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Sums of Linear Operators of Parabolic Type:
a priori Estimates and Strong Solutions (*).

MARCO FUHRMAN

Summary. - We study the equation (A — )z + (B — M x =y, with unknown x, in @ Banach
space X. y € X is the datum, 1 > 0, A and B are linear closed unbounded operators in X with
domains Dy, Dg. In the non commutative case, under assumptions already considered in
the literature (see [7]), we show that for large values of A any solution x € D, N Dy satisfies
an a priori estimate ||z|| < x|y | and we prove that for any y e X there exists a unique
strong solution x, i.e. there exist x, € Dy N Dy such that x,—~x, (A — Nx, + (B~ Nx,—¥
in X. We also study regularity properties of strong solutions and we show that they belong to
suitable interpolation spaces between Dy (or Dp) and X.

1. — Introduction.

Let X be a Banach space, A and B two linear operators in X with domains I, and
Dpg, y a given vector in X. We want to find solutions x of the equation

1.1 A-NDe+B-Nax=y

where A is a fixed positive number.

Such a problem provides a common framework for many applications. Results
about existence and regularity of solutions of (1.1) have been applied to study linear
ordinary differential equations in Banach spaces (both first order and higher order
equations have been considered) and partial differential equations. Some of these ap-
plications can be found in [10],[11],[4], [5]. '

DEFINITION 1.1. — By strict solution of (1.1) we mean a vector x € D4 N Dy satisfy-
ing (1.1). We call x a strong solution of (1.1) if there exist sequences x, e Dy N Dpg,
Y. € X such that (A -V, + (B -z, =y, and ¢, >, y,—> ¥y as n— ©.

We will show that, under a certain set of hypotheses already considered in the lit-
erature, there exists a A* > 0 such that for any A > A* and for any y € X the problem

(*) Entrata in Redazione il 10 dicembre 1990.
Indirizzo dell’A.: Dipartimento di Matematica, Politecnico di Milano, via Bonardi 9, 20133
Milano, Italy.
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(1.1) has a unique strong solution x. We also prove some regularity properties of x.

Existence, uniqueness and regularity of both strict and strong solutions of (1.1)
have been studied in [5], under various assumptions for A and B. We are interested in
the «parabolic case», of [5] i.e. we suppose that

there exist 44, 95> 0, ¢4, cg >0 such that

dy +dp <,

A-2"ee®), [A-2 apn <calzl ™ ifzeC, |arg@| <z~ 94,
B-2telX), |(B-2) Yex scglz| Vifzel, |argl)| <z - .

(HD)

Other sets of hypotheses have been proposed, in addition to (H1), in order to solve
problem (1.1). The simplest case is commutativity of A and B (see [5], Sect. 3.2), but
we will not deal with it. In the non eommutative case two different and independent
hypotheses have been proposed. The first one is considered in [5, Sect. 6], where both
strict and strong solutions are studied. The second one has been proposed in [7] and,
earlier but in a more particular sistuation, in[2]. It is the following:

(there exist 2p>0, k=1, ay, ..., o, Biy..., 5 and cyg > 0 such that
L,

Osay<fsl, i=1,..k
k

(A = 2)(A — )" (A = 29) "1 (B - Z)_l]”.,e(x) S CAB;i W,

VeC, |arg)| <z —38,, VzeC, |arg®®)| <= — d5.

(H2) 3

We will assume (H1) and (H2) from now on.

Under assumptions (H1) and (H2),[7] prove that for large values of A, for any
4e(0,1) and for any y e D4 (8, ») (resp. y € Dg(§, »)), there exists a unique strict
solution # of (1.1) and, if ¢ is sufficiently small, Az, Bx € D4 (8, ®), Ax € Dg (8, ) (re-
sp. Az, Bx € Dy (8, ®), Bx € D4 (8, »)). Here D4 (8, ») (resp. Dg(8, »)) are real in-
terpolation spaces between D, and X (resp. Dp and X), which have also been charac-
terized by [9].

However in [7] only strict solutions are considered. This is due to the lack of an a
priori estimate for strict solutions of (1.1). In fact, the most natural way for proving
the existence of strong solutions of (1.1) is to prove that, whenever x € Dy N Dy we
have

(1.2) lz|l < ellA— D+ B -z

where ¢, is a positive constant independent of x. Now, given y € X, we may in some
cases find a sequence y, such that y, — ¥ and there exist x, satisfying (4 — Az, +
+ (B — ), =¥,. The convergence of x, to a strong solution « is now assured by
(1.2).
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In order to show (1.2) we may proceed, at least formally, in the following way. We
use a representation formula for strict solutions of (1.1). In[7] it is proved that if
x e Dy N Dy satisfies (1.1) we have

(1.8) r=A-DTA+) A -8y

where J, and S, are properly chosen bounded linear operators in X (see (2.12), (2.14)
below). Here we use another formula, namely

(14) t=0-B)'Q+J)T0-BSy+(A-B) QA +J) My

which is obtained by the previous one by interchanging, in some sense, the roles of 4
and B (see definitions (2.12)(2.15)). Neither (1.8) nor (1.4) are meaningful for all
y € X. However, given p > 0, (1.4) may be written

15) xz=0- B)”_l{l + G -B)*J0 - B)P}’l()k —~ B)l—¢ Syy +
+A=-B) YA +J)My=:U,y.

It turns out that, if p is sufficiently small, U, e £(X), so that (1.2) holds. Of course,
formula (1.5) has to be given a more precise meaning; in particular, we observe that
the operator J, (A — BY is not defined in all of X, and we have to replace it in (1.5) by a
bounded operator K,. The crucial point is proving that K, is the limit in £(X) of a
sequence of bounded operators J, , (A — B, ) that approximate J, (A — By (see Lemma
3.5)). In order to prove this and to justify (1.5) we have to enter many technical de-
tails. In particular we use Yosida approximations of both A and B, and we first prove
an analogue of (1.5) with A and B replaced by their Yosida approximations. This
forces us to impose some density assumptions to the domains of A and B, in order to
prove (1.2) (see Theorem 4.2).

Once the existence and uniqueness of strong solutions of (1.1) is established, we
study their regularity properties. We can show that they belong to
Dy, ©)N Dg(1, ©), where

(1.6 Dy, w):={xeX: sup [tA%(A ~1t)2z| < =}
‘ 0

<t< oo

with the norm ||z|p, ¢ « := o]+ sup [tA%(A — )7 x|, and Dz(1, @) is defined
0<t< o

similarly (see [5],[9]). The same regularity result is proved for strong solutions in [5],
both in the ecommutative and non commutative case.

Finally, we show how the investigations about problem (1.1) can be applied to a
linear parabolic evolution equation in Banach space. In particular we recover, at least
partially, some results obtained in[3] concerning a priori estimates for strict sol-
utions. Regularity properties of strong solutions in this case are studied by [1]: some
of his results are connected with ours (remark that in [1] the space D, (1, =), defined
by (1.6), is denoted by D4:(1/2, »); if A a bounded inverse it is the real interpolation
space (X, Dyz)ijp, - (see e.g.[12, Th. 1.14.2])).
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2. - Assumptions and notations.

