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of Relaxation of Variational Integral Functionals(*). 

ANTONIO CORBO ESPOSITO - RICCARD0 DE ARCANGELIS 

A bstrac t .  - A  comparison between some relaxation methods of an integral functional is carried 
out. The following relaxed functionals of the variational integral I(~, u) = If(x, Du): 

I(t~, u) = inf {limhinf I(~, uh), uhe Cl(Rn), Uh---->U in Ll(t~)} u e LI(~), 

I(t~, u) = inf { lir~inf I(~, uh), uh e C ~ (~), uh-~ u in Ll~oc (~)} u e Lllc (t~) 

are introduced. It is proved, by means of examples, that in general such functionals are dif- 
ferent even i f  ~ is a regular bounded open set and criteria for identity on the whole L 1 (t)) are 
proved. I f  f does not depend on x it is proved that I and I agree i f  t~ has Lipschitz boundary 
and an integral representation formula for their common values on BV(t~) is proved. Simi- 
lar results and comparison ones with I and I are proved also for other kinds of relaxed func- 
tionals of I. 

O. - I n t r o d u c t i o n .  

Let  (U, z) be a topological space satisfying the first countability axiom, let X be a 
r-dense subset of U and let I be a real extended functional defined on X. 

In many problems of Calculus of Variations dealing with extremal properties of 
the functional I one is naturally led to consider the so called relaxed functional 
sc- (v)I of I, defined on the whole space U as 

sc- (z) I(u) = inf { liminf I(uh)luh e X, uh -~ u }  . 

In fact in many cases it occurs that  the functional sc - (~) I has a minimum value on 
U that  agrees with the infimum of I on X (see for example [Bu]). 

(*) Entrata in Redazione il 30 settembre 1990. 
Indirizzo degli AA.: A. CORBO ESPOSITO: Dipartimento di Ingegneria Industriale, Universit~ 

di Cassino, Via Zamosch 43, 03043 Cassino (Fr); R. DE ARCANGELIS: Dipartimento di 
Matematica e Applicazioni, Universit~ di Napoli, Via Cinthia, 80126 Napoli. 
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Let us now consider a function f verifying the following assumptions 

If :(x, z) e R  N • RN--->f(x, z) e [0, + ~ [ ,  

(0.1) I f  measurable in x and convex in z, 

(0.2) for every z in R N f(., z) e Llloc(RN), 

and let us consider the integral 

(0.3) I(~, u) = I f(x ,  Du) 
t) 

defined for every bounded open set t) of R ~ and every u in a set of functions X in gen- 
eral containing CI(RN). 

We observe that I(t~,u) exists and is finite for every u in CI(RN). 
Several choices of the set X and of the couple (U, r) are possible. 
For example in many interesting cases it turns out to be convenient to choose X 

equal to C I(R N) and (U, v) equal to L1 (t)) endowed with its strong topology (see for 
example [DG1], [CS], [BDM1], [MS2]). 

In this case the relaxed functional of I is given by 

(0.4) I(t~, u )=in f f l imin fJ f (x  , DUh)IUheCI(RN), Uh--->U in Ll(t~) t 

k J 

and is defined for every bounded open set t~, u in L l(t~). 
On the other side, given a bounded open set t~, in many papers (see 

example [AMT], [DM2], [GMS], [B], [DT]) it has been considered the case in which X 
is equal to C 1 (t~) and (U, ~) is given by L11c (t~) endowed with its strong topology, get- 
ting therefore the following relaxed functional of I 

(0.5) I(t~, u ) = i n f { l i m i n f j f ( x ,  Duh)lUheCl(t~), Uh--->U in L11c(t~)} 

defined for every u in Lllo~ (t~). 
Other choices natural enough consist in assuming as X the class Wllo~ p (R y) and as 

(U, v) the space Ll(t~) with its strong topology, that is the same topological space 
used to construct I,  or as X the class WI~o~P (t]) and as (U, z) the space Ll~oc (t~) with its 
strong topology, i.e. the same one considered to define I. 

These functionals may sometimes be different from the ones already introduced 
(see [DA2] and w 3). 

Limiting ourselves in this introduction, for the sake of simplicity, to discuss the 
case of the functionals I and ], we in general have that 

(0.6) ](t), u) ~< I(t), u) for every bounded open set t), u in L I (~ ) ,  

and that strict inequality in (0.6) may occur for some bounded open set t~ and some 
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function u, if t~ is sufficiently irregular, even if f is a smooth function independent on 
x (see Example 3.1). 

On the other side it is possible to prove that strict inequality in (0.6) may hold, for 
some u, even if ~9 is a bounded open set with Lipschitz boundary provided that the 
function f explicitly depends on x (see w 3). 

In this paper we intend to examine more closely the reciprocal behaviour of the 
functionals I and I, and representation formulas for them, as u and t~ vary. 

It can be easily established that if N = 1 identity between I and 7 always holds 
(see Proposition 3.5). 

Moreover, once recalled that a family ~ of open subsets ofR N is said to be dense if 
for every couple of open sets of RNA~ and A2 with A1 _cA2 there exists B e ~ such that 

_ Lloc ( R )  there exists a dense A1 c B and B c A2, it can be observed that for every u in 1 
family of bounded open sets such that I(~, u) = i(~9, u) for every open set D in such a 
family (Proposition 3.4). 

This result will be deduced via techniques of increasing set functions (see [DGL] 
and [DM1]), by proving that for every u in Llloc (R N) the inner regular envelope of I,  
I_  (t~, u) = sup I(A, u) is the restriction of a measure to the set of all bounded open 

sets of R N (Theorem 2.5). 
A sufficiently significant dense family independent on u can be selected under 

more restrictive assumptions on the function f. 
For example it will be proved (see Corollary 5.3) that identity between I and 

holds for every bounded open set ~9 with Lipschitz boundary and every u in L I(~), 
provided that the function f verifies the following estimates 

r <~f(x, z) <~ A(a(x) + r x a.e. in R N, z in R N, 

A >i 1, a ~ L11o~ (RN), r convex finite function. 

To this aim we will prove again that the functional I agrees with its inner regular 
envelope I_  for every bounded open set t~ with Lipschitz boundary and every u in 
L 1 (~9) (see w 5). 

In conclusion let us explicitly observe that, by using well known results 
(see [GS]), it is also established an integral representation result on BV(t~), in the 
case in which f does not depend on x, for the functional I and also for the 
functional 

(0.7) Io(~), u)=inftlimhinfjf(x, DUh),UhE Col (tg), uh-->u in Ll(t~)}, 

J 

that is the functional that is obtained by relaxing I with a procedure similar to the one 
performed to get i ,  but having in mind Dirichlet problems with null boundary data 
(Theorem 4.7). 

Analogous results can be stated for the relaxed functionals of I constructed with 
the choices of X and (U, v) already pointed out. 
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1. - N o t a t i o n s  and pre l iminary  results .  

Given two bounded open sets of R N A and B we say that A cr B if A c B. 
A family ~ of open sets of R N is said to be dense if for every couple of bounded 

open sets A~, A2 of R N there exists B in ~ such that A~ cc B cr A2. 
Let F be a real function defined on the set of all bounded open sets of R N, we say 

that F is increasing if 

A1 c A2~F(A1)  <<- F(A2). 

For an increasing function F we introduce the inner regular envelope F_ of F 
by 

(1.1) F_ (t~) = sup F(A), 
A cc/J 

we refer to [DGL] and to [DM1] for the study of the properties of inner regular en- 
velopes, here we only recall that the inner regular envelope F_ of an increasing func- 
tion F is inner regular, i.e. (F_)_ = F _ ,  and the following result (see Proposition 1.I 
and Theorem 1.I in [DM1]). 

PROPOSITION 1.1. - Let F be an increasing function defined on the set of all bounded 
open sets and such that F(0) = O. Then the set of all bounded open sets ~ such that 
F(t~) = F_ (t]) is dense. 

For every p e [1, + ~]  we will set Wllo'c p = Wllo'cP(RN). 
Let f be a function as in (0.1), (0.2); let us introduce the following functionals de- 

fined for every bounded open set t~, u in L l(t~) and p in [1, + oo] 

(1.3) JP( t~ ,u )= in f { l im in f j f ( x ,  

(1.4) ',(t~,u):inf{limttinfJf(x,o 

For simptcity when p = + = we will write J instead of J = and so for the other 
functionals. 

Let us observe that since L 1 (t~) and Ll~oe (~) topologies satisfy the first countability 
axiom, infima in (1.2)+ (1.4), together with those in (0.4), (0.5) and (0.7), are 
attained. 

We explicitly remark that for every bounded open set t~, p in [1, + co ], the func- 
tionals ] p (t~, .), JP (t~, .) and J~ (t~, .) are L 1 (t~)Aower semicontinuous on L ! (t~). 

Moreover, being J E (t~, .) the supremum of a family of L 1 (~)-lower semicontinu- 

DUh) IUh e W~o'~ p (t~), uh ---> u in L~oc (t~)}, 

Du h) l ut~ ~ W~' p (t~), u h ~ u in L 1 (~r~)} . 
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ous functionals, ]P_ (t~, .) turns out to be L l($2)-lower semicontinuous on L1(~9). 
We recall that, see [DA2], in general the functionals J P effectively depend on p, 

hence the whole family of functionals J p and 2~ must  be considered. 
The following inequalities are soon verified 

(1.5) 2~ (t), u) < JP(t), u) ~< 2P (t), u) 

for every bounded open set t~, u in L I ( ~ ) ,  p in [1, + ~ ] .  

