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On a Large Class of Symmetric Systems of Linear PDEs, 
for Tensor Functions, Useful in Mathematical Physics(*)(**). 

ADRIANO MONTANARO - DIEGO PIGOZZI 

A b s t r a c t .  - We study a class of symmetric systems of linear partial differential equations which 
involve tensor functions relating tensor spaces on a three dimensional vector space, on the 
real field, equipped with an inner product. These systems arise by coupling certain simpler 
symmetric systems studied in a previous paper. In order to investigate some questions, re- 
lated to constitutive equations for bodies of the differential type, certain classes of physically 
privileged solutions are characterized for some of the aforementioned systems. 

1. - I n t r o d u c t i o n .  

In M [4] the general symmetric system (1.3) below, of linear PDEs for tensor func- 
tions, has been studied. By using some results established there, here we study cer- 
tain symmetric systems obtained by coupling simpler symmetric systems of the kind 
(1.3)--see (1.6)-(1.8). 

Furthermore a class of physically privileged solutions to systems (1.6)-(1.7) is 
characterized. Such a class is used in M&P [5] to find the maximal indetermination of 
the response function for the heat flux in general differential bodies; such an indeter- 
ruination turns to coincide with the one found in M [2] in connection with thermo-elas- 
tic bodies. 

In the present paper another class of solutions to systems of the kind (1.6)-(1.7) is 
characterized. It is used in M&P [6] to prove (i) a uniqueness theorem for the re- 
sponse function of the stress in any differential body (of arbitrary complexity) and (ii) 
a uniqueness theorem for the response function of the internal energy for certain 
(large) classes of such bodies. 

(*) Entrata in Redazione il 15 dicembre 1990. 
Indirizzo degli AA.: Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, 

Universit~ di Padova, via Belzoni 7, 35131 Padova, Italy. 
(**) This work has been performed within the activity of the Consiglio Nazionale delle 

Ricerche, Group n. 3, in the academic years 1988/89 and 1989/90. 
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In more details assume that  

n, u, z e {1, 2 .... }, F~ is the field of real numbers, 

~-'~ is an inner product space of dimension n on R, 

?[~ is an open connected subset of the space ~'~ (~z~)of tensors of (covariant) or- 
der z on q"n, 

~7 "'~ {~P~) is the space of tensors of (controvariant) order u on qz~, 

(1.1) Q: '1[~---~ ~"~(r X ~ Q  = Q,(X), 

is a (tensor) function from ?[~ to ~'~(qJ~). 
Moreover, as is customary, 

(1.2) X...(~...b)... = 2 (  X...~...b... + X..b...~...) 

denotes the symmetric part  of X with respect to the indexes a, b. 
From now onward we shall refer to a f'Lxed orthonormal basis of q-'. Consider the 

symmetric system of linear partial differential equations 

(1.3) aQ ...... ~ - ~(~'~ + ~ ..... = 0, 

namely 

(1.3') [Grad Q] ..... (~ ...... ~1 ""~1)""'t~: " = 0 ( 1 ) ,  

where any index ranges from 1 to n and ~ e {1, ..., u}, V c {1 ..... v} are fixed. In M [4] 
the general smooth solution of such a system has been studied for each u, z and n in 
{1,2,...}. 

In order to consider certain applications to mathematical physics~see  M&P 
[5-6]--from now on we shall limit our considerations to the cases 

n = 3, v = 2, ,J ~ {1, 2, ...}; 

thus we set 

(1.4) r = r a ~ {1, 2, 3} '~- ~, A e {1, 2, 3}, (a, A) e {1, 2, 3} '~, 

(where a must be dropped if u = 1); let [XbB], [YbB] and [Q~A] denote the representa- 
tions of the tensors X, Ye  ~'2(q") and Q E~(r -') respectively, with respect to the 
given vector basis of q]. The summation on repeated indexes is understood. In M [4, 
w 5], see (5.4), the following assertion is proved. 

(1.A) The three assertions (1.B) through (1.D) below are equivalent. 

