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Comparison Results for Some Types
of Relaxation of Variational Integral Functionals (*).

ANTONIO CORBO ESPOSITO - RICCARDO DE ARCANGELIS

Abstract. - A comparison between some relaxation methods of an integral functional is carried
out. The following relaxed functionals of the variational integral 1(Q, u) = j fla, Du):
Q

I(@Q, w) = inf {lin%inf I©Q, wy), wpe CLR™), w,—u in L'Q)} wuel'@Q),

1@, w) = inf {h'rr}binf IQ, wy), wpe CHQ), up—u in L@} ue L@

are introduced. It is proved, by means of examples, that in general such functionals are dif-
ferent even if Q is a regular bounded open set and criteria for identity on the whole L' (Q) are
proved. If f does not depend on x it is proved that I and I agree if 2 has Lipschitz boundary
and an integral representation formula for their common values on BV(Q) is proved. Simi-
lar vesults and comparison ones with I and I are proved also for other kinds of relaxed func-
tionals of 1.

0. - Introduction.

Let (U, ) be a topological space satisfying the first countability axiom, let X be a
7-dense subset of U and let I be a real extended functional defined on X.

In many problems of Caleulus of Variations dealing with extremal properties of
the functional / one is naturally led to consider the so called relaxed functional
s¢” (n) ] of I, defined on the whole space U as

se” () I(w) = inf { liminf I(u,) |y € X, w, Su}.

In fact in many cases it occurs that the functional s¢™ () I has a minimum value on
U that agrees with the infimum of 7 on X (see for example [Bul).

(*) Entrata in Redazione il 30 settembre 1990.
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Let us now consider a function f verifying the following assumptions

fi(x,2)e RY X RN - f(z, 2) € [0, + ],
0.1) . .

f measurable in x and convex in z,
0.2) for every z in RY f(,2) e L. RY),

and let us consider the integral

0.3) 1Q, u) = j f(x, Du)

Q

defined for every bounded open set Q of RY and every « in a set of functions X in gen-
eral containing C!(RY).

We observe that J(Q,u) exists and is finite for every u in C'(RY).

Several choices of the set X and of the couple (U, r) are possible.

For example in many interesting cases it turns out to be convenient to choose X
equal to C*(RY) and (U, ) equal to L'(Q) endowed with its strong topology (see for
example [DG1], [CS], [BDM1], [MS2]).

In this case the relaxed functional of I is given by

0.4) IQ,uw= inf[lin}binfff(ac, Duy)|uy e CLRY), wy, —u in LI(Q)]
g

and is defined for every bounded open set Q, u in L'(Q).

On the other side, given a bounded open set 2, in many papers (see
example [AMT], [DM2], [GMS], [B], [DT)) it has been considered the ease in which X
is equal to C*(Q) and (U, 7) is given by L. (Q) endowed with its strong topology, get-
ting therefore the following relaxed functional of I

(0.5) I(Q, ) = inf [lin}Linf [ fla, Duy)|uy € CHQ), wp, —u in L, (Q)]
a

defined for every u in L, (Q).

Other choices natural enough consist in assuming as X the class Wik,? (RY) and as
(U, 7) the space L!(Q) with its strong topology, that is the same topological space
used to construct I, or as X the class WiP(Q) and as (U, 7) the space L;} (Q) with its
strong topology, ie. the same one considered to define 1.

These functionals may sometimes be different from the ones already introduced
(see [DA2] and §3).

Limiting ourselves in this introduction, for the sake of simplicity, to discuss the
case of the functionals I and I, we in general have that

(0.6) 10, w) <T@, w) for every bounded open setQ, u in L(Q),

and that strict inequality in (0.6) may occur for some bounded open set { and some
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function u, if Q is sufficiently irregular, even if fis a smooth function independent on
x (see Example 3.1).

On the other side it is possible to prove that strict inequality in (0.6) may hold, for
some u, even if Q is a bounded open set with Lipschitz boundary provided that the
funetion f explicitly depends on x (see §3).

In this paper we intend to examine more closely the reciprocal behaviour of the
functionals I and I, and representation formulas for them, as % and Q vary.

It can be easily established that if N = 1 identity between I and I always holds
(see Proposition 3.5).

Moreover, once recalled that a family § of open subsets of RY is said to be dense if
for every couple of open sets of RY A; and A, with A, c A, there exists B e § such that
A, ¢ B and B¢ A,, it can be observed that for every u in L. (RY) there exists a dense
family of bounded open sets such that 7(Q, u) = 1(Q, u) for every open set 2 in such a
family (Proposition 3.4).

This result will be deduced via techniques of increasing set functions (see [DGL]
and [DM1]), by proving that for every % in L. (R") the inner regular envelope of I,
I_(Qu= sup I(A, w) is the restriction of a measure to the set of all bounded open

Acf
sets of RY (Theorem 2.5).

A sufficiently significant dense family independent on u can be selected under
more restrictive assumptions on the function f.

For example it will be proved (see Corollary 5.3) that identity between Tand T
holds for every bounded open set Q with Lipschitz boundary and every u in L'(Q),
provided that the function. f verifies the following estimates

{¢(z) < fla, 2) < Ala(e) + ¢(2)) « ae. in RY, z in RV,

Az1, aeLl, RY), ¢ convex finite function.

To this aim we will prove again that the functional I agrees with its inner regular
envelope I _ for every bounded open set Q with Lipschitz boundary and every u in
LY(Q) (see §5).

In conclusion let us explicitly observe that, by using well known resulis
(see[GS)), it is also established an integral representation result on BV(Q), in the
case in which f does not depend on w, for the functional 7 and also for the
functional

0.7) To(Q, u) = inf [Iiniinf f £, Duy) |us € CH@), wp—w in L' @),
Q

that is the functional that is obtained by relaxing 7 with a procedure similar to the one
performed to get I, but having in mind Dirichlet problems with null boundary data
(Theorem 4.7).

Analogous results can be stated for the relaxed functionals of I constructed with
the choices of X and (U, 7) already pointed out.
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1. - Notations and preliminary results.

Given two bounded open sets of RY A and B we say that A cc B if A cB.

A family § of open sets of RY is said to be dense if for every couple of bounded
open sets A;, A, of RY there exists B in { such that A; cc B cc 4,.

Let F be a real function defined on the set of all bounded open sets of RY, we say
that F is increasing if

A1 cA,=F(A) < F(Ay).

For an increasing function F' we introduce the inner regular envelope F_ of F
by
(11 F_(©Q) = sup F(4),

Accll

we refer to[DGL] and to [DM1] for the study of the properties of inner regular en-
velopes, here we only recall that the inner regular envelope F'.. of an increasing fune-
tion F' is inner regular, i.e. (F_)_ = F_, and the following result (see Proposition 1.1
and Theorem 1.1 in [DM1)).

PrOPOSITION 1.1. ~ Let F be an increasing function defined on the set of all bounded
open sets and such that F (@) = 0. Then the set of all bounded open sets £ such that
F(Q)=F_(J) is dense.

For every pell, + »] we will set Wk? = WL?(RY).
Let f be a function as in (0.1}, (0.2); let us introduce the following functionals de-
fined for every bounded open set Q, u in L*(Q) and p in [1, + =] _
(1.2) J?(Q, u) = inf {lirr}Li_an'f(x, Duy)|u, € WP, up —u in L' (Q)],
o

(L.3) JP(Q, u) = inf [ﬁn}linf If(m, Duy) |uy, € WEP(Q), wy, —>u in L, (.Q)} ,
d

(1.4) J§ @, u) = inf [lin}zinf jf(x, Duy) |y, € WP (@), uy, »u in L* (Q)}.

a

For simplicity when p = + o we will write J instead of J * and so for the other
functionals.

Let us observe that since L' (Q) and L. () topologies satisfy the first countability
axiom, infima in (1.2) + (1.4), together with those in (0.4), (0.5) and (0.7), are
attained.

We explicitly remark that for every bounded open set Q, p in [1, + =], the func-
tionals J?(Q, ), J(Q, ) and J&(Q, ) are L'(Q)-lower semicontinuous on L'(Q).