Moreover it is easy to prove that if t)~ and t)2 are bounded open sets with t)~ _c t)~ 
then 

]P(t~l ,  u) ~< ]P(t)2,  u) for every u in Ll(t)2), p in [1, + :c], 

JP (t~l, u) ~< JP (~92, u) for every u in L 1 (t)~), p in [1, + ~ ] 

(1.6) 

(1.7) 

and 

(1.8) ]P(t)l, U) ~ ~]~(t)2, U) -- ~ f(X, O) 

for every u in L l(t)2) with u = 0 in t ) 2 \ t ) l ,  P in [1, + ~ ] .  

Let  ~ be a mollifier, that  is ~ belongs to C ~ (R N) and is a nonnegative function 
with support  contained in the unit ball of R N such that f ~ = 1, and let us define for 
every V > 0 R N 

(1.9) ~(~)(x) = -~--~ ~ . 

For  every u in LI~oc(R N) we define the regularization of u by 

(1.10) u~ (x) = (~(~') * u)(x) = ~ ~(~')(x - y) u(y) dy .  
RN 

Moreover for every bounded open set t), e > 0 let us set 

~2  = {x e t) ldist (x, at)) > ~}, t)~+ = {x e RN i dis t (x, t)) < ~}. 

The relationship between functionals in (1.2) and (1.4) with p = + 0o and those in 
(0.4) and (0.7) is given by the following result. 

PROPOSITION 1.2. - L e t f b e  as in (0.1) and (0.2) and let I ,  I0, J ,  Jo be the function- 
als defined in (0.4), (0.7), (1.2) and (1.4) with p = + ~ .  Then 

(1.11) ~(tg, u) = 2(~9, u) ,  
for every bounded open set  t), u in L 1 (t)). 

(1.12) Io (t), u) = Jo (t~, u) 
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P R O O F .  - Obviously 

IZ(t~, u) 1> J(~, u), 
(1.13) [I0(t), u) I> ]o(t),  u) for every bounded open sett~, u in Ll(t~).  

In order to prove the reverse inequalities let us consider first the case of ] and 2. 
Let  t) be a bounded open set, u in L 1 (Y2). 
Let  {Uh}hCWl~'~ | be such that  u h ~ u  in LI( t))  and 

(1.14) 2(t~, u) i> l iminf[f(x ,  Dub) .  
P 

For  every fixed h e N let uh, ~ be a regularization of uh. 
For  every V > 0 we have IlIDuh,~lllL~(~) < IIIDuhlllL~(~:) and Dub,, ~ Du~ almost 

everywhere on Y/ as V ~ 0 +. 
Then the dominated convergence theorem yields 

(1.15) fs( , nu ): 1.n ff( , 
~ - ~ 0  + 

P 

By (1.14), (1.15) and a diagonal process we can select {~h}h, with ~h-o0  + as 
h ~ ~ ,  such that uh, ~ -~ u in L 1 (~2) and 

(1.16) 2(~, u)/> liminf f f (x ,  Dub, ~,,) >i I(t~, u ) .  
t) 

By (1.13) and (1.16), (1.11) follows. 
We now consider the case of (1.12). 
As before let {Vh}h _C Wo 1' ~ (t)) be such that v h ~  u in L l(t~) and 

(1.17) ]0(t?, u) I> liminf ~f(x, Dvh).  

Let  {zh}h be a sequence of positive numbers, with zh ~ O§ as h --~ cr that will be 
specified later. 

Let  us define the functions ,3a as 

(1.18) 

and set 

(1.19) 

zh(t) : {to 
t +  Ch 

if  t >  ~ h, 

ff -- ~h <~ t <~ ~h, 

if t < -- ah, 

~ (x) = Zh (vh (x)) .  

Then vh e Wo 1' ~ (t~), spt (vh) r162 t9 and vh --~ u in L 1 (t~). 
For  every fLxed h e N let vh, ~ be a regularization of vh. 
For  every h fLxed and for every V sufficiently small and depending on h we have 
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Oh, ~ e Co 1 (/2) and, as in (1.15), it results 

(1.20) J If(x, D h) = lira ff(x, D h, y ) "  
rj --+ 0 + 

Moreover we have 

(1.21) f f(x, D~h) << . f f(x, Dvh) + f 
Q ~ { x ~ t 0  < Ivh(z)l < ~h} 

By (1.17), (1.20) and (1.21) we can prove that 

(1.22) O7o (~, u) I> io (/2, u) 

as in (1.16) and by choosing a suitable sequence {a~}t~. 
By (1.13) and (1.22) (1.12) follows. �9 

f(x, 0). 

For every measurable set A we will denote by IA[ the Lebesgue measure 
of A. 

In the following we will need to select a particular class of star-shaped open 
sets. 

DEFINITION 1.3. - We say that an open set/2 is strongly star-shaped ff it is star- 
shaped with respect to some point Xo in/2 and if for every x in t2 the half open line seg- 
ment joining x0 to x and not containing x is contained in/2. 

Le t /2  be a strongly star-shaped bounded open set, for simplicity let /2 be star- 
shaped with respect to 0, then it is obvious that for every t > 0 the open set tt~ is still 
strongly star-shaped and that, if t > 1, ~ cr ~ .  

This implies that fo r  0 ~< s < 1 < t it results st) r t~ r t/2. 
Let t~ be an 0pen set, we say that /2 has Lipschitz boundary if 8/2 is locally the 

graph of a Lipschitz continuous function. 
By using a proof already performed in [ET], page 309-310, we can prove the fol- 

lowing result. 

LEMMA 1.4. - Le t /2  be a bounded open set with Lipschitz boundary, then there 
exists a finite open covering of ~ {~j b =1 ..... s such that for every j = 1, ..., s t~j A/2 is 
strongly star-shaped with Lipschitz boundary. 

PROOF. - Let x be in 8t2, then in a cylindrical neighbourhood Ix of x we 
have 

(1.23) Ix A/2 = {y e R N [YN <~ ~ ~] ~ B} 

where ~]eR N-l, ~:RN-1-->R is a Lipschitz continuous function and B is the 
(N - D-dimensional basis of Ix. 
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Obviously we can assume that in the coordinate system of B x = (9, ~(0)) with 
~(~) > o. 

In [ET], page 309-310, using the same notations, it is proved that if k is the Lips- 
chitz constant of ~$ and if [~] < .~(0)/2k then 

(1.24) 0 < ~(0) -  2ks I < ~ ( ~ ) -  k~l~ [ 

By (1.24) we deduce 

(1.25) 

for every ), e [0, 1[. 

~ ( ~ )  ~< ~(~(~) - ~( ;~) )  + ; ~ ( ~ )  <~ k~(1 - ;~)IY] + )~$(s < 

< (1 - ~) ~()~) + ; ~ ( ~ )  = ~(;~) for every ~ e [0, 1[. 

By (1.23) and (1.25) we deduce that, in the coordinate system of B, for every 
with [~] < ~(0)/2k the half open line segment joining (9, 0) to (~, ~S(~)) but not con- 
taining this last point is contained in Ix • t~, that is x possesses a cylindrical neigh- 
bourhood J~ such that J~ N ~ is strongly star-shaped with Lipschitz boundary. 

Since for every x in ~ there exists a ball B~ centered at x with B~ c t~, taking into 
account the compactness of t), we deduce the thesis. �9 

For every bounded open set t~ we denote by BV(t~) the set of the functions in 
L l(t~) having distributional partial derivatives that are Radon measures with bound- 
ed total variations on l~. 

We recall that for every u in BV(~) the total variation of Du on /2 is given 
by 

(1.26) ~ I I D u ] = s u p { j u d i v g l g ~ C l ( ~ ; R N ) ' ] g ( x ) ] ~ l  for every x ~ } .  

Moreover let us recall that for every BV-function u, according to Lebesgue's de- 
composition theorem, we have 

(1.27) (Du )(E) = [ RDu dx + (SDu )(E) for every Borel set E 
. 2  

E 

where we have denoted with R Du the Radon-Nikodym derivative of Du and with 
SDu the singular part of Du both taken with respect to Lebesgue measure, and that 
(see [G]) if t~ has Lipschitz boundary and if n is the unit inward normal to a~ 
then 

(1.28) Dula~ = n u l l  N - I  [ar~ for every u in BV(R N) with u -  0 in R N ~ ,  

H y - 1 being the (N - 1)-dimensional-Hausdorff measure on R N. 
For a survey on BV-functions we refer to [G]. 

DEFINITION 1.5. - L e t f b e  a nonnegative convex finite function on R N and let v be 
a positive Borel measure on R N. 
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Then for every RN-valued Borel measure ~ and every Borel set E we define 

(1.29) f~(E) = 

~ {Ei} is a finite partition of E into Borel sets . 

In [GS] (Theorem 2') it is proved that f,~ is a Borel measure and that if 

(1.30) ,~(E) = ~ a dv + ~(E) for every Borel set E 
E 

with a e L~(dv), ~ singular with respect to v, then 

(1.31) f~x(E) = ~f(a)dv +f*~(E) for every Borel s e t E  
E 

where f*  is the recession function of f given by 

(1.32) f *  (z)= lim t f ( z  / z e R  N. 
t - - , 0  + 

In particular, taking as v the Lebesgue measure, by (1.27), (1.30) and (1.31) it fol- 
lows that 

f f ft  Du) (1.33) (fDu)(t2)= f(RDu) + f*(SDu)(t2)= f(RDu) + f*[  dlDul d[Du I 
t2 ~ t2 

for every bounded open set ~, u in BV(t2). 