Throughout this paper, X is a complex Banach space, £(X) (resp. £(X,Y)) is the
Banach algebra (resp. the Banach space) of linear bounded operators in X (resp. from
X to Y, where Y is another complex Banach space). If C is a linear operator in X, we
denote by o(C) its spectrum and by o(C) its resolvent set. For any $e[0,7) we define

2.1) Zy={zeC:2#0, |arg@)| <z -4}
(arg (2) is assumed to take values in (— x,z]). We also use the notation ‘
[P,Ql:=PQ —QP, for P,Qe £X).

We make the following assumptions on the operators A and B.

(H1) A and B are linear Opemtors in X with domains D, and Dg and there exist
34, 95 €0, @), ¢y, cg > 0 such that

Ca

p(A)dX,, H(Z - At ”.,@(X) < TZT , Vze 2.
22) Sy +dy<,
oB)3Z,, =B e < -Ffl— . VzeX,,

(H2) There exist 3>0, k=1, a;, ..., 0, B1, ..., B and csp >0 such that 0 <
Sai<ﬁi$1, izl,...,k

k
@3) A -2 -9 A -2 B~ ) e S can Ez:i W
Wwel,, VzeX, .
We also assume (without loss of generality) ¢:= linjgk(ﬂi — a;) € (0, 1) (this
causes no loss of generality, since the behavior of the right member of (2.3)
turns out to be relevant only for large values of |z| and |v]).

For all integers m = 1, n = 1 we denote by A,,, B, the Yosida approximations of A
and B: 4, :=mAm — A)7', B, :=nBn ~B)™L.

Lemma 2.1. — Assume (2.2), Then for any m =1, n = 1, A, and B, satisfy

(A2 Z;s, u<z~Am>-1HﬂX)s—,§—,, VzeZ,,

P(Bn) 321933 ”(z - Bn)‘—l “J:‘(X) = !—g‘- s Vze 2:93 ’

(2.4)

with ¢ > 0 independent of m and n.
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Proor. - See [5, formula (6.11)].

LEMMA 2.2. — Assume (2.2), (2.3). Then for any X > 0 there exists c(}) > 0 such
that

1
v+ A1 |2 A
YWweX,, VeeX,, Vi> A,

k
(25) lA-DA-2-0)A-HT;B -2 ex S C(X);i |

and the same inequality also holds if A (resp. B, resp. A and B) is replaced by A,
(resp. B,, resp. A, and B,), with c(3) independent of m, n.

ProoF. - (2.5) holds for A and B (see[7, Lemma 1.2]). [7, Lemma 3.1] shows that
it holds for A,, and B. The general case can be proved in a similar way.

To represent the solution of problem (1.1) we use operator-valued integrals over
paths of the complex plane, which are similar to Dunford integrals (see e.g.[6]). We
always assume that paths are piecewise continuously differentiable. We use the sym-

bol ]( instead of EIE I . We have to integrate over unbounded paths. We now define
some of them.

Let & be a number such that

2.6) {793<190<7T_"9A3 8 >nf2 if 9, <nf2,

19B<190<7Z'"19A, 190<71'/2 ifngBﬂ'/Z.
Let §; be a number such that

en {293 <<y, I >n/2 1f 84 <7mf2,
T—dy < <m— 38 if 9, = =/2.

Let 9 be a number such that

2.8) dp < gy < &y

For k=10,1,2 define y; := y; + v42 where

{ykl 1= {—texp(—id,): te(— o, 0]},

2.9
&9 vie := {t exp(id;): t [0, =)}.

For any R > 0 define yf :=yE + v& + v& where

v = {—texp(—i&): te[—R, 0]},
(2.10) vh = {t exp(id,): t [0, R]},
76 := {R exp(i9): S e[y, 27 — &1}.
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For k=0,1,2 and for 7, s with 0 < s < r define vii=vE + v + vi5 + 74 where

v = {—texp(—i&): te[~-r, —sl},
vie := {s exp(i9): de[— &, &I},

(2.11) .
75 = {t exp(idy): te s, 71},
Yhe = {rexp(—i9): del—4,, &4]}.
\ I
AN //7///}/%%/
e Y o -B+N 7
7@0;\\ \ % /
/ Y TNl & N
1 b i AN \s: ‘ ////
eted /,-/l
Figure 1.
Define
2.12) S, = — ]((A—)\—z)"l(B~A+z)‘1 dz,
Yo
2.13) 8= — ]((Béx+z)-‘(A—z—z)-1 dz,
’ Yo
2.14) I, = — ]f A - DA -2—2 A -NB -2 +2) 1de,

To

@15) M, :=~ ]ﬁ dA-NA-2-2MA-N"B-2+2 A -1-2"1 de.

Yo

C’all Sl,nr SA,,'n’ J}\,n’ MA,n (resp. Sm,)u ST;‘L,)\’ Jm,).’ Mm,A; reSP- Sm,A,n, Sr,n,)\,n’ Jm,)\,n;
M, ,, ») the integrals obtained from S,, S;, J,, M,, by replacing B with B, (resp. A
with A, ; resp. A and B with 4,, and B,).

Whenever K is a bounded subset of the complex plane and y is a closed path, we
use the expression «y surrounds K» to mean that y is contained in C\ K and
Ind, (2) =1, Vze K (or Ind,(2) = -1, Vz e K).

We also use fractional powers of operators. Sinee they are used only as a technical
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tool, we do not need full generality. We only recall that if y is a closed path surround-
ing the spectrum of an operator C e £(X) such that o(C) N (— o, 0] = § and if y does
not intersect (— =,0] we have, for any pe R

Ce:= ][z(z -0 tde

Y

where z¢ is taken to be positive whenever z > 0. The formula
crC’=C7"

holds Ve, ve R. We occasionally use fractional powers of unbounded operators. In
- this case we always give an explicit formula for them.

3. - Some preliminary results.

We begin this section with some technical lemmas about boundedness and conver-
gence properties of the operators defined in (2.12)-(2.15). The most difficult one is
Lemma 3.5, which provides the key to the proof of a representation formula and an a
priori estimate for strict solutions of problem (1.1) (see Definition 1.1). They are
given in Theorem 4.2. Hypotheses (H1), (H2) are assumed throughout.

LEMMA 3.1. — For any o€ (0,1) there exists c(p) > 0 such that
3.1) [ = B,) ey Scle)r™?,  ¥m, ¥2>0.
Moreover we have, in the norm of £X),
(32 Jim (A —-B)"=- ](z'F(B —A+2)lde=:0.—-B)*F, Va>0.
Yo
ProOF. - 1t is easily seen that (A — B,) ™" = — ](z‘F(Bn — A+ 2)7! dz, so that

—° ’ _PA"P
10t = B ey < ][ "'Blz Teorldel = e =0 = ]f %umr = o(e)A~F
Te

by (2.4). The same estimate and the dominated convergence theorem imply
3.2).