(1) Notice that system (1.3) is symmetric with respect to Xz,..~_I,s ~ ...... z~ and 
X~I... z . . . .  z ...... ,~. In words (1.3') means that the symmetric part of tensor Grad Q with respect to 
% ancl fl: ~/anishes, that is Grad Q is skew-symmetric in % and/~. 
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(1.B) [(1.C)] The function (1.1) is a C2-[C ~-] solution on ~2 of the first order 
system (1.3). 

[~] 
(1.D) For i = 0, 1, 2 there are tensors ~ such that 

(1.5) Q ~  = [,~]~a + ~]~b~Xb 8 + ~J~b~CXb~X~c ((a, A)e  {1, 2, 3}'~), 

[1] [2] 
where ~ is skew-symmetmc in (A,B} and ~ is totally skew-symmetmc in 
{A, B, C}. 

[2] 
Incidentally note that  in the last assertion tensor ~ can be chosen skew-symmet- 

ric in {b, c}. 
By the equivalence of assertions (1.B) and (1.C) sometimes smooth solution will 

mean indifferently solution of class C 2 or of class C ~. 
In the present  paper  we consider functions of the form Q = Q(X, Y) and Q = 

= Q(X, Y, Z) - - see  (2.1) and (4.7) below--and we first find the general smooth solution 
of the twofold system 

OQa( A OQa(~ 
(1.6) - -  = 0, - -  = 0 (a, b,A, B = 1, 2, 3) - - see  w 2, 

8XbB) 3Yb~) 

second, we find the one of the threefold system 

aQ (A aQ( ~ aQ( A 
(1 .7)  - -  - 0 ,  - 0 - -  = 0 ( b , A ,  B = 1, 2 ,  3)  - - s e e  w 4 .  

3XbB) 3 YbB) 3ZB) 

Then, in Section 4, we characterize a class of physically privileged solutions to 
(1.6)-(1.7) in the case ~ = 1. In Section 5 the solutions of the system 

aQ~( A 
(1.8) p - 0, (p = 0, 1, ..., P ) ,  (a, b, A, B = 1, 2, 3), 

a YbB) 

which is the (P + D-fold version of the twofold system (1.6), are found; lastly, in Sec- 
tion 6 a class of physically privileged solutions to (1.8) is characterized. 

This characterization is used in M&P [5] to prove that the maximal indetermina- 
tion in the response function for the heat flux in some classes of differential bodies 
exactly coincides with the one found in M [2] with regard to a thermo-elastic body. In 
order to give more details, we consider the conditions below. 

(A) The body ~ is of the differential type and complexity (P, O, 0), and ~ is a 
reference configuration for it; 

(B) ~ is an admissible response function for the heat flux in (:~, ~), i.e. in 
referred to :X; 

(C) ~t~ is a function of class C 2 in the domain of ~,  and Q = ~ -  (t~; 
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(D) ~ is an admissible response function for the heat f lux in (53, :~); 

(E) there is a function ~ ~ Cs(R  + • F~ 8) such that 

Q(o, G, X) = G • GRAD ~(o, X).  

In M&P [5] it is proved that, under the assumptions in (A) through (C), conditions 
(D) and (E) are equivalent (such a proof relies on the proof of the same fact given in 
M [1] with regard to thermo-elastic bodies). 

Furthermore in M&P [6] the physical solutions to systems (1.6)-(1.7) for u = 2 are 
characterized and this allowed us to prove there the uniqueness theorem for ( j)  the 
response function for the stress in any thermodynamic differential body (of arbitrary 
complexity) and (jj)  the response function for the internal energy in many classes of 
such bodies; incidentally let us note that the statements of these theorems do coincide 
with those found in the thermo-elastic case. 

Therefore the present paper can be considered as the purely mathematical pre- 
requisite to the work M&P [5] and to a part of M&P [6]. 

Indeed in our opinion the solutions of systems of the kind considered here can fur- 
nish the natural algorithms for dealing with general uniqueness and indeterminate- 
ness questions related with constitutive equations of differential bodies. 