In (1.33) dSDu/d]Du I denotes the Radon-Nikodym derivative of SDu with re- 
spect to [Du]. 

Let ~2~, h e N, t2 be bounded open sets, we say that t2h ~ ~ if for every compact 
subset K of t~ it definitively results t2~ ~ K. 

L e t f b e  a function as in (0.1) and (0.2), in [Sel] J. SERRIN introduced the following 
functional defined for every bounded open set t2, u in L 1 (~9) 

(1.34) ~ ( O , u ) = i n f  liminf f(x, Du~)luheC~(~h), O h ~ ,  u h ~ u  in Lloc(O)l . 

The following representation result holds for the functional ~ (see [Se2], page 144 
and [GS], page 174). 

THEOREM 1.6. - L e t f b e  a function as in (0.1) and let ~ be given by (1.34). Assume 
that f does not depend on x. 

Then 

(1.35) ~(t2, u)=f(Du)(O) for every bounded open set t~, u in BV(~). 
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Functionals I in (0.4) and ~ in (1.34) are linked by the following result. 

PROPOSITION 1 . 7 .  - Let f be a function as in (0.1) and (0.2) and let I,  ~ be defined 
by (0.4) and (1.34). Then 

(1.36) ~(t~, u ) =  I_  (t~, u) for every bounded open set t~, u in L 1 (t~). 

P R O O F .  - Let ~, u be as above. 
Let us first prove that 

(1.37) ~(t~, u) i> i_  (~, u). 

To this aim we can assume that ~(t~, u) < + ~.  
Let s > 0, A cct~ and let t~h--*t9 uh-->u in Lllc(t~) with uhe  cl(t~h) such that 

(1.38) ~(~, u) + s >I liminf ~f(x, Dub). 
Qh 

Since ~gh---) t~ then definitively t)~ ~ A ,  hence by (1.38) we have 

(1.39) ~(t~, u) + s >i limhinf ~f(x, Dub) >1 I(A, u). 
A 

As ~ and A are arbitrarily chosen we deduce (1.37) by (1.39). 
Let us now prove the reverse inequality to (1.37). 
Let us observe that 

(1.40) i _  (t~, u) = lim i(t)~/k, u),  
k 

then for every k e N there exists {u~ }4 c_ C 1 (R N) such that u~ ---) u in L 1 (~l/k) as 
h - *  + ~ and 

(1.41) I(~l-/k, u) I> liminf~ I f(x, Du~). 

Therefore by (1.40) and (1.41), and by virtue of a diagonal process, we can select a 
sequence {hk}h such that u~-->u in L1~oc(t)) and 

(1.42) I_  (t), u) t> liminfh I f(x, Du~) >i ~(t~, u). 

By (1.37) and (1.42) equality (1.36) follows. " 



A. CORBO ESPOSITO - R. DE ARCANGELIS: Comparison results, etc. 165 

2. - S o m e  t e c h n i c a l  r e s u l t s .  

In this section we will prove some measure theoretic properties of the functionals 
]P_ relative to a function f as in (0.1) and (0.2). 

Let  us first prove the following result. 

LEMMA 2.1. - Let  f be a function as in (0.1) and (0.2). 
Let  t~ be a bounded open set, u in L ~ (t)), p in [1, + ~ ]  and {uk}a _c WI'P(tg) with 

uh---) u in L I (t~). 
Then there exists a sequence {Uh}h C W 1' P(t)) such that  uh--* u in L 1 (~), 

(2.1) 

and 

(2.2) 

P R O O F .  - Let  us defme 

(2.3) u,, = - I lull ,( ,~) v (~,, A Ilull~-(,~)). 

then obviously uh--* u in L 1 (t~) and (2.1) holds. 
Moreover we have 

(2.4) 

Since 
(0.2). " 

J'f(x, < j f(x, Z)u ) + I o) 

I { x ~ :  lu~(x)l >ltullL-(~)}l-~0 as h---)r (2.2) follows by (2.4) and 

For  every measurable function u and every k e N let us denote by zku the 
function 

(2.5) (~k u)(x) = - k V (u(x) A k) .  

Then we have 

(2.6) 

(2.7) 

LEMMA 2.2. - Let  f be a function as in (0.1) and (0.2). Then 

lira 2P(t~, ~ku) = ]P (~ ,  u),  
k 

lira ,] P_ (~, ~k u) ,] ~ (~, u) 
k 

for every bounded open set t), u in L 1 (t)), p in [1, + ~ ] .  

PROOF. - Let  t~, u, p be as above. 
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Since ]P  and ]P_ are L l(t))-lower semicontinuous on L 1 (t~) we have 

(2.8) ] p (t~, u) ~< liminf ] P (t), ~k u) ,  
k 

(2.9) j P_ (t), u) ~< liminf J P_ (t~, zk u).  
k 

In order to prove the reverse inequality to (2.8) let {Uh}h C Wllo'c p be such that  
uh --~ u in L 1 (t)), Uh(X) --> U(X) a.e. in t) and 

(2.10) ~]P (t), u) ~> liminf I f (x ,  Du~), 
t) 

then for every k e N zk u~--> zku in L I(t)) as h ~ ~ and 

(2.11) If(x, D(~kuh)) <~ If(x, Du,~) + I f(x, 0). 
t2 ~ { x ~ :  luh(~)l >k} 

By (2.10) and (2.11) we deduce 

(2.12) JP(~,zkU)<~limhinf]f(x,D(,ku~))<~JP(t~,U)+ f f(x,O), 

hence taking the limit as k-- ,  ~ in (2.12) we get 

(2.13) limsupJP(t~, vku) ~< JP(t) ,  u) .  
k 

Therefore by (2.8) and (2.13) (2.6) follows. 
In order to prove the opposite inequality to (2.9) let A c c  t), then by (2.12) writ ten 

with t) = A we deduce 

(2.14) 2P(A, zku)<~JP(A,u)+ f f(x'O)<~JP-(t)'u) I f(x,O). 
{xeA: ]u(x) I ~k}  { x ~ :  lu(x)J ~>k} 

By (2.14), being A arbitrarily chosen, we infer 

JP_ (t), ~u)  <. 2 p _ (t), u) + [ f(x, 0), (2.15) 
{x E~: lu(~)] i> k}. 

hence taking the limit as k--* ~ in (2.15) we get 

(2.16) l imsupJ p _ (t~, zku) <~ J~ (t~, u). 
k 

By (2.9) and (2.16), (2.7) follows. " 

We now prove some additivity properties for 3 p and 3~.  

LEMMA 2.3. - Let  f be a function as in (0.1) and (0.2). Then 

(2.17) 3P (t~, u) ~< 2P(t) l ,  u) + j ~ ( t ~ ,  u) 
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for every triplet of bounded open sets ~2, t~l, ~2 with ~ r ~91 Utge, u in L ~ ( ~  U ~2), 
p i n  [1 ,+ : r  

(2.18) J~_ (~, u) ~< J~_ ( ~ ,  u) + J~_ (~2~, u) 

for every triplet of bounded open sets ~), t), ,  t~ with ~ c ~91 t2 t~2, u in L ~ (t~l U ~9~ ), p 
iz~ [1, + ~r 

PROOF. - Le t  ~, ~1, ~2, P be as above. 
Let  us assume first that  u e L ~ (t~ 1 (2 ~2). 
Let  {u~ }h, {u 2 }h _c Wllo'~ p be such that  u~ --* u in L 1 (~i) and a.e. on ~9i as h ~ ~ ,  

i = 1, 2 and 

(2.19) JP(t)i ,  u)/> limsup [ f (x ,  Du~) i = 1 ,2 .  
h J 

Obviously by virtue of Lemma 2.1, we can assume that  

(2.20) [[U~][L~(~) ~ HUlIL~(~I (.J~'~2) i -- 1, 2. 

Now let B such that  B r t)l, ~2 r162 B U ~2 and let ~ e Co ~ (~1) be such that  0 ~< ? ~< 1, 
- = l o n B a n d s e t  

(2.21) wh = ~u~ + (1 - ?)u~,  

then Obviously wh ~ u in L 1 (t)). 
For  every t e ]0, 1[ we have by convexity 

(2.22) ff(x, tDwh)<.t f  f(x, Dul)+t Du2)+ 

+(1- t) f f(x, l t- _t <. 

f + + (l f 

In order to compute the limit as h ~ ~ of the last term in (2.22) let us observe that  
by (2.20) for almost every x e ~, h e N and every t e ]0, 1[ the veetor t/(1 - t)(u~ (x) - 
- u~ (x)) Dp(x) lies in the cube 2t/(1 - t)Nulli ~)ND?IIL o(~,)] - 1, 1[ N, hence ffwe de- 
note by Zl, . . . ,  ~2~ the vertices of ] - 1, 1[ N, we have by convexity that  

(2.23) f(X, I~(U 1 --u~)D~)~ j~! f(X, 1~ 211U]IL~(~I~J~2)I]D~]]L~(~I)ZJ) 
for a.e. x in t). 
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Therefore by (2.23) and Lebesgue's dominated convergence theorem we de- 
duce 

(2.24) I ( limsup f x, ~ . 
h 

Taking the limit as h ~ ~ in (2.22) we obtain by (2.19) and (2.24) 

(2.25) ]P(t~, tu) <<. t]P(D~, u) + tJP(t~2, u) + (1 - t)~f(x, 0), 
/2 

therefore as t--~ 1- we deduce by (2.25) 

(2.26) J p (D, u) ~< liminf J p (t~, tu) <<. J p (D~, u) + J p (De, u). 
t -o l -  

By (2.26), (2.17) follows if u e L ~ (~21 U De). 
Let us prove now (2.18) again if u e L | (/21 t2 De). 
Let A c c  D and let B~, Be be such that B icc D~, i = 1, 2, A c c  B~ U B~. 
Then by (2.17) written with D = A, D~ = B1 and t~2 = Be we deduce 

(2.27) JP(A,u)<-.JP(BI, u)+JP(B2,u)<<.3P_(DI,u)+JP_(D2,u). 