Moreover, being J? (Q, ) the supremum of a family of L*(Q)-lower semicontinu-
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ous functionals, J? (Q, -) turns out to be L'(Q)-lower semicontinuous on L(Q).
We recall that, see [DA2], in general the functionals JP effectively depend on p,
hence the whole family of functionals J? and J{ must be considered.
The following inequalities are soon verified

(15) JP@Q,u)<JTPQ, uw)<JPQ, )
for every bounded open setQ,  in L'(Q), p in [1, + =].

Moreover it is easy to prove that if Q; and 2, are bounded open sets with £, ¢,
then

(1.6) JPQy, u) <JP(Qy,u) for every u in L'(Q,), p in [1, + =],
A7 JP@Q, u) SJP(Qy,w) for every w in L*(Q,), p in [1, + =]

and

18) JPQi, u) =T, u) - j f, 0)
[P NN

for every u in L1(Q,) with # =0 in Q,\2;, p in [1, + =].

Let « be a mollifier, that is « belongs to C*(RY) and is a nonnegative function
with support contained in the unit ball of RY such that j o =1, and let us define for

every n >0 R"
(1.9) 27() = n—lN-a(%)
For every u in L. (RY) we define the regularization of u by
(1.10) 1, @) = (@ % w@) = [ @ - puly)dy.
RN

Moreover for every bounded open set Q, ¢ > 0 let us set
Q7 ={xel|dist(x, 8Q2) > ¢}, QF ={xeR"|dist(x, Q) <<}.

The relationship between functionals in (1.2) and (1.4) with p = + «© and those in
(0.4) and (0.7) is given by the following result.

PROPOSITION 1.2. - Let fbe as in (0.1) and (0.2) and let I, I, J, J, be the function-
als defined in (0.4), (0.7), (1.2) and (1.4) with p = + . Then
a1 1@ w =JQ, ),

= = for every bounded t 0, in L1Q).
(1.12) To(@, %) = 74 (@, ) very bounded open se u in L' (Q)
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ProOF. — Obviously

IQ,uw=JQ, u,

R - for every bounded open setQ, u in L'(Q).
L1o(Q,w) 2 Jo(Q, w)

(1.13) {

In order to prove the reverse inequalities let us consider first the case of I and J.
Let Q be a bounded open set,  in L!(Q).
Let {u}, ¢ Wik” be such that u, —»u in L'(Q2) and

(1.14) J(Q, w) > limint j f(x, Duy).
Q

For every fixed he N let u; , be a regularization of u,.

For every 5 > 0 we have ||| Duy, ,|llo-@ < || Duslllo- @:) and Duy, ,— Du;, almost
everywhere on Q as n—07%. ‘

Then the dominated convergence theorem yields

(1.15) j f@, Dw,) = lim J f@, Duy, ,).
] =0

By (1.14), (1.15) and a diagonal process we can select {z,},, with 7, —>0" as
h— ©, such that w, , —u in L'(Q) and

(1.16) J (@, w) > liminf [ f@, D, ) = 1@, w).
0

By (1.13) and (1.16), (1.11) follows.
We now consider the case of (1.12).
As before let {v,},c Wi = (Q) be such that v, —u in L'(Q) and

(1.17) Jo(@, w) > liminf j f, Dvy).
0

Let {g,}, be a sequence of positive numbers, with o, —» 0% as h — o, that will be
specified later.
Let us define the functions 8, as
t—a, it>o,
(1.18) B, (&) =40 if —g,<t<ag,
t+a, ift<—oy,

and set
(1.19) Dy () = By, (v, () .

Then %, e W¢ (@), spt (@) ccQ and 7, —u in L'(Q).
For every fixed h e N let 9, , be a regularization of .
For every k fixed and for every % sufficiently small and depending on /& we have



A. CorBo EsposiTo - R. DE ARCANGELIS: Comparison results, etc. 161

W, , € Cg Q) and, as in (1.15), it results

(1.20) [ @, D) = lim_ | fie, D, ).
d g

Moreover we have

(1.21) [ @, D) < [ #@, Duy) + [ fx, 0).
0 Q

{xe {0 < |1, @)] <o}
By (1.17), (1.20) and (1.21) we can prove that
(1.22) Jo @, u) = 1,(Q, u)

as in (1.16) and by choosing a suitable sequence {oy}.
By (1.13) and (1.22) (1.12) follows. ™

For every measurable set A we will denote by |A| the Lebesgue measure
of A.

In the following we will need to select a particular class of star-shaped open
sets.

DEFINITION 1.3. — We say that an open set Q is strongly star-shaped if it is star-
shaped with respect to some point x, in Q and if for every « in Q the half open line seg-
ment joining ®, to « and not containing x is contained in Q.

Let Q be a strongly star-shaped bounded open set, for simplicity let 2 be star-
shaped with respect to 0, then it is obvious that for every ¢ > 0 the open set {02 is still
strongly star-shaped and that, if ¢ > 1, Q cc Q.

This implies that for 0 < s <1 <t it results s cc Q cc .

Let Q be an open set, we say that Q has Lipschitz boundary if 3Q is locally the
graph of a Lipschitz continuous function.

By using a proof already performed in [ET], page 309-310, we can prove the fol-
lowing result.

LEMMA 14. - Let £ be a bounded open set with Lipschitz boundary, then there
exists a finite open covering of @ {;};_;  ,such that foreveryj=1,...,s3;NQis
strongly star-shaped with Lipschitz boundary.

PROOF. — Let x be in 00, then in a cylindrical neighbourhood I, of x we
have

(1.28) I,NQ={yeRY|yy < %%), B}

where e RY ™!, 4:RY"! R is a Lipschitz continuous function and B is the
(N — 1)-dimensional basis of I,.
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Obviously we can assume that in the coordinate system of B x = (0, 4(0)) with
8(0) > 0.

In{ET], page 309-310, using the same notations, it is proved that if k is the Lips-
chitz constant of 4 and if |%] < 9(0)/2k then

(1.24) 0 < (0) — 2k2|7| < 80%) — kr|g|  for every xel0, 1[.
By (1.24) we deduce
(1.25)  28(F) < A$@) — SOP) + M0P) < kA1 ~ D|F| + 2809) <
<1 =Ny + 280y) = 30y)y for every Ae (0, 1[.

By (1.23) and (1.25) we deduce that, in the coordinate system of B, for every ¥
with |7| < 9(0)/2k the half open line segment joining (0, 0) to (%, $()) but not con-
taining this last point is contained in 7, N Q, that is x possesses a cylindrical neigh-
bourhood J, such that J, N Q is strongly star-shaped with Lipschitz boundary.

Since for every « in  there exists a ball B, centered at « with B, ¢ 2, taking into
account the compactness of O, we deduce the thesis, ™

For every bounded open set {2 we denote by BV((2) the set of the functions in
L'(Q) having distributional partial derivatives that are Radon measures with bound-
ed total variations on (.

We recall that for every u in BV((2) the total variation of Du on Q is given
by

(1.26) JIDuI =supl JudivglgeC&(Q;RN), [g@@)| <1 for every zeQ|.
0 )

Moreover let us recall that for every BV-function u, according to Lebesgue’s de-
composition theorem, we have

(1.27) (Du)E) = JRDu dx + (SDu)E) for every Borel set &
E

where we have denoted with R Du the Radon-Nikodym derivative of Du and with
S Du the singular part of Du both taken with respect to Lebesgue measure, and that
(see[G]) if Q has Lipschitz boundary and if n is the unit inward normal to 3Q
then

(128)  Dulsgg=nuHY ']y for every u in BV(RY) with =0 in R\ Q,

HY ! being the (N — 1)-dimensional-Hausdorff measure on RY.
For a survey on BV-functions we refer to[G].