2. - Twofold symmetric systems. 

Let us consider smooth functions of the kind 

(2.1) Q: 9[ • ~ [ ' ~  ~ ( q ) ) ,  (X, Y ) ~ Q  = Q(X, Y), 

where (i) u e {1,2, ...}, q~' = Cz~; (ii) both 9[ and 9[' are open connected subsets of 
~'2 (q~'). 

Consider the twofold system (1.6); by assertion (1.A) with regard to both the sys- 
terns (1.6)1 and (1.6)2, one can easily prove the assertion below. 

(2.A) The function (2.1) is a smooth solution to the twofold system (1.6) i f  and 
[i] 

only i f  for i = 0, 1, 2 there are tensors ~ and ~, which are skew-symmetric in their 

capital indexes, such that for each (a, A ) e  {1, 2, 3} '~ --see (1.4)-- Q~A writes in a 
twofold way as 

(2.2) t21ab~C xb~ x~c ' 

Eol~ ~ b ~ c  YbB YcC. (2.3) Q oA = ~b + [~]~bAB Yb~ + 
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Incidentally note that  

(2.A') the tensors [21 [~] and ~ in assertion (2.A) can be chosen skew-symmetric 
in {b, c}. 

Now consider the assertions (2.B) through (2.D) below. 

(2.B) The function (2.1) is a C2-solution in ~ • ?1' of  the twofold system 
(1.6). 

(1.6). 
(2.C) The function (2.1) is a C ~-solution in ?~ x 71' of the twofold system 

[00] [101 [10] 
(2.D) There are tensors v �9 ~'~ (~'), v ,  v e ~-2~ (r and [111 [2o] [02] 

such that, for each (a, A) �9 {1, 2, 3} ~ - - see  (1.4)--, QoA writes as 

(2.4) Q~A = [0z%A + [IOz]~bABxb B + [~]~bAByb 8 + 

[11] abcAB C [ 20 ] abcAB C [ 02 ] abcABC 
+ z XbB Y~c + ~ XbB X~c + v YbB Y~c, 

[hk] 
where the tensors v are totally skew-symmetric in their capital indexes; further [~] 

[021 
and v can be chosen skew-symmetric in b, c. 

THEOREM 2.1. - The three assertions (2.B) though (2.D) are equivalent. 

PROOF. - Assume (2.B) (or equivalently (2.C)); by (1.A) and (2.A) one easily finds 
the following expression for the general solution to (1.6) 

(2.5) Q ~  = [~]oA + [~]~b~Xb B + [~]~ADya D + ~]~b~4BDXbBY~D + 

[ 20 ] abcABC 
+ xb Xcc + + + 

0 2  

where ~1 (p, q = 0, 1, 2) are arbi t rary tensors which are totally skew-symmetric in 
[22] [12] [21] 

their capital indexes--see M [4]. Thus 0 = v = v = v, as these tensors are totally 
skew-symmetric in more than three indexes. The last part of the assertion (2.D) fol- 
lows from (2.A'). Hence (2.D) holds. The converse implication is a trivia] task to 
verify, q.e.d. 

Next we remark  that  the solutions found can be writ ten by means of the Rieei ten- 
sor ~; in more details by the elementary lemma below, assertion (1.D) [(2.D)] is equiv- 
alent to assertion (1.D') [(2.D')] below. 
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(1.D') For i = O, i, 2 there are tensors t~J Q~A such that writes as 

(1.5') Q ~ ~o~ [~} b C~3~hbc = ~z + ~ Cz4BCxbB + zABCxbBxw (a, A = 1, 2, 3). 

