com- 
posite (cf. w 7) y e Z" (Y, X') of { Y i ,  Y 2 } .  

PROOF. - Because of our assumptions and Remark 3) following D3) in w 9, Lemma 
7.6 1) applies, ensuring the existence of a composite y, which is (up to homology) 
uniquely defined. �9 
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These assertions are now applied to q + 1 (instead of two) summands to the effect 
that we detect 

c =  ~ ( - 1 ) ~ q  e Z~ (.U z i7 ,~  bd ziq). 

We establish ~q+~ 
= c3~_~, i < k, ~j~q 
simplexes ~ ,  i = 0, 
equal q. �9 

There is a homeomorphism between zi~ and U ziq (both considered as subspaces of 

bdzi q§ c ziq+l) so that we have a c ' e  Z~ (zi~, bdzig) corresponding to c. According to 7.3 
there exists a b e Z" (ziq+~, bdziq+i), representing the homotopy between the homo- 
topic mappings ziq--) U ~1 q r Aq+~ zi~ (--Aq (on the boundary this homotopy is the iden- 

i ;~  
tity). Hence we have db = c - c'. 

(resp. ~q) by setting ~q+~ = b (~  = c') and ~q+~ = ~q ( ~  = 
= ~ + ~ ,  k <~j). So ~q+~ is a filling of the cone consisting of 
. . . , k - l ,  k + l , . . . , q + l ,  settling the case where all pi 

Suppose that Pi <~ q, then we have inclusions vi: ~ '  c zi~ and ~q = vie ~q. From (1) it 
follows (cf. Lemma 7.8) that 

(1') a~ ~q = ai_ 1 ~q, i < j, i, j ;~ k. 

So we find ~q+l eZ,/~+l(/]q+l) a s  in the first case but now defining ~.~q+l rq 
If there is a p~ > q, we take p = maxp~ > q and employ instead of ~q again 

vie ~q e Z~ (zip), vi : zi~' r ziq. The series of simplexes ~q 'q . . . .  , ~q+l is extended to a cone 
by requiring 'q 'q ~q+2 . . . .  , ~p+l to be degenerate simplexes: ~q = *, j > q + 1. Now we 
proceed again as in the first case (with ZIP replacing ziq), finding a ~q+l e Z,[+l(zip+l) 
with a ~  q+l=~q, 0 ~ < i ~ < q + l , i ~ k ,  ai~. q + l = ~ q = *  f o r i > q + l .  

This settles the last remaining case, completing the proof of Lemma 8.2 and there- 
fore also of Theorem 8.1. �9 

The Kan extension condition for E implies the same property for E(X)  (cf. w 3). 
Let ~ = ~.n e Z~(AP)c (Ek)q be a q-simplex, then we construct a Z~ e Zn+ 1 (ziq+l) in the 
following way, resembling the construction of Zz, z e Z~(zi p, bdzi p) in 7.4: 

Let C+ ~ e Z~+~ (C. ziP) be two different copies of C~ (being introduced at the end 
of w 7). These two simplexes can be regarded as a (q + 1)-cone (using induction with 
regard to q, starting with two 1-simplexes which have a vertex in common, giving a 
l:cone which can be filled up by the Kan condition yielding a 2-simplex etc.). The fil- 
ling ~+1 of this cone has an extra face (not lying in the original cone) which is our 
Z~ e (Ek)q+l, ~:~ e Zn+l (~p*l). 

The degenerate simplexes of E (cf. w 2) are treated similarly. 
The same procedure can be performed for E(X)  (cf. w 3) instead of E (by doing it 

for each factor separately). So we obtain a simplicial mapping 

~k : ZE(X)k --) E(ZX)k 

in the following way: A non-degenerate (q + D-simplex ~ of SE(X)k is a q-simplex 
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*-q A ~.q of E(X)k. Assign to z the simplex 2:~ A Z [  of (E(ZX)k)q+I. For the degenerate 
simplexes we proceed analogously, providing us with a simplicial ~h- 

We have (cf. w 3) 

E n ( X )  : r~ n ( E ( X ) )  = li~m 7~n+ k (E(X)k). 
k 

So the suspension isomorphism 

(2) y: En (X) ~ En+ 1 (2X) 

can (simplicially) be described by combining ~k with the suspension: 

~n + k ( E ( X ) k )  ~ =n + k + 1 (~-~E(X)k)  ~ > 7~n + 1 + k ( E ( ~ X ) k ) .  

The proof of the fact that this assignment 

(3) y{a} = {~k~Za} 

yields the suspension isomorphism (2) is standard. 
We summarize: 

8.3 .  LEMMA.  - W e  have a simplicial mapping 

~k : ZE(X)k --* E(ZX)k, 

such that the suspension isomorphism (2) is (in simplicial language) expressed 
by (3). 