LEMMA 32. — For any X > 0 there exists c(A) > 0 such that VYn, Ym, YA > X,
33) 2, nlley S )2, 5, wlleco < e 272, [, 2 llecy < €)™,

G4 My s ullecy @A™, M ulley S e, My s ey S cG)A77,
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(see (2.14), (2.15)). Moreover we have, in the norm of £(X), Vn, Ym, V21 > 0,

g5 [ lman =l I S = Tyl T =l =
7}1_{1100 Moy 50 =M 0, nh_l}lw My, 5,0 = My, ;, ml{{)nm M, ,= nll{nw M, =M.

PROOF. — By (2.4), (2.5) we have, VA > 2,

: )z cal?] o
”Mm,x,n”.,e(X)Sj ;i Iz+All—ailz__)\l1+pi ]Z+A| lel =(z=7A) =
L e |v| 2 AR

Mdv| <e@yr—e.

s .
f 17, I/U+1|1—ail,-v_‘1!l+aiA2+ﬁi~ai |IU+1IA

(]

This proves the first part of (3.3), (3.4). Similar passages hold for J,, , ,. (3.5) then
follows from the dominated convergence theorem, and it yields the rest of (3.3),
(3.4).

LEMMA 8.3. - For any ¢ €(0,2) there exists c() > 0 such that
(3.6) 0= B =285 alleay S () 27%, ¥, YA >0,

(see (2.13)) with c(¢) independent of A, n, and

3.7 nl-i—!;rloc (A—-B)}7¢S;) , = ]( VB -x+ ) TA-A-v) Hdv=:GA - B ¢S]

Y2

exists in the norm of £(X), VA > 0.

Proor. - Fix m, n, 2 > 0. By (2.4) we can take R > 0 so large that

' ‘—-)((Bn—)\+z)‘1(Am—)\—z)“1dz.

m, A n T

Yo

" We can take s > 0 so small and r so large than the closed path y; (see (2.11)) surrounds
(A — B,). So we have

(A=B) 7= — ]ﬁvl-F(Bn—A + )1 dv.

T2
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Therefore

(=B " Spn=F f01 B -+ 0) B =24 D) Ay - A -0 dvde =
n T

2 —
CIRE:

-{§ L By =+ = By— a4 Ay~ 4~ 9 v

Since

1-¢
][v vdv=0, Vzey®, and f 1 Ap—~2—-2)tde=(A4, — 2 -v1,

z - Z2—0
b v
Yve y;
we obtain
A~ B) 68y, o = ][vl‘F(Bn — A+ YA, -2 - ldy.
72
Letting s -0 and r — » we have, since 0 e ¢4, — 2) Ne(B, — 1),
B8 (=B ¢Sy, .= ][v“P(Bn -2+v)7 14, -2 —v) " Ldv,
T
VYm, ¥n, Vi>0.

As m— o we have

O~ B ¢S], = ][vl-F(Bn—A+v)-1(A—A—v)-ldv, Yn, V1 >0,

he
by (24) and the dominated convergence theorem. By (2.4) again we have

dv = (putv = w)) =

P
— B Y -eqQr < —AB_I}__
I = B S ey T][' [v— x| v+ A]

Adw = e(0) 27 .

_]( cacplw|! FAte
o lw = 1] |w+ 1]22
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It also follows that

Jim - B 7fS; , = ]Lvl‘P(B ~2+0) MA-x—-v) tdv=:(x - B! *S;

Y
exists in £(X), VA > 0, by the dominated econvergence theorem.
- COROLLARY 34. — For any o e (0,2) there exists c(c) > 0 such that
3.9) G- = B\ 728y, alley S @) 27, Ym, ¥n, V2> 0,

with c(p) independent of A, n, m, and the following limits exist in the norm of £X),
Vi > 0:

(Jim 0= B, 78 = (= B 48,

(310) 4§ lm (A—B,)' "8y ;0= ][ VPB4 ) A= 2 0) dv=:0 - B)'*S,,

¢

A, {lim, 0= Ba)' 0S50} = Jim (= B 708, =20 - B TS,

ProoF. — This follows from (3.8), from the estimate

CACB‘Q)II_F

— Vn, V>
EEIEEIR Yveys, Ym, ¥n, V2 >0,

[0 * By =2+ ) A=A —2) " exy S
(see (2.4)) and from the dominated convergence theorem.

LEMMA 8.5. — For any ¢ € (0,2) and for any X > 0, there exists ¢ = ¢(p, 1) > 0 such
that

(3.11)

”Ji\,n()\ - Bn)'c”,,e(X) Sen? , Vn, V> 7&,
”Jm, anl(A =B, )‘o“,e(X) Sce?, Vm, Vn, V1> 2.

Moreover, the following limits exist in the norm of &(X), VA > i:
lim J,, ; ,(A—B,)*=:K,,;, Wlblm I3 nA— By =J, (A= B,)*,

3.12 ne -
( ) im { lim Jm,}\,n()\—Bn)'a} znlgnw{w}i_r)nw Jm,}\,n()‘_Bn)p} =n1i_£nw JA,n()\—Bn)pzz K).

1
Mm—> ® B> o

ProOF. — The proof of this lemma is rather long and it is given in Section 6.

In the next lemma we give a representation formula for strict solutions of
A-Ne+B,~Nx=1y,

which can be considered as a smoothed version of problem (1.1).
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LEMMA 3.6. — For any p<(0,3) there exists a A* >0 such that Vxe Dy we
howe

(3.13) x=U,,y VYA>2* Vn

where y:= (A - Nz + (B, — Dz,

Bl4) U,,=0-By {1+0-B) L, =By} A =B) *8  +
+A=B) {1+, .} M, .

Furthermore there exists ¢ = c(p, A*) > 0 such that

(8.15) 10, ullecn Sex™,  Va>2* ¥n
and
(3.16) Uy:= lim U, ,

exists in the norm of £X), YA > A*; hence

(8.17) (U ey S ex™t,  ¥a> %,

and we have (see (3.2), (3.7), (3.12))

(3.18) Uy=x-BFf {1+ -B)*K, } 'O =B S, + - B) {1+ J,}7'M,.

Proor. — Fix X >0 and consider A > A. Suppose xe D, and (A — Nz + (B, —
— Az =:y. A slight modification of the passages of [7, Prop. 2.1-2.3] shows that

S,nyeDy and A-Nx+J,,A-Ne=A-NS; Y
(see (2.12)), so that
Y- By =N +Jy .y By =N =A-1S,.y,
(3.19) A=Blae+d, ,A-Ble=A-NS, .Y —Y—Jy¥-
We now prove that
(3.20) A-NDS8,y—y—J,,=-B)S, ., +M,,.