DEFINITION 1.5. — Let f be a nonnegative convex finite function on R and let v be
a positive Borel measure on RY.
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Then for every R¥-valued Borel measure u and every Borel set E we define

(129)  fu(®) =

E.
= sup > uE)) f ( 'UL((EZ)) ) I{Ez} is a finite partition of E into Borel sets}.
. WE,
In[GS] (Theorem 2') it is proved that fu is a Borel measure and that if
(1.30) w(E) = f adv + 3E) for every Borel setE
E

with @ € L'(dv), 8 singular with respect to v, then

(131 ) = j fla)dy + f*H(E) for every Borel setE

E

where f* is the recession function of f given by
(1.32) f*@ = lim tf(%) zeRY.
t—0%

In particular, taking as v the Lebesgue measure, by (1.27), (1.30) and (1.31) it fol-
lows that

133)  (fDwQ) = f FRDu) + F* (SDu)Q) = f F(RDw) + f f*( jﬁf@f‘l )dlDul
Q Q Q

for every bounded open set{, u in BV(Q).

In (1.33) dSDu/d|Du| denotes the Radon-Nikodym derivative of SDu with re-
spect to |Du|.

Let Q,,, h e N, 2 be bounded open sets, we say that Q, — Q if for every compact
subset K of O it definitively results Q, 2 K.

Let fbe a function as in (0.1) and (0.2), in [Sel] J. SERRIN introduced the following
functional defined for every bounded open set Q,  in L!(Q)

(1.34)  S(Q, w) = inf lirr}bianf(x, Duy)|uy, e CHQy), 2, =0, u,—u in LLQ)].
Q,
The following representation result holds for the functional I (see [Se2], page 144

and [GS], page 174).

THEOREM 1.6. — Let f be a function as in (0.1) and let J be given by (1.34). Assume
that f does not depend on z.
Then

{1.35) 3@, u) = f(Duw)Q) for every bounded open setQ, u in BV(Q).
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Functionals I in (0.4) and & in (1.34) are linked by the following result.

PROPOSITION 1.7. — Let f be a function as in (0.1) and (0.2) and let I, ¥ be defined
by (0.4) and (1.34). Then ’

(1.36) I, u)=1_(Q,u) for every bounded open set®, u in L*(Q).

Proor. - Let O, # be as above.
Let us first prove that

(1.37) I, uy=T_@Q,u.

To this aim we can assume that J(Q,u) < + .
Let ¢ >0, AccQ and let O, —»Q u, —u in L (Q) with u, e C1(Q,) such that

(1.38) (@, ) + & > liminf j f(x, Duy).
Q,

Since 2, — Q then definitively (2, o0 A, hence by (1.38) we have

(1.39) (@, ) + & > liminf j f(x, Duy) = I(A, w).
A

As ¢ and A are arbitrarily chosen we deduce (1.37) by (1.39).
Let us now prove the reverse inequality to (1.37).
Let us observe that

(1.40) I_(@, ) =1lim 1@, w),

then for every ke N there exists {uf},c C'(RY) such that uf —wu in L' Qi) as
h— + o and

(1.41) I@ijy, w) > liminf [ f(x, Dul).
Qi

Therefore by (1.40) and (1.41), and by virtue of a diagonal process, we can select a
sequence {h}, such that uf —wu in Ly (Q) and

142) I_ (@, w) = liminf j f(x, Duf) = 3@, u).

Qs

By (1.37) and (1.42) equality (1.36) follows. ®
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2. - Some technical results.

In this section we will prove some measure theoretic properties of the functionals
JP relative to a function f as in (0.1) and (0.2).
Let us first prove the following result.

LEmMMA 2.1. - Let f be a function as in (0.1) and (0.2).

Let Q be a bounded open set, % in L * (), p in [1, + «] and {u;}, ¢ W"?(Q) with
w, —u in L1(@Q).

Then there exists a sequence {#;},c W*?(Q) such that %, —u in L1(Q),

2.1) (78 PR 7 P
and
2.2) liminf j f@, Diis) < limin j f(x, Duy).
b g

ProoF. - Let us define
2.3) U= — llull-@ V @ Al - @),
then obviously %, — % in L1(Q) and (2.1) holds.

Moreover we have
2.4) j f(x, Diiy) < j fle, Duy) + j flx, 0).

Q2 Q {2 fully @] > Jull- i }

Since [{xeQ: |uy(@)| > |u
02). =

L@} —0 as h— o, (22) follows by (2.4) and

For every measurable function » and every ke N let us denote by 7,u the
funetion

2.5) (@) = - kV () AE).

Then we have

LEMMA 2.2. - Let f be a function as in (0.1) and (0.2). Then
26) lim JP@Q, tou) =JPQ, u),

@2mn 1i£n J2Q, mu) =JPQ, u)

for every bounded open setQ, u in L1(Q), p in [1, + ].

ProoF. — Let Q, u, p be as above.
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Since J? and J? are L'(Q)-lower semicontinuous on L*(2) we have

(2.8) JPQ, u) < liminf JPQ, nu),
(2.9) JP(Q, u) < lin}cinf JP(Q, t,u).

In order to prove the reverse inequality to (2.8) let {u;},c WP be such that
w, — u in LY(Q), uy(x) — u(x) ae. in Q and

2.10) JPQ, w) = lirr;binfj f, Duy),
Q

then for every ke N 7,u, — 7% in L'(Q) as h— © and

@.11) [ @, Dzews)) < [ fi@, Duy) + [ o
9] 0

{xed: |u, )| > k}

By (2.10) and (2.11) we deduce

212)  J*(@, 5w < liminf j fle, D(mywy)) < TP(Q, w) + j flz, 0),
Q {x e |u@)| 2k}

henee taking the limit as k¥ — « in (2.12) we get

(2.13) limsupJ ?(Q, u) S J?(Q, u).
k

Therefore by (2.8) and (2.13) (2.6) follows.

In order to prove the opposite inequality to (2.9) let A cc Q, then by (2.12) written
with 2 = A we deduce

2.14) JPA, nu) SJTPA, w) + [ fle, 0 < T2 @Q,u) . j flx, 0).
{xe A |uw@)| =k} {xeQ: |u=)| =k}

By (2.14), being A arbitrarily chosen, we infer

(2.15) JPQ, mpu) €I P (Q, u) + J i, 0),
{xel: lux)] =2k} .

hence taking the limit as k — « in (2.15) we get
(2.16) limsupJ 2 (@, mu) < J2(Q, ).
i
By (2.9) and (2.16), (2.7) follows. =
We now prove some additivity properties for J? and J2.

LeMMA 2.3. - Let f be a function as in (0.1) and (0.2). Then
@.17) TP@Q,w) <TPQy, w) + TP Qy, w)
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for every triplet of bounded open sets Q, Qy, Q, with Q ccQ; U Qy, u in L1(Q, U Q,),
pin [1, + o],

(2.18) JP@Q,u) TP Q, u) +JP (Qy, w)

for every triplet of bounded open sets Q, Oy, Qs with QcQ; UQ,, w in L' (Q, UQy), p
in [1, + «].

Proor. - Let 2, Q,, ,, p be as above.

Let us assume first that w e L * (Q; U 92)'

Let {uf }, {uf }, c WP be such that u/—u in L'(Q;) and a.e. on Q; as h— =,
1=1,2 and

2.19) JP(Q;, ) = limsup f fx, Duj) i=1,2.
h
2

Obviously by virtue of Lemma 2.1, we can assume that

(2.20) 1%

L@ S ”'Z"/“L“(Q1 vy t=1,2.

Now let B such that B cc Q;, Q cc B U Q, and let » € C} () be such that 0 < p < 1,
=1 on B and set

(2.21) wy, = puy + (1 — p)ui,

then obviously w, —u in L'(Q).
For every t €]0,1[ we have by convexity

(2.22) f flx, tDw,) <t J of e, Duy) + ¢ f (1 - @) flx, Dui) +
0 Q Q

¢
1-t

+1 - t)Jf(x, (up — uf)Dgo) <

jf(x, DuZ)+(1 -1 Jf(x, I{—t(u;} —u;%)Dgp).
Q

2

stjf(w, Dul) +1
(o

In order to compute the limit as # — o of the last term in (2.22) let us observe that
by (2.20) for almost every x € 2, k € N and every t 10, 1 the vector t/(1 — t)(u} (x) —
~ ui (&) Dop(z) lies in the cube 2¢/(1 — Olul - @, ua, P2z - @, 1 — 1, 1™, hence if we de-
note by Zi, ..., zxv the vertices of ] — 1, 1[¥, we have by convexity that

P
4 _
(2.23) f(ac, -3 (wy — uf)Dgo) 5j§1f(93, 13 i t2”%“L=(Q,u92)||D99I L”(Ql)zj)

for a.e. ¢ in Q.
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Therefore by (2.23) and Lebesgue’s dominated convergence theorem we de-
duce

(2.24) limsup jf(x, l—t—-z(u,% - u;%)Dgo) = Jf(x, 0).
5 _
g )

Taking the limit as 2 — o« in (2.22) we obtain by (2.19) and (2.24)

(2.25) JPQ, tu) S tJP(Qy, w) + tJP(Qy, u) + A — 1) ff(x, 0),
0

therefore as ¢t — 1~ we deduce by (2.25)
(2.26) JPQ, u) < liminf TP@Q, tu) S TP @y, w) + TP (Qp, u).