[001 [20] [02] 
(2.D') There are tensors z ,  z ,  v ~ ~'~(~/:) and [lo] [ot] ml ~7.,~+ z ,  z ,  z e 1(r such 

that, for  each (a, A)  e {1, 2, 3} '~ ~ s e e  (1A)~,  Q ~  writes as 

[201abM _ABM ~,~ {02J (2.4') Q ~  v ~-  .%~+ r~dNzAgNy~o+ 

LEMMA 2.1. - Let T = [T ~4B] e ~r~ .2(~:) [T = [T ~Bc] e ~'.~ +~(~:)] be [totally] 

skew-symmetric in {A ,B}  [{A,B,C}],  where a e { 1 , 2 , 3 } ~ .  There is a tensor 
U ~  ~ " +  l ( q : )  [U~ ~7"~(~))] such that T ~ = u~c ~ ABc [T ~Bc = U~ ~aBc]. 

3. - Isotropic tensors.  

Recall that we refer r to an orthonormal basis. Let  I denote the identity tensor, 
and let 

Orth + = {A e ~7"z(q])IAA T = 1, detA = 1} 

be the group of proper  rotations. The Lemmas 3.1-3.2 below characterize isotropic 
tensors of orders 1 to 3. They are proved in many textbooks of Tensor Calculus--see 
e.g. F&P  [1]. 

LEMMA 3.1 [3.2]. - A tensor V e ;7"2 (r [U e (fY] satisfies 

(3.1) 

i f  and only i f  

(3.2) = d ij 

V~bR~iRbj = Vij [U~R~i = Us] VR e Orth § 

for some d e R [U = 0] (i, j = 1, 2, 3, 3iy = Kronecker delta). 

LEMMA 3.3. - A tensor V ~ J 'a  (r satisfies 

(3.3) V~bc Ra~ Rbj Rc~ "~ Yijk 

i f  and only i f  

VR ~ Orth + 

Vijk = d~jk for some d e • (i, j ,  k = 1, 2, 3). 
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4. - P h y s i c a l l y  r e m a r k a b l e  s o l u t i o n s  o f  the  above  t w o f o l d  sy s t ems  in the  case  
= 1. Three fo ld  s y m m e t r i c  sys tems .  

In this section we characterize the class of the solutions to the twofold system 
(1.6), in the case u=  1, which satisfy the following conditions. 

(4.A) Q(RX, R Y )  = Q(X, Y) for any R e Orth + and any (X, Y) e U • U' 

[in components QA (Rb~XiB, R~i Y~  ) = QA (Xbs, Y~D)] �9 

(4.B) O(RX, I C X + R Y ) = O ( X , Y )  for any R e C ~ ( [ - ~ , 0 ] , O r t h  +) and any 
(X, Y) e U • U', where s > 0, t ~ R ( t ) ,  R = R(0), R = (dJC/dt)(O) 

[in components QA (XbB, l~d~XiD + Rdi YiD) = QA (RbiXi~, Rdi YiD)]. 

Remark that (4.B) implies (4.A); further, recall that 

(4.B*) if / ~ E c l ( [ - s ,  0],Orth +) satisfies R(0)=I ,  then [r 
Skew. 

(Indeed R R  T = I implies/~R T + RR T = O, and thus R = I yields R E Skew.) 

PHYSICAL INTERPRETATIONS OF CONDITIONS (4.A)-(4.B). - Let both q and ~ be ad- 
missible response functions for the heat f lux  of  a differential body ~ of  complexity 
one, connected with the same reference configuration, and let 

(4.1) Q = q -  ~, X = F (position gradient), Y = ~" (material derivative of F ) .  

Condition (4.A) [(4.B)] is a consequence of the property of Galilean [Euclidean] in- 
variance imposed to the response functions for the stress--see M&P [6]. 

Now consider assertions (4.C) through (4.F) below. 

(4.C) The function (2.1) is a smooth solution in ?[ • ~ '  to the twofold system 
(1.6) and satisfies condition (4.A). 

(4.D) The function (2.1) is a smooth solution in ~[ • 71' to the twofold system 
(1.6) and satisfies condition (4.B). 

(4.E) [(4.F)] There are a vector v and a scalar d [there is a vector v] such 
that 

(4.2) [(4.3)] QA = vA + dzCBCxbB Ybc [QA = ~ ]  (A = 1, 2, 3). 