By (2.27), being A arbitrary, (2.18) 
Finally let u be in L 1 (t~l t2 De ) and 

analogous. 
For every k e N let rku be defined 

f o r  bounded functions and Lemma 2.2 

follows. 
let us prove (2.17), the proof for (2.18) being 

by (2.5), then by lower semicontinuity, (2.17) 
it follows 

(2.28) ]P(D, u) ~< liminf JP(D, zku) ~< limsup]P(D1, zku) + 
k k 

+ 

that is (2.17). �9 

limsul:~P (D~, vku) = 2 P ( ~ l ,  u )  "~-2P(D2, u ) ,  
k 

LEMMA 2.4. - Let f be a function as in (O.1) and (0.2). Then 

(2.29) J p (D, u) >i 3 p (D1, u) + J p (D2, u) 

(2.30) ]P_ (D, u) >i ]P_ (D1, u) + ]P_ (D2, u) 

for every triplet of bounded open sets D, D1, D2 with D _~ t~ U D2, D~ N D2 = 0, u in 
Ll(t]), p in [1, + ~]. 

PROOF. - Let D, D1, D2, u, p be as above. 
Let us prove (2.29). 
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Let {uh }h c_ W~o'~ p be such that uh --) u in L ~ (t~) and 

(2.31) 2P(t~, u)I> liminf ff(x, Duh). 

Then obviously uh--* u in L 1 (t~l) and in L l(g22), hence by (2.31) we obtain 

(2.32) 3P(t~, u)>i liminf f f(x, Duh) + liminf f f(x, Duh) >t 3P(t~I, u )+ JP(t)2, u), 

that is (2.29). 
Let us prove now (2.30). 
Let B1 cc~r~l, B2 cct~2, then by (2.29) written with t~ i = Bi, i = 1,2, we de- 

duce 

(2.33) JP (~, u) >I JP(B1 (.J B2, u) I> ~]P(B1, u) + JP(B2, u). 

By (2.33), being B~ and B2 arbitrarily chosen, we deduce (2.30). �9 

We can now prove the following result. 

THEOREM 2.5. - L e t f b e  a function as in (0.1) and (0.2) and let JP  be defined by 
(1.2). 

Then for every u in Llloc(RN), p in [1, + oc], the set function j v  (., u) is the restric- 
tion to the set of all bounded open sets of a Borel measure. 

PROOF. Let u be in 1 N - L~oc ( R ) ,  p in [1, + or ], then by Lemma 2.3 and Lemma 2.4 
the set function ]P_ (., u) is an additive and sub-additive inner regular increasing func- 
tion such that J P_ (0, u ) =  0. 

The thesis now follows by Proposition 5.5 and Theorem 5.6 in [DGL]. �9 

Let u ~ Lllc(RN), p in [1, + ~], let us denote by 3,P(u) the Borel measure extend- 
ing ] p _ (-, u) given b y  Theorem 2.5. 

Then since obviously for every bounded Borel set E 

(2.34) 2P. (u)(E) = inf{J P_ (A, u)]A open set, A ~ E} 

and since ]P_ (u) verifies the following locality property 

(2.35) u, v e Llloc(RN), u = v a.e. in a bounded open set t~ 

2 P_ (~, u) = 2 p_ (~, v),  
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by (2.34) and (2.35) it follows that 

1 N (2.36) u, v �9 Lloc(R ), u = v a.e. in a bounded open set  s 

~ ] P , ( u ) ( E )  = JP,(v)(E) for every t~orel s e t E  c ~ .  

3. - S o m e  e x a m p l e s  a n d  g e n e r a l  i d e n t i t y  resul ts .  

Let  I and i be the functionals defined by (0.4) and (0.5) relative to a function f as in 
(0.1) and (0.2). 

In this section we will first discuss two examples showing that the functionals 
and I can be different and then we will prove some identity results. 

We first report,  for the sake of completeness, an example showing that, if t~ is not 
sufficiently regular, then I(t), u) may be different from i(t~, u) for some u, even if f is 
a smooth function independent on x. 

EXAMPLE 3.1. - Let  N = 1, f ( x ,  z) = I zl 2, z e R;  let t] = ] - 1, 0[ (2 ]0, 1[ and let u be 
the function defined by 

{10 if X > 0 ,  
u(x)  = if x < O. 

Then obviously u �9 C ~ (t)), hence taking uh = u for every h �9 N, it results 

(3.1) }(s u) ~< liminf ] IDuh 12 = O. 

On the other side it is easy to see that 

(3.2) I(~2, u)  = + ~ .  " 

We observe that  if N = 2 examples similar to Example 3.1 can be given in which 
the open set t~ is also connected, in fact it suffices to take for example 

= {(x, y ) l l  < ~ + y2 < 2 } \ { ( x ,  y)l  - 2 < x < - 1, y = 0} f(x, z )= Izl 2, 

and 

1 

We now present  an example shaped on the one in [DA2] proving that, i f f  depends 
also on x, identity between I and 7 may fail even for very regular bounded open 
sets. 
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Let  N = 2, q e [1, 2[ and let 

(3.3) f(~' ~) = I - ~  I<~, x>l + I~ 

B o = { x e R ~ l l x l < ~ } ,  B = B ~ ,  

Obviously u * e Wllo'c q (R 2). 

x = (xl, x2) e R  e , z = (zl, z2) e R  2, 

X2 B+={xeB]x~>O}, u*(x~,xe)= Ixl" 

The function f verifies the following growth conditions 

1 iq 1 iz I + izlq<~ r~rl lx l -r / (r-~)  + r ]Z l r+  iz (3.4) I zl q <~ f(x, z) <<. 

for every x e R  2, z e R  2 and r >  1, 

hence (0.2) follows if r > 2. 
Let  us recall that  by Proposition 1.3 in [DA2] we get for J given by (1.2) with 

p = + ~ and relative to f in (3.3) 

(3.5) J ( B ,  U) = ~ "4- ~ IDsb* I q 
B 

LEMMA 3.2. - Let  f be given by (3.3). Then 

(3.6) 2(B +, u )=  -~ + 
B + 

IDu* 

PROOF. - Let  {u~}h _c Wl~o~ ~ be such that  u~ --~ u * in L 1 (B +), let us define the func- 
tions uh by 

(3.7) f 
uh (x,, x2) if xl I> 0, 

~h (xl, x2) = u h ( - x , ,  x2) if xl < 0. 

Then uh e Wllo~ ~ for every h e N, ~ - - )  u* in L I(B) and by (3.5) we get 

(3.8) l iminff  f ( x , D u h ) = l  f h ~ l ~ i n f  f(x, Dub) 
B + B 

-~ -~ 2 2 + I D u *  I q, 
B B + 

hence 

(3.9) 
, ~ f 

J(B + u*)>t -~ + IDu*i q 
B + 
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In order to prove the equality in (3.9) let us observe that 

(3.10) (x, Du* (x)) = 0 a.e. in R 2 

and for every h e N let us define the functions vh by 

u*(xl ,x2) if Ixl > 

(3.11) vh(xl, x , ) :  |hx, if ]xl < 1,  
k 

then vh e WlIo~" for every h e N and vh--)u* in W11'cq(R2); this yields that 

(3.12) I IDv. ['--> f [Du* ]q 
B + 

On the other side by (3.10) we get 

(3.13) I Ix21 - ~ l ( x ,  Dvh(x))]dx= I 
B + B + N ( 1 / h ) B  

B + 

V h  r, 

Ixel lhx.]dx= h I I Isin2~ld~d~: = --= 
Ixl 2" 

o o 

By (3.12) and (3.13) we deduce the opposite inequality to (3.9) and therefore (3.6) 
follows. �9 

By virtue of Lemma 3.2, of (3.10), recalling that u*e CI(B +) and taking uh = u* 
for every h e N we get 

(3.14) J(B +, u*)  = ~ + 
B § 

IDu* Iq > I IDu* I q = liminfh f f(x, Dub)>I ](B +, u). 
B + B + 

Therefore by (3.14) and Proposition 1.2 it follows that 

(3.15) I(B +, u* )  = ] (B  +, u* )  > i(B +, u * ) .  