By (2.26), 2.17) follows if uw e L ™ ({2, U ).

Let us prove now (2.18) again if u e L~ (Q; U Qy).

Let AccQ and let By, B, be such that B;ccQ;, i =1,2, Acc B, UB,.
Then by (2.17) written with Q = A, Q, = B, and (), = B, we deduce

2.27) JPA, w)STPB, w)+ TP By, u) S TP (Qy, u) + T2 (Qp, u).

By (2.27), being A arbitrary, (2.18) follows.

Finally let % be in L*(Q; U Q,) and let us prove (2.17), the proof for (2.18) being
analogous.

For every ke N let =,u be defined by (2.5), then by lower semicontinuity, (2.17)
“for bounded functions and Lemma 2.2 it follows

(228) JPQ,u) < liminf JP(Q, tu) < limsup/ P (Qy, t,u) +
k
+ limsup/ 7 (Qy, ou) = J P(Qy, u) + P (Qq, w),
k

that is (2.17). =

LEMMA 24. - Let f be a function as in (0.1) and (0.2). Then
(2.29) JP@Q, )= JPQ, w)+ TPy, u)
(2.30) JP@Q, )= TP Q, w) +JP(Qy, u)

for every triplet of bounded open sets Q, O, Q; with Q2Q, U0y, 8, N0 =6, u in
LY@, p in [1, + »].

Proor. — Let Q, 0, 5, u, p be as above.
Let us prove (2.29).
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Let {uy}, ¢ Wi? be such that w, —u in L'(Q) and

@2.31) J?(@, u) > liminf j flx, Duy) .
Q

Then obviously u;, — % in L*(Q;) and in L(Q,), hence by (2.31) we obtain

(232 JPQ,u) = liminf j fla, Duy) + liminf j fle, Duy) = TP (@, w) + TP (Qg, u),
2 Q,

that is (2.29).

Let us prove now (2.30).

Let Byccfy, Bycc s, then by (2.29) written with Q;,=B;, i=1,2, we de-
duce

(2.33) JP(Q,u) = JP(B,UBy, u)=JP(By, u) +JP(Bs, u).

By (2.33), being By and B, arbitrarily chosen, we deduce (2.30). ®
We can now prove the following result.

THEOREM 2.5. — Let f be a function as in (0.1) and (0.2) and let J? be defined by
(1.2).

Then for every  in L, (RY), p in [1, + ], the set function J? (-, u) is the restric-
tion to the set of all bounded open sets of a Borel measure.

PROOF. — Let  be in L. (RY), p in [1, + ], then by Lemma 2.3 and Lemma 2.4
the set function J? (-, w) is an additive and sub-additive inner regular increasing func-
tion such that J? (4, u) = 0.

The thesis now follows by Proposition 5.5 and Theorem 5.6 in [DGL]. =

Let u € Ly RY), p in [1, + ], let us denote by J £ (u) the Borel measure extend-
ing J? (-, u) given by Theorem 2.5.

Then since obviously for every bounded Borel set E
2.34) JE2(u)E) = inf{J? (A, u)|A open set, A2 E}
and since J ? (u) verifies the following locality property

2.35)  wu,veLi(RY), wu=wvae ina bounded open setQ=>

=J?Q,u=J"Q,v),
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by (2.34) and (2.35) it follows that
(236) wu,veLl (RY), wu=wvae. in a bounded open setQ=

=J2u)E)=JE@WXE) for every Borel setEcQ.

3. — Some examples and general identity results.

Let I and T be the functionals defined by (0.4) and (0.5) relative to a function f as in
(0.1) and (0.2).

In this section we will first discuss two examples showing that the functionals 7
and I can be different and then we will prove some identity results.

We first report, for the sake of completeness, an example showing that, if Q is not
sufficiently regular, then IQ, u) may be different from 1(Q, w) for some u, even if fis
a smooth function independent on .

EXAMPLE 8.1. - Let N = 1, f(z, 2) = |2]% 2 e R;let Q =] — 1, 0[UJ0, 1[ and let u be
the function defined by

@) = {1 if x>0,
=10 ite<o.
Then obviously « e C*(Q), hence taking u;, = u for every h e N, it results
3.1) 12, w) < liminf j |Duy |2=0.
Q

On the other side it is easy to see that
3.2) IQu=+o. m

We observe that if N = 2 examples similar to Example 3.1 can be given in which
the open set Q is also connected, in fact it suffices to take for example

fle, 2)=|2]%, Q={@ p|l<Vei+y?<2\{@ | -2<x<-1,y=0}

and

u(x, y) = tg(%arctg(%)).

We now present an example shaped on the one in [DA2] proving that, if f depends
also on x, identity between I and I may fail even for very regular bounded open
sets.
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Let N=2, ge[1,2] and let
lx2|

|e]?
L2

B, ={veR?| || <¢}, B=B;, B"={veBle,>0}, u*(xl,ﬂcz)zm.

33) flx,2z)=

I<z,x>,+IZIq xz(wl’x2)€R27 ZZ(Zl,Zz)ERz,

Obviously u* e Wik I(R?).
The function f verifies the following growth conditions

B4) |z]'sflx,2) s z| + lz]eg L | | /=Dy = | |+ |24

|
||
for every £ e R? zeR”® and r>1,

hence (0.2) follows if » > 2. ~
Let us recall that by Proposition 1.3 in [DA2] we get for J given by (1.2) with
p = +  and relative to f in (3.3)

3.5) J(B,w) =n+ f |Du*|9.
B

LEMMA 3.2. — Let f be given by (3.3). Then

(3.6) J(B+,u>:§ IIDM 7.
B*

Proor. — Let {u;}, ¢ Wik be such that u;, —«* in L' (B "), let us define the func-
tions #%; by

'M/h(xl,xz) ifxlao,

3.7 U , = .
( ) b (9(/'1 xZ) {uh(—xl, ﬂ'/'g) if r < 0.
Then %y, e Wik.“ for every heN, %, — u* in L'(B) and by (3.5) we get

3.8 lin}linf j fla, Duy,) = hmmf J Sflx, Duy,) =
B* B

> Iy %fwu 1= 2+ fu)u*;q

hence
3.9 JBT,u*)= % + f | Du* |9.
B+
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In order to prove the equality in (3.9) let us observe that
(8.10) (x, Du*(x)) =0 ae. in R®

and for every i e N let us define the functions v, by

w ey, xp) if |x] > %
(3.11) v (2, X)) = i
hwz if |90| < 77/—.’

then v, e Wii,” for every he N and v, — u* in W7 (R?); this yields that
(3.12) j | Dv, |7 — J |Du* 2.
B* B*
On the other side by (3.10) we get

1h =

[ | |(xx, Dvy, ()| dee = J |2 | lhgc2|dx=hj J |sin®d8|ddde = %
00

|z|® Jal®

3.13) BJ

B*N{1/mB

By (3.12) and (8.13) we deduce the opposite inequality to (3.9) and therefore (3.6)
follows. m

By virtue of Lemma 3.2, of (3.10), recalling that u*e C*(B ") and taking w;, = u*
for every h e N we get

314) JB*Y,u*)= -’ZE + ]' |Du* |4 > J lDu*!q=lin}Lianf(x, Du) = I(B*, ).
B* B* B*
Therefore by (3.14) and Proposition 1.2 it follows that
(3.15) IB*,u*)=JB",u*)>IB*, u*).