Using (2.4), (2.5) it is easily seen that we can take s > 0 so small and » so large that we
have

S, .= — ]L(A —a—2) (B, -1 +2) " de,

Yo

Jon= - ]f 2A =)A= 2=-2) A - B, — A +2)dz.

o
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Then

A=y =y —Trnt=— ]((A—A)(Aﬂ\—z)‘l(Bn—)\+z)‘1dz+ ][(Bn—k+z)‘1dz+

To Yo

+](z(A—/\)(A—A—z)"‘[(AfA)'l; (B,—r+2) dz=

Yo

=)({—(A—A)(A—A—z)‘l(Bn~)\+z)‘1+(Bn—A+z)‘1+

Yo

+z(A—)\~z)’1(Bn—~A+z)“1—z(A-—}\)(A-—)\—Z)‘I(Bn—)\Jrz)_l(A—)\)'l} dz=

=- ](z(A~—A)(A—)L—z)'1(Bn~/\+z)’1(A—)\)“1dz= - fz(B,;ﬁWz)"(A-A——z)‘ldz-—

6 i)

- )fz[(A—A)(A—x—z)-l; B,~»+2)"NA-N)"dz=

]

Yo

= ][(Bn—x)(Bn~A+z)‘1(A—)\*z)“ldzf ](zz[(A—)\—z)"; B,—r+2)NA-N " dz=

Yo Yo

=(/\»Bn>]£—(Bn*Mz)‘l(Aﬂ\*z)”lﬂlz~

Yo
-~ ]LZZ(A—AXA—z—z)-l[(A—A)-l; (B,~r+2) MA-r~2)"dz.

Y0

As before we can see that these integrals can be calculated on v, instead of vy, so that

(3.20) is proved.
Then applying (A — B,) ™ to both sides of (8.19) we obtain

( —Bn)l—Fa; +( “Bn)ﬂcJ)\,n()‘ _—Bn)‘c()\ ~Bn)1 Fr=0 _Bn)lﬁpsif,ny +( —Bn)-FM}\,n?/ »
{1+ 0.-B) L (=B, F}0 =By Fa=0- B ¢8 ,y+t =B M.y
By (3.1), (8.11), (3.3) we can now choose A*> A so large that YA > A* we have

[ =B 5, n(d = B |lexy < 1/2, Vn,
W, llece) < 1/2, Yu.

For these A the operators {1 + (A — B,) 7*J; » (A — B,r} and {1 +J, ,,} are invertible
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and we obtain
x=(=By {1+ Q=B " A =By} {A—B)' ¢Sy +
+0=B) {1+ =B " 11, =B} 1A =B M,y =
= =B {1+ (=B L, (A=B)} =B Sy +
+(A—Bn)”1{1+J,\,n}‘1M;‘,ny=UAy.
Furthermore we have
K1+ G~ B 000~ B} Ul <2 and {1+ 35,0} ooy < 2, Vi, V22 27,

By (8.1), (3.6), (2.4), (3.4) we have ||z|| < c(g, 2) 27| y]l. So (8.13), (3.14), (3.15) are
proved. (3.16), (3.18) follow from (3.2), (3.12), (3.10), (3.5), and (3.17) follows from
(3.15), (3.16).

COROLLARY 3.7. — For any pe (0,3) there exists a A* >0 such that Ve e X we
have

(3.21) =Upy,ny YA>2% Vn, Vm,
where: y.= (A, - Nx+ (B, - Nz,
B22)  Upin=0 =B {1+ 0= B Jpn =B } A= B 778y, +
+A=B) T {1+ s} M s
Furthermore there exists a ¢ = c(p, \*) > 0 such that
8.28)  NUnsulleyser™,  Up illagy s 27, Ym, VYn, Ya > 2%,
where (see (3.2), (3.10), (3.12))
B24) Uyy:=G—-BFr 1+0-B)#K, ,} '0—B1 ¢S, , +
+A=B) {1+ Jp 1} M, s
and the following limits exist in the norm of £(X):

(325) nlgnm Um, N = m, Ay mh_r)nw Um, AT = U)\, n 3 mh__{nw Um, 2= U)‘ )
Yo > 2% Vn, Vm.

PROOF. — We can adapt the proof of Lemma 8.6, remarking that all the estimates
we obtain are uniform with respect to m.
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4. — A priori estimates for strict solutions. Existence, uniqueness and regularity
of strong solutions.

The first theorem of this section shows that hypotheses (2.2) and (2.3) imply some
regularity property for strict solutions of problem (1.1) (see Definition 1.1), under
some density assumptions on the domains of A and B.

THEOREM 4.1. - If Dy is dense in X and @ <D, N Dy then
4.1 Bx e Dy.
If D,y is dense in X and x e Dy N\ Dy then
(4.2) Az e Dy.

Proor. - First we prove (4.1). By (2.3) we have

k
A = 20)(A — ) [ = 29)"Y; BB ~ 2) g < cAB; Jo]= ]z} .

Taking z =n, v = g + %, and recalling that B = nB(n — B)"! we obtain

k
(43) ”(A *)\0)(.4 _)\0 —"n)_l[(A - )\D)-—l; Bn“JE’(X) < (Y:] El‘nn l )\0 +n]°‘f_1’n] A= O(n —o‘) .

Then '
B,2=B,(A-29) M A-2)x=A~2) "B, A=)z —[(A-2) 5 BJA- )
and
(A-2)A~x-m"'Ba=A—-2—-n"'B,Ad-)px—
—(A - 2)A -2 —m)[A~2)"" BJA - ).

So we finally have
B,x=-nmA—-2-n)"'Bx+@A-2~n""'B,A- i)z -

—(A=-2)A-2—-n)" A -2 BJA-2)x =21y, + Loy + I, .

Since B, & — Bz, I, + Iy, € Dy, I, — 0 by (4.3), we have Bx € D;' (4.2) can be proved
in a similar way.

Under some assumptions on the domains of A and B, the next theorem gives an a
priori estimate for strict solutions of problem (1.1), and an explicit representation for-
mula for them.
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THEOREM 4.2. — Let D4 or Dy be dense in X. There exists A* > 0 such that whenever
A>2* xeDyNDg and y:= A ~Nx + (B —2)x we have

(4.4) x=U,y

(where U, is given by (3.18)) so that

(4.5) lzl < coya -yl Va>ax,
with c(2*) > 0 independent of x and ).

Proor. - Take any o e (0,4) and choose A* as in Lemma 3.6, First suppose Dp
dense in X. x satisfies (A — )z + B, — e =y — Bx + B,x, YA > ,* By (3.13) we
have x = U, ,(y — Bx + B,x) and by (3.16) we have (44), as n— ®.

Now suppose that D, is dense in X. We first show that

(4.6) oA, + B,) o (@20*, ©)  Ym, Vn.