REMARK 3.3. - Let us observe that by virtue of a computation similar to the one of 
Proposition 1.3 in [DA2] we can prove that 

(3.16) j ( B ~ , u * )  = r ;+ I IDu* Iq for every ~ > 0 ,  
B,  

hence by (3.5) and (3.16) we soon deduce that 

(3.17) J(B, u* )  = J_  (B, u * ) .  
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Therefore by (1.5), (3.17), (3.5) and recalling that u * ~  W 1' q(B) we get 

(3.18) J ( B , u * ) ~ ] _ ( B , u * ) = 2 ( B , u * ) = ~ +  I [nu* lq>  
B 

B B 

that is J(B, u *) is different from Jq (B, u* )  as q < 2. 

= jq(B, u*) ,  

We now prove a first identity result. 

PROPOSITION 3.4. - Let f be a function as in (0.1) and (0.2). 
Let i ,  i, J P, JP be the functionals defined by (0.4), (0.5), (1.2) and (1.3) and let u be 

in Llloc (R N). 
Then there exists a dense family ~ of bounded open sets such that 

(3.19) i(t~, u) = 7(t~, u) = i _  (D, u) = 2 _  (~, u) = J(t), u) = 2(t~, u) 

for every t~ in ~ ;  

moreover for every p in [1, + ~ ] there exists a dense family ~p of bounded open sets 
such that 

(3.20) ] p (t), u) = JP (~, u) = J ~ (t~, u) for every ~ in ~p. 

PROOF. - The proof easily follows by Proposition 1.2, Proposition 1.1 and 
(1.5). " 

In the one dimensional case it is possible to prove the following result. 

PROPOSITION 3.5. - Let N = 1 , f b e  a function as in (0.1) and (0.2) and let I ,  I, JP, JP 
be defmed by (0.4), (0.5), (1.2) and (1.3). Then 

(3.21) [(t~, u) = i(t~, u) = i_  (t~, u) = ]P (t~, u) = JP(t), u) = ]P(t~, u) 

for every bounded open interval t), u in Ll(t)), p in [1, + ~ ] .  

PROOF. - Let t~ = ]a, b[, u, p be as above. 
Let us first assume in addition that u e L ~ (t~) and prove that 

(3.22) 

Obviously it results 

(3.23) 

2 ~ (~, u) t> 2 P (t~, u). 

2 P_ (~2, u) = lira 2 p (t~{/~, u) 
h 

and for every h e N there exists {u~}k c WIl& p , with u~ ---> u in L 1 (~91/h) as k ~ ~,  such 
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that 

(3.24) 3 p (t~/~, u) >i liminfk I f (x ,  (u~)'). 

~Cih 

Moreover by Lemma 2.1 we can assume that 

h (3.25) lluk IlulIL=( ) for every h, k e N.  

By virtue of (3.23), (3.24) and of a diagonal process we can construct a sequence of 
h integer numbers {kh}h such that, setting uh = uk,~, we have uh-~ u in Llloc(~9) and 

(3.26) J P_ (t~, u) i> liminfh f f(x, u~). 

Moreover by (3.25) it follows 

(3.27) IlulLo( ) for every h e N.  

For every h e N let us define the functions ~h as 

(3.28) ~h (x) = { u~ (a + l /h)  

uh (x) 

uh (b - l /h)  

i f x < a + l / h ,  

if a + l lh  <<. x <<. b -  l lh ,  

if x > b - l i h .  

Then obviously uh e Wllo~ p and, by virtue of (3.27), uh--* u in L l(t~). 
By (3.26) and (0.2) we get 

(3.29) ]P(t~, u)~< liminf ff(x,  g;)~< liminf~ ] f(x, u;) + 

a + 1 /h  b 

+limsup I f ( x , O ) + l i m s u p  I f (x,  O) <. ]P_ (t~, u), 
h h 

a b - 1 /h  

that is (3.22) when u e L ~ (t~). 
If u only is in L 1 (~) let, for k e N, zk u be defined by (2.5). 
Then by lower semicontinuity, (3.22) for bounded functions and Lemma 2.2 it 

results 

(3.30) j P  (t~, u) ~< liminf ]P  (t~, vku) <~ liminf ]P_ (t~, ~ku) = JP-(0, u) 
k k 

that is (3.22). 
In order to complete the proof let us prove that 

(3.31) jP(~9, u)/> ](t~, u).  
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To this aim let {Uh}h _C Wl~o~ p be such that uh-o u in L 1 (~9) and 

(3.32) JP(tJ, u) t> liminf]f(x, u;) .  

Let {~h}h be a sequence of positive numbers converging to 0 and let, for every h, 
k e N, u~ be the function defined by 

x 

u~(x) = uh(a) + I [ - k  V (u/~ (t) A k)]dt.  
a 

Obviously it results 

k 

(3.33) l u~ (x) - u~ (x) l ~< I I u~ (t) - [ - k V (u~ (t) A k)] I dt <<. 

<<" t I l u/~ (t) l - k ldt for every x in tJ, 
{ts~: lu;(t)l >k} 

hence if we choose kh so that 

(3.34) f [ l u/~ (t) l - kh I dt < ~h, 
{ t ~ :  lu,:(t)f >kh} 

by (3.33) and (3.34) it follows that u ~ e  Wl~o~ ~ 
that 

(3.35) J(tJ, u)<~liminf f f (x , (u~)  ') <~ 
tJ 

(3.36) 

I{tetJ:  lu/~(t)l >kh}l <~h 

, u~ ~ ---)u in L l(tJ) as h---> ~ and 

~< liminf [ [ f(x, u~) + f 

Moreover by (3.35), convexity, (3.34) and (3.32) it results 

3(tJ, u) ~ limhinf [ f f(x,u~:)+ 

f(x, kh) + I f(x, -kh)]. 
( x ~ :  u; (x) < - kh } 

+ ( [(kh/u/~ (x)) f(x, u/~ ) + (1 - kh/u/~ (x)) f(x, 0)] + 
{x ~ t): u;(x)  > k~} 
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1 
+ ~ [( - ka/u~ (x)) f (x,  u;)  + (1 + kh/u;  (x)) f (x ,  0)] ] ~< 

J {x ~ ~: u~ (~) < -k~} 

~< liminf I f (x '  u~) + limsup I 
h 

f (x,  O) <. 2 ~ (~, u).  

Therefore (3.31) follows by (3.36). 
Now by (1.5), (3.22) and (3.31) it follows 

(3.37) I(t~, u) >I i(t), u) >t i _  (t), u) I> J P_ (t~, u) >I 2 p (t), u) i> 2(t), u),  

hence by (3.37) and Proposition 1.2 (3.21) follows. [] 

4. - The case  o f  in tegrand  not  depending  on x. 

Let I,  Io be the functionals defined in (0.4) and (0.7). 
Throughout this section we will assume that the function f in (0.1) does not de- 

pend on x. 
By adopting a proof already used in [DA1] (Theorem 2.5 in [DA1]) we first prove 

the following result. 

LEMMA 4.1. - Let f b e  a nonnegative convex finite funtion o n  R N and let J be de- 
fined by (1.2) with p = + ~.  Then 

(4.1) 2(E2, u) = 2_ (t), u) 

for every strongly star-shaped bounded open set t~, u in L 1 (~). 

PROOF. - Let t~, u be as above. 
For simplicity let us assume that E~ is star-shaped with respect to 0. 
Obviously by (1.5) we only have to prove that 

(4.2) 2_ (t], u) >i 2(t~, u).  

Let s e ]0 ,1 [  and let {uh}hc_Wllo'c ~ be such that uh--)u  in L l ( s~)  and 

(4.3) 2(s•, u) ~> l ~ i n f  [ f (Dua) .  
s D  

By virtue of our assumptions on t~ let t e ]0, s[, then (l/ t)  st) )~ t). 
Define the functions u t ,  u t by uh t (y) = (l/ t)  uh (ty), u t (y) = (l/ t)  u(ty), then 

(4.4) u t -~ ut  in L 1 (t~) as h ~ ~ .  
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By (4.3), (4.4) we deduce 

(4.5) ](st~, u) i> liminf t g h  I f(D~uh(ty))dy >~ 
(1/t) sEJ 

/> liminf tN If(Dyu~(y))dy >I t~J(sg, u~). 
h . 

Q 

Letting first s -~  1- and then t ~ 1- we deduce (4.2) by (4.5), therefore (4.1) 
follows. �9 

We need the following result of measure theory. 

LEM~t 4.2. - Let ~9 be a bounded open set and let ~h, h e N, ~ be nonnegative 
Borel measures on ~9 such that 

(4.6) limsup t~h (t~) ~< ~(~9) < + ~ ,  
h 

(4.7) liminf/~h (A)/> ~(A) for every open set A _c t). 
h 

Then the following limit exists and it results 

(4.8) limb I ~d~h = I ~d~ for every ~ in C~ 
Q 

PROOF. - For every h e N let us define the measure ~h on t~ as 

(4.9) ~h (E) = ~h (E (3 t)) for every Borel set E c ~ .  

By virtue of (4.6) the sequence {fib (~)}h is bounded, therefore there exists a non- 
negative Borel measure v, finite on ~, such that 

(4.10) l'hnn I ~d~h = ] ~dv for every ~ in C~ 

Actually (4.10) would only hold for a subsequence {~hk}k but, since we will de- 
scribe the limit measure v, we can assume that (4.10) holds. 

Let us prove the inequality 

(4.11) v(B) ~>t~(B) for every open setB_ct~. 