REMARK 3.3. — Let us observe that by virtue of a computation similar to the one of
Proposition 1.3 in [DA2] we can prove that

(3.16) JB,u*) ==+ j |Du* |1 for every ¢ >0,
BF

hence by (3.5) and (3.16) we soon deduce that
3.17) JB, u*)=J_(B,u*).
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Therefore by (1.5), (3.17), (8.5) and recalling that u* e W 9(B) we get

(3.18) j(B,u*)?j_(B,u*)=J(B,u*)=r:+J|Du*]‘1>
B

> [ 1Du* | = [f@, Du*) = J 1B, u*) = (B, u®),
B B

that is J(B, u*) is different from J9(B, u*) as q < 2.
We now prove a first identity result.

ProPOSITION 3.4. — Let f be a function as in (0.1) and (0.2).

Let I, I, J?, J? be the functionals defined by (0.4), (0.5), (1.2) and (1.3) and let % be
in L RY).

Then there exists a dense family § of bounded open sets such that

819 TQw=IQ,uw=1_Q,uw=J_(Q,u)=JQ, u)=JQ, w
for every Q in &;

moreover for every p in [1, + ] there exists a dense family , of bounded open sets
such that

(3.20) JPQu)=JP@Q, w=J@Qu for every Q in F,.

Proor. - The proof easily follows by Proposition 1.2, Proposition 1.1 and
(15). nm

In the one dimensional case it is possible to prove the following result.

PROPOSITION 3.5, - Let N = 1, fbe a function as in (0.1) and (0.2) and let 7,7, J?, J?
be defined by (0.4), (0.5), (1.2) and (1.3). Then

B21) T w=IQuw=I_Q,u=J@Q,u=J"Q,u=J°Q, u
for every bounded open interval Q, % in L1(Q), p in [1, + »].

PRroOF. — Let £ = la, bl, 4, p be as above.
Let us first assume in addition that » e L ® (Q) and prove that

(3.22) JPQ,u)=JPQ,u).
Obviously it results

(3.23) JE (@, u)= lim J? 1, )

and for every h e N there exists {uy'}, c Wik?, with «f —u in L'(Q1;,) as k — «, such
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that

(3.24)  Jr@ip, w > liminf j £, ).
Qo

Moreover by Lemma 2.1 we can assume that

(3.25) [Jee L@ Tfor every h,keN.

Ly S

By virtue of (3.23), (3.24) and of a diagonal process we can construct a sequence of
integer numbers {k;}, such that, setting u, = u/, we have w, —u% in L} (Q) and

(3.26) J2(@, u) > liminf j £, ui) .
Qi

Moreover by (3.25) it follows

(8.27) lallL - o; < lullp-@  for every heN.

For every i e N let us define the functions #, as

u e+ 1/h)y fz<a+1/h,
(3.28) @) = 1, (@) if a+1/h<w<b-1/h,
w,(—1/k) ifx>b-1/h.

Then obviously %, e Wi? and, by virtue of (3.27), %, - in L'(Q).
By (3.26) and (0.2) we get

(329) J7(@Q, u) < liminf j f@, @) < liminf j fl, w)) +
Q

Q{/h
a+1/h b
+ limsup j f(x, 0) + limsup j flw, 0) < TP (@, u),
h a h b—-1/h

that is (3.22) when u e L ™ (Q).

If w only is in L1(Q) let, for ke N, ,u be defined by (2.5).

Then by lower semicontinuity, (3.22) for bounded functions and Lemma 2.2 it
results

(8.30) JP(Q,u) < lin}cinf JP(Q, mu) < liminf JPQ, mow) =J2(Q, w)

that is (3.22).
In order to complete the proof let us prove that

(8.31) JP@Q,u) = JQ, ).
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To this aim let {u,},c WP be such that u, —u in L'(Q) and

(3.32) J?(@, w) > limint J f@, uy).
Q

Let {3}, be a sequence of positive numbers converging to 0 and let, for every &,
ke N, u} be the function defined by

€T

ul (@) = wy (@) + f[*k\/(u;{(t)/\k)]dt.

a

Obviously it results

k

333) | (@) - uf @) sj lug @) —[=& V (i ) AK)]|dt <

a

< j | lus @] — k|dt for every x in Q,
{te: lui @) >k}

hence if we choose k;, so that

(3.34) f Hup )] -k ldt <o, |{teQ: | @] > ki}| <o

{te: |u, &) >k}

by (3.33) and (3.34) it follows that uf*e W5, uf*—wu in L'(Q) as h— » and
that

(335)  J(2w) < liminf j fl, ) <
Q

< lirr}binf[ [ fmup+ [ few+ [ fa —kh)].

{we: lu @] sk} {w e u (@) >k} {xe:u @) < -k}

Moreover by (8.35), convexity, (3.34) and (3.32) it results

(336) J(@Q,u)< linkinf[ j S, uy) +

{x e |u@)]| sk}

o [/ @) S, wl) + (= R @) £, O]+

{w el u, @ >k}
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+ j [(—ky g @) £, ui) + (1 + by Juf, @) fx, 0| <

{r e @ uj (@) < —k,}

< limn j f(, uy) + limsup j fx, 0) < TP, u).
Q

{eeQ: lu @} >k}

Therefore (3.31) follows by (3.36).
Now by (1.5), (8.22) and (3.31) it follows

(3.37) IQuw=zIQw=I_Quw=J2@Quw=JPQu=JQu,

hence by (3.37) and Proposition 1.2 (3.21) follows. ®

4. ~ The case of integrand not depending on zx.

Let I, I, be the functionals defined in (0.4) and (0.7).
Throughout this section we will assume that the function f in (0.1) does not de-

pend on .
By adopting a proof already used in [DA1] (Theorem 2.5 in [DA1]) we first prove
the following result.

LEMMA 4.1. - Let f be a nonnegative convex finite funtion on RY and let J be de-
fined by (1.2) with p = + . Then

4D JQuw=J_@Q,u

for every strongly star-shaped bounded open setQ,  in L(Q).

Proor. - Let Q, u be as above,
For simplicity let us assume that Q is star-shaped with respect to 0.
Obviously by (1.5) we only have to prove that

4.2) J_@Q,u=JQ, u.

Let s 10,1{ and let {u;},c Wi.” be such that u, —» in L(sQ) and

43) J (52, ) > liminf f f(Dwy).
s3

By virtue of our assumptions on Q let ¢ e 10,s[, then (1/1)sQ Q.
Define the functions %}, u® by ui(y) = (1/t)u, (ty), u' () =(1/t) u(ty), then

4.4 up—u' in LYQ) as h— » .
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By (4.3), (4.4) we deduce

45)  J(st2, u) > liminf ¢¥ j FD,uy, (ty)) dy =
1/

> liminf ¢V j AD, ut @) dy = YT @, u?).
: ,

Letting first s— 1~ and then t— 1~ we deduce (4.2) by (4.5), therefore (4.1)
follows. =

We need the following result of measure theory.

LEMMA 4.2. — Let O be a bounded open set and let w,, 2 e N, « be nonnegative
Borel measures on Q such that

(4.6) limsup 5 (Q) < p(@) < + o,
h
4.7 lirr}Linf un(A) = uw(A) for every open set AcQ.
Then the following limit exists and it results

(4.8) lim J@dyh = Jgpdy. for every ¢ in C*(©).
g g

Proor. — For every h e N let us define the measure w; on Q as
4.9) 4, (B) =, (ENQ) for every Borel set Q.
By virtue of (4.6) the sequence {;, (@)}, is bounded, therefore there exists a non-

negative Borel measure v, finite on , such that

(4.10) lim j o di, = j odv  for every ¢ in C°@).

Q Q

Actually (4.10) would only hold for a subsequence {u, }; but, since we will de-
seribe the limit measure v, we can assume that (4.10) holds.
Let us prove the inequality

4.11) wWB) z w(B) for every open set Bc{l.