9. - C h a i n  f u n c t o r s .  

Let h ,  : CW 2 __~ Ab ~ be a homology theory being defined on the category of CW 
pairs, then we are in [1] establishing a chain functor C , : C W - o c h  (= category of 
chain complexes) which determines h ,  in a certain sense. This does not mean that we 
have to each inclusion i: A c X an exact sequence of chain complexes 

iv 
(1) 0 ~ C .  (A) --~ C ,  (X) ~ C .  (X, A) -~ 0 

II 
C, (X)/im i# 

fielding h.(X,A) as derived homology H .  (C.  (X, A)). It is known (cf. [1] for further 
reference) that the existence of such a functor C. --> ch implies that h .  is simply iso- 
morphic to the direct sum of ordinary homology theories 

h . ( X , A ) ~  ~ H,+~(X,A; G~),  G~eAb. 
n = - ~  
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This leads to the concept of a functor C , :  CW---)ch with domination or briefly a 
D-functor [1]. 

Let C,  : CW 2 ----> ch be a functor satisfying 

�9 ) All inclusions i: (X1, A1) c (322, A2) induce monomorphisms. 

�9 ) C , (X ,X)  is acyclic. 

(2) 

The sequence 

i~ je  
C, (A) -* C,  (X) ~ C,  (X, A) 

does not suffice for establishing a boundary 0: H ,  (C, (X, A))--* H , - 1  (C, (A)). So we 
describe what is meant by 

* * * ) (2) is naturally dominated by an exact sequence 

P H 
0 ~ C,  (A) ~ C, (X, A) ~ C, (X, A) -~ 0. 

At first we assume the existence of another functor C~ : CW ~ -~ ch together with nat- 
ural inclusions 

i r r 
C, (A) -o C, (X, A) ~ C,  (X, A). 

The chain complex C2 (X, A) has the form Cs (X, A ) / i m i  '. We have the inclusions 
q: (A, A) r (X, A), s: A r (A, A) and construct a natural homomorphism 

'~ = +(x, d): H ,  (C, (X, A)) --~ H ,  (C, (X, A)) 

in the following way. 
To each z e Zn (C:~ (X, A)) we find a b e Cs (X, A) with db e i m  i'. Since C,(A, A) is 

acyclic we detect a g e C,  (A, A) such that d-d = l(b). So we are allowed to set 

~b[z] = [l(b) - q ,  (g)]. 

It is immediate that .~ is a well-defined, natural homomorphism satisfying 

~p ,  = l , ,  

p: Cs (X, A) --* C~ (X, A) denoting the projection. In addition to this we require the ex- 
istence of chain mappings: 

~ # :  C r , (X, A) --> C ,  (X),  

Jc# : C,  (X) ~ C; (X, A), 

with induced homomorphisms ~ ,  = 9, ~:~, = K, between the related homology 
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groups, as well as the following equations resp. chain homotopies: 

[K# i# = i ' ,  

D1) t j  # ~o -- l, 
~# tc# -- 1, 

satisfying 

D2) ~b is an epimorphism; there exists a ~: ira j ,  -+ H ,  (C~ (X, A)) satisfying ~bp = 
= 1: i m j , - - , i m j ,  and p , ~  = ~ j , .  

Let 8: H ,  (C~: (X, A ) ) ~  H , - 1  (C, (A)) be the boundary homomorphism related to 
the short exact sequence (2), then we require 

D3) ker a ~ ker ~. 

The sequence (2) is called a natural domination of (2). Observe that we do not expect 
~, ? or K to be natural. 

REMARK. - 1) Lemma 5.4 in [1] (which is the origin of D1)) asserts only a chain 
homotopy •# i = i '  : However in the course of the proof of this assertion in [1], one es- 
tablishes in fact an equality K# i = i '. 

2) Moreover the proof of [1] Lemma 5.4 yields the following additional property 
of the chain homotopy D: ~# K# = 1 (not explicitely stated in the formulation of [1] 
Lemma 5.4): Let z ~ Zn(A) be a cycle, then D(z)e im (Cn+I(A)-~ Cn+I(X)). 

3) A chain homotopy D: ~# i '  = i can be immediately deduced from k# i = i '  
and D (in 2)). Therefore we have again 

Z 6 Z# (.4) =::> D(z)  E ~ (Cn+ 1 (n )  ---> Cn+ 1 (X)). 

We obtain a natural boundary operator 

8 = an: Hn(C, (X ,A) ) - - )Hn_I(C, (A) )  

by setting 

(a) an [z] = ~[z'] ,  

z' e Zn (C~ (X, A)), ~[z'] = [z]. Condition D3) ensures that a is well-defined. 