Take B c_ t~, A r162 B and ~ e Co o (B) with 0 < ~ ~< 1, ~ - 1 on A, then by (4.10) and 
(4.7) we deduce 

B B B 

As A increasingly converges to B we deduce (4.11) from (4.12). 
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Let  us observe now that, choosing ~ = 1 in (4.10), we obtain by (4.6) 

(4.13) ~(~2) >I limsup t~h (~) = limsup ~h (t)) = v(t~) >1 v(t~). 
h h 

By (4.11) and (4.13) we deduce that 

(4.14) ~(~t~) = 0 

and also, by standard arguments, that  

(4.15) v = t~ on t~. 

By (4.15), (4.14) and (4.10) it follows 

(4.16) f f f = lV f l v f 

hence the thesis follows. [] 

LEMMA 4.3. - L e t f b e  a nonnegative convex finite funtion on R N and let J be de- 
fined by (1.2) with p = + co. Then 

(4.17) 3_  (t~, u) = 3(t~, u) '~ 

for every bounded open set t) with Lipschitz boundary t), u in L l(t)).  

for every ~ e C O (~), 

PROOF. - Let  t) be as above. Let  us assume first that  u e L ~ (t~). 
Let  us prove that 

(4.18) 2_  (t), u)/> ](t~, u) .  

To this aim we can assume that 2_  (t), u) < + :r 
By virtue of Lemma 1.4 let {~j}j = 1 ..... ~ be a finite open covering of ~ such that 

each ~j = t~j N t~ is strongly star-shaped with Lipschitz boundary. 
Let  {~j}j=i ..... ~ be functions in C~(R ~) such that 

$ 

(4.19) O<~aj<~l, ~ otj=l on V ~ ,  spt(~j)  c c ~ j .  
j = l  

By virtue of Lemma 4.1 for every j = 1 ..... s let  {u~}h c Wlloh ~ be such that  

[:u~---~u in L l ( t ) j ) a n d  a.e i int~j as h ~  ~ ,  

(4.20) * i + ~ > o ~_ (t~-, u) ~> limsup f(DuJ). 

By setting, for every j = 1, ..., s, I-r = ff(Du~), ~ = J .  (u), J ,  (u) being the mea- 
(.) 

sure given by Theorem 2.5 and verifying (2.34), it turns out that  the assumptions of 
Lemma 4.2 are fulfilled on ~ .  
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In fact (4.6) follows by (4.20) and (4.7) by the definition of ] and i) of 
(4.20). 

Therefore Lemma 4.2 applies and we get 

(4.21) 1~ f f 
By Lemma 2.1 we can assume that 

(4.22) Iluillio($2,) ~ Ilull/=<~) 

Let t �9 ]0,1[ and define 

for every ~ in C~ 

for every j = 1, ..., s. 

(4.23) u t = t ~ aju j �9 Wllo~= ; 
j = l  

then by (4.20)i) it results 

(4.24) u~ --~ tu 

We have by convexity 

f t j ( j~ l )  (4.25) f (Du t) <~ f ajDuJh 
f2 

in  L t (t)) as  h --~ 

) + ( 1 - t  f j~luJhDaj <~ 

= a j f (DuJ~)+(1- t  f ~ u~Daj . <<. t? ~J 

As h ~ oo by (4.20)i), (4.21), (4.22) and Lebesgue dominated convergence theo- 
rem we get from (4.25) 

(4.26) tu) <_ l sup f f(vu ) 

= t f d$. (u) 
$2 

hence by (4.26) we deduce as t ~ 1- 

<~ t ~ ~jdJ. (u) + ( 1 -  t f - ~ - ~ u  D~j = 
j = l  

+ (1 - t)f(O)lt~ I = tJ_ (t~, u) + (1 - t)f(O)lt)], 

(4.27) 2(~), u) ~< liminf 2(t~, tu) <~ 2_ ([2, u). 
t--~ 1- 

I n  order to deduce (4.27) when u e L 1 (t~) we only have to observe that by (4.27) 
and Lemma 2.2 it follows 

(4.28) 2(t~, u) ~< liminf 2(~, vku) <~ liminf J_  (~9, zku) ~< J_  (t), u) 
k k 

zku being defined by (2.5). 
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By (4.28) and (1.5), (4.17) follows, t, 

We can now prove an identity result. 

THEOREM 4.4. - Let f b e  a nonnegative convex finite function o n  R N and let I ,  I, J ,  
J be the functionals defined in (0.4), (0.5) and in (1.2), (1.3) with p = + ~.  
Then 

(4.29) i(D, u) = i(D, u) = i_  (t), u) = J _  (D, u) = J(t), u) = 3(~, u) 

for every bounded open set t) with Lipschitz boundary, u in L 1 (t]). 

PROOF. - Let D be a bounded open set with Lipschitz boundary, u in L I(D). 
By Proposition 1.2 and Lemma 4.3 it follows 

(4.30) i(D, u) = J(D, u) = ] _  (D, u) = I_  (D, u), 

hence (4.29) follows by (4.30) and (1.5). N 

We now consider the case of null boundary datum. 
As a first step let us prove the following result by adopting a proof performed 

in [DA1] (Lemma 3.4 and Lemma 3.6 of[DA1]). 

LEMMA 4.5. - Let f b e  a nonnegative convex finite function o n  R N and let J0 be de- 
fined by (1.4) with p = + ~.  Then 

(4.31) 3o( , u) = 3 _  u) - I 

for every couple of bounded open sets D, t~' with t~ strongly 
star-shaped, D r162 u in LI(R N) with u = 0 in R N \ t ] .  

PROOF. - Let D, D' be two bounded open sets with t~ ccD' and let u be as 
above. 

Obviously by (1.8) and (1.5) it results 

(4.32) Jo(D, u) >I ffo(D', u) - f (O)ID'\D ] >I ff(t~', u) - f (0 ) [D '  \ t ]  1 >I 

>~ J _  (t]', u) -f(0)ItS '  \ t ~ [ .  

In order to prove the reverse inequality to (4.32) let us assume that t~ is also 
strongly star-shaped and that u e L ~ (RN), u = 0 in RN\t~ .  

For simplicity let us assume that t2 is star-shaped with respect to 0. 
Let A, B be open sets with D t e A  r162 B cct) '  and let {Uh}h C_ Wl~o'~ ~ with uh --* u in 

L 1 (A) and a.e. in A be such that 

(4.33) ](A, u) >~ limsup If(Dub). 
h 3 

A 
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Obviously by Lemma 2.1 we can assume that 

(4.34) ]IUh[IL~(A) <~ ]IUl]L~(~). 

Let  ? ~ Co ~(A) with 0 ~< ? ~< 1 be such that ~ - 1  on ~9 and set wh = ~uh, then 
wh e W 1' ~ (A) and, since u = 0 in R N \ t~, Wh --~ U in L 1 (A). 

For  every t E ]0, 1[ we have by convexity 

(4.35) I f ( t D w h ) < ~ t I ~ f ( D u ~ ) + t j f ( 1 - p ) f ( O ) + ( 1 - t ) I f (  l t-~_tuhD~). 
A A A A 

By (4.35), (4.33), (4.34) and Lebesgue dominated convergence theorem we get as 
h - - > ~  

(4.36) Jo(A, tu) <. tJ(A, u) + tf(O)lA\t~ I + (1 - t)f(O)lAI , 

hence as t---) 1-  we obtain by (4.36) 

(4.37) Jo(A, u) <~ J(A, u) + f (O) lA\ t )  I . 

Let  us now observe that by Lemma 2.4 it follows 

(4.38) j(A, u) + J (B\~ ,  u) ~ j(B, u). 

Moreover, being the functional u e W l l ' ~  f f(Du) L 1 ( B \ A ) - l o w e r  semicon- 

tinuous on W~4 ~ (see for example [Se2], [Mo]) and recalling that u = 0 in B \ A ,  it 
turns out that  

(4.39) ] ( B \ A ,  u) >~ f ( O ) I B \ A  I . 

By (4.37), (4.38) and (4.39) we deduce 

(4.40) ]o(A, u) <<. J(B, u) - f ( 0 ) [ I B \ A  l - I A \ t ~ l ] ,  

hence as B increase to t~' we obtain by (4.40) 

(4.41) Jo(A, u) ~< J _  (t~', u) -f(0)[l~2'  \ A I  - I A \ t ~ I ]  �9 

Let  now t > 1 and let {Uh}h _C Wo 1' ~ ( ~ )  be such that us ---) u in L 1 (t~9) and 

(4.42) Jo (t~, u) I> liminf If(Dub). 
h .I 

t~ 

Setting u~,(x)= l i t  uh(tx), u t (x)= 1/t u(tx) we have that u~--) u t in L 1 (~Q) a s  

h - ~  ~ and that, by (4.42) 

(4.43) ]o( t~ ,  u)/> liminf t-~'(f(Du~) >1 tNJo(t~, ut). 
h ) 

s 
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By (4.43) and (4.41), written with A = tt?, we deduce as t -~ 1 + 

(4.44) ']_ (t)', u) - f ( 0 ) [ t ? ' \ t ~  [ I> liminf tY]]o(t~, u t) >i ']o (t?, u).  
t -* l*  

In order to prove (4.44) when u e L 1 (R N ) with u = 0 in R N \ t? let us define for 

every k �9 N z k u  as in (2.5). 
Then by Lemma 2.2 and (4.44) we get 

(4.45) ']_ (t~', u) - f(0) It?' \ ~ I = lim ']_ (t?', zk u) - f(0) ItS' \ ~ [ i> 
k 

i> liminf ']o (t~, vk u) >t ']o (f2, u) ,  
k 

hence by (4.45) we obtain 

(4.46) .] _ (t?', u)  - f ( 0 )  It?' \ t? I >~ ']o (f2, u ) .  