THEOREM 4.1. -Asser t ions  (4.C) and (4.E) are equivalent. 

THEOREM 4.2. -Asser t ions  (4.D) and (4.F) are equivalent. 

PROOF OF THEOREM 4.1. - Let Q as in (2.1) be a smooth solution to (1.6) for ,~ = 1 
({a} = 0)--see (1.4); by Theorem 2.1 we have that equality (2.3) holds (with a 
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dropped); thus condition (4.A) yields--see (2.4) 

(4.4) ~~176 [10ibm ABM [01]dN ADN + z ~ RbiXiB + "~ ~ RdiYiD + ['~]bdeABDRbiXiBRdjljD + 
1 1 _ .  

+ ~h  bi iB cj jC+  "Y iDRe jY jE= + + 

[11]bd ABD + ~JgN~ADNyd D + Z ~ XbBYdD + [~Jhehb~CXbBX~c + ~O~]hs~WEydDY~E. 

Now by equating the corresponding terms of the same degree in the two sides of 
equality (4.4), and by the arbitrariness of the independent variables, one finds the 
equalities below 

�9 [IOT]bM ABM ...= [10]bMT: $ABM Ri b , 

i.e. [~]bM = [~I{MRi b (a similar equality holds for [~]), 

(4.5) ~]bd~ABD m]ij ABD 
= z ~ RibRjd, 

i.e. [~]bd .~ [11]/3.RibRj d" 

Lastly the equality t~ ]h = z s RibRjc = v s , shiJ~CR~bRjc E~lhshb~A~C, i.e. t2~ ~j ~2~ hb~ 
[20] k 

holds; thus E~l~skbc~iYR~bRj~--2 z , and by s~cs~ iJR~Rj~=2de t (R-1 )~  the last 
equality yields 

(4.6) ~l~R~a = ~1~ (a similar equality holds for I~l). 

Hence by (4.5)-(4.6), by the arbitrariness of R and Lemma 3.1, it follows that in 

equality (4.2) the vector v can be taken ad arbitrium, that ~ ~ [01] [ ] [o2] 

and ~)ij = d~iJ for some scalar d; by these equalities and (2.4) the theorem is 
proved, q.e.d. 

PROOF OF THEOREM 4.2.  - Assume (4.D); as (4.B) implies (4.A), it follows that 
(4.C) holds; thus by Theorem 4.1 assertion (4.E) holds too; now equality (4.2) and 
(4.B) together yield 

,~A + dr XbB Y~,c = zA + dr RbsXsB ([~bi XiB + Rbj Yjc); 

hence 

deA~C X~B YW = ds A~C R~X,~  ([~i Xic + R~j Yjc) = 

= dsABCRbs[~biXsBXiC + dr (the last equality holds as R~,Rbj = ~i); 

thus the arbitrariness of Xo~ and Y~A yields d = 0. q.e.d. 
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Now let us consider more complex functions, that  is functions of the kind 

(4.7) Q: 7 / •  ? / '  • r -+ q-' (u = 1), (X, Y, Z) ~ Q = Q(X, Y, z ) ,  

where all the conditions below (2.1) still hold, and moreover qf~' is an open connected 
subset of qz. 

Consider the system of equations below and the assertions (4.C*) through (4.F*) 
below 

~QA aQ~ 
(4.8) - -  + - 0, (A, B = 1, 2, 3). 

az, azA 

(4.C*) The function (4.7) is a smooth solution in ~[ • ?[' to both systems 
(1.6), (4.8) and satisfies condition (4.A) at any Z �9 qtY. 

(4.D*) The function (4.7) is a smooth solution in ~[ x ?[' to both systems 
(1.6), (4.8) and satisfies condition (4.B) at any Z �9 q#. 

(4.E*) [(4.F*)] There are ~, r e ~1~ and d e R [There are ~,-c �9 qz] such that the 
equalities (4.9) [(4.10)] below hold 

(4.9) 

(4.10) 

QA = zA + vCeABCZB + &ABCx~ B Ybc (A = 1, 2, 3), 

QA = zd + r%ASCzB (A = 1, 2, 3). 