Take BcQ, AccB and o C)(B) with 0 < ¢ <1, p =1 on A, then by (4.10) and
4.7) we deduce

4.12) vB) = j pdv = lim j 9 d, = lim f p duy = liminf w, (4) > u(A).
B B B

As A increasingly converges to B we deduce (4.11) from (4.12).
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Let us observe now that, choosing ¢ =1 in (4.10), we obtain by (4.6)
(4.13) () = limsup g, (@) = limsup z, (Q) = v(@Q) = v(Q).
h 3

By (4.11) and (4.18) we deduce that
(4.14) w32y =0
and also, by standard arguments, that
(4.15) v=ux on Q.
By (4.15), (4.14) and (4.10) it follows

(4.16) J;od)u= Jgodv= J;adv=li}£nfgodﬁh=liirbnjgodph for every ¢ € C°@),
g g )

Q o] Q
hence the thesis follows.” ®

LEMMA 4.3. — Let f be a nonnegative convex finite funtion on RY and let J be de-
fined by (1.2) with p = + . Then
i

41D J_@Q,u)=JQ, u) !

for every bounded open set{ with Lipschitz boundary Q, # in L'(Q).

ProoF. ~ Let Q be as above. Let us assume first that » e L * (Q).
Let us prove that

(4.18) J_Q,u)=J@Q,u).

To this aim we can assume that J_(Q, u) < + ©.

By virtue of Lemma 1.4 let {&;};,_, _ , be a finite open covering of Q such that
each Q; = ;N Q is strongly star-shaped with Lipschitz boundary.

Let {a};j-1, s be functions in Cg* (RY) such that

S — —
4.19) 0sosl, 2 o=1 onVxDQ sptly) <.
J=1
By virtue of Lemma 4.1 for every j = 1,...,s let {uj}, ¢ Wi be such that

) uj—su in L'(Q) and ae. in Q) as h—

(4.20) i) + o0 >J_ ©Q;, u) = limsup J f(Dui).
h
8

By setting, for every j=1,..,s, g, = | fDul), u=J, ), J(w) being the mea-

0]
sure given by Theorem 2.5 and verifying (2.34), it turns out that the assumptions of
Lemma 4.2 are fulfilled on Q;.
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In fact (4.6) follows by (4.20) and (4.7) by the definition of J and i) of
(4.20).
Therefore Lemma 4.2 applies and we get

4.21) lim j o f(Dul) = j sdJ, () for every o in C°@)).
o) o)
By Lemma 2.1 we can assume that

(4.22) s < | for every j=1,..,s

Let £ € 10,1[ and define
(4.23) , wi=t 2 auleWk”;
j=1
then by (4.20) i) it results

(4.24) uf—tu in L1(Q) as h— .

We have by convexity

(4.25) f fDub) <t j f( > a,-Du;;) +d-1) f f(l—t;—t > u{;Daj) <
@ g vl o =1

<L’Z f“]f(Duh)+(1—t)jf( t]EIuhD“)

As h— = by (4.20)i), (4.21), (4.22) and Lebesgue dommated convergence theo-
rem we get from (4.25)

3

426) J(@, tu) < limsup J fDu}) < t‘El f o4 5 (u) + (1 — 1) J f( T Z Da,)
h j=
Q

=tjdj*(u) +A =)0 =tT_Q,w+ A -DA0|Q|,
Q

hence by (4.26) we deduce as t —>1~
@.27) J@, u) < liminf JQ, tu) <J_(@Q,u).

In order to deduce (4.27) when u € L1 (Q) we only have to observe that by (4.27)
and Lemma 2.2 it follows

(4.28) JQ, ) < limin J(@, tou) < liminf J_Q, mw) ST _(Q, w)

7% being defined by (2.5).
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By (4.28) and (1.5), (4.17) follows. ®
We can now prove an identity resuit.

_ THEOREM 4.4. - Let f be a nonnegative convex finite function on RN andletI,1,J,
J be the functionals defined in (0.4), (0.5) and in (1.2), (1.8) with p= + .
Then

429 I1Quw=10Q,w=1_(Q,u=J_@,u=JQ u=JQ,

for every bounded open setQ with Lipschitz boundary, % in L'(Q).

Proor. ~ Let Q be a bounded open set with Lipschitz boundary, » in L!(Q).
By Proposition 1.2 and Lemma 4.3 it follows

(4.30) IQuw=J@Quw=J_0Q,u=1_(,u,
hence (4.29) follows by (4.30) and (1.5). ™

We now consider the case of null boundary datum.
As a first step let us prove the following result by adopting a proof performed
in[DA1] (Lemma 3.4 and Lemma 3.6 of [DAI1]).

LEMMA 4.5. — Let f be a nonnegative convex finite function on RY and let J, be de-
fined by (1.4) with p = + . Then

@31 Jo@Q,u) =J_ (@, uw) ~ 0|2\ Q|

for every couple of bounded open sets Q, Q' with Q strongly
star-shaped, Q cc ', w in L*(RY) with « =0 in R¥\ Q.

Proor. - Let Q, 2’ be two bounded open sets with Q cc Q' and let u be as

above.
Obviously by (1.8) and (1.5) it results

432)  Jo@ w =Jo@, uw) - fOI2N\Q]| = TQ@', w) - f0)|Q'\ 2| =
=J_ @, w-f0]2'\Q|.

In order to prove the reverse inequality to (4.32) let us assume that Q is also
strongly star-shaped and that w e L (RY), u =0 in RV \ Q.

For simplicity let us assume that Q is star-shaped with respect to 0.

Let A, B be open sets with Q cc A cc Bcc Q' and let {uy}, ¢ Wi™ with u, =% in
L*(4) and ae. in A be such that

(4.33) J(A, %) = limsup f f(Duy).
h
A
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Obviously by Lemma 2.1 we ean assume that

(4.34) [t

Lo < el - @)

Let g e C§(A) with 0 < ¢ <1 be such that ¢ =1 on Q and set w, = ¢u,, then
wy, e W “(A4) and, since u =0 in RY\Q, w, »u in L(4).
For every t €10, 1[ we have by convexity

(4.35) Aj f(tDw,) < tAf of(Duy) + ¢ f A - o) f0) + (1 -1t j f( - 4 tutho).

A A

By (4.35), (4.33), (4.34) and Lebesgue dominated convergence theorem we get as

h—
(4.36) Jo(A, tu) < tT(A, u) + Hf(0)| AN Q| + (1 - D) f(0)]|4],
hence as t — 1~ we obtain by (4.36)
4.37) Jo(4, u) < J(4, u) + f(0)|A\ Q] .
Let us now observe that by Lemma 24 it follows
(4.38) J(A, w) + J(B\A, u) < J(B, u).
Moreover, being the functional ue Wi,™ = [ f(Du) L'(B\ A)-lower semicon-

BNZ —
tinuous on W * (see for example [Se2], [Mo]) and recalling that » =0 in B\ 4, it
turns out that

(4.39) J(B\A4, u) = f(0)|B\ 4] .
By (4.37), (4.38) and (4.39) we deduce
(4.40) Jo4, w) <J B, u) - fOLI|B\A| - |A\Q[],
hence as B increase to 2’ we obtain by (4.40)
(4.41) JolA, w) < J_(@Q', uw)—fON|Q \A| — |A\Q]].

Let now ¢t > 1 and let {u,},c W = (tQ) be such that u, —u in L'(#Q) and

4.42) Jo(t0, w) > limin j f(Du).
tQ

Setting i (x) = 1/t w, (tx), u'(x) = 1/t u(tx) we have that uf—u'in L'(Q) as
h—> o and that, by (4.42)

(4.43) Jo(t0, u) = liminf ¢¥ f ADu) =tV Jo (@, ut).
Q



182 A. Corso EsposiTo - R. DE ARCANGELIS: Comparison results, etc.

By (4.43) and (4.41), written with A = #Q, we deduce as t —> 17
(4.44) J_ (@', w) - fO|Q'\Q| = limilnf tN T, @, ut) = T (Q, w).
[

In order to prove (4.44) when u e L*(RY) with % = 0 in RY\ Q let us define for
every ke N 7, u as in (2,5).
Then by Lemma 2.2 and (4.44) we get

445)  J_(@Q', w) —f0)|Q'\Q] = lim J_ (@, mw) — fO1Q'\Q| =
> liminf Jo(Q, yu) = Jo(Q, ),

hence by (4.45) we obtain
(4.46) T @0 = fO12'\e| =@, u.
Therefore by (446) and (4.32) (4.31) follows. =

We are now in a position to prove the following representation result analogous to
Theorem 4.4.