In fact, if we have 2ue¢(4,, + B,) for a u > A*, then Vy e X the vector z:= (4,, +
+ B, — 2u)"'y is a striet solution of (4,, — w)z + (B, — u)z = ¥, so that by [7, Prop. 2.4]
we have z= (A, ~w "L +Jp ) An—wS,, ..y and, as in[7, Lemma 3.3],
2]l < em nie |yl So we have proved that w > A*, 2u e o(4,, + B,) implies [(4,, +
+ B, — 2u) " exy S Cm, n1+”"- By a standard argument (see [5, Th. 2.1] or [7, Prop. 3.1])
this implies (4.6).

Now take any A > A* and Vm, Vn, let z,, ,:= (4, + B, — 2u) " (y — Az + A, %)
be the strict solution of (4,, — N zn,, + By — A2y, =y — Az + A, ®. Then byl7,
Prop.24] z,, , is given by

Zin = A = N A+ T ) VA = N800 (Y — Az + Anx),  Ym, Yn, V2> 2%

On the other hand z satisfies (4, - NDex+ B -NDaw=y — Ax+ A,z so that by
17, Prop. 2.4]

t=UAn = NTTA+ ) YA, - NSy (y — Az + A w),  Ym, Yn, VA >0,

It follows that z,, ,—® as n— ©, Vm, V2 > a*

By (8.21) we have z,, , = Uy, ; .(y — Ax + A,, %), Vm, Vn, VA > * By (3.25),
letting n — ©, we see that x=U, ,(y — Az + A, ), Ym, VY2 > )* Letting now
m— % we have (4.4), by (3.25). Finally (4.5) follows from (3.17).

REMARK 4.3. - For any linear operator C in X, denote by C the closure of its graph
§(C) in X x X (C need not to be closable in the usual sense). If, for a Ae C, (C ~
~ 07 i={(@, y) e X X X: (y,  + )y) e C} is the graph of a bounded linear operator in
X, we write X € o(C) and identify (C — 2)~! with that operator (see [5, Sect. 2.2]). Now
suppose, as in the previous theorem, that D, (or Dy) is dense in X. By[7, Th. 4.1] and
by (4.5) we can apply [5, Th. 2.7] and we obtain ¢(4 +B) > (2x*, ») and |A+B -~
=207 Ssex”!, Ya>ax It is also easy to prove that (A + B -2x)"'=1U,,
Vi > )%,
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REMARK 44. - If Dy,NDp is dense in X, then A+ B is closable,
p(A+ B)>(2)*, ») and (A + B —22)~! = U,, YA > A*. This follows from [5, Th. 2.1]
and from the previous remark.

Now recall definition (1.1). Under some conditions on the domains of the opera-
tors A and B we can prove the existence and uniqueness of strong solutions for large
values of A and any datum y e X.

THEOREM 4.5. — Let D, or Dy be dense in X. Then there exists A* > 0 such that for
any y € X there exists a unique strong solution x of

A-Ne+B-Nx=y, A > Q¥
given by x = U,y (see (3.18)).

Proor. - Take 2* as in Lemma 3.6. Take y € X. Since D, (resp. Dp) is dense in X,
we can choose a sequence y, € D, (resp. Dg) such that ¥, —y in X. By[7, Th. 4.1]
there exists a unique strict solution x, of

A-De, +B-Nx,=Y,, Va>ar*,

By (4.4) we have x, = U, ¥,, so that, VA > A*, x, converges to x:= U,y. Since the
strong solution is given by U, y, it is unique.

Now we study regularity properties of strong solutions. As in[5] we can prove
that strong solutions belong to D4 (1, ©) N Dg(1, =) (see (1.6)).

THEOREM 4.6. — Suppose D, or Dy is dense in X. Then there exists 2* > 0 such
that

@.7) Uye £X, Dy, @),  |Uslex n,a, <y S 60*), Y > %

(4.8) Uye £X, Dg(1, ), |Ullex nya, =y S €O®),  Va>a*

(see (8.18)) with c¢(A*) independent of A. So Yy € X the strong solution x of
A-NDe+B-Nx=y, A > A%

belongs to Dy(1, ©) N Dp(1, ) and sotisfies

4.9) lelp,a, = + %/l a, = < Gyl

Proor. — Take any p e (0, ), choose A* as in Lemma 3.6 and fix A > A*. We have
(see (3.14))
Upn=G =By {1+ 0~ B)*J, (= By}

(A - Bn)l_'oS)\’,n + (A - Bn)_l {1 + J).,n}th)\,n = S)L,,n - (A - Bn)_lJ)k,n(A - Bn)p

: {1 + (A - Bn)—pJA,n()\ - Bn)P}_l' ()\ - Bn)l—PS)\',n + ()\ - Bn)_l{l + JA,n}_lM)\,n
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so that
(4.10) Uy:= lim Uy, =8+ 0 - B,
where

Q= -K{1+G-B 7K} '0-B)' S, + {1+ J,} 7'M,
and || @, exy < €(0*) A% < ¢(A*) independent of A, as in Lemma 3.6.

In order to prove (4.8) it is therefore enough to prove S; e &(X, Dp(1, «)),
185 lex, Dy 1, =y < €(3*). This can be done as in[5, Lemma 6.4].

We now prove (4.7), Clearly, it is sufficient to consider £ = 1 in (1.6). Since D (re-
sp. Dyp) is dense in X, it is enough to prove ||[A2(4 — &) 2 U, y|| < c3*)t |y, Yy € D4
(resp. Dg). By [7, Th. 4.1] there exists a unique solution x € D4 N Dy of the problem
(A-Nx+ (B—2Nx=y. By (44) we have z = U,y. We then obtain
A2A-D e =A-NAA -1 e+ 2MAA - t) 2w =

=AA -2y~ B-Nx) + 244 - ) %x.
Since [|A(A — ) 2y < ¢t |y|| and [|2AA — £)2x|| < act x| < et 7 yll, by @45), it
is enough to prove A4 — )20 — B)z| <t yl.

By (4.10) this reduces to proving
(4.11) A4 -020 - B) Syl < "yl

With passages similar to[7, Prop. 2.2, 3.2] we can show that Sy eDp and
(A~ B,)S8; »y— (A — B)S;y, so that

4.12) AA -0 -B)S, ,—»AA -2 - B)Sy.