The following well known lemma is used in the proof of the theorems below. 

LEMMA 4.1. - A function 

(4.11) Q = [{~A]: 5/~' ---> q-', 

is a Cl-solution of the first order system (4.8) i f  and only i f  

(4.12) Q(Z) = WZ + V for some W ~ Skew and V e q; 

[in components QA 

Q = Q(Z), qt) c ~z open connected, 

= W ~ ZB + -CA]. 

An elegant proof of this lemma, due to Gurtin and Williams, is expounded in T [7, 
pp. 98, 258]. Under  the assumption Q e C 2, a different proof is given in M [2] and in 
M&P [6, Lemma 4.2]. 

THEOREM 4.1". - The assertions (4 .C*)and  (4.E*) are equivalent. 

THEOREM 4.2*. - The assertions (4.D*) and (4.F*) are equivalent. 
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PROOF. - Assume (4.C*) [(4.D*)]; by Theorem 4.1 [4.2] and Lemma 4.1, equalities 
(4.2) [(4.3)] and (4.12) must  hold together. That  is, we must  have 

(4.13)2 QA = wABZB + V A and QA = zA + dsAsCXbByw 

[and QA = vA] (A = 1, 2, 3), 

(W e Skew, V, z E q-', d e R), where r, d are functions at most of Z, and W, V are func- 
tions of X and Y. Therefore one easily finds (4.9) [(4.10)] and (4.E*) [(4.D*)] is proved. 
The converse implication is a trivial task to verify, q.e.d. 

5. - Mult iple (P + D-fold symmet r ic  systems. 

From now on let us consider smooth functions of the kind 

(5.1) (~: 97 x 9 l  1 x . . .  x 9 [ P  ~ ~r"~(r 
1 P 1 P 

( Y , Y , . . . , Y ) ~ Q  = Q ( Y , Y , . . . , Y ) ,  

where P >~ 1, conditions (i) through (iii) at the beginning of w hold, and 
9[, ~71, ..., ?ip are open connected subsets of ~7"2(~)). 

Next we consider the (P + 1)-fold symmetric system of linear partial differential 
equations 

aQa( d 
(5.2) p - o, 

a Yb~) 

0 
(p = 0, 1, ..., P), (a, b, A, B = 1, 2, 3), (Y = Y) - - see  (1.2) ; 

by assertion (1.A) with regard to any system (5, 2)p, for p = 0, ...,P, we deduce the 
assertion below as in w 2. 

The next theorem, which generalizes Theorem 2.1, will state the equivalence of 
assertions (5.A) through (5.C) below. 

(5.A) The funct ion (5.1) is a C2-solution in 9[ x 9[ 1 • ... x ~[P to system 

(5.2). 

(5.2). 
(5.B) The funct ion (5.1) is a C~-solution in  97 x 9[ I x ... • 9[ P to system 

[o] [~i] [i] [~j] ~7-,~ + 1Cp ) (i O, ..., P) such (5.C) There are tensors z,  z e 27 "~ (qz) and z, z ~ = 

that, for  each (a, A)  E {1, 2, 3} ~, Q~A writes as 

(5.3) = YbB Y~c + 
i=O i=O 

zP [iJT] ab%ABC ~bB jycC. 
i=O=j 

i;~j 
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THEOREM 5.1. - The three assertions (5.A) through (5.C) are equivalent. 

To prove the theorem one has to proceed as in the proof of Theorem 2.1. 

6. - Physical ly remarkable solutions of  the above multiple systems in the case 

This section is the analogue of the first part of w 4, in that here we characterize the 
class of the solutions to the multiple system (5.2) in the case ~ = 1, which satisfy the 
conditions (6.A)-(6.B) below. The former express the property of Galilean invarianee, 
the latter the property of Euclidean invariance--see below (4.B*). 