Therefore by (4.46) and (4.32) (4.31) follows. ,, 

We are now in a position to prove the following representation result analogous to 
Theorem 4.4. 

PROPOSITION 4.6. - Let  f be a nonnegative convex function o n  R N and let I ,  Io, '], 
']o be defined by (0.4), (0.7), (1.2) and (1.4) with p = + ~ .  Then 

(4.47) i0 (t?, u) = 22o (~, u) = 22 _ (~' ,  u) - f (o)  l~' \ t? I = i _  (Q', u) - f (o)  I~' \ ~ I 

for every couple of bounded open sets 5, t~' with t? having Lipschitz 
boundary, 5 r  u in LI(R N) with u = 0 in R Y \ t ? .  

PROOF. - Let  t~, t?' be as above. 
The proof of the following inequality 

(4.48) ' ] o ( ~ , u ) > ~ ] _ ( ~ ' , u ) - f ( O ) ] ~ ' \ t ~ [  

for every u in L 1 (R N) with u = 0 in R J ~  

comes as in (4.32). 
In order to prove the reverse inequality let us first assume that  u e L  ~ (RN) ,  

u = 0 in RY~t?, m o r e o v e r  it is not restrictive to assume that  ']_ (t~', u) < + ~ .  
By Lemma 1.4 let {t~j }j =1 ..... ~ be a finite open covering of ~ such that  t~j = t~j • t? 

is strongly star-shaped with Lipschitz boundary and let {~j}j= 1 ..... ~ be functions in 
Co ~ (R •) verifying (4.19). 

Obviously we can assume that  V ~  5 ' .  
For  every j = 1 ..... s let us define the functions u j as 

f 
u(x)  if X e [2j 

(4.49) u j (x) = 0 if x e R Y \ ~j 
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and let, by Lemma 4.5, {u~}h c W~' ~ (t2j) be such that u j ~ u j in Ll(tgj) and a.e. in ~9j 
as h -* ~ and 

(4.50) + ~ > J _  (t~', u j) - f(O)it~' \ ~jl >I limsup f f (DuJ).  
h -I 

~j 

Looking on the functions u~ as defined on the whole R N by u~ = 0 for every 
x e R N \ ~j we deduce by (4.50) 

(4.51) + cr > 2_ (~', u j) >i limsup ~f(DuJ).  
n 

As usual, by Lemma 2.1, we can assume that 

(4.52) IluJlIL~(~) <~ I]Ul]L~(t~ ) for every j = 1, ..., s .  

For  every t �9 ]0, 1[ let us define 

(4.53) u~ = t ~ a~ u~ �9 W 1' ~ (t~), 
j = l  

then, since aj u j = aj u on R N for every j ,  it results 

(4.54) u~ -o tu in L 1 (t)) as h --* ~ .  

As in (4.25) we have by convexity 

s ) (4.55) f(Du]) <<. tj= ajf(Du~) + (1 - t f u~Da2 . 

By Lemma 4.2, as in the proof of (4.21), we deduce that  

(4.56) l imf~f (DuJ)  = f p d J , ( u  j) for every p �9 C~ ') 
h 

hence by (4.56) it follows that 

} (4.57) lira f ajS(Du~)= 1~  ajf(Du~) - f (O) [ a N = 
m 

~9'\~ ' ~ , \ ~  

Since aj �9 Co ~ (t~j) for every j, we have 

(4.58) f ajd.],  (u j) : f ajd] , (uJ), 

hence, recalling that u j = u on ~j ,  we deduce by (2.36) and (4.58) that 

(4.59) f o~jdJ . (uJ) : f o~jdJ , (u)  = f ~ j d ~  , ( u ) .  
~2' [)j n ~' t)' 
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By (4.55), (4.57), (4.59) and by (4.52) and Lebesgue dominated convergence theo- 

rein we deduce as h--) 

)j( ) (4.60) ]o(t~, tu) <~ t ~ ~jd3.(u)  -f(O) ~j + ( 1 -  t f 1 - ~  uJD~J 
j = 1 [J, ~9' 

I ( X ~ J  ~=1 ) = t3_(~' ,  u) - t f(O)lt) ' \ t~ I + (1 - t) f uJD~j �9 

Let us now observe that for every j = 1,...,s uJD~j = uDaj on ~ and that, since 
8 

aj = 1, ~ Daj = 0 on t); hence ~ ugD~j = 0 on t~ and by (4.60) it results j=l j=l j = l  

(4.61) 2o(t), tu) <~ t]_ (t)', u) + tf(O)It)' \ t) I + (1 - t)f(O)It)l . 

As t--* 1- we get by (4.61) 

(4.62) Jo (t~, u) ~< J _  (t)', u) - f (O)I t ) '  \ t ~  I . 

Finally the proof of (4.62) when u ~ LI (R  N) with u = 0 in R N \ t ~  comes as in 

Lemma 4.3. 
By (4.48), (4.62) and Proposition 1.2 (4.47) follows. [] 

By virtue of Theorem 4.4, Proposition 4.6 and Theorem 1.6 we are able to deduce 
the following representation result. 

THEOREM 4.7. - L e t f b e  a nonnegative convex finite function on R N and let -to and 
[ be defined by (0.7) and (0.4). Then 

dS Du 
(4.63) .To(t), u ) =  f f ( R D u ) +  I f*(d-- - -~-~)d,Du] + ff*(nu)dH N-l, 

t~ ~ at~ 

(4.64) . r ( t~,u)= f(RDu) + f *  dlDu I dlDu I 

for every bounded open set t~ with Lipschitz boundary, u in BV(t~). 

If  in addition we assume that 

(4.65) 

then 

(4.66) 

lim f(z) = + 

_f(~, u) = Io (~, u) = + 

for every bounded open set t~, u in L 1 (~ ) \BV(~) .  
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PROOF. - Let  ~ be a bounded open set with Lipschitz boundary and let ~ be de- 
fined by (1.34). 

Let  u be in BV(t)), then by Theorem 4.4, Proposition 1.7 and Theorem 1.6 it 
follows 

(4.67) I(~,  u) = I _  (t), u) = ~(t), u) = f(Du)(t~), 

that is (4.64). 
In order to deduce (4.63) we only have to observe that by Proposition 4.6, Theo- 

rem 4.4 and (4.64) we have for every bounded Open set t)' with Lipschitz boundary, 
~9' DD t) 

(4.68) I0 (~9, u) = 2_  (t)', u) -- f(0) It)' \ t) I = i(t~', U) -- f(0) Itg' \ / 2 1  = 

= - f ( O )  \ 

As t)' shrinks to t~ we deduce by (4.68) that 

(4.69) i0 (t), u) -- f(Du)(~) = f(Du)(t~) + f(Du)(at)). 

At this point by (4.69), (1.28), (1.30) and (1.31) we get 

(4.70) I0 (t~, u) = f(Du)(t~) + ~ f *  (nu) dH N - 1 ,  

that  is (4.63). 
We assume now (4.65) and check that I(t), u) = + :r for every u in L 1 ( t ) ) \  BV(t)), 

~he proof for Io (t), u) being similar. 
By (4.65) we have 

(4.71) 3 k > 0: k I z I - 1 ~< f(z) for every z in R N. 

Let  u e L 1 ( t ) ) \  BV(t)) and let {uh }h c C 1 (R N) be such that uh ---> u in L 1 (t)), we 
have to prove that 

(4.72) lin~tinf ~ f(Duh) = + o o  . 

If  (4.72) would not occur, by (4.71) a subsequence of {Uh}h would be bounded in 
BV(t~) and then, by weak compactness, u would be in BV(t~). 

Therefore (4.72) holds and the thesis follows. [] 

From Theorem 4.7 we deduce the following corollary. 

COROLLARY 4.8. - Let  t) be a bounded open set with Lipschitz boundary and let u 
be in BV(t)). 

Then there exist {Uh}h C_ C 1 (R N) and {vh }h c C~ (t~) such that uh -* u, vh ~ u in 
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L 1 (t~) and 

(4.73) I I Dul = l iml  I Duhl' 

(4.74) f IDol+ f lul dHN-l=lim f lDVhl. 

PROOF. - Take f(z)= I z] and apply Theorem 4.7. " 

A result similar to Corollary 4.8 is proved in [AG] where the above mentioned se- 
quence {u~}a is in CI(t~). 

5. - T h e  g e n e r a l  c a s e .  

Given a functionf as in (0.1), (0.2) in the first part of this section we will denote by 
i f  the functional defined by (0.4) relatively to f, we will analogously behave for the 
functionals If, Jf, Jf. 

We will compare the functionals If, If, Jr, Jf when f depends also on x. 

(5.1) 

then 

(5.2) 

LEMMA 5.1. - Let f and g be functions as in (0.1), (0.2). 
Assume that 

f(x, z) <~ g(x, z) x a.e. in R N, z in R N  ; 

3~(t~, u) = (2i)- (5, u) 

for every bounded open set ?2, u in L I(t)) such that Jg(~, u )=  (Jg)_ (~, u )<  + ~ .  