Observe that

~AA — ) 2(A = B,) S,y = ](A(A =92 = BB, ~ r+2) HA - A —2) tyde =
Yo
= ]i(x —B)B,~A+2) TAA-1)2A -1 —2)""de +
Yo

+ ]([A(A -02%A=B,)B,—2+2 N4 - r—-2)tdz =: ](Plnydz + ][Pznydz.
Yo Yo Yo
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Define Py :=[AA -2, 0 —BYB -1 +2) )4 — 1 ~2)"'. We will show

4.13) H f Puydz||, < c*) ¢ yll,
Yo

4.14) “ ](szdz 0 S et Hyll,
Yo

4.15) Jf Py yde — ]( Py dz.
Yo Yo

Together with (4.12) this proves (4.11).
(4.13) can be proved by passages similar to {5, Lemma 6.4].
Observe that

4.16) [AA-DZB-1+2) 1=
=AA-H)TMA-D LB -2+ U+ [A- L B- 2+ KA -0,

It follows that

@417 Py=2lAA—1)"%B~2+2) " NA-1—-2) '=AA-t) A - B-2+2)7 1]
A-2-2) H2dA-H 5 B-2+2) NA-x—») A =
=AA-) e A-NA-1) A~ N B-2+2) TA-DA-) A -2+2) 7T+
+2A-DA-DTMA-N)L5B-2+2) MA-DA-D T A-1-) A1) =
=AA-) 1 AA-NA-21-2) TA-N"5B-2+2) TA-DNA-D A-A~2) "1+
+AA-) T A-NA-D T A-2-2) A~ N B-2+2) A~ DA~
A-2=2) - 2r-2+2A-DA-2-2) TA- N5 B-2+2)""-
A-NDA-)MA-21—2) HHA-D) 2z A-DA-D) A -1-2)
TA-NTHEB -2+ HA-DA-) A~ 2= THA- )t~ A-2)=
=AA-D) T HA-NA-2—2) HA- D5 B~2+2) TA-NA-) A~ -2 +
+AA )22 A-DA-2—2) TA-)"EB~r+2) NA-DA - -
—AA-)2ZA-NA- 21— HA- N5 B-1+2) A -DA-1-2) 1+
+2A-NA- 12 HA- DL B2+ " MA- DA -1 —2) 1A -2+
+A-) T A-DA-2-2) A -DTEB-2+2) NMA-DA-) HA-D T -
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—(A-D12A-NDA-21-2) " HA-N"LEB-2+2)71-
6
A-DA-2=2)" A1) "1=:2, POe, 01).

1

By (2.5) we have

PPz, A, Doy + I1PD 2, 2, e <

k
<A+

|z]e(x*) + calz]
T e+ Al 5|z — |14

Ca .
IZ+)K| )T = libl(z; )\7 t)

and

[P, 2 Dllagn + [1P® @, 2, Dllecry <

2
Cc
s_A
t

k %
;i [z]e(x*) (1+ cal2] g 2 8).

le+A) %]z — AL HA lz + 4]

Since
PO, 0 ) =AA-D 224 -1 A -2 -2 A - ;B -2 +2)7]
and
PO aD=A-0)""2A - A -2~ A-D;B-A+2) A -]
we ha;.fe, by [7, Lemma 1.2], (recall that ¢ = 1),

k
@ , ¢ 2] calt—2l Ve

HP (Z, 7&, t)”.f(X)$(1+cA)§z ,z+)&,1—“ilz—)\ll+ﬁi (1 t T T 31’3(2; )\’ t),
1P, 2, Dl < S 3, s 2] b+m““‘~<xw

PR4Y) LX) = t 11|Z+)k|1_1i|2"ﬂll+ﬁi ¢ _'¢4 %y Ay .
So we have
I'](Pzdz ﬂX)S ][(¢/1+xp2+gb3+gb4)(z, A, t)dz = (putting z = v}) <
Yo Yo

<c(*)a~? f(% o+ s F o)W, 1, dv <At L < et
Yo

and (4.14) is proved. 6
To prove (4.15) we remark that Py, = 2; P (2, 2, t), where P (z, ), £) is the same
1

as P (z, %, t) with B replaced by B, (in fact, the passages leading from (4.16) to (4.17)
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still hold in this case). By (4.17) we have

|2
[z + 21|z — a1

6 k
PP (2, 2 H Sch ) 24
PP h 0| S e D2

with ¢(,?) independent of ». Then (4.15) follows from the dominated convergence

theorem.
Finally (4.9) follows from (4.7), (4.8) and Theorem 4.5.

5. — Applications.

Suppose E is a complex Banach space, T.013, 21.0130. We want to solve the problem
(6.1) u' () = Ay ul) — 2ul®) + ft), tel0,T],
(5.2) u(0) =0,

where u: [0, T] — E is the unknown function, f:{0,T] — £ is the datum and, for any
t [0, T1, A®t) is a linear operator in E, with domain D, possibly varying with ¢ and
not necessarily dense in E.

In order to apply the abstract results of the preceding sections to problem (5.1) we
choose X to be one of the following spaces, with their usual norms:

(63) X=L*(0,TL E), pell, ®); or X=C(0,T] E); or X=0C(0,T], E),

Co ([0, T'], E) being the subspace of C([0, T'], E) consisting of functions that vanish in
t =0. We assume fe X.

By strict solution of (5.1), (5.2) we mean a function u € X such that ' €X,
u(t) € Dy, Yt € [0, T, t — A(t) u(t) belongs to X, and (5.1), (5.2) are satisfied (in case
X = L?([0, T], E) we only require that u(t) € D a.e. in [0, T'] and that (5.1) is satis-
fied a.e. in [0, T'D).

We call % a strong solution of (5.1), (5.2) if there exist sequences u,, f, € X such
that u, —u in X, f, »fin X and u, is a strict solution of

u, @) = A u, &) — 2, @) + £, @), tel0,T1,
4, (0) =0.
We now define operators A and B in X

(65.4) Bu:=—u', Dp:={ueX:u'eX, w0)=0};

Au)t) .= A@) u(t),
55) {( w)(t) (&) u(?t)

D, :={ueX: ut)e Dy, Vtel0, T], t— A u(t) belongs to X},

(in case X = L?([0, T], E) we only require u(t) € Dy a.e. in [0,T]).
With these definitions strict (resp. strong) solutions of problem (5.1), (5.2) are
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precisely the strict (resp. strong) solutions of problem (1.1), according to Definition
1.1. In order to verify assumptions (2.2), (2.3) for A and B we assume (cf.[2])

(H1)' AQ®) is a linear operator in E for any te[0,T] and there exist M >0,
4 € (0, 7/2) such that

M

5.6) A2, Vte[0,T] and [[(A®)—2) o< H

, VzeX,, Vie[0,T].

(H2)' There exist 23>0, k=1, a, ..., %, Bi,.., B and C>0 such that
OSai<ﬁiS1,i=1,.;.,k

-1 -1 -1 o (- 9)*
G (4@ — 2)A@ — ) (4B — %)™ = (AB) = A9) )Ilmsc}l‘,i wEk

V?)EZ&A, 0$SSt$T.

We also assume (without loss of generality) ¢:= 1m.ink(,B,- —a;)e (0, 1).
B A

LEMMA 5.1. — Assume (5.8), (5.6). Then A and B, defined by (5.4), (5.5), are closed
linear operators in X, and they satisfy (2.2) with 94 = 84 and I = x/2 + ¢, for any
e > 0 sufficiently small.

PROOF. — Part of the proof is contained in[5, Prop. 7.1, 7.2]. Recalling that

t
(5.8) (B -2 'w)t) = — j ¢ "= 9 y(s) ds,
1]

the rest is easy to prove.

LEMMA 5.2, — Assume (5.3), (5.6) and (5.7). Then A and B, defined by (5.4), (5.5),
satisfy (2.3).