. PROPOSITION 4.6. — Let f be a nonnegative convex function on R and let I,1,,J,
Jo be defined by (0.4), (0.7), (1.2) and (1.4) with p = 4+ . Then

4D L@ w=J,@uw=J_Q,uw-f0|Q\Q| =T_Q', w) - f(0)|Q \ Q]

for every couple of bounded open sets Q, Q' with 2 having Lipschitz
boundary, Q ccQ’, w in L*(RY) with » =0 in RY\ Q.

Proor. - Let Q, Q' be as above.
The proof of the following inequality

448) Jo@,w) =J_@Q',u) - f0)]|Q'\ 2|
for every w in L'(RY) with » =0 in RN\ Q

comes as in (4.32).

In order to prove the reverse inequality let us first assume that u e L * (RY),
u =0 in R\ Q, moreover it is not restrictive to assume that J_(Q,u) < + o,

By Lemma 1.4 let {;},-; _, be a finite open covering of { such that Q; = Q; N Q
is strongly star-shaped with Lipschitz boundary and let {a;};_; _ , be functions in
Cy (RY) verifying (4.19).

Obviously we can assume that V2o Q'

For every j = 1,..,5 let us define the functions »’ as

wlx) if xel)

4.49 I(x) =
(449 u(w-) {0 if xe RY\©;
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and let, by Lemma 4.5, {u]}, c W * (2;) be such that uj —  in L'(Q;) and a.e. in ©;
as h-—» o and

(4.50) +o > J_ (@, w) — f(0)]Q' \ Q| > limsup j fDud).
3
oh

Looking on the functions uj as defined on the whole R¥ by uj =0 for every
teRV\ Q; we deduce by (4.50)

4.51) +oo > J_ (@, u’) 2 limsup f f(Dui).
b
As usual, by Lemma 2.1, we can assume that
(4.52) il @) < lull-@  for every j=1, ..., s.

For every te10,1[ let us define
(4.53) wi =t muje W= @),
j=1

then, sinece ajuf = a;u on RY for every j, it results
(4.54) uf—tu in L'(Q) as h— .

As in (4.25) we have by convexity

(4.55) f fDub) <t j o f(Duf) + (1 - t) J 2 2 D).
=1 ti=1

1-
Q ; Q

7

By Lemma 4.2, as in the proof of (4.21), we deduce that

(4.56) lim [ of (Duf) = I odJ ,(u?) for every peC°@"),

v o

hence by (4.56) it follows that

Q' 2'\Q oy [ ANEY}

(457 lim j % f(Dul) = lim { j o f(Dui) — £(0) f aj}= j % dJ . ) — £(0) f %.
Q

Since «; e Cg (;) for every j, we have

(4.58) [5dT ) = | wdl @,
' one
hence, recalling that u’/ =u on (;, we deduce by (2.36) and (4.58) that

(4.59) [gdlew) = [ aal,=[xdl.w.

4 4

ong
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By (4.55), (4.57), (4.59) and by (4.52) and Lebesgue dominated convergence theo-
rem we deduce as h—

460) Jo@ )<t jajdj*(u)—f(()) I % -’r(l—t)J’f(ﬁZujDaj):
]=1_Q’ PN G ji=1

=tJ_(Q,w) - O \Q]+1 -1 Jf(ij—_t 2 ufDaj)
) i=t ,
Let us now observe that for every j=1,.,8 u/Daj=uDa; on O and that, since

2 a] =1, 2 Da] =0 on {; hence 2 u’ Da; =0 on Q and by (4.60) it results

(4.61) Jo(@, twy < tJ_ (@, u) 0|0\ Q| + A - O F0)|Q].
As t—> 17 we get by (4.61)
(4.62) To@ u) <J_ @, u) - fO)]2 \Q].

Finally the proof of (4.62) when ue L*(R") with =0 in R\ Q comes as in
Lemma 4.3.
By (4.48), (4.62) and Proposition 1.2 (4.47) follows. ®

By virtue of Theorem 4.4, Proposition 4.6 and Theorem 1.6 we are able to deduce
the following representation result.

_ THEOREM 4.7. - Let fbe a nonnegative convex finite function on RY and let I, and
I be defined by (0.7) and (0.4). Then

@463 I, u)=ff(RDu)+ jf*(gfgﬁ )dlDu} + Jf*(nu)dHN*l,
0 an

7 _ dS Du
@64 T, u —Jf(RDu) +Jf*(dll)ul )d[Du[

for every bounded open set Q with Lipschitz boundary, » in BV(Q).

If in addition we assume that
(4.65) 1 |lim+ flz) =
then
4.66) IQ,u)=1I,Q u)=+
for every bounded open set{2, # in LY\ BV(Q).
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PRrROOF. — Let 2 be a bounded open set with Lipschitz boundary and let I be de-
fined by (1.34).

Let u be in BV(Q), then by Theorem 4.4, Proposition 1.7 and Theorem 1.6 it
follows

(4.67) TQ,uw)=1_Q,u)=3Q, u) =fDu)Q),

that is (4.64).
In order to deduce (4.63) we only have to observe that by Proposition 4.6, Theo-

rem 4.4 and (4.64) we have for every bounded open set Q' with Lipschitz boundary,
Q'n0

4.68) 1@ u)=J_Q,w)~fO)Q\Q| =1Q,u) - fO)|2'\Q| =
= fDu)Q") — fO)|Q'\ Q.
As Q' shrinks to Q we deduce by (4.68) that
(4.69) I 0@, u) = FDW@) = fDu)(Q) + fFDu)3Q).
At this point by (4.69), (1.28), (1.30) and (1.31) we get

(4.70) To(Q, w) = fFDW)Q) + j F*mu)dHY 1,

a0

that is (4.63).

We assume now (4.65) and check that I(Q, u) = + = for every u in L' (Q)\ BV(Q),
the proof for Io(Q, u) being similar.

By (4.65) we have

(4.71) Ak>0:k|z] —1<fz) for every z in RY.

Let u e L' (Q\ BV(Q) and let {u;,},c C*(R") be such that u; —u in L'(Q), we
have to prove that

4.72) limin j f(Dup) = + .
Q

If (4.72) would not occur, by (4.71) a subsequence of {u,}; would be bounded in
BV(Q) and then, by weak compactness, » would be in BV(Q).
Therefore (4.72) holds and the thesis follows. ®

From Theorem 4.7 we deduce the following corollary.
CoROLLARY 4.8. — Let £ be a bounded open set with Lipschitz boundary and let »

be in BV(Q).
Then there exist {u;,},cC'(RY) and {v, }, ¢ C{ Q) such that u, —u, v, > u in



186 A. CorBo EsposiTo - R. DE ARCANGELIS: Comparison results, etc.

L'(Q) and
(4.73) J | Du| =1i}1LnJ. |Dus |,
Q 0
(4.74) J[Du| + j |u|dHN‘1=lihmJ | D, | -
Q a0 Q

ProoF. — Take f(z) = |z| and apply Theorem 4.7. =

A result similar to Corollary 4.8 is proved in [AG] where the above mentioned se-
quence {uy}, is in C*(Q).

5. — The general case.

Given a function f as in (0.1), (0.2) in the first part of this section we will denote by
I s the functional defined by (0.4) relatively to f, we will analogously behave for the
functionals I, J, Jp. o

We will compare the functionals I, I, J;, J; when f depends also on x.

LeEmMA 5.1, — Let f and g be functions as in (0.1), (0.2).

Assume that
5.1) fle,2) <glx,z) x ae in RY, zin RY;
then
(5.2) JHQ,w) = (Tp)_ (@, w)

for every bounded open set ©, u in L'(Q) such that Jg(Q, u)=(jg)*(!), )< o0,
ProoF. — Let Q be as above and assume at first fhat y is in L™ (Q).
Let us prove that

(5.3) - @, u) = JQ .