1 P 1 P 1 P 
(6.A) Q(RY,  R Y, . . . ,  R Y)  = Q(Y, Y, ... ,Y )  for  any  R e Orth + and (Y, Y, .... Y)  

o 
E ~[  • ~[1 • . , .  • ~ P  ( y  __ Y)--see (5.1) 

1 P A 1 P 

[in components QA (Rbi Y~B, Rdi Y~D, ... , R~i YiD) = QA (YbB , YiD, ... , YiD)] . 

1 P 

(6.B) Q(RY,  D~(RY) ,  . . . , D P ( R Y ) )  = Q(Y,Y ,  ...,Y) for any R ~ C ; ( [ - s ,  0], 
0r th + ) and Y e C p ([ - ~, 0], ?l)  such that 

d Y(t), ..., Y(t) e ~l 1 x • ~[P Vt e [ - s ,  0] 
--~ (dt)e "'" , 

where s > 0 and 

(6.1) 

Y~v R ~ ,  R = R ( 0 ) ,  Y = Y(0),  
0 

[ (dt) ~ (0), Y = (dt) ~ d i t  . . . .  (0) (p, i = 1, , P ) ,  

1 ~ A  1 P 
[in components Q.4 (Rbi YiB, Rdi YiD + Rdi KiD, ...) = Q (YbB, YdD, ... ,YdD)] . 

Note that (6.B) implies (6.A). 
Consider the assertions (6.C) through (6.F) below. The next Theorems 6.1-6.2 

generalize Theorems 4.1-4.2 respectively. 

(6.C) The func t ion  (5.1) is a smooth solution in ~[ • ~i'1 x ... • ?JR to system 
(5.2) and satisfies condition (6.A). 

(6.D) The func t ion  (5.1) is a smooth solution in ~[ • ~[1 • ... • , ~ p  to system 
(5.2) and satisfies condition (6.B). 

[ij] 
(6.E) There are a vector ~ and scalars d, which are skew-symmetric in i, j, 
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such that 

P [~i] i J 
(6.2) QA = T A +  E deABCYbBYbc (A = 1, 2, 3). 

i , j = O  

(6.F) There is a vector ~: such that 

(6.3) QA = zA (A = 1, 2, 3). 

THEOREM 6.1. - The assertions (6.C) and (6.E) are equivalent. 

THEOREM 6 . 2 . -  The assertions (6.D) and (6.F) are equivalent. 

PROOF OF THEOREM 6.1. - Assume (6.C) with u = 1; by Theorem 5.1 equality (5.3) 
holds (with a dropped)--see  (1.4); now (6.A) and (5.3) yield 

(6.4) ~o~A + ~ L~bc i ' �9 P [ i j ] . . _ _ i  J 
i = O  i=O i , j = O  

i ~ j  

sABCRblYzBRcsYsc + ~ v e l~blYlBl~csfsC. 
i=O i=O i, j = 0 

i c j  

By equating the terms of equal degree in the two sides of equality (6.4), and by the 
arbitrariness of the independent variables and of R in Orth +, we have 

�9 = "" [iJ]ls [iJ]bc D 
: 

The arbitrariness of R,  Lemmas 3.1-3.2 and the first [third] equality above yield 

(6.5)1 [(6.5)~] below 

[i] [ii] [ij ]ls [~] r 
(6.5) r = O =  z ,  z = i f i ~ j  ( i , j = I , . . . , P ) .  

Lastly, the second equality above (6.5) yields 

2[~ lk [~]h~b~k~R R " = bl cs 

shb~ skz~ R R = 2 det (R)(R-1)kh, it follows that [~]k Iii]h- and as bt ~ = v /r Thus by Lemma 
[o] 

3.1 equality (6.5)2 holds. Note that  in equality (6.4) vector r can be taken ad arbitri- 

urn. Thus (6.5) yields 
p -. j 

( 6 . 2 ) '  Q A T A +  E [d] i = eABC YbB Ybc (A = 1, 2, 3). 
i , j = O  

i ~ j  
i J [ij] 

By the skew-symmetry of ABC YbB Yw with respect  to i, j one deduces that  scalars d 
can be taken skew-symmetric and (6.E) is proved. To prove the converse implication, 
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one only has to verify that if Q is given by (6.2), then it solves (5.2) and satisfies 
(6.A). q.e.d. 