PROOF. — Choose 44, 85 as in Lemma 5.1. By (5.8) we have, Ywe X, ,Vze X, ,0 <
£s<t<sT, Vuelk,

(A=2)A -0 [A-2)  B-2) Muw)®)=

i 14
=((A-2)A-v) D[ —(A® - 2) ’lfe “#-9 () ds + fe ~H=9(A(s) — Ag) "t uls) ds | =
0 0

t
=(A®) - 2)A@) —v) ! J e "*I((A(s) — 29) 1= (A®) — 29) "D uls) ds
0
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so that, by (5.7), recalling that 95 > =/2,

gk T _
A = 2)A = )7 A = 27 B = D) e < 02132- [ oo ﬁ—%ds =
p|t-e
0
T Re(z) 4 d
=(r:=R C r r
(7‘ e(Z)S) Z J (Re(z))ﬁl’vll 2 Re(z)
sC2, “Tpfdr < 1—————~———.
T (Re(z))“llvll @ J- rsc¢ 1 | |ﬁ+1lv|l %

THEOREM 5.3. — Assume (5.3), (5.6), (6.7). In case X = C([0, Tl, E) also assume
that D,y is dense in E, Yt e [0, T] and that —n(A®) ~ n) "'y — y, Yy € E, uniformly
in [0, T]. Then there exists 2* > 0 such that YA > 2* any strict solution of (5.1), (5.2)
satisfies

(5.9) ol < eI flle

and Y1 > 2* Vfe X there exists a unique strong solution w of (6.1}, (5.2).

ProoF. — Notice that in case X = L?([0, T, E) or X = Cy([0, T], E) we have Dpg
dense in X, and in case X = C([0, T, E) we have D, dense in X (see[5, Prop. 7.2]). We
can then apply Theorems 4.2 and 4.5.

REMARK 5.4. — Estimate (5.9) has been obtained by [3] in case X = C([0, T], E)
without the additional assumption that D, is dense in E, Vte[0,T] and that
- wA®t) = n) 'y —y, Yy € E, uniformly in [0, T'] (see[3, Th. 1.1]). Their estimate is
a consequence of (5.9) if we choose X = Cy([0, T'], E) in (5.3) and if we make the slight
additional assumption f(0) = 0. If, however, f(0) # 0, then [3, Th. 1.1] is more general
than (5.9). We also recall that[3] also consider cases where (0) # 0 in (5.2).

REMARK 5.5. — Suppose X =Cy([0, T], E) in (5.3). Then by Theorem 4.6, the
strong solution of (5.1), (5.2) given by Theorem 5.3 belongs to D4 (1, ©) N Dp(1, ©).
As it can be easily seen, this implies the regularity result {1, Th. 4.3(1)], under the as-
sumption fe Cy ([0, T'], E).

REMARK 5.6. — The results of Section 4 can be applied to the problem studied
in [8], where only strict solutions are considered. We can therefore obtain existence
and regularity results for strong solutions.
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6. — Appendix.

In this section we prove Lemma 3.5. In order to do this we need some more pre-
liminary lemmas. Lemmas 6.1 and 6.2 can be proved by elementary considerations re-
calling definitions (2.6), (2.7), (2.9) and observing that, by (2.1),

—(C\Z;,) = {0} U {we C: |arg (w)| < Jp}.

LeEMMA 6.1, - For any X > 0 the set
U{-\2z,) + 2 - v e Yo}
lies in the open region to the vight of y,.

LEMMA 6.2. ~ There exists ¢ = (S, 9;) > 0 such that
(6.1) A |v+z-2Alzclz—2],
(6.2) i) |v+z-ai|=clv—2],
YA>0, Yoedy, Veery.

LEMMA 6.3. — Define
T,v):=vA-DA-1-v A - DB -2+ 2°(B- 2+ 2)7 L.
Then
5
(6.3) T, (z, v):= ; T, v)
where
[ TO@0):=0A - DA -2~ A -DTB-2+0)7']
“B-rt+tz+0) T B-x+2) e,
TP v)i=vA-NA- 12— A - B - r+v) 1]z,
64) { TP v:i=-vAd-VDA- 21— MA-V K B-r+v+2 21,
THz,v) = —vB-2A+1)A-DA-2—v) " {A-2)"L B-r+v+2) 17,
T, v):= —v2A - DA -1 - ) 1[4 - )‘)‘1; B-xr+v)1]-
CA-DA-2—-v)HA-NL B-x+v+2) e,

provided all the inverse operators exist and belong to £X.
The same result holds with A (resp. B; resp. A and B) replaced by A,, (resp. B,,;
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resp. Ay, and B,). In this case we write Ty, Ty, (resp. Ty, Ti0n; 1esp. Ty, s,
T9, . instead of Ty, T,

Proor.
Tz, ) =vA - DA~ A~ LA~ B-1+1) " NB-r+z+v) 127+
+UA-NA-2=0) LA~ B-~2+0) " UB-A+2+0) (B-r+2) tvzf=
= A- VA1) {B-DNB-1+0) {A-1)"5B-N"NB-DB-r+v)~*
C(B-2+z+0) 12"+ TP, v) =v(A - A -1~ B-1B-21+v)" -
A=K B-N"UB-NB-2+v) 2t v A - DA -A—-2) " {B-DB-2r+v)7!
LA-DLB=NTUB-NB-r+z+0) " e+ T, 0) =T Pz, v)~v(A—-2)-
CA-2=0)" B~ NB-1+2+0) [A-ND5B-NNB-NB~rt+z+n)ter -
— WA= NA-A=0) Y (B-D2B-1+z+0) {B-1+v)"[A-N"L5 B0
B=NB-r+2+0)"12¢ + TV, v)=TP(z,v) + T Pz, v) ~
— (A~ DA—2~0) " HB-A+1) " [A-N Y (B-A+2+v) 2P+ TNz, 0) =
=T ®(2,v)+ TP, v)—vB-A+1) " HA- DA~ 2= [A- D B~r+z+0)af~
—o[(A=NA-2—0) "5 B-2+0)" WA~ B-2+z+0) N2¢+ T Mz, v)=
=T2@,v) + TP, 0)+ T @ v) -0 @A -2~ B-2+0) 7
1A=L B-r+2+0) T2t + TP ew) =T 2z, 0) + TP, v) +

+ T8, v) - A~ DA~ 21— MA-D5B-2+v) JA-DA~-2-n) 71

5 .
JA-D"H5B-r+z+v) 20+ T§17(z,v)=§1:i T Mz, v).