Let Q', Q" be open sets with Q" cc Q' cc Q and let {u,}, ¢ Wik ™ be such that u, — u
in L1(Q'") and a.e. in Q' and

(5.4) TAQ', u) = limsup [ £, Duy).
) o

Moreover, being J,(Q, u) = (J,)- (@, w), let {v,}, ¢ W™ be such that v, —>u in
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LY(Q) and a.e. in Q and

(5.5) (7 ,)— (@, u) > limsup f g, Dvy).
h
Q

By Lemma 2.1 we can assume that
(5.6) lenll- @) < lellz- @,
(6.7) lonllz- @ < lullz- @ -

Let g € C§(Q") be such that 0< 9 <1, p=1 on Q" and set
(6.8) wy = oy, + (1 = @) 0.

Then w, e Wik.* and w, —u in L'(Q).
For every t €10, 1[ we have by convexity and (5.1)

(6.9) J flx, tDwy,) <t I of (@, Duy,) + tj(l - o) flx, Dvg) +
o g d

- t)gj’f(x, T - vh)Dga) <

1 t_t(%h - Uh)D§0)-

< tjf(w, Duy) + tf(l - o)glx, Dv,) + (1 - 1) ff(m,
o a Q

Since J 9)- @, u) < + o by Lemma 4.2 applied to the measures u; = f g(x, Dvy,),
u = (Jy)x (u), we deduce O

(5.10) lim j A - ¢)g(x, Dvy) = j (1 — ) d(JT ), ().
Q Q

Moreover by (5.6), (5.7) and Lebesgue dominated convergence theorem we have
as in (2.24)

G.11) lim [ f(x, - vh)Dgo) - f i, 0).
Q Q
By (6.9), (5.10), (6.11) and (5.4) we deduce as kh—
(5.12) THQ, tu) < tTHQ', u) + ¢ j AT )y ) + (1 — B) [ 1, 0).
(AN Q

At this point if £— 1~ and Q" increases to 2 we obtain

(5.13) JAQ, u) < liminf JAQ, tw) < TP (@, w),

that is (5.3) when ue L™ ().
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When u € L1 (Q) setting, for every ke N, t,u as in (2.5) we deduce by (5.13) and
Lemma 2.2

(614)  J;(Q, u) < liminf T HQ, zu) < limsup (J5)- @, mw) = (J)_ (Q, u),
k

that is (5.3).
By (6.3) and (1.5) equality (5.2) follows. ®

We can prove now the main result of this section.

THEOREM 5.2. — Let f, g be functions as in (0.1), (0.2).

Assume that
(5.15) gz, 2) < f(z, 2) < Aa(x) + g(x, 2)) = ae in RY, z in RY
for some A =1, a e L (RY).
~ Then |

(5.16)  JHQ,w) =T, w) =T @0 =T @, w=LQ,w=I;Q,
for every bounded open set 2, % in L'(Q) such that T g0, u) = a g (Q, u).

PRQOF. - Let Q, u be as above.
If 1,(Q, u) < + » by Lemma 5.1, Proposition 1.2 and (1.5) we deduce

GBI T (@, u) = TAQ, u) = T2, ) 2 @, w) 2 ) @, w) = - (@ ).

Her}ce by (5.17) and (1.5), (5.16) follows in this case.
If 1,(Q, uw) = + = then by (5.15) and Proposition 1.2 it follows

(5.18) to =) @ wsdp @wsT)-Quw,
hence (5.16) follows by (5.18) and (1.5). &

By Theorem 5.2 and Theorem 4.4 we obtain the following corollary.

COROLLARY 5.3. — Let fbe as in (0.1) and let @ be a nonnegative convex finite func-
tion on RY. Assume that

(5.19) D(2) < flz, 2) < Alax) + P(2)) « ae. in RY, z in RY

for some A =1, a e L, (RY).

Then if I, I, J, J are the functionals defined in (0.4), (0.5), (1.2) and (1.3) with
p = + © and relative to f it results

(5.20) JQuw=JQuw=J_ Quw=I_Quw=1Qu=1Q,w
for every bounded open set Q with Lipschitz boundary, « in L'(Q).



A. CorBo EgposiTo - R. DE ARCANGELIS: Comparison results, etc. 189

ProoF. — The proof follows by Theorem 5.2 and Theorem 4.4 once observed that
for every bounded open set (2 with Lipschitz boundary,  in LYQ) 1;Q,u)=
=Up)-Qu). ®

We now compare the functionals I, 7, I, J?, J?, J{.

THEOREM 54. ~ Let f be a function as in (0.1).
Assume that f satisfies (5.19). Then

(5.21) JPQ, uw)=JPQ,u)=J Q,uy=1_@Q, w)=1Q,n)=1Q,u),
(5.22) JE@Q, w) =1y, w)

for every bounded open set Q with Lipschitz boundary, u in L'(Q), p in [1, +=].

Proor. — Let Q, u, p be as above.
Let us prove that

(5.23) : JPQ,u)=1_(Q u).

We can assume that J? (Q, u) < + .
Let AccQ and let {u;}, c WikP be such that w,—wu in L'(4) and

(5.24) + o0 > J7(4, u) > liminf j fle, Duy).
A

For every n > 0 let o be given by (1.9) and let, for every ke N, u), , = o * u, be
a regularization of u,, then for fixed he N, wu;, ,—u;, in LP(4) as n—0".
By Jensen inequality we deduce for almost every x in A4

(5.25) fl@, Duy, () < ( 2z — ) f(x, Duy () dy .
RN

Let us observe that by (5.19) it follows
(5.26) flx, 2) < Ala(x) + 9(2)) < Aalx) + Afly, 2)
for almost every x, y e R", 2z in R”.

By (5.25) and (5.26) we get

(527 flw, Duy,, @) < A j 2@ — y)alw)dy +
RN

+4A f (@ = y) fly, Duy, () dy = Aalx) + Al * f(-, Duy (N]@).
RN
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By (5.24) o™ = (-, Duy (-)) = f(-, Du;, (")) in L(Q) as n — 0%, hence by (5.27) and
Vitali convergence theorem we deduce

(5.28) lim, J f@, Du,, @) d = f (@, Duy () dac.
K A

For every he N, n >0, u, , € C'(RY), hence by virtue of (5.24) and (5.28) we can
select v, — 0% such that w;, , —u in L'(A) and

(5.29) JE@Qu)=JTPA4, w2 liminf J fl, Dw, ) = 14, ).
A

By (56.29), (5.23) follows as A increases to Q.
Let us now observe that by (1.5) and (5.23) we deduce

(5.30) JPQuzJPQuw=J?Quw=1_Q u,

hence by Corollary 5.3 and (5.30) (5.21) follows.
We now prove (5.22).
Let us first prove that

(5.31) JEQ, u) =1y, w);

to this aim we can assume that J§(Q, ) < + .
Let {u;}, cWP(Q) be such that u, — % in L(Q) and

(5.32) + oo > JPQ, w) = limsup J fle, Duy,).
h
g

By (5.19) and (5.32) it results that f P(Duy,) < + o for every h e N, henee, for fixed
9
k in N, by Proposition 2.6 at page 312 in [ET], there exists a sequence {u}}, ¢ Cq (Q)
such that uf —u, in L1(Q), Duf — Du, in (L*(Q)" and a.e. in Q as k— » and
(5.33) lim j S(Duf) = j O(Duy) .
g g
By (5.33) and Lebesgue dominated convergence theorem we deduce for every &
(5.34) lim j £, Duf) = j f(x, Duy) -
g g

By (5.32) and (5.34), e can select a sequence {k,},cN such that

(5.35) J§ @, u) > limint j flw, Duf) = I, (@, u),
Q

that is (5.31).
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Since obviously -

(6.36)

JEQ, w) < I,(Q, w)

equality (5.22) follows by (5.81) and (5.36). ®

) RED/{ARK 5.5. -~ We remark that in general if (5.19) does not hold, identity between
{ and J? can be no more true, to this aim see[DA2].
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