PROOF OF THEOREM 6.2.  - Assume (6.C) with u = 1--see (1.4); as (6.B) implies 
(6.A), by Theorem 6.1 also assertion (6.E) holds. Thus by (6.A) equality (6.2) 
yields 

P [iJ] AB C i / i \  h i - h  ~= (~)  k j - k  
i, j 0 o h  YtB R bt = k 0 

-'~ Td -[- E d r ABD YbB YbD = 1). 
i,j = 0 

Choose m, n e {0, 1, ..., P} and c, C, f, F e {1, 2, 3}; by taking the derivatives of 
m n 

both the sides of equality (6.6) first with respect to Y~c and then with respect to YfF we 

find 

. .  ? , 

(6.7) ~ R bc YsE Rbs 
j=O 
i=m 

P [ij] i / - \  ( j )  j - m  
YtD Rbt Rb~ = 

j=m 
i = 0  

P [im] i [ ~ ]  ~ACE j 
: E d sADCYcD + Y~E 

i=0 j=O 

and 

(6.8) 
j=n 
i=m 

P [ij] AFC[i~i_ n ( j )  j-m 
+ 2 d e  In) Rbf Rb~ = j=m 

i=n 

[nm] [mn] 
: d ~AFC~cf+ d $ACF~cf , 

[ij] 
respectively. Multiply each side of equality (6.8) by sACF; the skew-symmetry of d 
yields 

(6.9) ~=n d Rb~ Rbf = d ~cf. j= 
i=m 

Now let us consider uniform rotations R about the e-th reference axis; by (2.1) in [4] 
we have 

R t  s : ~e ~e (a t~e+las~e+l _]_ ~e+2 ~e+2 /~e+2 ~e+l _ ~ + 1  ~e+2 41 22 at a8 + ) cos (~)  + ~e ~) sin (~ot), 



272 A. MONTANARO - D. PIGOZZI: On a large class, etc. 

with e + 3 = e and oJ e F~; thus the expressions for the derivatives of R at time t = 0 
are 

(6.10) 
22RrrR ~ ~t ~s - at ~s 092r = ~ + 1 % + 1 *  o~+2%+2) ( - 1 )  r, 

t s - -  -- ~ e + 2 ~  Ve+16e+2) (~  e + 0 e -- (r = 1, 2, . . . ) .  

By replacing (6.10) into (6.9) the left-hand side of the resulting equality becomes a 
polynomial in oJ. As ~o is arbitrary,  the coefficients of any monomial of degree I> 1 of 
such polynomial vanish. The monomials of degree one are found by the choices 
(i, j )  = (m, n + 1) or (i, j )  = (m + 1, n); hence 

(6.11) d Rb~ Rbf + +d m 1 n Rbf= O. Rbe n 

1 
Now at t = 0 we have R = I and R e  Skew; thus (6.11) becomes 

(6.12) 
I ron+l]  [m+l n ]  

[(n + 1) d - ( m  + 1) d 1[~c ~f ~c ~f ~2 ~3 Jr  0e+10~+2)(~ + 0~ -- ~)OJ = 0, 

and the arbitrariness of ~ yields 

(6.13) (n + 1) 
Iron + i] [ m +  in]  

d = ( m +  1) d 

By setting n = m + 1 and n = m into (6.13) we find 

[m m + 2] 
(6.14) d = 0 

and 

[ram + 1] [m + l m ]  
(6.15) d = d , 

[ij] 

respectively. Now the skew-symmetry of d and (6.15) yield 

[m m + 1] 
(6.16) d = 0. 

[t/] 
Lastly, from (6.13) and (6.14) [(6.15)] it follows that  any te rm d with i + j even [odd] 

[ij] 
vanishes. Hence d = 0 for all i , j - - 0 , 1  ..... P and (6.3) holds, q.e.d. 
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