4) The existence of ~ in D2) turns out to be equivalent to the condition: 
ker (j , : H ,  (C ,(X)) --~ H , (C ,(X, A))) r k e r p ,  K. 

In practice it appears to be more convenient to replace the functor C,  : CW 2 ---) ch 
by the functor C , :  CW--~ ell being related to C, by 

(4) C ,  (X) = C ,  (X, X)  . 
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All chain complexes C,(A), C,(X,A), C, (X, A), C,(X) appear now as subcomplexes 
of this single enveloping chain complex C ,  (X). 

We summarize: 

9.1. DEFINITION ([1] Appendix). - A functor C , :  CW2--)ch (resp. the related 
functor C ,  : CW--) ch) satisfying * ), * �9 ) being endowed with the additional struc- 
ture of a natural domination (hence satisfying D1)-D3)) is called a functor with domi- 
nation or simply a D-functor. 

We deduce immediately ([1] Proposition A.2): 

9.2. PROPOSITION. - The variety H ,  = {Hn (C , ), an, n e ~ } of functors and natu- 
ral transformations as described in (3) give rise to an exact homology sequence 

a 
... ---> H n (C , ( n ) )  --> H n (C , (X) )  ---> H n (C , (X, A ) )  ----> H n_ 1 (C , ( n ) )  --> . . . .  

We agree to use the notation 

H ,  (C,)(X, A) = H ,  (C,  (X, A)) 

whenever we talk about the homology groups of the D-functor C , .  

9.3. DEFINITION ( c f .  [1] Definition 2.1) . -  A chain functor C , :CW->ch  is a func- 
tor C ,  satisfying 

C ,  1) C ,  is a D-functor. 

C,2) To each homotopy H: f0 --fl :  (X, A) ~ (Y, B) in CW 2 there exists a chain 
homotopy D(H): C~(X, A ) ~  C,+I(Y, B) being natural in the following sense: Let 

(X ,A)xI  H>~(Y,B) 

(2,A)xI I~> (~,B) 
be commutative in CW 2, then the diagram 

C~(X, A) _D(H)> C~+I(Y, B) 

D(IZI) 
C n ( X , A )  > Cn+l(Y, B) 

(with e.g. C, ( f )=f~)  is commutative. 

C,3) one has C ,  (0)= 0 (= trivial chain complex). 
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C,4) (Axiom of carrier). To each c e C~ (X) there exists a space X c X (not nec- 
essarily a CW space) satisfying 

1) To each CW space X z X ' c X  one has a c ' e C , ( X ' )  satisfying 
(X' cX)~ c' = c. 

2) For each c ' e  C~(X'), X " X  satisfying (X ' cX )# (c ' )=  c, one has X c X ' .  

The definition of a chain functor is understood to include 1) a specific choice of a D- 
structure involving all particular items like e.g. dominating sequences, chain map- 
pings ?~, K# etc. 2) chain homotopies as described in C,2) and 3) carriers of chain as 
described in C,4). So two functors ~C,, 2C,:CW--->ch represent different chain 
functors whenever at least one of these three items differ although they might be 
equal as functors. The main result of[l] (Theorem 8.1) is the assertion: 

9.4. THEOREM. - To each homology theory h ,  = {h~, ~n, n e ~}  h ,  : C W  2 --->Ab z, 
there exists a chain functor C ,  : CW ~ ch as well as a natural isomorphism of homo- 
logy theories: 

t~: h , ( ) ~  H , ( C , ) ( ) .  

We can assume that 1) all C,(X),  X e C W  are free chain complexes, 2) 
Cn(A,A) cC~(X,A) is, for all pairs (X,A) e K  2, a direct summand and 3) 
im 1 c C,, (X, A) is a direct summand. 

In order to be able to define the category g ,  of chain functors, we need the con- 
cept of a natural transformation ~: ~C, --~2C, between chain functors. This is a natu- 
ral transfo~qation between the two functors respecting the additional struc- 
tures: 

9.5. DEFINITION. - Let 1C,, 2C,: CW--)ch be two chain functors (cf. Definition 
lf~r 2fvp 9.3) )~: 1C, -->2C,, )~: 1C, --~2C,, )~' : t~, -~ ~ ,  natural transformations such that 

2 ~l# = 21# 2',  

2K#)~ -- )~P 1K#, 

)~x = 2(x,x), 

~l# : ~C, ~ iC , , 

i r ~ :  C, (X, A) ~ C ,  (X), 

C, (X, A), ~ : ~ C , ( X )  i , 

and that for each homotopy H: fo ~f l : (X,  A) --~ (Y, B) one has 

)~ 1D(H) = 2D(H) 2, 

with 

iD(H): i C , (X, A) --) iC , + I (Y, B) . 