Proor oF LEMMA 3.5. ~ For notational simplicity, and without loss of generality,
we assume that (2.3) holds with k = 1, and «:= «;, 8:= ;. Take any ¢ € (0,¢) and any
%> 0. By (3.5), in order to prove (3.11), it is enough to prove ||J,, , » (2 — B, |lexy <
< c(p, el
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Fix A > A, m, n, R > 0 and define (see (2.10))

65 JE, . i=- f WAy — NAy — 2 =) Ay — N7 B, — A+ v) do,
h+rh

VR,A = U{_(C\ZﬂB) +A—- 'UE}’(I)%l + 02}.
By Lemma 5.1 this set lies in the open region to the right of v;. Sinee, by (2.4),
o(—B,)c = (C\Z,,), the set

VR,A,n = U{O‘(_Bn) +A~v:ve }’(1)31 + 02}

also lies in the open region to the right of v;.
By the compactness of o(— B,) and of y§ we have

Mg ni=max{|w+21—v|: weo(-B,), veyh +r&} < =,

My, =min{|lw+A—v|: weo(—B,), veyh +yE} >0,
so that Vs <mg , , and Vr > My ; , the closed path y] surrounds Vz , , (see (2.11)).
Therefore:
" (6.68) 1) A—z-wveX;, Wvery, Vzey.

Otherwise we would have A —z —ve O\ %, ie.ze —(C\ ;) + 2 — v for a vey,,
which contradicts Lemma 5.1, since z € y;.

2) B, — X +z + v has a bounded inverse Vz e y{, Vv e y&. Otherwise we would
have ze (=B, + A —wv) for a veyf + y&, which is impossible, since ze y; and
110 Ve on=9;

3) v1 surrounds o(— B, + 2) and does not intersect (— «, 0], so that

(=B, +AF = — f(B,,L I +2)l20de.

7

So we obtain (see (6.3), (6.4))

J’nlg,)\,n(—Bn—*')\)F: f me,)\,n(z’ 'U)dZd’U.
Yh+vE

Now observe that

j:T;’lz,))\,n(zy 'U)dz=0, V'UE Y{)El+’/()%2,

i



254 MaRcO FUHRMAN: Sums of linear operators of parabolic type, etc.

by analyticity. So we have

TEan(=Byt2r= { fT0.G0dedo,
E+vE T

where (see (64))
TT:'L, Ay (za U) = T’r(r},))\, n (Z, 'U) + T'r(ri))\, n(z’ ’U) + Tvgr:{))., n (Z, "U) + T;ri))\, n (Z, ?}) .

For any v e y§ + v fixed, let us show

(6.7) lirrh Trsnlz v)dz=0, and
i
(6.8) lin}) Ty s n v)dz=0.

Yie
(6.7) is obvious, since we have
Tr(ri)),n(z; 'U) = O(|Z|P_1)7 Tr(r%,)}\,n(zy ?)) + Tr(r;,l,))\,n(za ’l)) + T'r(r?,))\,n(z, ’U) = O(tZ[‘c)

as 2—0, z to the right of y;.
To prove (6.8) observe that:
DT, W) + T, .2 v) =0(|z] 27%) as |z] — =;
2) as for T, ,(z,v) + T, 4 (2, v) it is enough to prove that the function

g 20> Ay = Ny — 2= 0) Ay = DBy — A+ v+ 271,

which is holomorphic at infinity, has a zero of order at least 2 at infinity. By (6.6) we
can apply (2.5) and we have

le@llecr) < |v+A|1““qu+z»A|1+ﬂ =0(|z] '7*)  as|z| > », zey, Wwern.

So (6.7) and (6.8) are proved.
By the analyticity of z—> Ty, ,, (2, v) We have, choosing s =77,

TR W(=B, + 2y = ]ﬁ Tim ][ T}, (2 v)dzydv.

h+ 18 s

Now take ¢ > 0 such that o + ¢ < 4. By (2.4), (2.5), (6.1), (6.2) we have the following
estimates for T, (2, v), T5 n &, V), Tt 0@ 0, Tae's, (2, v) which are valid for
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veyy and for z e y;, by (6.6)

lv|e(h) cg
lv+ 2172 v = A1 [z +v—2] |2

¢
6.9 T 1@ e < f Py lvl|z|* <

clv]? |z]° _
EE R UED A UEDY Ll FEDY A PRy

A

L 01z, v, 2) = O(|v] "1t ete |z ~1me),

i

ole®lal

6.10) T2, . ey S =
” m, A, “.B(X) lv+)\|1—alv+z_xil+ﬂ

< ¢|v] 1l
i,v_*_ Ail—a l,v__xl1+a+s Iz __)\|~a—e+/3

=:93(2, v, 2) = O(|o| 71 7% [z[r71 %),

ez |v| e |zl?
v=2 o+ At o+ e — |1

(6.11) ”Tr(rtzl,)x, EA v)”JT(X) < l

s el ok
[v— x| |v+ A1 Jo—A|*Fe g —a|1FHEae

=: 942, v, 1) = O(Jw| 172 |z|F7170Fe),

c)|v|? c)|z[

6.12) |T9D, @ Yex < <
72202 Dl v+ A7 o= A" o+ A5 v+ 2 — A1

< clv|* |z]°
lv+A|1—a ,7)—)&|1+ﬂ|v+)t,l_al'l)_)£'a+s lz _)\|1+‘3_a_5

= eo(e, 1, 2) = O(Jo] 17 [z~ 747,
It follows that T, ; , (2, v) is absolutely integrable on y, X v;, ]( Tl (2, ) dz exists
N

as a usual Bochner integral, Vv e y,, and

][ T 0z v)dz = lim ][ Ty v)de, Yoey,
N

otrYE

80 that

I s n (= By + 2y = ]( fT,;,,\,n(z,v)dzdv.

Thtre M
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Letting R — « we have, by (6.5),

(6.13) T snO = By = f ]f Ty, 50 (2 V) dzdu.

Yo 71

From (6.9)-(6.12) it follows that

“Jm, }\,n()\ - Bn)pHQ(X) S ][ f‘(@l + P3 + P4 + ?5)(27 v, )\)ld’Ui Idz‘

o

By performing the change of variables z = 2w, v = Aq we have

e v Didvl1dz] = f § w0, g, Dldw] |dgla

To 1 Yo N1

where n; = —d+oif i=1,3,4; n;= — 26 + ¢ if i = 5. So we finally have ||/, , (A —
= B, ¥ ey S ex* 7. (8.11) is proved.

Since the estimates (6.9)-(6.12) are uniform with respect to m and %, by the domi-
nated convergence theorem we see from (6.13) that the following limits exist in the
norm of £(X):

Sm T 0= B = ff Ths(e v dzdv=: K 5,

Yo N

TounOo= ByY = 1 Sy, w0 = B,Y = ]f )( T{ . (2, v)dzdv,

Yo 71

lim {Jm T s0 O ByY} = Jim {lim Ty 50 00— BoY) =

m—>

= nlgnw J)\,n()\"‘Bn)'cz )(](T)((Z, U)dqu) =: K}\

o
where (see (6.4))
Ty 22 0):=TD, 2, 0) + TS, (2, v) + T (2, v) + T2, (&, V),
T () :i=TE, G v) + T8, 0) + T (2, ») + T2, (2, ),
T (2, v):= TP @, v) + TP, v) + T# (2, v) + TP (2, v).
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