PROOF. - Let ~ be as above and assume at first that u is in L ~ (~2). 
Let us prove that 

(5.3) (2s)_ (~, u) I> 2s(~, u). 

Let t)', t)" be open sets with t)" cc ~' cc t) and let {Uh}h C Wll~ ~ be such that uh -~ u 
in L I ( ~  ' )  and a.e. in t)' and 

(5.4) Jr(t)', u)/> limsup If(x, Dub). 
h 

Moreover, being Jg(~, u ) =  (3a)_ (t), u), let {Vh}h C WI~ ~ be such that vh--* u in 
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L l(t)) and a.e. in t~ and 

(5.5) (jg)_ (/2, u) 1> limsup I g(x, Dvh). 

By Lemma 2.1 we can assume that 

(5.6) [luhllLo(o,) IlullL:(o>, 

(5.7) IlvhllLo(o) -< Iluh <o). 

Let  ~ ~ Cd(t2') be such that 0 ~< ~ ~< 1, ? -  1 on 0"  and set 

(5.8) wh = ~uh + (1 - ~)vh. 

Then wh e Wllo~ ~ and wh ---) u in L 1 (/2). 
For  every t e ]0, 1[ we have by convexity and (5.1) 

(5.9) I f(x, tDwh) ~ t I ~f(x, Duh) + t f ( 1 -  ~) f(x, Dvh) + 
t2 t~ 0 

O' 0 t2 

Since (ffa)- (t2, u) < + + by  Lemma 4.2 applied to the measures fzh = [ g(x, Dvh), 
t~ = (ffa)* (u), we deduce <) 

(5.10) l'hma f(1 - +)g(x, Dv~)= ~ ( 1 -  +) d(a?9). (u). 
0 o 

Moreover by (5.6), (5.7) and Lebesgue dominated convergence theorem we have 
as in (2.24) 

(5.11) l'hma If(x, ff( , o) 
By (5.9), (5.10), (5.11) and (5.4) we deduce as h--)  oo 

(5.12) Jf(t-2, tu) <~ tJf(t2', u) + t ~ d(Jg),(u) + (1 - t) f f(x,  0). 
0 \ o  ~ 0 

At this point ff t ~ 1-  and I2" increases to /2 we obtain 

(5.13) 2r u) <. liminf j•(t), tu) <. (Jf)_ (0, u), 
t--) l -  

that  is (5.3) when u e L | (O). 
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When u e L~(t~) setting, for every k ~ N, ~ku as in (2.5) we deduce by (5.13) and 
Lemma 2.2 

(5.14) o~f(l?, u) <~ liminf 2f(t), zku) <<. limsup (].f)_ (f2, zku) = (2f)_ (~9, u) ,  
k k 

that  is (5.3). 
By (5.3) and (1.5) equality (5.2) follows. [] 

We can prove now the main result of this section. 

THEOREM 5.2. - Let  f, g be functions as in (0.1), (0.2). 
Assume that 

(5.15) g(x, z) <~ f(x,  z) <<- A(a(x) + g(x, z)) 

Then 

(5.16) 

x a.e .  in  R N, z in R N 

for some A t> 1, a e Lllo~ (R N ). 

2s(~, u) = Y~(~, u) = (2i)- (~, u) = ( i  s)_ (~, u) = i~(~, u) = is(~, u) 

for every bounded open set ~2, u in Ll( t ) )  such that Ig(t~, u ) =  (Ig)_ (~, u). 

PROOF. - Let  t~, u be as above. 
If  Ig (t), u) < + ~ by Lemma 5.1, Proposition 1.2 and (1.5) we deduce 

(5.17) (2s)- (~, u) = 2i(~, u) = fi(~, u) ~ ~(~,  u) 1> Ji)-. (~, u) >t (2i)_ (~, u). 

Hence by (5.17) and (1.5), (5.16) follows in this case. 
If  Ig (~2, u) = + oo then by (5.15) and Proposition 1.2 it follows 

(5.1s) + ~ = (~g)_ (t), u) <- ( i i )_  (~, u) <. (J i ) -  (t), u),  

hence (5.16) follows by (5.18) and (1.5). [] 

By Theorem 5.2 and Theorem 4.4 we obtain the following corollary. 

COROLLARY 5.3. - L e t f b e  as in (0.1) and let ~ be a nonnegative convex finite func- 
tion on R N. Assume that 

(5.19) ~(z) <~ f(x,  z) <~ A(a(x) + (~(z)) x a.e. in R N, z in R N 

for some A I> 1, a e Lllc (R N). 

Then ff i ,  I, J ,  J are the functionals defined in (0.4), (0.5), (1.2) and (1.3) with 
p = + ~ and relative to f it results 

(5.20) o?(t), u) = j(~9, u) = ] _  (t?, u) = ./_ (t?, u) = ~r(t~, u) = i(~9, u) 

for every bounded open set t) with Lipschitz boundary, u in L I(f2). 
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PROOF. - The proof follows by Theorem 5.2 and Theorem 4.4 once observed that 
for every bounded open set D with Lipschitz boundary, u in L ~ (~9) I~(f2, u ) =  
= ( ~ ) _  (~, u). �9 

We now compare the functionals I ,  [, I0, JP, JP, J~.  

THEOREM 5.4. - Let  f be a function as in (0.1). 
Assume that  f satisfies (5.19). Then 

(5.21) 3P(~,  u) = j P  (t), u) = 3~ (t~, u) = I _  (~9, u) = 7(~, u) = I(~9, u) ,  

(5.22) Jo p (t), u) = Io (t), u) 

for every bounded open set ~2 with Lipschitz boundary, u in L ~ (~), p in [1, + ~]. 

PROOF. - Let  ~2, u, p be as above. 
Let  us prove that 

(5.23) 2 P_ (t), u) t> I_  (~9, u) .  

We can assume that ] P_ (~, u) < + ~ .  
Let  A r  and let {uh}hc_Wllo'c p be such that uh--->u in LI(A) and 

(5.24) + ~ > 2P(A, u) >1 l iminf[f(x ,  DUb). 
A 

For every -r~ > 0 leg ~(") be given by (1.9) and let, for every h e N, Uh, ~ = ~(~) * Uh be 
a regularization of uh, then for fLied h e N ,  Uh,~---)Uh in LP(A) as 7 - * 0  § 

By Jensen inequality we deduce for almost every x in A 

(5.25) f(x, Dub, ~ (x)) <<. f ~(~)(x - y) f(x, Dub (y)) dy. 

Let  us observe that  by (5.19) it follows 

(5.26) f(x, z) ~ A(a(x) + ~(z)) <<. Aa(x) + Af(y, z) 

for almost every x, y e R N, Z in R N. 

By (5.25) and (5.26) we get 

(5.27) f(x, Dub, ~ (x)) <~ A ~ ~(~)(x - y) a(x) dy + 
R N 

+A ~ ~(~)(x - y)f(y, Dub (y))dy = Aa(x) + A[~ (~) * f (  ", Dub (.))](x). 
R N 
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By (5.24) ~(~') * f( . ,  Dub(')) --->f( ", Dub(')) in L 1 (t~) as ~ --~ 0 § hence by (5.27) and 
Vitali convergence theorem we deduce 

A A 

For every h ~ N, ~ > O, uh, ~ e C 1 (RN), hence by virtue of (5.24) and (5.28) we can 
select Vh --~ 0 + such that uh, ~,, -* u in L 1 (A) and 

(5.29) 2 p (Y], u) >i ]P(A, u) >I lin~inflf(x ,Duh, r~) >I I(A, u). 
A 

By (5.29), (5.23) follows as A increases to Y2. 
Let us now observe that by (1.5) and (5.23) we deduce 

(5.30) 2 P (~, u) >t JP (~, u) >t 2 ~ (~, u) >1 I_ (~, u), 

hence by Corollary 5.3 and (5.30) (5.21) follows. 
We now prove (5.22). 
Let us first prove that 

(5.31) 2~" (~, u) >/io (~, u) ; 

to this aim we can assume that Jo p (t), u) < + ~. 
Let {uh}hcwl'P(t))  be such that uh---~u in Ll(t~) and 

(5.32) + ~ > 2~ (t~, u) I> limsup f f (x ,  Dub). 
h 

t) 

By (5.19) and (5.32) it results that fr < + ~ for every h e N, hence, for fixed 
t) 

h in N, by Proposition 2.6 at page 312 in [ET], there exists a sequence {u~}k c C~ (~2) 
such that u~ --, uh in L 1 (~9), Du~ ~ Dub in (L 1 (~))N and a.e. in t) as k --. ~ and 

(5.33) lira I ~P(Du~) = f cP(Duh). 
t~ Q 

By (5.33) and Lebesgue dominated convergence theorem we deduce for every h 

(5.34) likmff(x, Du~) = f f(x, Dub). 

By (5.32) and (5.34), e can select a sequence {ka}hcN such that 

(5.35) JoP (t), u)/> lin~jinf I f(x ,  Du~9 >1 Io(t), u), 
Q 

that is (5.31). 
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Since obviously 

(5.36) ]6 ~ (~, u) -< i0 (t~, u) 

equality (5.22) follows by (5.31) and (5.36). " 

REMARK 5.5. - We remark  that  in general if (5.19) does not hold, identity between 
[ and J P can be no more true, to this aim see [DA2]. 
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