Then we call )~: 1C,--)2C, a transformation of chain functors. 
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9.6. PROPOSITION. - 1) Any transformation of chain functors induces a natural 
transformation of homology theories 

)~. : H .  (1C.) ~ H .  (2C.). 

2) This class of chain functors together with transformations between chain 
functors form a category ~,.  

1 Ip 2 rF 3) There exists to each )~ e ~ .  (1C. ,2C.) a natural ~,: H .  (C. )  --, H .  (C. )  
satisfying 

~ ' ~  = ~.11~ , 

with ~: H ,  (iCE) --> H ,  (C , ) being the corresponding natural transformations. 

The proof is immediate. 

REMARK. - Two chain functors 1C., ~C. which agree in all the additional structure 
with possible exception of the chain mapping ~:# (inducing p in D2)) and the carriers 
are, according to Definition 9.5, equivalent in the category ~, .  

In the present paper we are obliged to use two additional properties of a chain 
functor C ,  which follow from the construction presented in [1] more or less immedi- 
ately. Since we do not intend to repeat any details of this construction we simply 
state these assertions leaving the proofs to the reader of[l]: 

Recall that C~ (A, A) is a direct summand of the free abelian group C. (X, A); de- 
note the complementary summand by C~ (X, A ) -  C~(A, A). 

We denote by C~ (X, A) r C~ (X, A) the subgroup generated by C~ (X, A) - C~ (A, A) 
and C" (X, A), 

9.7. LEMMA. - 1) x e C~ (X, A) - C~ (A, A) ~ dx e C~ (X, A). 

2) C" (X, A) N C~ (A, A) = C~ (A) (cf. [1] Lemma 5.4). 

3) c" (x, A) = ((C~ (Z, A) - C~ (A, A)) n C~ (z, A)) �9 (C~ (A, A) n C; (z, A)). 

9.8. LEMMA. - Let H: fo ~--fl : (X, A) --> (Y, B) be a homotopy such that H ( X \ A  x 
• (0, 1)) r Y \  B and z e Zn (X, A), then the chain homotopy D(H)(z) = D(z) satisfies 

D(z) ~ Cn+l (Y, B). 

REMARKS. - 1) Lemma 9.7 1) assures us that a chain which lies on the boundary of 
generators in the complement of C~(A, A) cannot be contained ,~too deeply, in 
C,(A,A). This is of importance because the splitting of Cn(X, A) into C~(A, A) and its 
complement is not a splitting of chain complexes but only of individual abelian 
groups. 



F. W. BAUER: Classifying spectra for generalized homology theories 399 

2) Lemma 9.8 constitues a stronger version of the naturality property of the 
chain homotopy D(H). I t  will be needed to repair the lack of a chain homotopy 
D'(H): C~(X, A)--~ C'+I(Y, B) (which does not exist), cf. Lemma 7.3. " 

REFERENCES 

[1] F. W. BAUER, Generalized homology theories and chain complexes, Ann. Mat. Puta Appl., 
(IV), 155 (1989), pp. 143-191. 

[2] F. W. BAUER, Die Homotopiekategorie der Boardman-Spektren ist zur Homotopiekategorie 
der Kan-Spektren dquivalent, Compos. Math., 28, No. 1 (1974), pp. 1-8. 

[3] E. B. CURTIS, Simplicial homotopy theory, Advances Math., 6, No. 2 (1971), pp. 
107-209. 

[4] D. I~N, Semisimplicial spectra, Ill. J. Math., 7, No. 3 (1963), pp. 463-477. 
[5] D. KAN - G. W. WHITEHEAD, The reduced join of two spectra, Topology, 3, Suppl. 3 (t965), 

pp. 239-261. 
[6] D. KAN - G. W. WHITEHEAD, Orientability and Poincarg duality in general homology theo- 

ries, Topology, 3 (1965), pp. 231-270. 
[7] J. P. MAY, SimpliciaI Objects in Algebraic Topology, Van Nostrand, Princeton (1968). 
[8] S. R. MARGOLIS, Spectra and Steenrod Algebra, North-Holland Math. Library, 29, Ams- 

terdam (1983). 
[9] R. L. S. SWITZER, Algebraic Topology-Homotopy and Homology, Grundl. der Math. Wis- 

sensch., Bd. 212, Springer-Verlag (1975). 
[10] G. W. WHITEHEAD, Generalized homology theories, Trans. Amer. Math. Soc., 102 (1962), 

pp. 227-283. 


